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Abstract   

Methane (CH4) release from wetlands is an important source of greenhouse gas emissions. Gas 

exchange occurs mainly through the aerenchyma of plants and production of greenhouse gases is 

heavily dependent on rhizosphere biogeochemical conditions (i.e. substrate availability and redox 

potential). It is hypothesized that by introducing a biocatalyzed anode electrode in the rhizosphere of 

wetland plants, a competition for carbon and electrons can be invoked between electrical current 

generating bacteria and methanogenic archaea. The anode electrode is part of a bioelectrochemical 

system (BES) capable of harvesting electrical current from microbial metabolism. In this work, the 

anode of a BES was introduced in the rhizosphere of rice plants (Oryza sativa) and the impact on 

methane emissions was monitored.  

Microbial current generation was able to outcompete methanogenic processes when the bulk matrix 

contained low concentrations of organic carbon, provided that the electrical circuit with the effective 

electro-active microorganisms was in place. When interrupting the electrical circuit or supplying an 

excess of organic carbon, methanogenic metabolism was able to outcompete current generating 

metabolism. The qPCR results showed hydrogenotrophic methanogens were the most abundant 

methanogenic group present, while mixotrophic or acetoclastic methanogens were hardly detected 

in the bulk rhizosphere or on the electrodes. Competition for electron donor and acceptor were likely 

the main drivers to lower methane emissions. Overall, electrical current generation with BESs is an 

interesting option to control CH4 emissions from wetlands but needs to be applied in combination 

with other mitigation strategies to be successful and feasible in practice.



 

1. Introduction 

Methane (CH4) emissions to the atmosphere arise from various (a)biotic sources. CH4 has a global 

warming potential (GWP) of 25 times the GWP of CO2. Therefore these emissions need to be 

carefully managed (Forster et al. 2007). The main anthropogenic sources of methane emissions are 

ruminant farming (15-32%) and rice agriculture (9-19%). Taking also natural emissions into account, 

wetlands and rice agriculture combined amount to 32-47% of total methane emissions (Denman et 

al. 2007). 

Anaerobic decomposition of organic matter resulting in the formation of methane is the 

consequence of a series of biochemical transformations. Bacteria ensure the formation of monomers 

from complex organic polymers. The monomers are subsequently transformed into various organic 

acids. In the third step acetic acid, CO2 and H2 are formed which are finally transformed into methane 

by the hydrogenotrophic or the acetoclastic methanogens (Appels et al. 2008; Conrad 2002). CH4 

formation occurs under specific biogeochemical conditions such as redox potential (Eh), pH and 

ammonia concentration (Appels et al. 2008; Conrad 2002; Johnson-Beebout et al. 2009; Majumdar 

2003). These parameters give, next to competition for substrate, various handles for control of CH4 

production. The main pathway of gas exchange with the rhizosphere under waterlogged conditions is 

by transport through the aerenchyma of plants (90%). Other mechanisms include diffusion and 

ebullition (Aulakh et al. 2000; Bazhin 2010). Therefore a promising route for mitigation of CH4 

emissions is to prevent the formation of CH4 in the rhizosphere. Next to introduction of alternative 

electron acceptors, other mitigation strategies include fertilizer management, water management, 

biochar addition to the soil and choosing crop varieties with little aerenchyma or little 

rhizodeposition (Aulakh et al. 2001; Aulakh et al. 2000; Conrad 2002; Majumdar 2003; Singh et al. 

1999; Zhang et al. 2012). 

The last decades microbial extra cellular electron transfer has gained attention on the promise of 

generating electrical energy directly from various sources of organic matter (Rabaey and Verstraete 

2005). During anaerobic respiration of organic carbon in a microbial fuel cell (MFC), microorganisms 

are able to use an electrode (the anode) as an electron acceptor. When such a biocatalyzed anode 

(bioanode) is connected with a (bio)cathode, electrical current can be directly harvested from the 

microbial decomposition of organic matter in a bioelectrochemical system (BES). The typical 

substrate for the anodic process is acetate although it has been shown that H2 can also be used 

(Logan et al. 2006). Waterlogged soils and sediments containing organic matter have been exploited 

for direct electrical current generation in sediment-MFCs (Donovan et al. 2011; Reimers et al. 2001; 

Tender et al. 2008). A drawback of sediment-MFCs is the low flux of organic matter towards the 

anode, limiting high current production. To overcome this issue, plants have been introduced into 



the anode of a sediment-MFC creating a Plant-MFC which enables sustained current generation from 

organic matter due to rhizodeposition processes (Strik et al. 2008). An example is the use of rice 

plants, as they are able to withstand prolonged inundation of their rhizosphere (De Schamphelaire et 

al. 2008; Kaku et al. 2008).  

Methane emissions from rice paddies can be estimated to range from 0 up to 60 mgCH4 m -2 h-1 

(Gogoi et al. 2005; Singh et al. 1999; Xu et al. 2007). This corresponds to the equivalent of an 

electrical current of 0 to 804 mA m -2 (See supplementary information for calculations). Plant-MFCs 

have been reported to produce a current up to 120 mA m -2 (De Schamphelaire et al. 2008). These 

values are well within the same order of magnitude, therefore it has been hypothesized that current 

generating metabolism can mitigate CH4 emissions from rice paddy soils and in more general terms, 

waterlogged wetlands (Cabezas da Rosa 2010; De Schamphelaire et al. 2008; Hong et al. 2009; Ishii et 

al. 2008; Kaku et al. 2008). Introducing an electrode (anode) in the rhizosphere of waterlogged plants 

possibly enables the removal of electrons from the commonly present methanogenic metabolism 

(Arends and Verstraete 2012; Cabezas da Rosa 2010; De Schamphelaire et al. 2008; Kaku et al. 2008). 

This is analogous to CH4 emission mitigation strategies such as the addition of ferric iron or sulphate 

to stimulate iron reducing or sulphate reducing microorganisms in their competition for reducing 

equivalents with methanogens (Conrad 2002; Liesack et al. 2000). 

Anodic oxidation of organic matter leads to a decrease in pH during current generation (Rozendal et 

al. 2006; eq. S2). Methanogenic metabolism can be inhibited by a decrease in pH (Appels et al. 2008). 

Acidification due to current generating metabolism can possibly form a second route to inhibition of 

methanogenic activity, next to competition for substrate.  

Cabezas de Rosa (2010) has observed a 47% decrease in pore water CH4 concentrations in a rice 

paddy soil sediment-MFC without plants. Kaku et al. (2008) were not able to show lower CH4 

emissions in closed circuit operation of a Plant-MFC during a field trial in a rice paddy. In this work 

the results of a microcosm study are presented in which rice plants were grown in vermiculite with a 

BES in the rhizosphere. The aim of this work was to investigate 1) the influence of the external 

resistance 2) the mechanism and 3) the archaeal pathways involved in possible methane emission 

mitigation in Plant-Sediment MFC rhizosphere/anode environments.



 

2. Materials and Methods 

2.1 Microcosm setup 

All experiments were carried out in microcosms consisting of Perspex tubes (14 cm inner diameter, 

35 cm high). The bottom 15 cm contained 12 sample ports at various heights while the top 10 cm 

contained 4 sample ports (Figure 1, S2). The containers were filled with graphite granules (type 

00514, Mersen, Belgium) and vermiculite (Nestaan, Belgium) in a volume ratio of 2:1, to a height of 

18 cm. This ratio was chosen in order to have a good electrical conductivity in the rhizosphere 

(Arends et al. 2012) and to ensure that only added organic carbon (COD) or rhizodeposition were the 

sources organic carbon. On top of this mixture, a layer of 3 cm vermiculite was added which 

prevented electrical contact between the anode and the cathode. Vermiculite and not rice paddy soil 

was chosen to create uniform rhizosphere conditions and to be able to measure and/or control the 

amount of organic carbon in the rhizosphere/anode as much as possible. The sides of containers 

were covered with black tape to create a dark root environment. At 5 and 15 cm height, a piece of 

graphite felt (10*10*0.3 cm; Alfa Aesar, Germany) interwoven with a carbon rod (5 mm diameter; 

Morgan, Belgium) was placed as the anodic current collector. The cathode was made of two sections 

of 5*10*0.3 cm graphite felt interwoven with a carbon rod. The two sections were placed so that the 

plants were able to grow in the middle of the Perspex tube. A watertight connection between the 

wire and the carbon rod was established by means of conductive carbon cement (CCC, Leit-C; Fluka, 

Germany) and vulcanizing tape. An Ag/AgCl reference electrode (BASi, United Kingdom) was placed 

at 10 cm height in the rhizosphere/anode compartment and also in the cathode compartment. To be 

able to measure soluble pore liquid components, a rhizon sampler was located at 6.7 and 16.7 cm 

height (10 cm porous, Rhizosphere Research Products, The Netherlands). In order to collect gas 

emissions, the top of the Perspex container contained a ledge for a water lock. This ledge was able to 

support a tube of 12.3 cm inner diameter and 1 m height (Figure S2). The top of this tube contained 

four connectors for sampling or other uses. One connection was occupied by the electrical 

connections for a fan to mix the contents of the headspace; another was used for temperature 

measurements during headspace gas sampling. All sampling i.e. pore liquid, trace gas and 

polarization curves was performed at the same time for a microcosm during the whole experimental 

period to minimize circadian (day/night) influences on the results. For the exploratory study, 

additional square containers were used with the same configuration except for the surface area 

(18*18 cm). In experimental setups meant for open circuit conditions, only 1 anode and 1 rhizon 

sampler were placed in the container. An overview of all microcosms and experimental conditions 

can be found in table S1. 

  



 

Figure 1: a) Schematic overview of microcosm, not to scale. b) photograph of empty microcosm.  1) anode 

current collector, 2) Ag/AgCl reference electrode, 3) port for liquid addition, 4) positions for Rhizon samplers, 5) 

vermiculite level, 6) water level, 7) cathode electrode and wire, 8) rim to hold gas cover. 

 

2.2 Rice plants & rhizosphere organic carbon 

Rice seeds (Oryza sativa, ssp. indica, cultivar C101 PKT) were germinated in ¼ Hoagland nutrient 

solution at 28°C in the dark (De Schamphelaire et al. 2008). The seedlings were subsequently 

transplanted into the Perspex containers, which was considered the start of the experiment. Two 

seedlings were planted per microcosm. The microcosms were placed in a light (12/12 light/dark using 

Osram 400W plantastar and Osram 400W powerstar daylight HQI-BT Lamps) and temperature (30 ± 

2 °C) controlled growth room. Development of the plants was scored according to Counce et al. 

(Counce et al. (2000). To maintain a constant water level above the vermiculite, plants were regularly 

watered with tap water and once per week with ½ Hoagland nutrient solution. Upon good visible 

plant development, nitrate was removed from the Hoagland nutrient solution (Helder et al. 2012). 

Dried and ground barley straw was added to the rhizosphere as additional organic carbon in the 

exploratory study (Table S1). Soluble organic carbon mimicking exudation was added to the 

rhizosphere in the main study as an equal weight mixture of acetate, starch, glucose, malate and 

succinate. The amount of organic carbon added was calculated to attain approximately 30 mg CH4 m-

2 h -1 emission resulting in an organic carbon addition rate of 2.9 gCOD m -2 d -1 (~ 401 mA m -2; starting 

from day 39; See supplementary information S1.). 

 

2.3 Electrochemical analysis 

Cell potential over an external resistor (500 Ω, unless stated otherwise), anode and cathode 

potentials (Ean respectively Ecath) versus a reference electrode were measured continuously at 5 min 

intervals (HP 34970A, Agilent). The potential of the Ag/AgCl reference electrodes were regularly 



monitored relative to a calomel electrode (+244 mV vs. Standard Hydrogen Electrode (SHE); QIS, the 

Netherlands) for correct conversion of the electrode potentials compared to the SHE. Electrode 

potentials are consequently reported versus the standard hydrogen electrode. Polarization and power 

curves were recorded on a weekly basis with a Bistat potentiostat (Biologic, France) at a scanrate of 1 

mV s -1 following a 20 min stabilization period in open circuit. Electrochemical calculations were 

performed according to Rabaey et al. (2005) and are based on hourly averages. Current and power 

density are reported normalized to the plant growth area (0.015 m2; Table S1).  

 

2.4 Chemical analysis 

Liquid and headspace gas samples were taken twice a week. Anions (PO4
3-, NO3

-, NO2
-, SO4

2-) in the 

pore liquid were analysed using a metrosep A Supp 5-150 column after a metrosep A 4/5 guard 

column in a 761 Compact IC with a conductivity detector (Metrohm, Switzerland). Pore liquid soluble 

chemical oxygen demand (COD) was determined using commercial kits according to the 

manufacturer’s instructions (Machery-Nagel, Germany). Volatile fatty acids (VFA) were determined, 

after etheric extraction of 2 mL pore liquid, on an EC-1000 Econo-Cap column in a gas chromatograph 

(2014, Shimadzu) with a flame ionization detector (FID). Pore liquid and overlying water pH and 

conductivity (EC) were determined using a handheld probe (SP10B and SK20, Consort, Belgium). 

Headspace air temperature was monitored during gas sampling. 

 

 2.5 Trace gas analysis 

Twice a week the headspace of the microcosms was closed to determine gas emissions from the 

rhizosphere-plant continuum. Every 30 min. duplicate 15 mL gas samples were taken from the 

headspace over a period of 2 hours. A duplicate 15 mL background air sample was taken to account 

for gas concentrations already present in the rice cultivation room. All gas samples were stored in a 

12 mL vacutainer, allowing at least 3 subsamples for analysis. Vacutainers were stored in the dark at 

ambient temperature (20 ± 2 °C) until analysis. CH4 and CO2 were analysed using a gas 

chromatograph (Trace GC Ultra, Thermo Fisher Scientific, Germany). Methane was determined using 

FID while CO2 was determined using a thermal conductivity detector (TCD). Nitrous oxide was 

measured using a gas chromatograph (14B, Shimadzu, Japan) with a 63Ni electron capture detector 

(ECD). 

 



2.6 PCR-DGGE and qPCR 

At the end of the experimental period, samples were taken for microbial community analysis. Sample 

positions were: anode current collector, anode felt (top & bottom) and anode granules with and 

without rice roots (Figure S2). Anode granules without rice roots are considered as bulk vermiculite. 

Total DNA was extracted using the method as described by Boon et al. (Boon et al. 2000). The 16S 

rRNA-gene was amplified using PCR (Table 1). The bacterial community structure was visualized by 

means of denaturing gradient gel electrophoresis (DGGE) of the obtained PCR amplicons using an 8% 

polyacrylamide gel and a denaturing gradient of 40-60% on an INGENY phorU2X2 system for 16 h at 

120 V (Goes, The Netherlands). The gel was stained with Sybr green in 1x TAE buffer. The resulting 

community structures were analysed using BioNumerics software v5.1 (Applied Maths, Belgium). 

DGGE profile similarities were based on band based clustering using the Jaccard coefficient to 

minimize the influence of background subtraction on the clustering. Theoretical ecological 

parameters, community organization (Co) and richness (Rr), were used to numerically describe the 

bacterial communities. In brief, Co describes the species abundance distribution based on the gini 

coefficient of the microbial community. Rr describes the species richness of the microbial community 

and can be interpreted as the carrying capacity of a certain environment (Read et al. 2011). The 

archaeal community structure was analysed by means of qPCR (Table 1 & S2) using the GoTaq qPCR 

MasterMix (Promega, Belgium) on a StepOnePlus qPCR machine and accompanying software 

(Applied Biosystems, United Kingdom).  

 

Table 1: (q)PCR primers and conditions used for elucidating the microbial communities. D: denaturation, A: 

Annealing, E: Elongation phases of the PCR cycle. For the specific methanogenic groups, taxonomic level and 

major metabolism are indicated. 

Reaction Target Primers Program Reference 

PCR-DGGE Bacterial 16S rRNA gene 338F-GC 
518R 

D: 94°C, 300s 
30 cycles 
D: 95°C, 60s 
A:53°C, 60s 
E: 72°C, 120s 

E: 72°C, 600s 

(Boon et al., 
2000; Ovreas et 
al., 1997) 

qPCR Total Bacteria 16S rRNA 
gene 

338F 
518R 

D: 94°C, 10min 
40 cycles 
D: 94°C, 15s 

A&E: 60°C, 60s 

 

 Total Archaea 16S rRNA 
gene 

ARC787F 
ARC1059R 

D: 94°C, 10min 
40 cycles 
D: 94°C, 10s 
A&E: 60°C, 60s 

(Yu et al., 2005) 

 Methanosaetaceae 
Family (acetoclastic) 

Mst 702F 
Mst 862R 

See total archaea  



 Methanosarcianceae 
Family (mixotroph) 

Msc 380F 
Msc 828R 

See total archaea  

 Methanobacteriales 
Order (H2/CO2) 

MBT 857F 
MBT 1196R 

See total archaea  

 Methanomicrobiales 
Order (H2/CO2) 

MMB 282F 
MMB 832R 

D: 94°C, 10min 
40 cycles 
D: 94°C, 10s 
A&E: 63°C, 60s 

 

 

3. Results   

A first set of exploratory experiments was used to determine the key operational parameters 

(electrode position, organic matter content and initial microbial community) relevant for CH4 

emissions. A second, more detailed study focused on the effect of placing a sediment MFC in the 

rhizosphere of rice plants on greenhouse gas emissions. 

 

3.1 Exploratory study  

From the exploratory study no clear difference could be distinguished in methane emissions between 

closed and open circuit conditions as well as between planted and sediment conditions. Methane 

emissions averaged across the open (n=7) and closed circuit (n=3) configurations (table S1) were 157 

± 76 vs. 169 ± 68 mg CH4 m
 -2 h -1 respectively. These values are high compared to natural field 

conditions (0-60 mg CH4 m -2 h-1 (Gogoi et al. 2005; Singh et al. 1999; Xu et al. 2007)). The microcosm 

that was not supplemented with straw was the configuration that came close to natural CH4 fluxes in 

the order of 35 mgCH4 m -2 h -1. Interestingly, the exploratory study revealed that interrupting the 

current flow from a well performing Plant-MFC resulted in a doubling of CH4 emission flux (Figure 

S3). This doubling was about 20 times higher than the loss in electrons due to current (See 

supplementary information for calculations). This suggests the influence of changing electrochemical 

or thermodynamic conditions, possibly related to local acidification close to the anode electrode, 

next to direct competition for electrons between the current generating and methanogenic microbial 

populations. Based on the results of the exploratory work, it was chosen to work in the detailed 

study with no added organic carbon at the start of the experiment and also to not add methanogenic 

sludge.  

 

The next sections provide the results of the detailed study. 

 

3.2 Plant growth characteristics 

4 Microcosms were set up for the detailed study. One microcosm (M4) lagged behind in 

development rate in the first growth phase, probably due to leakage of copper from the current 



collector wire at the cathode i.e. at the top of the microcosm. This was amended by replacing the 

wire and removing the affected vermiculite, after which the rate of development of the plants in M4 

as well as electrochemical and gas emissions were similar to comparable microcosms. Final above 

ground dry biomass were M1: 9.5 ± 1.2 gDW plant -1 M2: 10.9 ± 0.1 gDW plant-1 M3: 11.5 ± 1.7gDW 

plant-1 M4: 4.3 ± 2.2 gDW plant-1.  

 

3.3 Current, power and electrochemical performance of the Plant-MFCs 

Cell potentials of all four plant-MFCs increased during the first 21 days after planting to an average 

maximum value of 0.23 ± 0.039 V resulting in a current density of 27.9 ± 4.2 mA m-2 (figure 2b). After 

day 21, the cell potentials decreased. Addition of organic carbon (starting at day 39) resulted in an 

increase in current density for M3 and M4 (days 45-55) to 45.5 ± 11.8 mA m-2 for M3 and 25.9 ± 13.7 

mA m-2 for M4 (Figure 2b). M1 and M2 did not receive any organic carbon (Table S1). Consequently, 

no increase in current nor in greenhouse gas emissions were observed. M2 is not plotted in figure 2 

as data were similar to M1. The high standard deviations are due to a circadian rhythm with daily 

maxima up to 69.6 mA m-2 and 62.4 mA m-2 for M3 and M4 respectively and nightly minima as low as 

22.9 mA m-2 and 9.7 mA m-2 for M3 and M4 (Figure 3). After the open circuit period (day 63-72), the 

current density did not recover up to these values. Attempts to increase current density by lowering 

the external resistance did not result in an increased current flow (Figure 2b). The main cause for the 

low current density was a deterioration of the cathode performance as evidenced by the cathode 

potential (Ecath). While the cathode potential reached daily maxima of 0.84 V and 0.62 V for M3 and 

M4 and nightly minima of 0.07 V and 0.17 V during days 45-55 (Figure 3), daily cathode maxima went 

only up to 0.40 V and 0.37 V for M3 and M4 upon re-closing the opened electrical circuit with a 500 Ω 

resistor. Decreasing the external resistance to 100 Ω (d 79) resulted in an average (including day & 

night) Ecath over the remainder of the experimental period of -0.11 ± 0.13 V for M3 and -0.11 ± 0.07 V 

for M4. The anode potential of M3 and M4 remained low after day 39, -0.20 ± 0.16 V for M3 and -

0.19 ± 0.09 V for M4 (Figure 1c and 3). Variations in anode potential are mainly caused by 

polarization curves (invasive technique) or sampling. Overall average power production during days 

45-55 resulted in 22.2 ± 9.5 mW m-2 for M3 and 6.6 ± 6.6 mW m-2 for M4. Here again high standard 

deviations can be seen, due to the circadian rhythm influencing cathode performance. From the 

polarization and power curves the maximum attainable current and power can be estimated. The 

maximum power output was attained at day 61, 72 mW m-2 for M3 and 56 mW m-2 for M4. The 

maximum short circuit current generated during the polarization measurements was 0.58 A m-2 for 

M3 at day 53 and 0.20 A m-2 for M4 at day 61. For M1 and M2, the maximum values amounted to 9 

mW m-2 and 1 mW m-2 respectively, obtained at day 19 

 



 



Figure 2: overview of a) chemical oxygen demand, b) current density, c) anode potentials, d) methane flux, 

multiply value by 25 to arrive at CO2 equivalents and e)nitrous oxide flux, multiply value by 298 to arrive at CO2 

equivalents during the rice growth period. M1:  M3:  M4: . M2 is not plotted as data are 

similar to M1. For continuous measurements, b) and c), symbols are omitted. Experimental stages: 0: initial 

plant growth and MFC start-up 1: addition of organic carbon 2: open circuit period 3: closed circuit period, 500 

Ω 4: external resistance lowered from 500 Ω to 100 Ω for M3 and M4. No electrochemical data available for day 

58-63. 

 

 

Figure 3: Close up of data between day 45-55 showing the diurnal variation. a) anode and cathode potentials 

during day 45-55. Day 48: anode reference electrodes disconnected. Vertical solid lines; 7 am, lights on. Vertical 

dotted lines; 7 pm, lights off. M3 anode:  M3 cathode:  M4 anode:  M4 cathode:  b) 

Current density resulting from the varying electrode potentials day 45-55. M3 daily max.:  M3 Nightly 

min. :  M4 daily max.:  M4 Nightly min. :   

 

3.4 Current was generated after addition of organic carbon. 

The overall availability of organic carbon in the pore liquid was low during the first part of the 

experiment (35.3 ± 10.5 mgCOD L-1 for M3 and 31.8 ± 9.3 mgCOD L-1 for M4 till day 55; Figure 1a). To 



compensate for the low reducing power provided by the plants, soluble organic carbon was added to 

mimic the rhizodeposition process. The added COD was immediately used by the electroactive 

microbial community present on the anode, as can be seen by the almost instantaneous increase in 

current (Figure 2b). The organic carbon was efficiently oxidized as only on day 70 it started to appear 

in the pore liquid of the bulk (Figure 2a). No short chain fatty acids were detected in the bulk liquid of 

the microcosms (data not shown). The efficient use of exogenous organic matter was not only for 

current generation, as current generation only accounted for maximum 15% of the organic carbon 

([~60 mA m-2] / [401 mA m-2] *100%). The organic carbon that was not used for current generation 

accumulated in the system or was metabolised using alternative electron acceptors such as nitrate 

and sulphate or O2 due to radial oxygen loss from the rice roots. For M3 and M4 a decrease of 69 % 

and 75 % COD equivalents was noticed for nitrite, nitrate and sulphate combined after day 39. The 

substrate limited situation of all microcosms could also be derived from the fact that M2 received the 

same nutrient solution as M3 & M4 but without organic carbon. The addition of only Hoagland 

solution did not result in an increase of current, nor CH4 emissions nor organic carbon concentration 

in the pore liquid. M1 did not receive any extra organic carbon or liquid, which also did not result in 

an increase of available organic carbon in the pore liquid.  

Due to current generating metabolism, a drop in pH could be expected but this was not detected in 

the bulk pore liquid. The pH of all pore liquid samples was 7.79 ± 0.44 over the whole experimental 

period.  

 

3.5 Anode biofilm redox potentials in relation to greenhouse gas emissions 

Methane was produced when favourable redox conditions existed for the producing microbial 

community (i.e. < -150 mV vs. SHE; Hou et al., 2000; Yu and Patrick, 2003; Johnson-Beebout et al., 

2009). The potentials measured in the reference electrode/ bioanode combination could be related 

with bulk gas emissions for CH4 (Figure 4a). N2O emissions showed a less clear relationship with the 

redox potentials as measured with the reference electrode/ bioanode combination (figure 4b).  

 



 

Figure 4: Greenhouse gas emissions in relation to measured anode potential. a) CH4 multiply value by 25 to 

arrive at CO2 equivalents b) nitrous oxide flux, multiply value by 298 to arrive at CO2 equivalents. M3:  

M4: .  

 

3.6 Methane emissions lagged behind current generation.  

Organic carbon was efficiently metabolised to current, to other sinks or accumulated, but was not 

metabolised to methane. Methane only appeared in the headspace measurements of M3 & M4 after 

the current flow was interrupted by removing the external resistor from the electrical circuit for 9 

days (day 63-72). Towards the end of this period (day 69; Figure 2a), organic carbon concentrations 

started to increase in the pore liquid (up to 577 mgCOD L -1 for M3, day 85 and 265 mgCOD L -1 for 

M4, day 89). This increase was followed by an increase in CH4 emissions (starting on day 75; Figure 

2d). Closing the electrical circuit with a 500 Ω resistor on day 72 did not result in a decrease in CH4 

emissions. Conversely, CH4 emissions increased even further. Methane release from the microcosms 

did not show any relation with either closing the electrical circuit or lowering the external resistance 

to 100Ω (day 79; Figure 2b and 2d). The effect of the electrical current on the CH4 emissions after re-

closing the external circuit remains to be determined as the current was markedly lower compared 



to the period before the electrical circuit was opened. This was the result of the low activity of the 

(bio)cathode resulting in an overall low current density (Figure 2b and § 3.3). Methane emissions in 

these microcosms were indeed facilitated by the aerenchyma of the rice plants. This was established 

by harvesting the above-ground biomass at the end of the study period and subsequently 

determining the CH4 flux. Cutting the biomass in M3 and exposing the aerenchyma to the air resulted 

in a 14% lower emission the next day (32.3 to 27.8 mgCH4 m - 2 h -1). Cutting the biomass in M4 and 

raising the water level to above the aerenchyma resulted in a 85% decrease of emissions the next 

day (9.5 to 1.4 mgCH4 m - 2 h -1). 

 

3.7 Bacterial community structure is driven by available organic carbon 

Based on the DGGE-profile of the 16S rRNA gene of the bacterial community, the main parameter 

affecting the enrichment of the various microbial communities was the amount of available electron 

donor (organic carbon) present at the various locations. This was confirmed by two methods of 

cluster analysis, Jaccard band based clustering (Figure 5) and via a Pearson correlation clustering (not 

shown). M3 and M4 were able to support a bacterial community with a higher community 

organisation (Co) and a higher richness (R) compared to M1 and M2. The higher richness indicates a 

more developed microbial community. It can be reasoned that this is related to a metabolic network 

where fermentation of substrates to H2 plays a key role however this could not be validated with the 

used technique. 

 

Figure 5: Jaccard bandbased clustering of 16s rRNA-gene based microbial community. Microbial Resource 

Management (MRM) parameters community organization (Co) and range weighted richness (Rr) are indicated 

(Read et al. 2011). 

 



3.8 Archaeal community structure  

The results of the qPCR analysis of the archaeal microbiome at the end of the experiment indicates 

that H2 based methanogenesis (orders Methanobacteriales & Methanomicrobiales) was likely the 

dominant process compared to acetate based methanogenesis (Family Methanosaetaceae). M1 (low 

COD concentration in the pore liquid, and resulting low CH4 emissions) showed a slight enrichment in 

H2 consuming Methanomicrobiales compared to acetate consuming methanogens (3.9 vs. 3.8 log 

copies g -1, other groups were below detection) at the roots of the rice plants. The microcosms with a 

higher COD-load (M3 & M4) showed at all sample locations (with and without roots, top and bottom 

felt) a higher abundance of H2-consuming methanogens. Methanosaetaceae (acetate dependent) 

were present in a lower abundance compared to Methanosarcinaceae (mixotrophic) at the bottom 

anode (5.2 vs. 6.0 log copies g -1 for M3 & 4.7 vs. 5.1 log copies g -1 M4) whereas they were more 

abundantly present at the top anode (5.0 vs. 4.7 log copies g -1 for M3 & 4.7 log copies g -1 vs. < 3.7 log 

copies g -1 for M4). All archaeal groups were below detection limit at all sample locations for M2, 

correlating with the low COD concentrations in the rhizosphere. The same was valid for M1 where 

archaea were only detected in samples with roots. The copy numbers of all four groups of 

methanogens added up to the copy numbers obtained by means of the total archaea qPCR for all 

microcosms. This indicates that no other groups were involved in methanogenesis in these 

microcosms. 

 

4. Discussion 

4.1 Anode/rhizosphere organic carbon and redox potential 

The low current density recorded for M1 and M2 over the whole experimental period and for M3 

and M4 for the first 40 days indicate that exudation of low molecular weight organic acids or sugars 

were not directly responsible for current generation at the anode. Moreover, no short chain fatty 

acids were detected in the bulk liquid, indicating that other organic components were the major 

components of the organic material present. These results are in line with previous research where 

long start-up times for Plant-MFCs were recorded with pristine anodes (De Schamphelaire et al. 

2008; Helder et al. 2010; Helder et al. 2012). The long start-up times indeed suggest that components 

derived from rhizodeposition other than small molecules released via direct exudation are more 

important in current generation by plant-sediment MFCs. The model put forward by Timmers et al. 

(2011) showed that a low amount of reducing equivalents available for current generation was 

corroborated by the presence of alternative electron acceptors and could possibly be related to 

radial oxygen loss into the rhizosphere (Liesack et al. 2000). In this work, redox potentials as 

measured at the anode electrode of M3 and M4 decreased over time, with subsequent increase in 

bulk gas emissions of CH4, with increased current generation and a decrease in alternative electron 



acceptor concentrations. For both CH4 and N2O, favourable redox potentials are needed, i.e. for N2O 

Eh >180 mV vs. SHE via denitrification and for CH4 Eh < -150 mV vs. SHE (Hou et al. 2000; Johnson-

Beebout et al. 2009; Yu and Patrick 2003). Bulk methane emissions can be related to redox potentials 

as determined with the bioanodes. A clear relation was not observed for N2O emission and bulk 

anode potentials (Figure 4). This can be attributed to the position of the reference electrode in 

relation to the location of microbial activity. The top of the microcosm which was exposed to 

ambient air, while the bulk microcosm was waterlogged.  

 

4.2 Current producing metabolism precedes methanogenic metabolism. 

As stated before, organic carbon was instantaneously metabolised to current and not to CH4. 

Methane emissions became apparent after interrupting current flow by removing the external load. 

During this period, organic carbon became available in the pore liquid and CH4 emissions started to 

increase. An exploratory study already revealed that at higher organic carbon loads, no difference in 

methane emissions could be observed between the open and closed circuit conditions. In accordance 

with the findings in this work, Freguia et al. (2008) have also shown that methanogenesis is a robust 

process largely operating independent of electrode based processes. This was established in a 

reactor type anode with a packed bed of similar granular electrode material. Kaku et al. (2008) were 

also not able to detect decreased CH4 emissions from Plant-MFCs in closed circuit in a rice field. On 

the other hand, it was shown that a closed circuit MFC was able to release 10 times less methane 

compared to an open circuit MFC using a reactor type setup and rice paddy soil as anode inoculum 

(Ishii et al. 2008). Cabezas de Rosa (2010) showed that it was possible to reduce methane emissions 

with electrodes in sediment systems by 47%. These seemingly contradicting observations indicate 

that the electrical circuit and the current generating microorganisms were only able to outcompete 

methanogenic microorganisms at low organic carbon concentrations (electron-donor) and high 

electron acceptor concentrations (anode in closed circuit). This concept is supported by the fact that 

the affinity (Ks) of Geobacter sulfurreducens (a known current generating microorganism) for acetate 

can be as low as 10 µM whereas the lowest affinity for acetate reported for Methanosaetaceae is 

160 µM (Esteve-Núñez et al. 2005; Qu et al. 2009). For Methanosarcinaceae this value is even higher, 

3 mM (Qu et al. 2009). 

Competition for substrate seemed to be most important as acidification of the bulk pore liquid was 

not detected. With an average current density of 35 mA m - 2 (day 45-55 Figure 2b), it can be 

calculated that about 0.5 mmol of protons are produced per day. This amount of protons produced 

locally at the anode can indeed cause local acidification. The results indicate however that local 

buffer capacity, in companion with proton diffusion to the cathode, were able to prevent bulk 

acidification in the studied microcosms. Lowering the resistance in the external circuit from 500 Ω to 



100 Ω did not result in a higher current. This is in conjunction with the observations of Helder et al. 

on an a rooftop MFC (Helder et al. 2013). Although they were not able to indicate a cause for this 

phenomena, from this work it could be observed that it was mainly due to a deterioration of cathode 

performance. The low cathode potentials were most likely caused by an accumulation of organic 

detritus (e.g. degraded leaves, algae, roots) on the cathode electrode, leading to a low O2 availability 

for electrochemical reduction.  

Overall, a sequence of steps can be distinguished; initially, during early waterlogging conditions and 

plant development, a high redox potential due to the presence of O2 and other soluble electron 

acceptors is noticed. Gradually organic carbon becomes available in the rhizosphere, electron 

acceptors are being depleted except for the electrode and redox potential decreases leading to 

current generation. Over time, more organic carbon becomes available than the current generating 

bacteria can metabolise and CH4 production starts and cannot be stopped anymore. 

 

4.3 Archaeal communities in the rhizosphere of plant-MFCs 

Few microbial communities of anodes of Plant-MFCs have been elucidated (Cabezas da Rosa 2010; 

De Schamphelaire et al. 2010; Kaku et al. 2008; Timmers et al. 2012). Of the microbial communities 

studied, focus has been placed on the anode bacterial community and not on the archaeal microbial 

community. In the current study methanogenic community slightly dominated by H2-dependent 

methanogens was detected. This was also the case in several other studies and sometimes even 

more pronounced in closed circuit compared to open circuit conditions. De Schamphelaire et al. 

(2010) have seen a relative enrichment of H2 utilizing methanogens in Plant-MFCs consisting of a soil 

or vermiculite rhizosphere with graphite felt electrodes, which only covered a small part of the 

rhizosphere. Timmers et al., (2012) characterized the microbial populations in the anode of a high 

current (167 ± 65 mA m - 2) vs. a low current (67 ± 58 mA m - 2) producing Plant-MFC (Glyceria 

maxima) with the complete anode compartment filled with electrode material. The relatively high 

current indicated that in that case sufficient organic substrate was present in the anode under 

reducing conditions. In their study, a selection towards a H2-based metabolism was detected after 

225 days of operation where 95% of the archaea could be related to the genus Methanobacterium in 

the high current producing Plant-MFC vs. a more diverse archaeal community in the low current 

MFC. The bacterial community supported these results as H2 producing clostridia were abundantly 

found in the high current producing systems (Timmers et al. 2012).  

Using a sediment MFC, Cabezas da Rosa (2010) found that H2-based methanogenesis was more 

important compared to acetate based methanogenesis at the archaeal community level, i.e. 

Methanosaetaceae were less abundant compared to Methanosarcinaceae and 

Methanomicrobiaceae in the current generating systems. This result was corroborated by the stable 



isotope ratios of CH4 indicating lower acetoclastic CH4 production in closed circuit systems (Cabezas 

da Rosa 2010).  

In the microcosms studied in this work, an alternative electron acceptor was introduced in the 

rhizosphere aimed at lowering the activity of the methanogenic microbial community. As seen in 

other (plant) MFC based anodes, also here hydrogenotrophic methanogens were most abundantly 

detected. This indicates that to effectively lower methane emissions by introducing an anode, the 

focus should be on stimulating hydrogen to current conversions. 

 

4.4 Outlook & challenges 

From this longitudinal study several challenges for the control of methane emissions from rice 

paddies or other wetlands on a larger than lab-scale by means of a bioelectrochemical system can be 

envisioned. Condensing the limited information that is known on (competitive) inhibition of CH4 

formation in anodes of (sediment) bioelectrochemical systems, it shows that contradicting data are 

present in the existing literature, because of 1) different inocula, 2) a varying electrode configuration, 

3) a varying organic loading rate and 4) a different electrochemical control (Cabezas da Rosa 2010; 

Freguia et al. 2008; Ishii et al. 2008; Kaku et al. 2008).  

A first challenge is the effective range of the anode and the technical application of the 

bioelectrochemical system. In order to achieve an effect, carbon granules were applied in a 2/3 ratio 

vs. the amount of vermiculite matrix. Combining these dispersed granules with a suitable current 

collector and a reference system poses a great challenge. On top of that, agricultural practices(e.g. 

plowing) can interfere with the bioelectrochemical system. A solution to this challenge might be the 

use of electron shuttle molecules (phenazines, humic substances etc). However the effectiveness of 

these molecules in electron transfer processes in soils and sediments needs to be established. 

Moreover, these molecules can also interfere with other processes than electron transfer. 

The second challenge is the question of electrochemical control. In this work, electrochemical control 

was applied by using an external resistor coupled to an O2-reducing (bio)cathode. Visual inspection, 

polarization curves and electrochemical monitoring of the cathode potential indicated deterioration 

of cathode performance over time. A probable cause for this deterioration is the amount of organic 

carbon that accumulated on the cathode electrode over time due to growth of algae and dead 

(plant)biomass. Another option for electrochemical control, is the polarization of the anode 

electrode at a certain potential (e.g. 0 vs. SHE). This might however lead to large energy investments 

due to the internal resistance of a sediment-BES configuration (see Supplementary information S2, 

Figure S1).  

A third challenge is the durability of CH4 emissions mitigation over a long period of time. In this work, 

it was established that CH4 emissions could be postponed by introducing a bioanode. However, the 



effectiveness on a time scale longer than one growing season needs to be determined. A longer 

effective working period can possibly be obtained in combination with an anode of conductive 

biochar in the rhizosphere. As Feng et al. (2012) has shown, biochar is able to increase the 

abundance of methanotropic bacteria. During an anaerobic period, a conductive biochar can act as 

an anode, while during an aerobic period it can act as a methanotrophic stimulant. The application of 

agricultural practices such as mid-season drainage (Xu et al. 2007) to provide a competitive 

advantage for the current generating microbial community (that is able to withstand O2 (Freguia et 

al. 2008; Nevin et al. 2011)) in conjunction with methanotropic stimulation is another option. 

In conclusion, It was shown that placing an anode of a bioelectrochemical system in a waterlogged 

rhizosphere led to current generation before methane emissions started, possible leading to 

postponement of methane emissions from these anoxic systems in the short term. However, in the 

long-term (i.e. period of complete rice cropping season), low methane emissions could not be 

maintained due to an excess of organic matter in the rhizosphere. Based on qPCR analysis of the 

archaeal community in the rhizosphere/anode plane, H2 was indicated as the most important 

precursor for methane production. This shows that there was an effective competition on the level of 

acetoclastic methanogenesis, but that the competition for H2 needs to be enhanced to achieve a 

more effective and sustainable mitigation of methane emissions by means of a bioelectrochemical 

system. The effect of local acidification due to anodic metabolism on methanogenic metabolism 

could not be established in this work. To achieve a practical, large scale application of a 

bioelectrochemical system to mitigate methane emissions, a combined strategy with other methane 

mitigation approaches is envisioned. 
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Supplementary information S1. Example calculation to convert current density, chemical oxygen 

demand removal rate and current in the same units 

Electrical current density (A m-2), chemical oxygen demand removal rate (gCOD d-1) and methane 

emissions (mgCH4 m-2 h-1) can all be recalculated into the same units. All three parameters express, in 

essence, the movement of electrons. Here some example calculations are presented to clarify these 

conversions. 

 

Electrical current density J (A m -2), can be expressed as the amount of charge Q, expressed in 

coulomb (C) per area A (m2) per time t (s)  

Q/(t*A) = J (A m -2)     (Eq. S1) 

The amount of charge can be expressed as mole of electrons by conversion with the Faraday 

constant (96485 C mol (e-) -1). Thus electrical current density is a measure of the amount of charge 

that moves in a given time through a certain area.  

 

Organic matter removal can be expressed as chemical oxygen demand (COD) removal per day. This 

can also be expressed as the movement of charge in a given time. For example acetate oxidation 

with O2 can be written according to two half reactions, the first is the oxidation of acetate and the 

second the reduction of O2 to water. 

2HCO3
- + 9H+ + 8e-  CH3COO- + 4H2O   (Eq. S2) 

2O2 + 8e- + 8H+  2H2O    (Eq. S3) 

From these two half reactions it can be established that 1.1 g of O2 (32 g mol -1) is needed for the 

oxidation of 1 g of acetate (59 g mol -1). Moreover, as can be seen in S2 and S3, electrons are being 



displaced. Accordingly, the oxidation of organic matter per area per time can be expressed as a 

current density. For example oxidizing 1 g organic matter per m2 per h results in a current density of 

3.4 A m -2. 

1 (gCOD m - 2)/32 (g mol -1 O2) * 4 (mol (e- )mol -1 O2) *1/3600 (h s -1)*96485 (C mol (e-) -1) = 3.4 

A m -2 

 

Methane removal or production can also be expressed as a current density when applying the same 

reasoning. 

1HCO3
- + 9H+ + 8e-  1CH4 + 3H2O   (Eq. S4) 

For example producing 10 mgCH4 per m2 per h results in an equivalent current density of 0.13 A m - 2 

10*10-3 (gCH4 m
 - 2)/16 (g mol -1 CH4) * 8 (mol (e-) mol -1 CH4) *1/3600 (h s -1)*96485 (C mol (e-) -

1) = 0.13 A m - 2 

 

Conversely, current density can be expressed in equivalent units such as gCOD d -1 or mg CH4 m – 2 h -1 

enabling fast comparison of the various metablic rates. See also Arends et al. (2012)  

 

Supplementary information S2. Estimation of electrical operating costs for a poised anode in a 

wetland 

To estimate the amount of electrical power and thus the electrical operating cost per m2 of plant-

MFC in case of anode potentiostatic control, several parameters influence the outcome of this 

estimation. One important parameter is the distance between the reference electrode and the 

anode electrode. This causes an ohmic voltage drop that must be compensated for to achieve a good 

potentiostatic control of the anode. This ohmic voltage drop is dependent on the current that flows 

through the system (this can be understood as the methane mitigation rate) and the resistivity of the 

matrix (in this case rice or wetland soil). Here an estimation is made for the following case, a wetland 

soil with 1 reference electrode, a maximum effective anode-reference distance of 1 m and an energy 

price of € 0.20 kwh -1. Soil resistivity was varied between 0 and 50 Ω m (Domínguez-Garay et al., 

2013) and current density between 10 and 300 mA m - 2 which is equivalent to 0.13-3.9 mgCH4 m – 2 h -

1 (Eq. S4). Within these parameters 55 scenarios were calculated which are depicted in Figure S1. 

From this estimation it can be seen that when aiming for an appreciable methane mitigation rate, a 

considerable monthly cost is incurred. Options to reduce this cost are placing more reference 

electrodes (extra capital cost) or opting for less sophisticated electrochemical control by using an 

external resistance. 

 



 

Figure S1: Estimation of electrical operating costs for a poised anode in a wetland based on soil resistivity and 
current density. Scenario of 3.9 mg CH4 m

-2 h-1 ~ 300 mA m-2 is depicted on the right axis. 

Other capital costs such as anode and cathode materials, electrical wiring and control periphirals 

have already been described elsewhere for BESs (Foley et al. 2010; Rozendal et al. 2008). On the 

profit side a small amount of electrical power can be noted (when using MFC mode) and one can 

possibly enter in a CO2-certificate trading scheme when emissions are succesfully lowered. 

 

 

Figure S2: Left 3 schematics: bottom part of the microcosm used for rice growth. The top ledge contained a 2 cm 
wide rim (not shown) with a 1 cm wide slot to accommodate the closed chamber for headspace gas 
measurements. Right 2 schematics: Chamber to allow headspace gas measurements on the microcosms. 



 

Figure S3: Result from the exploratory study where removing the external resistance resulted in an increased 
CH4-flux 22 times higher than can be estimated based on the current in closed circuit. CC: Closed Circuit, OC: 
Open Circuit.



 

Table S1: Overview of all experiments. 1) Composition see main text. 2) amount of granules based on previous 
work (Arends et al., 2012) 3) only current collectors present in the anode compartment. 4) non-planted systems 
are considered as sediment-MFC 5) liquid was added here without organic carbon. OC: open circuit. CC: closed 
circuit over 500 Ω external resistance. A: anodic effluent of a well performing MFC in the lab 10 vol-% total 
anode compartment. M: anaerobic methanogenic sludge from WWTP ‘Ossemeersen’ Gent, Belgium 1 vol-% of 
total anode compartment. 

# # of 

plants 

Seedling age at 

transplanting (week) 

Added organic 

carbon (kg m-2)1) 

OC/CC Inoculum  

(A and/or M) 

Granules in 

anode 2) 

Plant growth 

area (m2) 

Exploratory study 

E1 2 7 2 OC A & M Y 0.015 

E2 2 7 2 CC A & M Y 0.015 

E3 2 7 2 CC A & M No 3) 0.015 

E4 -4) - 2 OC A & M Y 0.015 

E5 - - 2 CC A & M Y 0.015 

E6 2 12 2 OC A & M Y 0.032 

E7 2 12 2 CC A & M Y 0.032 

E8 2 12 No CC A & M Y 0.032 

E9 - - 2 CC A & M Y 0.032 

E10 - - 2 CC A Y 0.032 

Detailed study 

   (kg m-2 d-1)1     

M1 2 3 No CC A Y 0.015 

M2 2 3 No5) CC A Y 0.015 

M3 2 3 0.013 CC A Y 0.015 

M4 2 3 0.013 CC A Y 0.015 



Table S2: Quality control parameters for qPCR analysis. Parameters as obtained during analysis with 

StepOnePlus software V2.2.2. Detection limit calculated to copies/gram wet weight of the sample taking 

dilution and extraction efficiency into account.  

 
Amplification plot Standard Curve 

 
Threshold 
(ΔRn) 

Baseline Slope R2 Eff (%) 
Detection limit 

(copies g-1) 

Total Bacteria 3.1 3 -3.3 0.98 100 3.1x105 

Total Archaea 4.5 3 -3.2 0.97 100 4.4 x103 

Methanobacteriales  2.9 3 -3.6 0.99 88 3.9 x103 

Methanomicrobiales  2.6 3 -4.0 0.99 78 3.6 x103 

Methanosarcinaceae  4.5 3 -3.7 1.00 86 4.8 x103 

Methanosaetaceae  2.6 3 -3.6 0.99 91 5.1 x103 
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