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Trainable hardware for dynamical computing using
error backpropagation through physical media
Michiel Hermans1, Michaël Burm2, Thomas Van Vaerenbergh3, Joni Dambre2 & Peter Bienstman3

Neural networks are currently implemented on digital Von Neumann machines, which do not

fully leverage their intrinsic parallelism. We demonstrate how to use a novel class

of reconfigurable dynamical systems for analogue information processing, mitigating this

problem. Our generic hardware platform for dynamic, analogue computing consists

of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a

ubiquitous property of many physical phenomena like the propagation of light and sound, the

error backpropagation—a crucial step for tuning such systems towards a specific task—can

happen in hardware. This can potentially speed up the optimization process significantly,

offering important benefits for the scalability of neuro-inspired hardware. In this paper, we

show, using one experimentally validated and one conceptual example, that such systems

may provide a straightforward mechanism for constructing highly scalable, fully dynamical

analogue computers.
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I
n a variety of forms, neural networks have seen an exponential
rise in attention during the last decade. Neural networks
trained with gradient descent are currently outperforming

other, more classical approaches in a broad number of
challenging tasks. One often-quoted result is their state-of-the-
art performance in computer vision1, an example of a problem
that is considered easy for humans, and hard for conventional
computer algorithms. In combination with a number of semi-
heuristic methods, this result has been obtained using the
backpropagation algorithm, a method that has been around
since the 1960s.

One highly interesting set of neural architectures are so-called
recurrent neural networks (RNN), that is, neural networks that
have temporal feedback loops. This makes them highly suited for
problems that have a natural time element, such as speech
recognition2 and character-based language modelling3,4.
Conventional neural networks may be limited in solving such
tasks, as they can only include a finite temporal context (usually a
window of data of a fixed duration). RNNs, on the other hand,
can—at least in principle—have indefinitely long memory. In
addition, it is believed that temporal feedback loops are primary
functional components of the human brain.

Currently, (recurrent) neural networks are most often
implemented in software on digital devices, mostly for reasons
of convenience and availability. At their core, however, these
networks are analogue computers, and they come far closer to
mimicking the workings of the brain than classic computation
algorithms do. A computer made up of state-of-the-art
components that matches the processing power of the human
brain is estimated to consume about 0.5 GW of power5, a full
seven orders of magnitude more than the 20 W required by the
brain itself. If we ever wish to achieve any degree of scalability for
devices performing brain-like computation, we will need to
embrace physical realizations of analogue computers, where the
information is encoded in hardware by continuous physical
variables, and where these data are processed by letting them
interact through physical nonlinear dynamical systems.

One line of research that has been partially successful in
accomplishing this goal is that of reservoir computing (RC)6. This
paradigm, which combines several previous lines of research7,8,
essentially employs randomly constructed dynamical systems to
process a time-varying signal. If the system is sufficiently varied,
nonlinear and high dimensional, it acts as an efficient random
feature generator, which expands the input signal into a high-
dimensional space in which the time series-processing problem
becomes much easier to solve. All that remains to be optimized is
a a very small number of meta-parameters, and a linear mapping
of these features to a desired output signal, which can be
performed efficiently with any linear algebra solver.

The last decade of research into RC has shown a variety of
interesting examples of physical implementations of analogue
processors. It has been shown to work with water ripples9,
mechanical constructs10,11, electro-optical devices12,13, fully
optical devices14 and nanophotonic circuits15,16. Despite some
remarkable successes, the RC concept still faces the problem of
being ineffective for tasks that require a great deal of modelling
power (for example, natural language processing, video stream
processing and so on). The main reason is that any particular
feature that needs to be extracted from the input data has to be
present in the randomly constructed nonlinear feature space
offered by the reservoir. When the input dimensionality grows,
the probability of having the correct features present becomes
extremely small. Even for moderately demanding tasks, this
means that good performance requires a disproportionally large
dimensionality of the system at hand, up to tens of thousands of
state variables in practice17. By contrast, neural networks trained

by the backpropagation algorithm can build the required
nonlinear features internally during the training process, which
makes them far more scalable.

In recent work, we have shown that it is possible to extend
backpropagation (in particular the variant used to train RNNs,
called backpropagation through time (BPTT)18) to models of
physical dynamical systems19. We have shown that it can serve as
an efficient automated tool to find highly non-trivial solutions for
complex dynamical problems. In ref. 20, we have shown that
backpropagation can be used on models of existing electro-optical
reservoirs, offering a method to optimize their input encoding. So
far, this work relies on simulation, however. The backpropagation
algorithm operates on a computer model of the dynamical
system. If we would use it to train physical analogue computers,
we would face the same scaling issues that we encountered with
systems that mimic the human brain.

In the following, we offer a definition of a set of specific
physical dynamical systems that can act as analogue computing
systems. Crucially, we show that—in contrast to the results
presented in ref. 19—the backpropagation algorithm can be
performed physically on such systems, with only minor
additional hardware requirements and without the need for
simulation. This approach significantly reduces the external
computational demands of the optimization process, hence
greatly speeding it up. First, this means that we can overcome
the aforementioned limitations of the RC paradigm by building
systems that are more optimized for a specific task. Second, it
implies that we can break barriers in terms of scalability:
an analogue physical computing set-up is inherently massively
parallel, and its speed of operation does not directly depend
on its complexity. Whereas training systems to perform
complex, large-scale machine learning tasks currently take
several days to complete, physical hardware as introduced in
this paper may offer a way to reduce this to more manageable
times.

Results
Theory. In this section, we will describe the general physical
system we use to implement machine learning models, and we
explain how their reciprocity allows to perform the training
process in hardware. We start by introducing an abbreviated
notation for a multivariate convolution. If x(t) is a multivariate
signal and W(t) a matrix with time-varying elements defined for
t40, we define the signal y(t) as the convolution of x(t) with W(t)
as follows:

yðtÞ ¼
Z1

0

dt0 W t0ð Þx t� t0ð Þ ¼ W�x½ �ðtÞ: ð1Þ

We will consider systems as follows. We will assume that there
are a set of N signal input sources si(t) that excite the linear
dynamical system (LDS) and a set of M output receivers that
receive an output signal oi(t). We can write both the sets as a
single source and receiver vector s(t) and o(t), respectively. The
LDS will cause the following transformation between the source
and receiver:

oðtÞ ¼ Wso�s½ �ðtÞ; ð2Þ

where the impulse response, or first-order Volterra kernel Wso(t)
characterizes the transfer function of the system. Furthermore, we
are able to use the LDS reversely, where the receivers now act as
sources and the sources act as receivers. In this case, s0(t) acts as
the input of the system and o0(t) represent the received signal at
the places of the original sources. If the LDS is a reciprocal
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system, the following equation holds:

o0ðtÞ ¼ WT
so�s0

� �
ðtÞ: ð3Þ

This property is crucial, as it will allow us to perform error
backpropagation (which we introduce later on) physically. Reci-
procal systems are ubiquitous in physics. One important example
of such a system, which we will use for the rest of the paper, is the
propagation of waves through a linear medium. Suppose for
instance we have a chamber in which we place a set of different
speakers and a set of microphones, the signals the microphones
receive would indeed be described by equation (2), where Wso(t)
would be determined by the shape of the room, the absorption of
the walls, the air density and so on. If we then replace each
speaker by a microphone and vice versa, the signal we received
would be described by equation (3). Another set of examples are
systems described by the linear heat (or diffusion) equation. Here
the source would have a controllable temperature, and the
receivers would be thermometers, where the medium performs an
operation as described by the above equations.

Linear systems can only perform linear operations on their
input signal. In order for the full system to be able to model
nonlinear relationships, we add nonlinear feedback. We provide a
set of Ma additional receivers and Na sources. The signal that is
detected at these new receivers gets sent through a nonlinear
operator f : RMa ! RNa and is fed back into the system via the
new sources. We denote the signal after the function as a(t). The
impulse response matrix for the transition from the input sources
to the receivers for the nonlinear feedback we denote as Wsa(t),
and those for the transition from the nonlinear feedback sources
to the output receivers and nonlinear feedback receivers with
Wao(t) and Waa(t), respectively. A schematic diagram of the full
system is shown in the top of Fig. 1a. The system is described as
follows:

aðtÞ ¼f Wsa�s½ �ðtÞþ Waa�a½ �ðtÞð Þ
oðtÞ ¼Wso�s½ �ðtÞþ Wao�a½ �ðtÞ:

ð4Þ

As we argue in Supplementary Note 1, for specific choices of the
impulse response matrices, these equations reduce to those of
neural networks, including all kinds of deep networks, RNNs and

so on. Neural networks are usually trained using gradient descent
based on backpropagation. Therefore, if we wish to use this
system as a trainable model for signal processing, we need to be
able to calculate gradients for the parameters we can change (the
impulse response matrices and the input and output encoding
which we define later). First of all, we define a cost functional
C(o(t)), a functional of the whole history of a(t) in the interval
tA{0?T} that we wish to minimize. This could, for instance, be
the time integral of the squared difference between the actual and
a desired output signal. Next we define the partial derivative of
C(o(t)) with respect to (w.r.t.) o(t) as eo(t). The error back-
propagation process is then described by the following equations:

eaðsÞ ¼ JTðsÞ WT
ao�eo

� �
ðsÞþ WT

aa�ea
� �

ðsÞ
� �

esðsÞ ¼ WT
so�eo

� �
ðsÞþ WT

sa�ea
� �

ðsÞ:

Here s¼T� t, that is, the equations run backwards in time and
J(t) is the Jacobian of f w.r.t. its argument. From the variables
ea(t) and es(t), gradients w.r.t. all impulse response matrices
within the system, and w.r.t. s(t) can be found, which in turn can
be used for optimization (see Supplementary Note 2 and
Supplementary Fig. 1 for the derivations and for the mathema-
tical interpretation of ea(t) and es(t)). The crucial property of
these equations is that, thanks to the reciprocity of the LDS, they
too can be performed physically on the same system. First of all,
we consider the time s as physical time running forwards (which
in practice means that we need to time-reverse the external input
signals eo(t) and J(t)). If we then switch the positions of the
sources and receivers (leading to transposed impulse response
matrices), and instead of providing nonlinear feedback, we
modulate the feedback with JT sð Þ, we have physically implemen-
ted equation (5), and hence can record ea(s) and es(s) directly
from the system. This principle is depicted in the bottom of
Fig. 1a. In summary, the requirements for our system are a
reciprocal LDS, a physical implementation of the nonlinear
feedback and a physical implementation of time-varying
modulation with J(s).

In many cases, it is difficult to send signals to multiple sources
and to record signals from multiple receivers due to the cost and
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Figure 1 | Schematic of physically implemented backpropagation. (a) Illustration of the most general set-up of the physical neural network studied in this

paper. The top diagram shows how the signals propagate through the system and the nonlinear feedback with blue arrows during the forward pass. The

filter operations are depicted with dashed lines running through the LDS, which is depicted as a grey blob. The bottom diagram shows the error

backpropagation phase, where the signal runs backwards through all functional dependencies. Here filter operations run in the opposite direction such that

they are represented by the transpose of their impulse response matrices. Note that the computer is not in the loop during the forward or backward pass,

but only serves to send out a predefined signal, and to record at the same time. (b) Depiction of the masking principle in the forward direction. At the

bottom, we see three consecutive instances of an input time series. Each of these is converted into a finite time segment through the masking signals

M(t). These segments are next concatenated in time and serve as the input signal s(t) for the dynamical system (where time runs according to the white

arrows), and which in turn generates an output signal o(t). The output signal o(t) is divided into finite length pieces, which are decoded into output

instances of an output time series using the output masks U(t). (c) The backpropagation process happens in a completely similar manner as in the forward

direction. This time, the transpose of the output masks serve as the encoding masks. Finally, the input error signal es(t) is also segmented in time before it

is used to determine the gradients w.r.t. M(t).
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complexity associated with the necessary hardware. Yet a high-
dimensional state space is desirable as it increases the complexity
and therefore the representational power of the system. To
increase the effective dimensionality of the system, we use an
input–output multiplexing scheme that was first introduced in
ref. 21. This increases the effective dimensionality of the system
and its parameters can also be optimized using the physical
backpropagation method. Suppose we have an input time series xi

that we wish to map onto an output time series yi. First of all, we
define an encoding that transforms the vector xi, the i-th instance
of the input data sequence, into a continuous time signal segment
si(t):

siðtÞ ¼ sbðtÞþMðtÞxi for t 2 ½0 � � � P�; ð6Þ
where P is the masking period and sb(t) is a bias time trace. The
matrix M(t) contains the so-called input masks, defined for a
finite time interval of duration P. The input signal s(t) is now
simply the time concatenation of the finite time segments si(t).

The output decoding works in a very similar fashion. If there is
a time series yi that represents the output associated with the i-th
instance of the input time series, we can define an output mask
U(t). We divide the time trace of the system output o(t) into
segments oi(t) of duration P. The i-th network output instance is
then defined as

yi ¼ ybþ
ZP

0

dt UðtÞoiðtÞ; ð7Þ

with yb a bias vector. Effectively, the whole time trace of oi(t) now
serves as the immediate state vector of the system, drastically
increasing its effective dimensionality.

The process described here is essentially a form of time
multiplexing, and is depicted in Fig. 1b. The backpropagation
phase happens in a similar fashion. Suppose we have a time series
with instances ei, which are the gradient of the chosen cost
function w.r.t. the output instances yi. Completely equivalent to
the input masking, we can now define the error signal eo(t) as a
time concatenation of finite time segments ei

oðtÞ:

ei
oðtÞ ¼ UTðtÞei: ð8Þ

Using this signal as an input to the system during back-
propagation will provide us with an error es(t), which in turn can
be used to determine the gradient for the masking signals M(t) as
depicted in Fig. 1c (for the derivations, see Supplementary Note
3). Note that the signal encoding and decoding happens on an
external computer as well, and not physically. These operations
can be fully parallelized, however, such that we do not lose the
advantages of the processing power of the system. In ref. 20, we
showed in simulation that optimizing input masks using BPTT
on a computer model of an electro-optical set-up as used in ref.
12 had significant benefits. As we will show experimentally,
physical backpropagation allows us to largely omit the modelling
and simulation, and allow for a more direct optimization.

The full training process works as follows. First, we sample a
representative amount of data, encode it to a continuous time
input signal, run it through the physical system and record the
output signals. Next, we compute the cost corresponding to the
output and construct the signal eo(t) (on the computer), which we
then also run through the system physically, and record the signal
es(t) (and ea(t) if applicable). Once this is completed, we can
compute gradients w.r.t. the relevant parameters on the
computer. We then subtract these gradients from the parameters,
multiplied with a (small) learning rate. This process is repeated
for many iterations until we reach satisfactory performance. All
the operations that take place on the computer can be performed

fully in parallel, and hence do not significantly slow down the
training process.

A real-life acoustic set-up. We have tested the principles
described above by building a system that uses the propagation of
acoustic waves as an LDS. To reduce the complexity of the set-up,
we work with only one signal source (a small computer speaker)
and one receiver (a voice microphone). The sound enters a 6-m
long plastic tube via a paper funnel, and the microphone receives
the signal at the other end of the tube. The tube delays the signal
and introduces reflections and resonance frequencies. Note that,
due to the fact that the signal in this case is scalar, all impulse
response matrices determining the system are scalar too, which
means that they are equal to their transpose. This has the
advantage that we do not need to switch the speaker and
microphone between the forward and backward phase.

The received signal is electronically truncated at 0 V (such that
only positive voltages can pass), implementing a so-called linear
rectifier function, which acts as the system nonlinearity f. The
linear rectifier function is currently a popular activation function
in neural architectures22. Feedback is implemented by adding this
signal to the external input signal. One important advantage of
the linear rectifier function is that its derivative is a binary
signal: equal to one when the signal is transmitted, and equal to
zero when it is cutoff. This means that multiplication with the
Jacobian is equivalent to either transmitting the feedback signal
unchanged, or setting it to zero, which can be easily implemented
using an analogue switch. For a more detailed explanation of the
relation between the acoustic system and the general case
described by equation (4), we refer to the methods section.
Note that other types of nonlinearity such as, for example, a
sigmoid and its corresponding derivative, can also be
implemented in analogue hardware (see for instance ref. 23).

We have used the physical backpropagation set-up to train
input and output masks. Note that in principle it could also be
used to optimize properties of the acoustic set-up itself, but we
have omitted this for reasons of experimental simplicity. We have
tested the set-up on an academic task that combines the need for
nonlinearity and memory. The input time series qi is scalar and
consists of a series of i.i.d. integers from the set {0,1,2}, which are
encoded into an acoustic signal as described above. The desired
output time series yi is defined as

yi ¼ qði� qðiÞÞ; ð9Þ
that is, the task consists of retrieving the input with a delay that
depends on the current input. The fact that the delay is variable
makes that the task is nonlinear, that is, it cannot be solved by any
linear filtering operation on the input.

For details concerning the experiments, we refer to the
Methods section. A schematic depiction of the set-up and the
main results of the experiments are shown in Fig. 2. In Fig. 2e, we
show a comparison between the system output and the target,
indicating that the system has learned to solve the task
successfully. We show the evolution of the normalized root mean
square error (NRMSE) during the training process in Fig. 2b. To
make sure that the physical backpropagation works as intended,
we have run two additional tests in which we trained either only
the output masks (the RC approach, which does not require
backpropagation) or only the input masks, keeping the other
random and fixed. As can be seen in Fig. 2b, training only output
or input masks in both cases reduces performance. Note that if
the input masks are trained while the output masks are kept fixed
and random, all adaptations to the system parameters are
exclusively due to the error signal that has been propagated
through the system in the form of sound. On top of this, the input
mask training needs to find a solution that works with a
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completely random instantiation of the output mask. The fact
that it can achieve this at least to some degree (NRMSE E 0.47)
demonstrates that physical BPTT works as intended.

Note that the result for fixed input masks and trained output
masks is not meant to be interpreted as a fair comparison with
the RC method, but rather as a naive baseline. Indeed, it is likely
that the results for the untrained input masks could be improved
by, for example, constructing the random input mask such that it
has a spectrum matching the transmission of the acoustic system.

The input and output masks after training are shown in Fig. 2c,
showing their temporal structure. In Fig. 2d, we show the power
spectra of the input masks (and consequently the power spectra
of the signals sent into the system) compared with the power
spectrum of the system transmission (measured as the squared
ratio in amplitude between the output voltage in the microphone
and the input voltage in the speaker). Clearly, the acoustic parts of
the full system (speaker–tube–microphone) only transmit certain
frequency bands (a.o. the resonance frequencies of the tube are
visible as a set of peaks.) and the input masks seem to have
learned to match this spectrum. Note that at no point during
training or testing we ever required a model of the acoustic part of
the system. The impulse response matrices of the system do not
need to be known for the backpropagation to work. Also
important to mention is that no process on the external computer
or in the electric circuitry provides the required memory for the

system to process the time series. Instead, this happens due to the
physical memory inherent to the acoustic system and to the
nonlinear feedback, which the training process learns to
exploit. This means that at any point in time, information
about past inputs exists solely as acoustic waves travelling
through the tube.

A conceptual electro-optical implementation. The described
acoustic implementation can be extended to a larger and faster
system relatively easily. For instance, one could use ultrasound for
higher data transmission (combined with a medium with a high
speed of sound). Here one could use piezoelectric transducers that
can both emit and receive signals. Sound propagation is in that
sense an interesting platform for a physical analogue neural net-
work. The most attractive medium, however, but also more
technologically challenging, would be light. Light can transport
information at a very high speed, and unlike sound waves, it can
be easily guided through fibre optics and integrated photonic
waveguides. Just like sound waves, light transmission is
reciprocal, making it possible to perform error backpropagation
physically on the system. Indeed, using light as a medium for
neuro-inspired processing has been studied extensively in the
past24,25. These examples primarily exploit parallel processing that
happens when light travels through a (often holographic) medium.
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In our case, we would like to exploit not only parallelism, but also
the time delays that are inherent to travelling light.

As a proof of concept, we propose a circuit to perform physical
backpropagation electro-optically, partially inspired by the
systems described in refs 12,13. Delays are physically
implemented by means of long optical fibres. For this example,
we wish not just to train the input masks, butto control the way in
which the signals are mixed as well. Concretely, if we have an N-
dimensional state a(t), we wish to optically implement a mixing
matrix W of size N�N, such that the mixing matrix
Waa(t)¼ d(t�D)W, where D is the delay introduced by the
optical fibres. Set-ups for computing matrix–vector products
optically have been experimentally demonstrated in the past26,27,
and here we will assume that it is possible to perform them all-
optically (see methods). Note that we do not need very high
parameter precision for neural network applications, as the
detection of the signal will be inherently noisy.

Similar to the acoustic example, we conceive an electro-optical
‘neuron’ (see Fig. 3a), which sends and receives optical signals,
and either applies a nonlinear function or multiplies with the
Jacobian. We encode the state a(t) as light intensity. Each neuron
will have a fixed-power laser source, which can be modulated
between the minimal and maximal value. The nonlinear function

can be simply implemented by electronically truncating the
feedback signal in a range corresponding to a minimum and
maximum intensity levels of the laser, conveniently making full
use of the signal range. Note that such a behaviour can be
implemented relatively easily in high speed electronics, as it is an
inherent property of amplifiers used in optical telecommunica-
tion28. The Jacobian of such a function is again a simple binary
function. Finally, we can send the light into the optical circuit
either in the forward or backward direction by using a 2� 2
optical switch.

In the final set-up, we simulate 20 electro-optical nodes. We
add different levels of noise to the measured intensity. We applied
the simulated version of this system on a realistic phoneme
recognition task, which is part of speech processing and hence a
typical example of a problem that can be solved using RNNs. We
used the often-used TIMIT data set, which is a speech corpus in
which the phonemes are directly labelled on the speech signal
itself. As an error measure, we use the frame error rate, which is
the fraction of frames (time steps) in the input signal that have
been mislabeled. More details on the task can be found in the
Methods section.

We ran a number of simulations that range from ideally
(mathematically correct) implemented backpropagation to simu-
lations which include unavoidable non-ideal behaviour for a real
physical set-up. In particular, we included nonlinearity in the
backpropagation phase, as well as measurement noise and the
case in which the modulation with the Jacobian is only an
approximation of the true Jacobian (see Supplementary Fig. 2).
Details and the results of these experiments can be found in
Supplementary Note 4 and Supplementary Table 1, respectively,
as well as a discussion on the expected speed of the conceptual
electro-optical set-up. What we found was a remarkable
robustness against non-ideality for the task at hand, only
increasing the test error to a limited degree compared with the
ideal scenario. We obtain a test frame error rate of B30%.
Comparing this with the other results in literature, we find that
we perform in the same ballpark as some other established
machine learning techniques (see for instance an overview of
results on frame error rate in ref. 29, where the results range from
25 to 39%). When we compare this with the RC paradigm, similar
results are only obtained using extremely large reservoirs, with up
to 20,000 nodes30.

Discussion
In this paper, we have proposed a framework for using reciprocal
physical dynamical systems with nonlinear feedback as analogue
RNNs. We have demonstrated that the error backpropagation
algorithm, which efficiently optimizes an RNN, can be imple-
mented physically on the same system, thus greatly reducing the
necessary computations required for the optimization process.
This in turn paves the way to faster, more scalable analogue
computing. We have experimentally verified the proposed system
using a real-world acoustic set-up as a proof of concept, as well as
a simulated electro-optical set-up. In this second, more complex
set-up, we explored the impact of expected sources of non-ideal
behaviour on the performance of a real-world task and where we
demonstrated that good performance does not require a very
precise physical implementation of the backpropagation algo-
rithm, and can tolerate reasonable levels of noise and non-
linearity. We have also included a short discussion on what
processing speed may be obtained for an electro-optical set-up in
the Supplementary Discussion.

The concepts presented in this paper provide a sizeable step
forward towards a novel form of processing, which relies far
less on software implementations and comes much closer to
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Figure 3 | The electro-optical set-up. (a) Schematic depiction of an

electro-optical neuron, where pathways that are exclusive in the forward or
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to the electronic circuit in the acoustic set-up, with the difference that the

input now enters the system before the nonlinearity. The 2� 2 switch

allows light to travel either forwards or backwards through the fibre

network (fibres depicted by yellow lines). (b) Depiction of a network of

electro-optical neurons, each purple circle represents a neuron. They send
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an optical matrix–vector multiplier which multiplies with a matrix W in the

forward direction and WT in the backwards direction. The elements

of W can be set electronically, and are adapted in each training iteration.
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brain-like computation, especially in the sense that the system can
partially internalize its own training procedure.

By using analogue physical processes to compute, we may
benefit from inherent massively parallel computing, great
potential speed benefits and low-power usage, the properties that
were the initial motivation for research into physical RC systems.
Specifically, the obtainable speed does not depend on the
dimensionality (number of sources and receivers) of the system,
offering inherent scalability. The possibility to fully optimize all
internal system parameters using the backpropagation algorithm
offers great performance improvements, and makes the applica-
tion domain of the proposed set of systems far greater (as has
been evidenced in ref. 20). This also means that such physical set-
ups can potentially become competitive with digitally
implemented neural networks, which are currently the state-of-
the-art for several important signal processing problems. The
training process too benefits from being implemented physically,
meaning that there is only limited need for external processing. If
the physical system under consideration has speed benefits
compared with a digitally implemented neural architecture, these
benefits are also present for training the system. Finally, while
physically implementing the training process comes at an
additional complexity cost (modulation of the feedback with
the jacobian), the benefits over optimization of the parameters in
simulation is paramount. Optimization in simulation might
require a very precise model, and it is hard to predict how model-
reality discrepancies would manifest themselves once the
parameters obtained in simulation are applied to the physical
set-up. When instead optimizing on the physical system there can
be imperfections like the ones we explored in Supplementary
Note 4 but one is certain that the measurements used to base the
training on are those from the real system, and no additional
system characterization is needed to perform the training.

Important challenges for the large-scale execution of this
scheme still remain. The current set-up still requires some level of
external processing for computing the gradients. If the analogue
part of the system is sufficiently fast, gradient computations may
become the bottleneck of training, though this may be partially
redeemed by the fact that they are solely matrix–matrix
multiplications (without a sequential part), which means that it
is fully parallelizable.

Recording the signals in the forward and backward pass still
requires digitization. Currently, this is the most important
hurdle to scaling up the system in practice, as analogue-digital
conversion at high speeds is expensive and consumes a lot of
power. This limits the number of sources and receivers that can
be practically applied. Time multiplexing of the input, as used in
both examples of this paper, partially solves this problem, but at
the cost of reducing the obtainable speed of the system. Larger
numbers of sources and receivers would also benefit more from
the spatial parallelism that is offered by acoustic or optic systems.

With currently available hardware, one could potentially build
physical systems that are competitive with digitally implemented
neural networks, as we demonstrated using a simulated electro-
optical set-up. Truly exploiting the full potential of analogue
physical computation, however, very likely requires the design of
novel hardware that internalizes all necessary elements into a
single device. In particular, future research into this topic should
explore ways to develop hardware which has impulse responses
determined by large amounts of controllable parameters. This
would increase the number of trainable parameters and hence the
representational power of the systems. Finally, it is also of
importance to relate the results found in this paper to
developments in neural network research. For one, it was recently
found31 that random feedback weights for the backpropagation
phase can also be used to train feedforward networks. It should be

investigated if this has implications for the recurrent systems
under considerations in this paper.

Methods
Acoustic experiments. For the acoustic set-up, we used a data acquisition card,
which samples the signal at 40 kHz (well above the maximum frequency that is still
passed through speaker–tube–microphone system). Input and output masks con-
sist of 1,000 samples, which means that time series are processed at a rate of 40
time steps s� 1.

We train the input and output masks over the course of 5,000 iterations. Initial
values for the input and output masks are picked by independent, identically
distributed sampling from a normal distribution with zero mean and variance
equal to 0.2 and 0.1, respectively. Each training batch consists of a newly generated
time series of 100 instances. This means that each training iteration (forward and
backward pass) takes B5 s, and the complete training takes about 7 h. We found
little to no significant variation in performance for different random initializations
of the input and output masks.

As absolute scaling of the error signal does not matter for the backpropagation
phase, we always normalize and rescale the error signal before we use it as the
input. This ensures that the signal always remains well above the noise levels. Note
that this step causes us to lose the absolute magnitude of the gradients. For
parameter updates, we therefore normalize the obtained gradients before using
them. The learning rate is set to 0.25 at the start of the experiment, and then
linearly decays to zero to ensure convergence at the end.

Mathematically, the full system can be described as follows: let s(t) be the input
signal after the encoding and a(t) the (scalar) state of the system at time t, then

aðtÞ ¼ f W�ðsþ aÞ½ �ðtÞð Þ: ð10Þ
Here f(x) ¼ max(0,x) is the linear rectifier function and W(t) is the scalar impulse
response of the speaker–tube–microphone system, that is, it is the signal that would
be received by the microphone for a Dirac delta voltage impulse for the speaker.
The output of the system is also the state a(t). This means that we can relate the
acoustic system to the general case of equation (4) if Wsa(t)¼Waa(t)¼W(t),
Wao(t)¼ d(t) (the Dirac delta function) and Wso(t)¼ 0.

Conceptual photonic set-up. The system is described by the following equation:

aðtÞ ¼ f ðWaðt�DÞþ sðtÞÞÞ; ð11Þ
where W is the matrix, which is implemented optically (see below). The function
f(x) truncates the signal between minimal and maximal intensity (which we define
as � 1 and 1, respectively):

f ðxÞ ¼
� 1 if x � � 1
x if � 1oxo1
1 if x � 1:

0
@ ð12Þ

For what follows, we assume that all the nodes’ laser sources have different
wavelengths, such that light intensities add up linearly. Note that this is feasible
within the presented set-up: optical 2� 2 switches can have bandwidths that exceed
100 nm (ref. 32, whereas laser bandwidths are usually of the order of 1 nm or less. If
we assume laser light with a wavelength of E 1 mm, and we assume that the
different wavelengths differ as little as 1 nm between the nodes, the slowest
resulting fluctuations in intensity from adding up these signals are of the order of
100 GHz (derived form the difference in their frequencies), 100 times faster than
the assumed speed at which we measure the signal. An alternative approach would
be to use light sources that are inherently broadband (for example, not lasers but
light-emitting diodes, which have a bandwidth of 50–100 nm).

Several ways to implement optical matrix–vector multiplication have been
discussed in literature. One possible method would be to encode the vector a as
light intensities. We can let the light pass through a spatial array of tuneable
intensity modulators and focus the light on the other side to perform a matrix–
vector product. Conversely, if the light comes from the other direction, the signal is
effectively multiplied with the transpose of the matrix. Directly implementing the
whole concept using intensities to encode the signal would have the important
limitation that all elements of W would be positive, as light intensities can only be
added up. This is a strong drawback, as this would mean that the system can only
provide weighted averages of the individual states and cannot use and enhance
differences between them. Therefore, we envision a different approach where each
element of a is encoded by two light signals with intensities: kþ a and k� a, with k
a vector with all elements equal to one. This ensures that the intensities fall into a
positive range between 0 and 2, which can correspond to the minimum and
maximum output intensity level of each neuron. Now, these constituents are sent
to two separate arrays of intensity modulators W1¼KþW/2 and W2¼K�W/2,
where K has all elements equal to one. As all elements of W1 and W2 need to be
positive, this means that the range of the elements of W fall within the range � 2 to
2. If we combine the light signals after the intensity modulation and hence add up
the intensities we get:

W1 þW2ð Þkþ W1 �W2ð Þa ¼ KkþWa: ð13Þ
The first term will simply introduce a constant bias value, which we can remove
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electronically after measuring. The second term now contains the matrix–vector
product where the elements of W can be both positive and negative.

For the simulations, we use a piecewise constant input signal with a fixed
sample period (equal to the sample period of the measurement). We again used the
masking scheme, where each masking period consisted of 50 sample periods. We
chose the delay D at 51 sample periods and used a network of 20 optical neurons.

The TIMIT data set33 consists of labelled speech. It has a well-defined training
and test set, which makes comparison with results in literature possible. Each time
step (frame) needs to be labelled with one out of 39 possible phonemes. The input
signal consists of a 39-dimensional time series (the fact that it has the same
dimensionality as the output signal is coincidental), which encodes the speech
signal using MFCCs. For more details on how the data is encoded, please check, for
example, ref. 30.

We trained for 50,000 iterations. In each iteration, we randomly sampled 200
sequences of 50 frames from the training set. We again normalized the gradients.
Parameter updates were performed with a learning rate starting at 1, which linearly
dropped to zero over the course of the training.
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