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Abstract Characterizing the neutron-irradiation parameter J is one of the major uncertainties in
40Ar/39Ar dating. The associated uncertainty of the individual J-value for a sample of unknown age depends
on the accuracy of the age of the geological standards, the fast-neutron fluence distribution in the reactor,
and the distances between standards and samples during irradiation. While it is generally assumed that
rotating irradiation evens out radial neutron fluence gradients, we observed axial and radial variations of
the J-values in sample irradiations in the rotating channels of two reactors. To quantify them, we included
three-dimensionally distributed metallic fast (Ni) and thermal- (Co) neutron fluence monitors in three irradi-
ations and geological age standards in three more. Two irradiations were carried out under Cd shielding in
the FRG1 reactor in Geesthacht, Germany, and four without Cd shielding in the LVR-15 reactor in �Re�z, Czech
Republic. The 58Ni(nf,p)58Co activation reaction and c-spectrometry of the 811 keV peak associated with the
subsequent decay of 58Co to 58Fe allow one to calculate the fast-neutron fluence. The fast-neutron fluences
at known positions in the irradiation container correlate with the J-values determined by mass-
spectrometric 40Ar/39Ar measurements of the geological age standards. Radial neutron fluence gradients
are up to 1.8 %/cm in FRG1 and up to 2.2 %/cm in LVR-15; the corresponding axial gradients are up to 5.9
and 2.1 %/cm. We conclude that sample rotation might not always suffice to meet the needs of high-
precision dating and gradient monitoring can be crucial.

1. Introduction

The 40Ar/39Ar dating method has several advantages over the traditional 40K/40Ar method in geosciences.
The parent and daughter isotopes are measured through the same element on the same aliquot in one
mass spectrometer, increasing the analytical accuracy and allowing spot measurements using laser ablation.
The thermal histories of the samples can be inferred from step-heating experiments that also provide inter-
nal consistency checks. The disadvantage is the need for fast-neutron irradiation to activate the 39K(nf,p)39Ar
reaction, after which 39Ar serves as a proxy for the 40K-content. Co-irradiated geological age standards are
used to monitor the reaction rate. Several studies addressed the absolute and cross calibration of geological
age standards and invested considerable effort in improving the precision of their reference ages [e.g., Rod-
dick, 1983; Baksi et al., 1995; Renne et al., 1998; Kuiper et al., 2008; Renne et al., 2010, 2011; Boehnke and Harri-
son, 2014]. The irradiation also has undesirable nuclear effects. Recoil losses of 39Ar after proton emission
require additional analytical effort or correction, in particular for fine-grained samples [e.g., Smith et al.,
1993; Onstott et al., 1995]. The production of interfering Ar isotopes from K, Ca, and Cl has to be minimized
and corrected for [e.g., Turner, 1995; Renne et al., 2005]. Recent improvements in the precision of the
40Ar/39Ar geochronometer are due to the refinement of the decay constants [Renne et al., 2010, 2011] and
the improved mass-spectrometric instrumentation [e.g., Phillips and Matchan, 2013].

Neutron fluences (/; i.e., time integrated neutron fluxes, u) in nuclear reactors are not homogeneous [e.g.,
Dalrymple et al., 1981; Renne et al., 2009]. Therefore, samples and geological age standards receive different
neutron fluences. For irradiation facilities without sample rotation, this is accounted for by a three-
dimensional distribution of the geological age standards and interpolation of determined J-values [e.g., Mor-
gan et al., 2013]. For rotating irradiation facilities, it is assumed that the rotation eliminates radial neutron
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fluence gradients (e.g., McMaster reactor [Clark et al., 1998]; FRG1 reactor [Schwarz and Trieloff, 2007]; 49-2
reactor [Wang et al., 2009]), while Foland et al. [1989] briefly documented a radial fluence gradient at the
Ford Nuclear Reactor, despite sample rotation and attributed it to uneven rotation of the container.

We observed radial neutron fluence gradients in irradiations in the rotating channels of two reactors and
concluded that the assumption that sample rotation eliminates residual radial gradients should be tested
for each reactor and irradiation. In this study, we concentrate on LVR-15 while results from FRG1 that was
closed in 2010 are used for comparison. We monitored the fast-neutron fluence distribution with the
58Ni(nf,p)58Co reaction and spectrometric measurements of the c-activities associated with the subsequent
radioactive decay of 58Co. This approach was described in Dalrymple et al. [1981], but seems to be reported
only (with Fe wire) from the BR-2 reactor in Belgium [e.g., Boven et al., 2001; Ivanov et al., 2003]. We
extended the determination of relative variation of neutron fluences by Dalrymple et al. [1981] to the calcu-
lation of absolute neutron fluences based on the equations of Martin and Clare [1963]. In order to explain
radial neutron fluence gradients despite rotation, we discuss reactor-specific differences in the neutron flux
field, shielding effects, and geometric effects of loading and unloading, possible tilt and shift of the sample
container during irradiation and compare our results with a 3-D model of the fast-neutron flux distribution
in the reactor core of LVR-15.

2. Methods

2.1. Metallic Neutron Fluence Monitors
Figure 1 compares the cross-section r(E >1 MeV) of the 39K(nf,p)39Ar reaction with that of other nuclear
reactions used for measuring the fast-neutron fluences in nuclear reactors. The relative abundance of neu-
trons in the 235U-fission neutron flux spectrum makes the 1–5 MeV range the most relevant for 39K activa-
tion [Renne et al., 2005]. The r(E) of 32S(nf,p)32P, 54Fe(nf,p)54Mn, and 58Ni(nf,p)58Co are similar to that of

39K(nf,p)39Ar. However, S has a low
melting point and is chemically
reactive. The advantages of
58Ni(nf,p)58Co [e.g., Dalrymple
et al., 1981] over 54Fe(nf,p)54Mn
[e.g., Boven et al., 2001] are the
noncorroding properties of Ni and
a r(E) closer to that of 39K(nf,p)39Ar
for the relevant neutron energy
spectrum. The main disadvantage
is the thermal-neutron burn up of
58(m)Co, which must be corrected
for if no thermal-neutron shielding
(Cd cover) is applied (supporting
information) [Hogg et al., 1962;
Martin and Clare, 1963]. Cd cover-
ing reduces thermal-neutron burn
up of 58(m)Co, but has no effect on
the fast-neutron spectrum
because the Cd cutoff energy for
neutron absorption is approxi-
mately 0.5 eV.

We included Ni fast-neutron flu-
ence monitors (4 mm diameter
foils of 0.01 mm thickness weigh-
ing �1.1 mg) in contact with geo-
logical age standards and
geochronological samples in irra-
diation FGA002 in the FRG1

Figure 1. Cross sections, r(E) (left scale), and range of experimental data, where avail-
able, of the 39K(nf,p)39Ar reaction and other reactions used for monitoring fast-neutron
fluences, as a function of the neutron energy (plotted with IAEA software ZVView 9.2)
[Chadwick et al., 2011]. A 235U fission neutron flux spectrum (stippled line) [Watt, 1952]
and neutron flux spectra of irradiations FGA012 and FGA014 in LVR-15, calculated by
MCNPX software 2.7.0 [Pelowitz, 2011] with ENDF/B-VII.1 data libraries (in SAND-II 640
neutron energy group interpretation of neutron flux) [Chadwick et al., 2011] represent
the energies of neutrons available for the activation reactions (right scale).
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reactor (Geesthacht, Germany) and in irradiations FGA012 and FGA014 in the LVR-15 reactor (Husinec—�Re�z,
Czech Republic). To avoid problems from material loss potentially caused by neutron radiation embrittle-
ment, the Ni-foil was sandwiched into Al-foil and die-cut. The 58Ni(nf,p)58Co reaction rates (supporting infor-
mation), and thus intensity of the 811 keV c-peaks associated with 58Co!58Fe decay [Andersson et al.,
1986], are proportional to the fast-neutron fluences /f. In FRG1, we used Cd shielding to minimize thermal-
neutron burn up of 58(m)Co [Hogg et al., 1962]. In LVR-15, we included Al-1%Co (IRMM 528RA; 8 mm diame-
ter foils of 0.1 mm thickness weighing �14 mg) thermal-neutron fluence monitors and measured the
1332.5 keV c-peaks associated with the 60(m)Co!60Ni decay following the 59Co(nth,c)60(m)Co activation reac-
tion [Andersson et al., 1986] to calculate the thermal-neutron fluences /th (supporting information, Formula
1). The results were used to calculate the fast-neutron fluences /f based on Martin and Clare [1963, equation
(5)] (supporting information, Formula 2). This equation takes into account the production of isomeric and
ground-state 58Co, the activation of both states to 59Co, as well as their decay to 58Fe during and subse-
quent to the irradiation; we implemented a correction for decay during measurement.

2.2. Gamma-Spectrometry
The c-activities were measured on an EG&G Ortec 38% HPGe(Li) detector at 10 cm (Ni-foils) and 20 cm (Co-
foils) nominal sample-detector separation similar to the setup of Curvo et al. [2013]. The foils from each irra-
diation were measured in a continuous measurement series within a period of less than 15 days, two per
day. Peak evaluation was carried out using the GammaVision software Version 5.10. The integration inter-
vals were fixed and centered on the channel with the maximum counts, whose position shifted by less than
1 keV within each measurement series. The detector resolution varied somewhat between the measure-
ment series with the full peak width at half maximum around 2 keV. The detection efficiencies (ep) and mea-
surement geometries were recalibrated for each measurement series using the FZ203 multipeak 152Eu
standard (43.6 kBq 6 3% at 2r; T1/2 5 4943 days; certified by AEA Technology QSA GmbH, 38110 Braunsch-
weig, Germany; calibration date 9 December 1999). The relative counting uncertainty of the calibration
measurements—that is important for comparison of results from different irradiations as in Figure 2—is
<0.3% (precision). The quoted absolute uncertainty of 3% is the external uncertainty of the standard
(accuracy).

2.3. Uncertainty Calculation
To determine relative /f variations, only sources of relative uncertainty must be considered. The measure-
ment order of the foils was randomized to rule out any effect of instrumental drift.

The remaining sources of uncertainty are (1) the statistical weighing uncertainty, (2) the statistical counting
uncertainty, and (3) a random uncertainty due to off-axis positioning of the foil above the detector. The 1r
standard uncertainty (reproducibility) of the Mettler Toledo XP6 Microscale used for weighing is
<0.0008 mg, equivalent to a (conservative) relative 1r weighing uncertainty of 0.07% for the Ni-foils. The
statistical uncertainty of the gamma activities is calculated by the GammaVision software, assuming a Pois-
son distributed counting uncertainty and a minor term accounting for the uncertainty of the background
correction. At least 1,000,000 counts were collected to attain relative 1r counting uncertainties <0.1%. Typi-
cal counting uncertainties are between 0.06 and 0.08%. Off-axis sample positioning was observed to have
an effect of 1.4% for a deliberate horizontal displacement of 13.5 mm. We estimate the maximum uninten-
tional positioning error to be <0.6 mm and assume a relative 1r uncertainty of 0.03%. The weighing, count-
ing, and positioning uncertainties were propagated through formula 5 of Martin and Clare [1963] using a
Monte Carlo method. Each variable was sampled from a Gaussian distribution, with its measured value as
mean and its estimated uncertainty as standard deviation. The resulting fluence distributions are symmetric
with relative standard deviations between 0.13% and 0.21%, averaging 0.17%.

2.4. Irradiation Procedure
The samples and foils are mounted in drill holes in high-purity Al-disks that are stacked to form the irradia-
tion container (photograph in supporting information). The discussed irradiations contained mineral sepa-
rates of mica, K-feldspar, and hornblende (�150 mg, mostly �10 mg per sample hole). In LVR-15, the
container is enclosed by a waterproof Al-capsule that is weighted with lead to make it sink in the reactor. A
taper at the lower part of the Al capsule is necessary to adjust the lid and prevent it from sliding into the
capsule. This makes a larger diameter necessary allowing the sample container to shift by 3 mm from the
center and tilt inside the Al-capsule (Figure 4a). The maximum total tilt depends on the height of the
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container and amounts to 7.6� for the highest (60 mm, FGA012) and 14.6� for the shortest (30 mm,
FGA014). The Al-capsule can shift by 1.9 mm from the center of the irradiation channel (Figure 4a) and tilt
up to 1.7�.

The sample containers are loaded and unloaded by a semiautomatic grab system. During loading and
unloading, the sample container is not rotating. The operation takes about 90 s each way, 30 s of which are
spent within the core of the reactor. The best vertical position of the irradiation container is aimed to be at
the middle of the fuel assemblies, which is realized by filling the rotating channel with dummy capsules. For
some irradiations, the reactor was started after loading and/or stopped before unloading of the samples as
specified in Table 1. The geometries and procedures in FRG1 are similar.

2.5. Analysis of Geological Age Standards
Fish Canyon Tuff sanidine (FCT) [Cebula et al., 1986; Renne et al., 1998] geological age standard was included
in irradiations FGA002, FGA003, FGA012, FGA014, and FGA016 and a laboratory internal muscovite standard
MK290 (calibrated against FCT) in FGA015 to determine the J-values. In FGA003, FGA015, and FGA016, the
geological age standards were radially distributed in the irradiation container permitting an estimate of the
radial fluence gradient in these irradiations (Table 1). All samples were analyzed with a GV Instruments
ARGUS multicollector noble gas mass spectrometer. Detailed analytical procedures are described in Pf€ander
et al. [2014].

3. Results

3.1. Comparison of J-Values and Neutron Fluences
Figure 2 shows the fast-neutron fluences (/f) determined with Ni-foils plotted against J-values determined
with geological age standards placed in direct contact with the Ni-foils. All three data sets show clear linear
correlations: FGA012 and FGA014 in LVR-15 define indistinguishable trends with correlation coefficients (R)
for regression lines through the origin of 0.89 and 0.99. Their slopes are �4% lower than that of FGA002

from FRG1 and �20% lower than the the-
oretical estimate calculated from isotopic
data and spectrum-averaged cross sec-
tions (Figure 2; supporting information).

3.2. /f-Fluence Gradients
We calculated the fluence gradients from
the /f (Ni-foils) and J-values (geological
age standards) at known positions in the
irradiation container. In all cases, a gradi-
ent in an acute angle to the axis of the
container is observed (Figure 3). We
computed the radial gradients (!r/f)
from the maximum difference within
each irradiation disc and the axial gra-
dients (!a/f) from subjacent positions in
the stack. The !r/f are based on four or
more data points per disk; where fewer
are available (FGA002 and FGA003), the
listed !r/f are minimum estimates.
Table 1 summarizes the results for the six
irradiations in FRG1 and LVR-15, at differ-
ent reactor powers and for different irra-
diation times. Figure 3 shows the
variation of /f for FGA002, FGA012,
FGA014, and J-values for FGA015 approx-
imating a gradient along a space
diagonal.

Figure 2. Correlation between fast-neutron fluences (/f) determined with Ni-
foils and J-values determined from Co-irradiated geological age standards. The
equations describe the fitted regression lines through the origin and the theo-
retical relation calculated with spectrum-averaged cross sections and R2 corre-
lation coefficients.
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3.2.1. Axial Fluence Gradients (!a/f)
The maximum !a/f is 5.9 %/cm for FRG1 and 2.1 %/cm for LVR-15 (Table 1). In FRG1, the variation of !a/f

ranges from 0.2 to 5.9 %/cm, while it is more uniform in LVR-15, ranging from 0.3 to 0.5 %/cm per irradia-
tion. The fast-neutron fluence increases toward the top (FGA002, FGA003, FGA015) or bottom of the con-
tainer (FGA012, FGA014, FGA016). FGA016 was piled on top of FGA015 for the last part of the irradiation
cycle. /f increases upward in FGA015 and downward in FGA016. No correlation between irradiation time,
reactor power, and magnitude of !a/f is observed.

3.2.2. Radial Fluence Gradients (!r/f)
The maximum !r/f are 1.8 %/cm in FRG1 and 2.2 %/cm in LVR-15 (Table 1). The irradiation averages range
from 0.4 to 1.1 %/cm. The minimum estimates of !r/f for irradiations FGA002, and FGA003 in FRG1 exhibit
a large scatter owing to poorer statistics. In LVR-15, !r/f varies <0.4 %/cm between the sample discs within
one irradiation can except for irradiation FGA012 where the variation reaches 1 %/cm. The radial gradients
systematically decrease upward or downward for the irradiations in LVR-15. No relation with irradiation
time, reactor power and magnitude of !r/f is observed.

For comparison, the reported !r/f in nonrotating irradiation facilities of several reactors used for
40Ar/39Ar sample irradiation are: 0.5 %/cm in the GSTR (Denver, USA) [Dalrymple et al., 1981], <0.1–0.85
%/cm in the OSTR (CLICIT channel; Corvallis, USA) [Jourdan and Renne, 2014; Renne et al., 1998], 13 %/
cm in the JMTR (Oarai, Japan) [Ishizuka, 1998], �13 %/cm in the HIFAR (Sydney, Australia) [Glasstone and
Edlund, 1952], and �2 %/cm in the 49-2 reactor (Beijing, China) [He et al., 2006]. For rotating facilities,
the !r/f are �4% on one ‘‘plate’’ (no diameter given) in the Ford Nuclear Reactor (Ann Arbor, USA, now
closed) [Foland et al., 1989] and �0.24 %/cm in the GSTR (Denver, USA; T. DeBey, personal communica-
tion, 2014).

Table 1. Irradiation Details With Disks and Subjacent Holes Indicated for Each Computed Gradient

Irradiation Reactor Duration (s)
End Date,

Time
Radial Gradients
!r/f (%/cm)

Axial Gradient
!a/f (%/cm) Specifications

FGA002 FRG1 604800 13 Jun 2008,
13:39

>0.02 (D1) 1.5 (H10) 10 s per rotation; Cd-shielding; 5 MW;
gradients from Ni-foils; only 2–3 points
per disk give minimum radial gradients

>0.5 (D2) 2.2 (H11)
>0.3 (D3) 1.9 (H12)
>1.8 (D4)
>0.3 (D5)

FGA003 FRG1 432000 24 Aug 2008,
13:47

>0.5 (D1) 0.1 (H10) 10 s per rotation; Cd-shielding; 5 MW;
gradients from geological age stand-

ards; only two points per disk give mini-
mum radial gradients

>1.4 (D2) 1.7 (H12)
>0.6 (D3) 5.9 (H14)
>1.7 (D4) 4.3 (H18)
>0.3 (D5)

FGA012 LVR-15 9000 30 Oct 2012,
18:24

1.9 (D1) 0.4 (H1) 10 s per rotation; �10 MW; gradients
from Ni-foils1.2 (D4) 0.6(H3)

0.9 (D7) 0.2 (H5)
Mean: 1.3 0.5 (H11)

Mean: 0.41
FGA014 LVR-15 14400 31 Jul. 2013,

15:39
1.8 (D1) 1.0 (H3) 10 s per rotation; �5 MW; gradients

from Ni-foils1.9 (D2) 0.9 (H6)
2.2 (D3) 1.4 (H9)

Mean: 2.0 1.4 (H11)
Mean: 1.2

FGA015 LVR-15 57600 3 Dec 2013,
09:00

0.2 (D1) 0.8 (H1) 10 s per rotation; �8 MW; gradients
from Ni-foils; reactor stopped at loading

and unloading
0.2 (D2) 0.4 (H4)
0.5 (D3) 0.4 (H7)
0.4 (D4) 0.5 (H10)
0.5 (D5) Mean: 0.5

Mean: 0.4
FGA016 LVR-15 6600 3 Dec 2013,

09:00
0.9 (D1) 2.1 (H1) 10 s per rotation; �8 MW: gradients

from geological age standards
0.6 (D3) 1.5 (H3) Dropped on top of FGA015; reactor

stopped at unloadingMean: 0.7 2.1 (H5)
1.8 (H7)
1.5 (H9)
Mean: 1.8
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3.3. NODER Fast-Neutron Flux
Models
We modeled the 3-D distribution of
the fast-neutron flux (uf; 0.821–10
MeV neutrons) across the core of
the LVR-15 reactor, with emphasis
on the irradiation channel, and
extracted a vertical and two perpen-
dicular horizontal cuts for the geom-
etry of FGA012 (Figure 4). The
NODER code [Ernest, 2006] used for
this calculation is a diffusion opera-
tional code developed for the LVR-
15 reactor for determining the fis-
sion density and neutron flux distri-
bution across the core. The model
accounts for the whole core, con-
sisting of fuel assemblies, control
rods, beryllium assemblies and alu-
minum irradiation channels that are
homogenized within a fine rectan-
gular grid for calculation. The model
takes fuel burn up and regulation
during the operational cycle into
account. The schematic core setup
of LVR-15 during irradiation FGA012
is given in the supporting
information.

Figure 4b shows the vertical distri-
bution of uf along the active height
(60 cm containing uranium) of the
fuel assembly. It can be approxi-
mated by a sinusoidal function with
65% variation between center and
tips. The neutron flux vertical maxi-
mum might deviate by up to 5 cm
from the geometrical center of the
reactor core, caused by asymmetries
in reactor core loading and regula-
tion pattern (M. Kole�ska et al., Capa-
bilities of the LVR-15 research
reactor for production of medical
and industrial radioisotopes, submit-
ted to Journal of Radioanalytical and
Nuclear Chemistry, 2014). In the hori-
zontal (radial) direction, the fast-
neutron flux field is a complex
superposition of inverse-square
functions, describing the decrease
of uf with distance from each fuel
assembly, and exponential decay
functions describing neutron shield-
ing and slowing down in the mod-
erator (water, beryllium). Within the

Figure 3. Scaled 3-D plots of fast-neutron fluences determined with Ni-foils for (a)
FGA012 (LVR-15), (b) FGA002 (FRG1), (c) FGA014 (LVR-15), and (d) J-values from geo-
logical age standards for FGA015 (LVR-15). Mean uncertainties are indicated along
the color code. Axial direction is parallel z.

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005611

RUTTE ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 6



irradiation channel, the spread of uf values is 17%, while the gradients are between 25.57 and 7.17 %/cm
indicating a strongly nonlinear flux field for the investigated area.

4. Discussion

Axial fluence gradients across irradiation containers are well known and routinely corrected for in 40Ar/39Ar
dating [McDougall and Harrison, 1999]. In contrast, radial fluence gradients are usually assumed to be elimi-
nated in rotating irradiation channels. According to our observations, however, radial gradients of the order
of 1–2 %/cm can occur despite rotation, potentially introducing significant uncertainties to 40Ar/39Ar dates.

4.1. Reactor-Specific Differences in Neutron Flux Field and Gradients
The empirical correlations between /f and J-value are strong (Figure 2), but the fitted slopes deviate from
the theoretical estimate. This is the result of using spectrum-averaged cross sections for calculating /f.
These assume a Watt [1952] U235-fission neutron flux spectrum that only approximates the true /(E) distri-
bution (stippled functions in Figure 1). A probably minor contributor to the deviation is the uncertainty of
the experimentally determined r(E) cross-section functions. To calculate J-values from Ni-foils, the r(E) func-
tions of the 58Ni(nf,p)58Co and 39K(nf,p)39Ar reactions must be convoluted with the true /(E), which, how-
ever, is not exactly determined. The difference between the indistinguishable correlations for the
irradiations in LVR-15 and that in FRG1 is the result of different /(E) in these reactors, caused by different
fuel, reactor design and irradiation positions.

The variation of axial gradients between individual irradiations in the same reactor is explained by a varying
axial position in the core and the fuel cycle. The exceptional variation and high maximum of !a/f for irradi-
ation FGA003 in FRG1, compared to !a/f of FGA002 in the same reactor (Table 1), can be the result of

Figure 4. Scaled irradiation setup of reactor LVR-15 and neutron flux models. (a) Tilting of the container produces apparent radial gradients that are a fraction of the axial gradient. (b)
NODER model [Ernest, 2006] of the fast-neutron flux along a vertical and two perpendicular horizontal sections through the LVR-15 reactor core for the geometry of FGA012 highlighting
the nonlinear fast-neutron flux within the irradiation channel. (c) Rotation planes of two sample positions (blue and red) in an off-center container in the irradiation channel. The resulting
/f is the integral over the irradiation time (uf[x(t),y(t),z(t)]dt; t 5 time during irradiation), which is different for the blue and red sample. (d) Detail of (Figure 4a) comprising tilting and non-
coaxial rotation resulting in along-axis variation of radial fluence gradients.
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suboptimal positioning, a factor that is to some extent within the control of the operator and is not neces-
sarily representative of the reactor. In the piled irradiation of FGA015 and FGA016, one container was below
and the other above the midpoint. The !a/f in LVR-15 are, in general, somewhat smaller than in FRG1,
although the values for those for FGA016 are significantly higher than those for FGA012, FGA014, and
FGA015 in the same reactor.

4.2. Shielding Effects
Except for the sample material and the weighing lead the irradiation can consists of high-purity Al and
ambient air that can be regarded as fast-neutron transparent. As shown by Tetley [1978] and Dalrymple
et al. [1981], shielding effects of the irradiated amounts of sample material are small and expected to be
below our resolution. Furthermore, shielding by samples cannot explain the observed systematic gradients
over the entire sample container (Figure 3), but would rather cause shorter wavelength fluctuations.

With a MCNPX (Monte Carlo N-Particle eXtended) calculation [Pelowitz, 2011], we modeled the influence of
the 145 g of lead positioned 45 mm below the container for the irradiation geometry of FGA012 in LVR-15.
For the lowermost disk, the <0.1 MeV neutron flux decreases by about 1% with the lead present, but no
influence on the fast neutrons is observed. We do not consider shielding effects to be of importance for the
observed gradients.

4.3. Sample Handling
During loading and unloading, the lower end of the container enters the core first and leaves it last, which
results in an estimated residual axial fluence gradient of 0.1 %/cm for a 60 min irradiation. The upward and
downward increasing /f indicate that this effect is eclipsed by that of the vertical position relative to the /f

maximum. Because the irradiation times are multiples of the irradiation channel’s revolution period (10 s),
the orientation of the container is the same during loading and unloading and a residual radial flux gradient
could add up. However, there is no distinct correlation between !r/f and the fraction of handling time to
total irradiation time (Table 1; supporting information). Unrealistic horizontal flux gradients of 50–400 %/cm
would be required to account for the observed residual radial gradients. Moreover, radial gradients are also
observed in FGA015 which was loaded and unloaded during reactor shutdown.

The irradiation times in the FRG1 reactor are much longer than in LVR-15. Handling time is thus much
shorter compared to the total irradiation time. Nevertheless, similar radial fluence gradients were observed
as in the LVR-15 reactor.

4.4. Tilt and Shift of the Irradiation Container and Asymmetric Rotation
Figure 4a shows how tilt of the container creates apparent !r/f that amount to 13.1% (FGA012) to 25.1%
(FGA014) of !a/f depending on the maximum angle discussed in section 2.4. The observed !r/f are, how-
ever, of the same order as the !a/f. Still, this mechanism can contribute to the observed radial gradients.
The possible shifting of the container in the irradiation channel (Figure 4c) by up to 5 mm, combined or not
with tilting (Figures 4c and 4d), leads to noncoaxial rotation. Figures 4c and 4d show the paths of exemplary
samples (red, blue, green, yellow) and their projections on the function uf(d) (d, distance). For nonlinear uf(d),
the resulting /f of the samples will differ and build a residual !r/f. The apparent systematic along-axis varia-
tion of observed !r/f (Table 1) supports a case as in Figure 4d. This effect can be eliminated by precise
coaxial rotation of the container. Even with coaxial rotation, a nonlinear flux uf(d) creates residual !r/f

between samples at positions on the sample discs following circular paths with a different radius (Figure 4c).
Therefore, such configurations should be avoided, or separate J-values need to be determined for each radius.

4.5. Potential of Metallic Fluence Dosimetry
The reached average precision of 0.17% (1r) for /f with Ni-foil is similar to routinely achieved J-value preci-
sions based on geological age standards in many labs, while first studies with the newest generation of
noble gas mass spectrometers report significantly higher precisions (0.013%, 1r) [Phillips and Matchan,
2013]. All discussed sources of uncertainty (section 2.3) can be reduced to reach higher precisions by, e.g.,
increasing the weight of the foil (doubling would decrease the counting and weighing uncertainty by
�30% and 50%, respectively) or using a better scale. The geometry of the c-spectrometer can be optimized
to rule out off-axis positioning and decrease nominal sample-detector separation in order to reach higher
counting efficiencies. Ultimately the Poisson distributed counting uncertainty impedes improvements, but
precisions of �0.05% seem well within reach.
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Conditional on a precise knowledge of the fast-neutron fluence distribution /f(E) in the irradiation channel
and of the (relative) cross-sections rf(E) of the 39K(nf,p)39Ar and 58Ni(nf,p)58Co reactions, c-spectrometry of
Ni-foils could be used to calculate J-values that are independent of the ages of geological standards. Provi-
sional estimates based on spectrum-averaged fluences and cross sections are �16% (FRG1) to �20% (LVR-
15) too low. If this discrepancy could be eliminated by further research or by avoiding the spectral character
of irradiation in a research reactor (e.g., by monoenergetic irradiation) [Renne et al., 2005], metallic fluence
dosimeters could be an alternative to geological age standards.

5. Conclusions

Ni-foils are useful to monitor the spatial variation of the fast-neutron fluence of sample irradiations for
40Ar/39Ar dating. In an extreme case, this technique allows one to include just one geological age standard
per irradiation, tracking relative /f-variations with the Ni-foils. The advantages of using Ni-foils are their sim-
ple and cost-effective c-spectrometric analysis, small dimensions and computable, negligible shielding of
fast neutrons. Our measurements have an average precision of 0.17%, similar to routine J-value determina-
tions based on geological age standards. Higher precisions could be reached with improvements to the
technique such as more precise weighing or an improved geometry of the c-spectrometry.

Despite rotation during irradiation, radial neutron fluence gradients of up to 1.8 %/cm (FRG1) and 2.2 %/cm
(LVR-15), i.e., of the same magnitude as the axial gradients, are observed in six irradiations in two different
reactors. Tilting of the container and irradiation capsule and noncoaxial rotation in a nonlinear fast-neutron
flux field are the main factors responsible for these gradients. These effects can be suspended by precise
coaxial rotation with a single radius. Loading and unloading of the samples with interrupted rotation are
only minor contributors to radial fluence gradients. We conclude that for containers with radial extent in
not entirely coaxial setups, radial fluence monitoring is essential for high-precision 40Ar/39Ar dating, even in
fast rotating irradiation facilities.
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