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1 Introduction

The Sakai-Sugimoto model [2, 3] is one of the most used holographic QCD-models to study

effective low-energy effects of a QCD-like theory at strong coupling. Its main merits are the

incorporation of spontaneous chiral symmetry breaking, closely related to the description

of confinement in the model, and the fact that previously constructed effective low-energy

QCD models (such as the Skyrme model for pions, the hidden local symmetry approach

for the coupling of pions and rho mesons, vector meson dominance for the pion formfactor,

etc.) drop out automatically.
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In this paper we further investigate the stability of the two-flavour Sakai-Sugimoto

model in the presence of a magnetic field, and this in the confinement phase. We will find

stability in the scalar and an instability in the charged vector sector. Previous stability

analyses of the Sakai-Sugimoto model (SSM) have mainly focused on the case of a back-

ground chemical potential. In particular Chern-Simons-induced instabilities to spatially

modulated phases have received quite some attention recently [4–9]. Earlier works in this

context include [10–12], and [13, 14] on the (T, µ,B) phase diagram in the Sakai-Sugimoto

model. More relevant for our current purposes is the DBI-induced instability in the pres-

ence of an isospin chemical potential studied in [15], where a tachyonic instability of the rho

meson and ensuing rho meson condensation was described. We will encounter a somewhat

similar phenomenon here, but as a result of the presence of a background magnetic field B

and zero chemical potential.

The papers referred to above which include magnetic fields, use the original antipodal

SSM in which the flavour branes are positioned B-independently at opposite points on the

supersymmetry-breaking circle of the background. We will focus on the more general non-

antipodal embedding of flavour branes, in which case the embedding does depend on the

magnetic field, corresponding to chiral magnetic catalysis in the dual field theory [16–19].

The stability of the embedding of the flavour branes has been checked in [2] for the

antipodal case, and in [20, 21] for the non-antipodal case. We extend this analysis to the

non-antipodal, B-dependent embedding, finding what we referred to as ‘stability in the

scalar sector’ earlier.

We believe we are also the first to consider multiple non-antipodal embedded flavour

branes Nf > 1 that couple to the external magnetic field with different electric charges,

modeling differently charged up- and down-quarks. Taking this complication into account

will create a magnetically induced splitting of the flavour branes, interpreted as explicit

breaking of the U(Nf ) chiral symmetry to a product of Abelian U(1) chiral symmetries,

which makes the evaluation of the symmetrized trace in the action significantly more cum-

bersome.

In the end, we find a holographic description of the instability towards rho meson

condensation in the presence of a very strong magnetic field, first discussed in phenomeno-

logical QCD-models in [22, 23]. This is one of the many effects studied recently in the

context of QCD in extreme conditions, a research area that has naturally gained more

interest with the growing availability of data on quark-gluon plasma from LHC and RHIC

experiments. There, not only high temperatures and high densities are present, but also,

when the plasma is created in non-central heavy ion collisions, very high magnetic fields (of

the order of 1015 Tesla) [24–29]. For a review on strongly interacting matter in magnetic

fields, see [30] and references therein.

Many magnetic effects have been investigated in the Sakai-Sugimoto model, so, to

avoid incompleteness, let us refer here to the review paper [31] for a nice overview.
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2 Goal and strategy

Basic argument for rho meson condensation in field theory. In [22], a possible

magnetic instability of the QCD vacuum towards a phase where charged rho mesons are

condensed is discussed. The basic argument for this rho meson condensation at some

critical value of the magnetic field Bc, is that the charged rho meson combinations which

have their spin aligned with the magnetic field B, have an effective mass squared

m2
ρ,eff (B) = m2

ρ − eB (2.1)

which vanishes at

eBc = m2
ρ = 0.602 GeV2, (2.2)

based on the fact that the n-th energy level of a free, structureless spin-s particle with

mass m in the presence of a background magnetic field ~B = B~e3 is given by the well-

known Landau level quantization formula

E2 = m2
ρ + p23 + (2n− 2s3 + 1)eB (2.3)

with p3 the particle’s momentum in the direction of the magnetic field, and s3 its spin pro-

jection on the same direction. This leads to (2.1) for the lowest-energy rho meson p3 = 0,

n = 0 with spin s3 = 1.

The above argument holds in the context of the bosonic effective DSGS-model [32]

for rho meson quantum electrodynamics, used in [22]. Somewhat later, the rho meson

condensation effect was also shown to emerge in the NJL-model [23]. It should be clear

however that rho meson condensation is merely conjectured to occur in QCD based on

these descriptions in effective QCD-models, not proven nor experimentally observed. To

date, the effect of rho meson condensation has been discussed in [22, 23, 33–35] using phe-

nomenological and lattice approaches, in our work [1] using the Sakai-Sugimoto model, and

in [36–38] using a bottom-up holographic approach. Its possible occurrence has been ar-

gued against in [39] — followed by a rebuttal in [40, 41] showing that the counterarguments

of [39] should not apply.

Goal. Our goal is to study the effective rho meson mass squared m2
ρ,eff (B) in a full-blown

holographic top-down approach, using the Sakai-Sugimoto model. In a simplified set-up,

we were able to show in [1] that rho meson condensation does occur in this model. The

B-dependence of the rho meson mass will be further investigated here, thereby uplifting re-

maining approximations in [1]. The influence of chiral magnetic catalysis on the differently

charged constituents of the mesons is taken into account by considering the non-antipodal

embedding. This will lead to a modification of the energy levels (2.3). We shall however con-

tinue to use the nomenclature Landau levels. The instability is still present, at a somewhat

higher value of eBc than the estimate (2.2). We focus on the confinement phase of the model

and set the number of flavours equal to two, Nf = 2, necessary to describe charged mesons.

– 3 –
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Outline. We start with an outline of the set-up in section 3, including a short review of

the Sakai-Sugimoto model. We fix the number of colours Nc = 3 and the rest of the holo-

graphic parameters to numerical GeV units, in order to obtain results for m2
ρ,eff and Bc in

physical units, comparable to other — phenomenological and lattice — approaches. In the

same section, the effect of the magnetic field on the probe branes’ embedding is reviewed.

In section 4 we discuss the stability of the fluctuations. For that purpose we plug

a flavour gauge field ansatz containing a background (∼ B) and a fluctuation part (∼
mesons) into the non-Abelian DBI-action governing the dynamics of the flavour gauge field

living on the probe branes, and expand the action to second order in the fluctuations.

The eventual goal is to extract the effective rho meson mass from the 4-dimensional mass

equation for the vector meson, the effective 4-dimensional action to be obtained from the

DBI-action by integrating out the extra dimensions.

First, we have to choose a particular gauge to disentangle the scalar and vector fluctua-

tions in the action, this is done in section 4.1. Then we discuss the stability with respect to

scalar fluctuations, corresponding to the positions of the probe branes. Next, we consider

the vector fluctuations. This we already partly covered in our previous paper [1], where

we discussed the case of antipodal embedding and the case of non-antipodal embedding

with the action approximated to second order in the total field strength F and with the ex-

tra assumption of coinciding branes. Here, we extend on these analyses by considering the

non-antipodal embedding with magnetically separated branes, both in the case of using the

action expanded to second order in F (section 4.3) and the full non-linear DBI-action in F

(section 4.4). Because the field strength F in the DBI-action is accompanied with a factor

proportional to the inverse of the ’t Hooft coupling λ, which is large in the validity range of

the gauge-gravity duality, the expansion to second order in F is commonly used. However,

in the presence of large background fields, the higher order terms may become important

(see section 4.4.1). We therefore compare the outcome of using the F 2-approximated action

versus the full DBI-action, from which we can conclude that the difference in Bc is very

small and the F 2-expansion was justified in our case after all.

In section 4.3 the focus is on handling the magnetically separated branes. For non-

coinciding branes, the symmetrized trace (STr) over flavour indices in the DBI-action no

longer simplifies to a normal Tr. Instead, evaluating the STr (which can be done exactly

to second order in the fluctuations) gives rise to complicated functions in the action (de-

fined via integrals), which depend on the background fields and are discontinuous in the

holographic radius u. We pay some attention to solving the eigenvalue equation for the rho

meson eigenfunction with these functions present. The evaluation of the STr is discussed

in section 4.1.1, with the used — exact — prescriptions outlined in the appendix, including

a sketch of their derivation. In section 4.3.2, for completeness, we briefly discuss the pions

in the DBI-action. The section ends with a comment on the validity of the use of the

non-Abelian DBI-action for non-coincident branes.

In section 4.4 the focus is on handling the extra dependences on the magnetic field from

considering the full DBI-action. The resulting effective 4-dimensional equation of motion

(EOM) (to second order in the rho meson fields) has extra terms compared to the standard

Proca EOM used in phenomenological descriptions of the rho meson in a background

– 4 –
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magnetic field, making it harder to analyze. We solve the EOMs for the complete energy

spectrum exactly in section 4.4.3, with the main result for the generalized Landau levels

given in eq. (4.131). The energy eigenstates are no longer spin eigenstates (as opposed to

the Proca energy eigenstates), except for the condensing state.

We comment on the antipodal set-up with full DBI-action in section 4.5 and summarize

in section 5.

3 Set-up

3.1 Review of the Sakai-Sugimoto model

The Sakai-Sugimoto model [2, 3] is a holographic QCD-model, involving Nf pairs of D8-D8

flavour probe branes placed in a D4-brane background

ds2 = gmndx
mdxn (m,n = 0 · · · 9)

=
( u

R

)3/2
(ηµνdx

µdxν + f(u)dτ2) +

(
R

u

)3/2( du2

f(u)
+ u2dΩ2

4

)

,

eφ = gs

( u

R

)3/4
, F4 =

Nc

V4
ǫ4 , f(u) = 1− u3K

u3
, (3.1)

where dΩ2
4, ǫ4 and V4 = 8π2/3 are, respectively, the line element, the volume form and the

volume of a unit four-sphere, while R is a constant parameter related to the string coupling

constant gs, the number of colours Nc and the string length ℓs through R
3 = πgsNcℓ

3
s. This

background has a natural cut-off at u = uK and is therefore dual to a confining QCD-like

theory, living on the boundary at u → ∞. Imposing a smooth cut-off of space at u = uK
uniquely determines the period δτ of τ :

δτ =
4π

3

R3/2

u
1/2
K

= 2πM−1
K (3.2)

with MK the inverse radius of the τ -circle.

The parameters R, gs, ℓs,MK , uK and ’t Hooft coupling λ = g2YMNc are related

through the following equations:

R3 =
1

2

λℓ2s
MK

, gs =
1

2π

g2YM

MKℓs
, uK =

2

9
λMKℓ

2
s. (3.3)

Since all physical results are independent of the choice of λℓ2s, one can moreover impose,

without loss of generality, that 2
9M

2
Kℓ

2
s =

1
λ [3] which is the same as stating that

uK =
1

MK
. (3.4)

Consequently, the remaining parameter relations reduce to

R3 =
9

4

1

M3
K

and
1

gsℓ3s
=

4π

9
NcM

3
K =

4π

3
M3

K . (3.5)

– 5 –
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Figure 1. The Sakai-Sugimoto model: antipodal (u0 = uK) and non-antipodal (u0 > uK) embed-

ding.

The duality is valid in the limit of a large number of colours Nc → ∞ and large

but fixed ’t Hooft coupling λ = g2YMNc ≫ 1 (with gYM → 0), which means one probes

the strong coupling regime of the 4-dimensional dual field theory in the ’t Hooft limit.

The backreaction of the Nf ≪ Nc flavour degrees of freedom on the D4-brane geometry is

ignored. This is the so-called probe approximation [42] (or quenched approximation in QCD

language). Furthermore, bare quark masses are zero, so this model is in the chiral limit.1

On the stack ofNf coinciding D8-D8 flavour pairs, there lives a U(Nf )L×U(Nf )R gauge

theory for the flavour gauge field Am(xµ, u)(m = 0, 1, 2, 3, u) describing massless excitations

of open strings attached to the branes. This gauge theory is interpreted as corresponding

to the global chiral symmetry in the dual QCD-like theory. The cigar-shape of the (u, τ)

subspace of the D4-brane background enforces a ∪-shaped embedding of the flavour branes,

encoded in the embedding function u(τ). This particular form of the embedding represents

the spontaneous breaking of chiral symmetry U(Nf )L ×U(Nf )R → U(Nf ) as the merging

of the D8-branes and D8-branes at u = u0. The asymptotic separation L (at u → ∞)

between D8- and D8-branes, indicated in figure 1, is related to u0 as

L = 2

∫ ∞

u0

du

u′
(with u′ = du/dτ)

= 2

∫ ∞

u0

du

(
R

u

)3/2

f(u)−1

√

u80f(u0)

u8f(u)− u80f(u0)
. (3.6)

In the original set-up of [2, 3] the embedding is antipodal: the flavour branes merge at the

tip of the cigar, u0 = uK . In the more general non-antipodal embedding, u0 > uK , the

distance between uK and u0 is interpreted to be related to the constituent quark mass as

1To overcome this, in [43] the bifundamental ‘tachyon’-field connecting D8- and D8-branes is taken into

account. Other possible mechanisms to include bare quark masses can be found in [44, 45]. We did not

consider these options here for reasons of simplicity.

– 6 –
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the energy stored in a string stretching from u0 to uK [46]:

mq =
1

2πα′

∫ u0

uK

du
√

f(u)
, (3.7)

with 2πα′ the inverse string tension, related to the string length through α′ = ℓ2s. In

the latter set-up, unlike in the u0 = uK case, it is possible [16–19] to model the effect of

chiral magnetic catalysis [47] which says that a magnetic field boosts the chiral symmetry

breaking and hence the constituent quark masses. More precisely, the authors of [47]

discuss a low-energy theorem in the context of chiral perturbation theory, thereby finding

that the chiral condensate grows (linearly) in terms of an increasing magnetic field, with

the coefficient a function of the pion decay constant fπ.

In this work, we will interpretmq as an indicator for the chiral symmetry breaking order

parameter, for lack of a chiral condensate in the used set-up. Let us however remark that

possible alternatives to define chiral order parameters can be found in, for example, [48]

or [43–45, 49, 50].

3.2 Numerical fixing of the holographic parameters

In this paper, for the purpose of presenting the end results in physical GeV units, we will

fix the number of colours to three, Nc = 3. We choose the number of flavours to be two,

Nf = 2, in order to be able to model electromagnetically charged mesons consisting of up-

and down quarks. This means we are stretching the validity of the probe approximation,

but we will nonetheless ignore the backreaction. With these choices, we are then able to

fix the remaining free parameters in the model, R, λ, ℓs,MK , u0, gs and L, by matching to

the following QCD input parameters

mq = 0.310 GeV, fπ = 0.093 GeV and mρ = 0.776 GeV (3.8)

for resp. the constituent quark mass mq, the pion decay constant fπ and the ρ meson mass

mρ, in absence of magnetic field.

The results of our numerical analysis are (for the underlying details we refer to [1])

MK ≈ 0.7209 GeV,
u0
uK

≈ 1.38 and κ =
λNc

216π3
≈ 0.006778. (3.9)

From these values we do extract a relatively large ’t Hooft coupling, λ ≈ 15, and

(via (3.6)) a value for the asymptotic flavour brane separation L ≈ 1.574 GeV−1 that is

approximately 2.8 times smaller than the maximum value of L, given by Lmax = δτ
2 =

π
MK

≈ 4.358 GeV−1. Our estimate for the effective string tension between a quark and an

antiquark becomes σ ≈ 0.19GeV2, in excellent agreement with the pure SU(3) lattice-QCD

value σ ≈ 0.18-0.19GeV2 [51, 52]. This means we could equally well have used the value

for σ as input, instead of mq, as it could be noted that the identification in (3.7) is rather

an indicator of magnitude than an exact correspondence.

Using the above values for the parameters enables us to present all our results in phys-

ical units, and in particular compare our result for the critical magnetic field for the onset

of rho meson condensation to the values obtained in other (phenomenological or lattice)

QCD approaches.

– 7 –
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3.3 Non-Abelian probe brane action

The dynamics of the stack of Nf coinciding D8-D8 flavour branes in the 10-dimensional

D4-brane background is determined by the dynamics of open strings with their endpoints

attached to the branes. The spectrum of vibrational modes of these attaching strings con-

tains a massless U(Nf ) flavour gauge field with 10 components, which can be decomposed

in a U(Nf ) flavour gauge field Am(xµ, u) (m = 0, 1, 2, 3, u) living on the world volume of

the branes (we set AΩ4
= 0 and ∂Ω4

Am = 0) and a scalar field τ describing fluctuations

of the branes along their transversal (τ -)direction. Before writing down the action for the

flavour branes in terms of Am and τ , a few comments are in order.

While the low energy effective action for a single brane is known to be the Dirac-

Born-Infeld action [53, 54], valid in the static gauge (i.e. alignment of the world volume

with space-time coordinates) and for slowly varying field strengths, the full non-Abelian

generalization of it for the description of a stack of coinciding branes is not. Tseytlin pro-

posed in [55] to non-Abelianize the Dirac-Born-Infeld action by introducing a symmetrized

trace STr. The action is still restricted to static gauge and the (in the non-Abelian case

slightly ambiguous) slowly-varying field strengths approximation, ignoring derivative terms

including [F, F ] ∼ [D,D]F terms. This action was shown to be valid up to fourth order in

the field strength, with deviations starting to appear at order F 6 [59, 60]. For the probe

flavour branes we are dealing with, it is given by the following, which we will further refer

to as ‘the’ (non-Abelian) DBI-action [55–58]:

SDBI = −T8
∫

d4x 2

∫ ∞

u0

du

∫

ǫ4 e
−φ STr

√

− det [gD8
mn + (2πα′)iFmn], (3.10)

where T8 = 1/((2π)8ℓ9s) is the D8-brane tension, the factor 2 in front of the u-integration

makes sure that we integrate over both halves of the ∪-shaped D8-branes, STr is the sym-

metrized trace which is defined as

STr(F1 · · ·Fn) =
1

n!
Tr(F1 · · ·Fn + all permutations), (3.11)

gD8
mn is the induced metric on the D8-branes,

gD8
mn = gmn + gττ (Dmτ)(Dnτ),

with covariant derivative Dmτ = ∂mτ + [Am, τ ], and

Fmn = ∂mAn − ∂nAm + [Am, An] = F a
mnt

a

the field strength with anti-Hermitian generators

ta = − i

2
(1, σ1, σ2, σ3), Tr(tatb) = −δab

2
, [ta, tb] = ǫabct

c. (3.12)

3.4 Effect of uniform magnetic field on the probe branes’ embedding

To model a uniform magnetic field ~B = B~e3 in the dual field theory, B = F em
12 = ∂1A

em
2 , we

assume the background gauge field ansatz (e being the electromagnetic coupling constant

– 8 –
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and Qem the electric charge matrix) [3]

Aµ = Aµ = −ieQemA
em
µ (all other gauge field components zero)

= −ix1
(

2
3eB 0

0 −1
3eB

)

δµ2 =
x1eBδµ2

3

(

− i12
2

)

+ x1eBδµ2

(

− iσ3
2

)

, (3.13)

or

A
3
2 = x1eB and A

0
2 = A

3
2/3; (3.14)

and

F 12 = ∂1A2 = −i
(

2
3eB 0

0 −1
3eB

)

= −i
(

F u 0

0 F d

)

, (3.15)

where in the last line we defined the up- and down-components of the background field

strength, F u and F d. In the rest of the paper we will denote eB as B.

The embedding of the (8+1)-dimensional D8-branes in the 10-dimensional D4-brane

background (3.1) only requires the specification of one function, τ(u). This embedding

function can be determined as a function of B by first plugging the above gauge field

ansatz into the DBI-action (3.10), together with the metric ansatz

gD8 =

(

gD8
u 0

0 gD8
d

)

, (3.16)

to allow for a different response of up- and down-brane to the magnetic field. Subsequently

one can solve for u′ = du/dτ (for each flavour) by expressing conservation ∂τH = 0 of the

‘Hamiltonian’ H = u′ δL
τ

δu′ −Lτ with SDBI ∼
∫
dτLτ and assuming a ∪-shaped embedding,

i.e. u′ = 0 at u = u0. The result for the B-dependent embedding is (for more details, see [1]):

τ(u) = τ =

(

τu 0

0 τd

)

(3.17)

with

∂uτ l =

√
√
√
√

(
R

u

)3 1

f2

u80,lf0,lA0,l

u8fAl − u80,lf0,lA0,l
× θ(u− u0,l), (l = u, d) (3.18)

where f is short for f(u) = 1−u3K/u3, A0 and f0 stand for A(u0) and f(u0), θ(u−u0,l) is the
Heaviside stepfunction, and all the B-dependence is collected in the newly defined matrix A:

A =

(

Au 0

0 Ad

)

= 1− (2πα′)2F
2
12

(
R

u

)3

, Al = 1 + (2πα′)2F
2
l

(
R

u

)3

, (l = u, d).

(3.19)

The up- and down-brane are thus no longer coincident in the presence of B, as sketched

in figure 2.

The splitting of the branes represents the magnetically induced explicit breaking of

global chiral symmetry,

U(2)L ×U(2)R
B→ (U(1)L ×U(1)R)

u × (U(1)L ×U(1)R)
d, (3.20)

– 9 –
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Figure 2. The change in embedding of the flavour branes caused by the magnetic field B models

the chiral magnetic catalysis effect. The up-brane reacts the strongest to B, corresponding to a

stronger chiral magnetic catalysis for the up-quarks than for the down-quarks.

caused by the up- and down-quarks’ different coupling to the magnetic field. This is also

reflected in the fact that the non-Abelian DBI-action for the two D8-branes reduces to the

sum of two Abelian actions (the STr reduces to an ordinary Tr because the embedding

matrix (3.17) is diagonal).

The B-dependence of u0,u and u0,d is determined by keeping the asymptotic separation

L between D8- and D8-branes, as a function of B given by

L = 2

∫ ∞

u0

du

(
R

u

)3/2

f−1

√

u80f0A0

u8fA− u80f0A0
, (3.21)

fixed to its value at B = 0. L serves as the boundary condition on the branes’ embedding,2

see also for example the work of Preis et al. [16–19]. The B-dependence of the constituent

quark masses then follows directly from (3.7), or in terms of the fixed parameters

mq(MK , u0, κ) = 8π2M2
Kκ

∫ u0

1/MK

du
1

√

1− 1
(MKu)3

. (3.22)

The results for u0(B) and mq(B) (for both flavours) are shown in figure 3. The rising of

the constituent masses mq with B is consistent with the interpretation of the B-dependent

embedding as a modeling of the chiral magnetic catalysis effect (as already discussed in the

Sakai-Sugimoto model in [16–19]): as the value of u0, where the branes merge, rises, the

∪-shaped embedding gets more strongly bent, diverging more and more from the chirally

invariant embedding of straight branes. The up-brane reacts twice as strongly to the pres-

ence of eB, corresponding to a stronger chiral magnetic catalysis for the up-quarks than for

2From the perspective of the asymptotic dual field theory, the flavour branes are infinitely extended,

massive objects in the bulk, requiring an infinite amount of energy to move them. In this sense it is natural

to keep L fixed as a boundary condition to probe the effects of the bulk dynamics in the presence of the

external field. The value of L determines how much of the gluonic bulk dynamics is probed, ranging from

all (u0 = uK) for maximal L to none (u0 → ∞) for minimal L. In this interpretation, the choice of L (which

has no direct physical meaning in the dual field theory) corresponds to the choice of type of dual field theory,

ranging from QCD-like to NJL-like in the limit of L→ 0 or τ non-compact. To avoid confusion, with “NJL-

like” we refer to a model sharing some but not all features with NJL-models. For more details, see [61].
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Figure 3. (a) u0

uK
as a function of the magnetic field for the D8-brane corresponding to the up-

quark (red), and the one corresponding to the down-quark (blue). (b) The constituent masses of

the up-quark (red) and the down-quark (blue) as a function of the magnetic field.

the down-quarks. In the special case of an antipodal embedding u0 = uK at B = 0, turning

on the magnetic field has no influence on the brane embedding: f0 = 0 ⇒ ∂τ = 0 ⇒ τ ∼ 1

so the branes remain antipodal and coincident for all values of the applied magnetic field.

Hence choosing the extremal antipodal model corresponds to ignoring the magnetic catal-

ysis.

It is interesting to notice that a similarly shaped plot as in figure 3b was presented

in [62, figure 12] for the in [48] proposed order parameter in terms of a background magnetic

field (be it for the case of a non-compact τ -direction).

4 Stability analysis

To investigate the stability of the set-up with respect to gauge and scalar field fluctuations,

let us first derive the form of the action to second order in the fluctuations by plugging the

total gauge field ansatz {

Ar = Ar + Ãr (r = µ, u)

τ = τ + τ̃
(4.1)

with (see (3.13) and (3.18))






Aµ = −ieQemx1Bδµ2

∂uτ =

√
(
R
u

)3 1
f2

u8
0f0A0

u8fA−u8
0f0A0

× θ(u− u0)
, (4.2)

into the DBI-action (3.10). The background components of the field ansatz (4.1) describe

the background magnetic field (in Aµ) and the (B-dependent) embedding of the branes (in

∂uτ). The fluctuation components will be related to resp. vector and scalar mesons in the

dual field theory.

We have to evaluate (for notational brevity we temporarily absorb the factor (2πα′)

into the field strength)

2

∫

du STr
√

− det(ars) = 2

∫

du STr
√

− det(gD8
rs + iFrs), (4.3)

with

gD8
rs = grs + gττDrτDsτ, with Dr· = ∂r + [Ar, ·] (4.4)
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and

Frs = ∂rAs − ∂sAr + [Ar, As]. (4.5)

If the argument a of the determinant (which runs over the Lorentz-indices) is written as

a = a+ a(1) + a(2) + · · ·

with a(n) being n-th order in the fluctuations Ã, the determinant can be expanded to

second order in the fluctuations as follows

√
− det a|Ã2=

√
− det a

{

1+
1

2
tr(a−1a(1))+

1

8

(

tr(a−1a(1))
)2

− 1

4
tr
(

(a−1a(1))2
)

+
1

2
tr(a−1a(2))

}

.

(4.6)

We denote the trace in Lorentz-space with a small tr, and the trace in flavour space with

a capital (S)Tr. Splitting each component of a in its symmetric and antisymmetric parts







a−1 = G + B
a(1) = a(1) + δ1F

a(2) = a(2) + δ2F

(4.7)

the expansion of the determinant (4.6) to second order in the fluctuations becomes

√
− det a|Ã2 =

√
− det a+

√
− det a×

×
{
1

2
tr(Ga(1)) + 1

8

(

tr(Ga(1))
)2

− 1

4
tr(Ga(1)Ga(1) + Ba(1)Ba(1)) + 1

2
tr(Ga(2))

+
1

2
tr(Bδ1F ) +

1

8
(tr(Bδ1F ))2 −

1

4
tr(Gδ1FGδ1F + Bδ1FBδ1F ) +

1

2
tr(Bδ2F )

+
1

4
tr(Ga(1))tr(Bδ1F )−

1

2
tr(Ga(1)Bδ1F )−

1

2
tr(Gδ1FBa(1))

}

. (4.8)

For our field ansatz we have

ars = grs + gττ∂rτ∂sτ + iF rs, (4.9)

a(1)rs = gττ

(

∂rτ
(

[Ãs, τ ] +Dsτ̃
)

+
(

[Ãr, τ ] +Dr τ̃
)

∂sτ
)

, (4.10)

δ1Frs = i(DrÃs −DsÃr)
notation

= iF̃rs (4.11)

a(2)rs = gττ

(

[Ãr, τ ] +Dr τ̃
)(

[Ãs, τ ] +Dsτ̃
)

+ gττ

(

[Ãr, τ̃ ]∂sτ + ∂rτ [Ãr, τ̃ ]
)

, (4.12)

δ2Frs = i[Ãr, Ãs]. (4.13)

The symmetric part G of a−1 is diagonal,

G =










g−1
00

g−1
11 A

−1

g−1
22 A

−1

g−1
33

G−1
uu










, with Guu = guu + gττ (∂uτ)
2 (4.14)
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and the antisymmetric part B has non-zero components

B12 = −B21 = iF 12g
−1
11 g

−1
22 A

−1. (4.15)

As a check, the first order terms in (4.8) do vanish on-shell, that is upon using the embed-

ding function (3.18). The DBI-Lagrangian to second order in the fluctuations then reads

STr e−φ
√
− det a|Ã2,τ̃2,Ãτ̃ = L1 + L2 + L3 + L4 (4.16)

with

L1=Tr e−φ
√
− det a

L2=STr x

{
1

2

(

[Ãu, τ ]+Duτ̃
)2
G−2

uu+y[Ãu, τ̃ ]+
1

2

(

[Ãµ, τ ]+Dµτ̃
)2
g−1
µµA

−1|µ=1,2G
−1
uu

}

L3=STr x

{

−F 12g
−1
11 g

−1
22 A

−1[Ã1, Ã2]−
1

4
g−1
µµg

−1
νν A

−2|µ,ν=1,2F̃
2
µν−

1

2
g−1
µµA

−1|µ=1,2G
−1
uu F̃

2
µu

}

L4=STr x
{

−z
((

[Ãu, τ ]+Duτ̃
)

F̃12+
(

[Ã1, τ ]+D1τ̃
)

F̃2u−
(

[Ã2, τ ]+D2τ̃
)

F̃1u

)}

,

(4.17)

where

x = e−φ
√
− det a = e−φg211

√

Guug
2
S4

√
A, y = G−1

uugττ∂uτ , z = yF 12g
−1
11 g

−1
22 A

−1

(4.18)

are functions of the background fields ∂uτ and F 12, so functions of u only, and diagonal in

flavour space. The notation for the factors g−1
µµA

−1|µ=1,2 coming from G means that g−1
µµ is

accompanied with a factor A−1 = 1

1−(2πα′)2F
2

12R
3/u3

only for µ = 1, 2.

4.1 Gauge fixing

4.1.1 STr-evaluation

The action (4.17) contains mixing terms between the scalar and gauge fluctuations in L2

and L4. We will disentangle these couplings here by choosing a particular gauge. First

we work out L2 a bit further by evaluating the STr (3.11). According to its definition

in [56] the STr takes a symmetric average over all orderings of Fmn, Dmτ and τ ap-

pearing in the non-Abelian Taylor expansions of the fields in the action. In particular,

commutators, such as [Am, An] in Fmn or [Am, τ ] in Dmτ , are handled as one matrix. The

STr-expressions we encounter in (4.17) can be classified into two types: expressions of the

form STr(H(∂uτ)G(F 12)X̃) and STr(H(∂uτ)G(F 12)X̃
2). Here H, resp. G are even functions

of the diagonal background field

τ = τ0σ0 + τ3σ3,

resp.

F 12 = F 0σ0 + F 3σ3 = − i

2

B

3
σ0 − i

2
B σ3,

– 13 –



J
H
E
P
0
1
(
2
0
1
4
)
0
5
5

and X̃ = X̃ata is some fluctuation — in the present case fully general fluctuations Dmτ̃ and

off-diagonal fluctuations [Ãm, τ ]. For expressions of these types the STr can be evaluated

exactly [59, 63] as elaborated on in the appendix A. Using the prescriptions presented and

rederived there, we arrive at the following form for L2:

L2 =

2
∑

a=1

{

γ(u)
1

2

(

[Ãu, τ ]
a + ∂uτ̃

a
)2

+ α(u)
1

2

(

[Ãµ, τ ]
a +Dµτ̃

a
)2

+ β(u)

2
∑

µ=1

1

2

(

[Ãµ, τ ]
a +Dµτ̃

a
)2

}

+Tr
(

xy[Ãu, τ̃ ]
)

+
∑

l=u,d

{

γl(u)
1

2

(

∂uτ̃
l
)2

+ αl(u)
1

2

(

Dµτ̃
l
)2

+ βl(u)
2
∑

µ=1

1

2

(

Dµτ̃
l
)2

}

(4.19)

with

γ(u) = −1

2
I(xG−2

uu ), α(u) = −1

2
I(xg−1

11 G
−1
uu ), β(u) = −1

2
I

(

xg−1
11 G

−1
uu

1−A
A

)

, (4.20)

γl(u) = −1

2
Il(xG

−2
uu ), αl(u) = −1

2
Il(xg

−1
11 G

−1
uu ), βl(u) = −1

2
Il

(

xg−1
11 G

−1
uu

1−A

A

)

(4.21)

containing what we will refer to as ‘I-functions’ and ‘Il-functions’, defined in (A.7)

and (A.8), e.g.

I(xG−2
uu ) = e−φg211g

2
S4
I
(

G−3/2
uu (∂τ)A1/2(F 12)

)

=
e−φg211g

2
S4

2

∫ 1

0

dα
{

G−3/2
uu (∂τ0+α∂τ3)A1/2(F 0+αF 3)+G−3/2

uu (∂τ0−α∂τ3)A1/2(F 0−αF 3)
}

,

Iu(xG
−2
uu ) = e−φg211g

2
S4
G−3/2

uu (∂τ0 + ∂τ3)A1/2(F 0 + F 3),

with ∂τ short for ∂uτ and (with τ̃ = τ̃ata)

τ̃ l =
τ̃0 ± τ̃3√

2
.

Having used gµν = g11ηµν and absorbing ηµν in the notation of the squares, (∂µτ̃
a)2 =

∂µτ̃
a∂ν τ̃

aηµν = ∂µτ̃
a∂µτ̃a, all the products over µ in the above Lagrangian (and in all

expressions following unless stated otherwise) are contracted Minkowski products.

The difficulty in evaluating the STr, although we restrict to second order in the

fluctuations, comes from the presence of the background fields ∂τ (appearing in the

induced metric on the flavour branes through Guu = guu + gττ (∂uτ)
2) and F 12 (appearing

in A as defined in (3.19)), which have to be ordered3 within the STr. The functions

containing the background fields have to be Taylor expanded before the ordering and

subsequently resummed. This gives rise to complicated I-functions as in (4.20), which in

general have to be calculated numerically.

4.1.2 Choosing a ’t Hooft gauge

We consider a ’t Hooft gauge-fixing function [64] in the non-Abelian directions — assuming

the Einstein convention that double SU(2)-indices b, c = 1, 2, 3 are summed over —

Ga =
1√
ξ



α(u)DµÃ
a
µ + γ(u)DuÃ

a
u +

∑

i=1,2

β(u)DiÃ
a
i



+2i
√

ξǫabcτ̃
bτ c (a = 1, 2) (4.22)

3There is some ambiguity here in the sense that the background scalar field ∂uτ itself depends on the

background gauge field F 12, so there is also the option to order the matrices F 12 within ∂uτ , as opposed

to ordering ∂uτ as independent. We however opted for the latter, which seems more logical to us.
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such that the gauge-fixed Lagrangian

L2 −
1

2
(Ga)2 =

2
∑

a=1

{

γ(u)
1

2

[

(

[Ãu, τ ]
a
)2

+ (∂uτ̃
a)2
]

+ α(u)
1

2

[

(

[Ãµ, τ ]
a
)2

+ (Dµτ̃
a)2
]

+β(u)
2
∑

µ=1

1

2

[

(

[Ãµ, τ ]
a
)2

+(Dµτ̃
a)2
]

− 1

2ξ

[

(DÃ)2 terms
]

+
1

2
(
√

ξτ̃a)2(2τ3)2+2iÃa
uǫabcτ̃

b∂u(γ(u)τ
c)

}

+Tr
(

xy[Ãu, τ̃ ]
)

+
∑

l=u,d

{· · · } (4.23)

will be free of mixing terms for a sensible choice of the gauge parameter ξ. The Lagrangian

L is replaced by L − 1
2(G

a)2 by virtue of the Faddeev-Popov trick: the partition function

of a system with action S =
∫
dxL fulfilling the gauge-fixing constraints Ga(A, τ) = 0 is

written as

Z =

∫

DADτ ei
∫

dxL(A,τ) ∼
∫

DADτ ei
∫

dxL(A,τ)δ [G(A, τ)]∆G(A,τ) (4.24)

with proportionality constant the volume of the gauge group, δ [G(A, τ)] =

Πx,a (δ [G
a(A(x), τ(x))]) and ∆G(A,τ) the associated Jacobian, or alternatively —

through introducing the gauge-fixing as δ(Ga(A(x), τ(x)) − ωa(x)) and integrating over

ωa having a Gaussian distribution around zero — as

Z ∼
∫

DADτei
∫

dx[L(A,τ)− 1
2
(Ga(A,τ))2]∆G(A,τ).

Now we rescale the charged scalar fluctuations τ̃a=1,2 → τ̃a=1,2
√
ξ

and choose the so-called

‘unitary’ gauge

ξ → ∞. (4.25)

This boils down to deleting all dynamical terms for the fluctuations τ̃a=1,2 and we are left

with

L2 −
1

2
(Ga)2 =

2
∑

a=1

{

γ(u)
1

2

(

[Ãu, τ ]
a
)2

+ α(u)
1

2

(

[Ãµ, τ ]
a
)2

+ β(u)

2
∑

µ=1

1

2

(

[Ãµ, τ ]
a
)2

+
1

2
(τ̃a)2(2τ3)2

}

+
∑

l=u,d

{· · · } . (4.26)

With the above gauge choice we can see the Higgs mechanism at work that is associated with

the magnetic field pulling the up- and down-brane apart: the charged scalar fluctuations

τ̃1,2 now serve as Goldstone bosons that are eaten by the gauge bosons Ã1,2
m , acquiring

a mass ∼ (τ3)2, where τ3 is essentially the vacuum expectation value of the diagonal

component τ3 of the τ -field. The remaining fluctuations τ̃0,3 are the Higgs bosons.

4.1.3 Fixing the remaining gauge freedom

In the unitary gauge, L4, containing the only remaining mixing terms between gauge and

scalar fluctuations, reads

L4=
1

2







I(xz)
2
∑

a=1

[

[Ãu, τ ]
aF̃ a

12+[Ã1, τ ]
aF̃ a

2u−[Ã2, τ ]
aF̃ a

1u

]

+
∑

l=u,d

Il(xz)
[

Duτ̃
lF̃ l

12+D1τ̃
lF̃ l

2u−D2τ̃
lF̃ l

1u

]







=
1

2
I(xz)

2
∑

a=1

(

−[Ã1, τ ]
a∂uÃ

a
2 + [Ã2, τ ]

a∂uÃ
a
1

)

(4.27)
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where we used partial integration. The neutral part vanishes due to the gauge choice

A3
u = A0

u = 0, (4.28)

hereby using the remaining gauge freedom in the a = 0, 3 directions, as the ’t Hooft

gauge (4.22) only fixes the gauge for a = 1, 2.

In the chosen gauge (4.22), (4.25), (4.28), the Lagrangian is free of Ãmτ̃ couplings:

STr e−φ
√
− det a|Ã2,τ̃2 = L+ LHiggs + Lscalar + Lvector + Lvector−mixing (4.29)

with

L = Tr e−φ
√
− det a

LHiggs =

2
∑

a=1

{

γ(u)
1

2

(

[Ãu, τ ]
a
)2

+ α(u)
1

2

(

[Ãµ, τ ]
a
)2

+ β(u)

2
∑

µ=1

1

2

(

[Ãµ, τ ]
a
)2

− 1

2
(τ̃a)2(τ3)2

}

Lscalar =
∑

l=u,d

{

γl(u)
1

2

(

∂uτ̃
l
)2

+ αl(u)
1

2

(

Dµτ̃
l
)2

+ βl(u)
2
∑

µ=1

1

2

(

Dµτ̃
l
)2

}

Lvector = STr x

{

−F 12g
−2
11 A

−1[Ã1, Ã2]−
1

4
g−2
11 F̃

2
µν A

−2|µ,ν=1,2 −
1

2
g−1
11 G

−1
uu F̃

2
µu A

−1|µ=1,2

}

Lvector−mixing =
1

2

{

I(xz)

2
∑

a=1

(

−[Ã1, τ ]
a∂uÃ

a
2 + [Ã2, τ ]

a∂uÃ
a
1

)

}

. (4.30)

4.2 Stability in scalar sector

In this section we discuss the scalar part of the DBI-Lagrangian (4.30),

Lscalar = STr e−φ
√
− det a|τ̃2

=
∑

l=u,d






γl(u)

1

2

(

∂uτ̃
l
)2

+ αl(u)
1

2

(

Dµτ̃
l
)2

+ βl(u)
2∑

µ=1

1

2

(

Dµτ̃
l
)2






. (4.31)

With the purpose of checking the stability of the B-dependent configuration with respect

to scalar fluctuations, it is important to keep track of the correct signs in the action. First

of all, we therefore replace (τ̃ l)2 → −4(τ̃ l)2 such that the fluctuations τ̃ l = τ̃0±τ̃3√
2

are now

written in terms of the real components of the scalar fluctuation τ̃ = τ̃aσa (where in (4.19)

it was implicitly assumed in evaluating the STr that τ̃ = τ̃ata = −iτ̃aσa/2 with imaginary

components τ̃a). Slightly redefining Lscalar to incorporate the sign of the full action,

SDBI |τ̃2 = −T8
∫

d4x 2

∫ ∞

u0

du

∫

ǫ4 e
−φ STr

√
− det a|τ̃2 = T8

∫

d4x 2

∫ ∞

u0

du

∫

ǫ4Lscalar

we then end up with

Lscalar = −
∑

l=u,d

{

Il(xG
−2
uu )

(

∂uτ̃
l
)2

+ Il(xg
−1
µµG

−1
uu )

(

Dµτ̃
l
)2

+ Il

(

xg−1
µµG

−1
uu

1−A

A

) 2
∑

µ=1

(

Dµτ̃
l
)2

}

(4.32)

with the convention (∂µτ̃
l)2 = ∂µτ̃

l∂ν τ̃
lηµν .
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The Hamiltonian associated with the Lagrangian is given by

H =
δLscalar

δ∂0τ l
∂0τ

l − Lscalar (4.33)

=
∑

l=u,d

{

Il(xG
−2
uu )
(

∂uτ̃
l
)2

+Il(xg
−1
µµG

−1
uu )

((

∂0τ̃
l
)2

+
(

∂3τ̃
l
)2
)

+Il(xg
−1
µµG

−1
uuA

−1)
2∑

i=1

(

Diτ̃
l
)2
}

where we switched notation again to normal squares (∂µτ
l)2 = ∂µτ

l∂µτ
l. For the embedding

to be stable towards scalar τ̃ l-fluctuations, the associated energy density has to obey

E =

∫ ∞

u0,d

H ≥ 0, (4.34)

which will be the case if each of the Il-functions is positive.

Let us discuss the two background functions that appear in the Il-functions, A(F 12)

and Guu(∂τ). Using (3.18), the uu-component of the induced metric on the D8-branes as

a function of the embedding ∂τ reads

Guu(∂τ
0 ± ∂τ3) = Guu(∂τ l) = guu + gττ (∂uτ l)

2 =

(
R

u

)3/2 1

f

1

1− u8
0,lf0,lA0,l

u8fAl

, (l = u, d)

(4.35)

with u ≥ u0,l implicitly understood, and, from (3.19),

A(F 0 ± F 3) = Al = 1 + (2πα′)2F
2
l

(
R

u

)3

, (l = u, d) (4.36)

with the plus (minus) sign corresponding to l = u (l = d). Al is an increasing function of

B, equal to 1 for B = 0, and a decreasing function of u, equal to 1 for u = ∞ so

Al ≥ 1 (for all B and u).

The function 1− u8
0,lf0,lA0,l

u8fAl
is a monotonically increasing function of u going from 0 at u0,l

to 1 at u→ ∞ for any fixed value of B, see figure 4. Then,

Il(xG
−2
uu ) = e−φg211g

2
S4

Il(G
−3/2
uu A1/2)

︸ ︷︷ ︸

G
−3/2
uu (∂τ l)A

1/2
l (F l)

∼
( u

R

)3/2
u4

︸ ︷︷ ︸

(u0
R )

3/2
u4
0···∞

f3/2

︸ ︷︷ ︸
(

1−uK
u0

3
)3/2

···1

(

1−
u80,lf0,lA0,l

u8fAl

)3/2

︸ ︷︷ ︸

0···1 for any fixed value of B

A
1/2
l

︸︷︷︸

≥1

≥ 0, (4.37)

Il(xg
−1
11 G

−1
uu ) = e−φg211g

2
S4
g−1
11 Il(G

−1/2
uu A1/2)

︸ ︷︷ ︸

G
−1/2
uu (∂τ l)A

1/2
l (F l)
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Figure 4. The function 1− u8

0,lf0,lA0,l

u8fAl
as a function of u for l = u, d for B = 0.2GeV2 in blue and

B = 1.2GeV2 in red. Up distinguishable from down through u0,u > u0,d.

∼
( u

R

)−3/4
u4
( u

R

)−3/2
(
R

u

)−3/4

f1/2

(

1−
u80,lf0,lA0,l

u8fAl

)1/2

A
1/2
l

∼ u5/2f1/2

︸ ︷︷ ︸√
u5
0−u3

Ku2
0···∞

(

1−
u80,lf0,lA0,l

u8fAl

)1/2

︸ ︷︷ ︸

0···1 for any fixed value of B

A
1/2
l

︸︷︷︸

≥1

≥ 0, (4.38)

and for the same reasons

Il(xg
−1
11 G

−1
uuA

−1) = e−φg211g
2
S4
g−1
11 Il(G

−1/2
uu A−1/2)

︸ ︷︷ ︸

G
−1/2
uu (∂τ l)A

−1/2
l (F l)

≥ 0. (4.39)

This concludes the proof of stability of the flavour branes’ embedding as depicted in figure 2

with respect to diagonal τ̃ -fluctuations. Note that the off-diagonal τ̃ -components have

disappeared through the gauge fixing in section 4.1 — except for an irrelevant mass term

for the undynamical τ̃1,2 in LHiggs. A similar mechanism in the context of the holographic

description of heavy-light mesons can be found in [65].

Let us briefly expand on the physical interpretation of the discussion of stability in

the scalar sector. While in the seminal work of [2] (the xµ-dependent parts of) the scalar

modes τ̃ were identified with scalar mesons in the dual field theory, this interpretation was

revisited in [66], where it is argued that the τ̃ -fluctuations are to be regarded as artifacts

of the SSM.4 The reason is that they transform under a Z2-symmetry of the geometric

configuration (strictly speaking in the antipodal set-up), which is redundant in the sense

that it is not shared with QCD. This is similar to the gauge field components AΩ4
not

having a counterpart in the dual QCD-like field theory, as they transform under the SO(5)

isometry of the four-sphere in the background (3.1). Any concern about the interpretation

of the off-diagonal τ̃ -components disappearing in the holographic Higgs mechanism coupled

4We would like to thank S. Sugimoto for private communication about this.
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to the gauge fixing, is hence resolved: the ‘eaten’ fluctuations do not correspond to physical

QCD-particles. The above discussion of the stability is not to be interpreted in terms of

mesons in the dual field theory, but rather establishes that the geometrical configuration

we will employ further is stable against small perturbations.

4.3 Vector sector in (2πα′)2F 2-approximation

Consider the vector part of the DBI-Lagrangian (4.30),

L = LHiggs + Lvector = STr e−φ
√
− det a|Ã2

=

2∑

a=1

{

γ(u)
1

2

(

[Ãu, τ ]
a
)2

+ α(u)
1

2

(

[Ãµ, τ ]
a
)2

+ β(u)

2∑

µ=1

1

2

(

[Ãµ, τ ]
a
)2
}

+ STr x

{

−F 12g
−2
11 A

−1[Ã1, Ã2]−
1

4
g−2
11 F̃

2
µν A

−2|µ,ν=1,2−
1

2
g−1
11 G

−1
uu F̃

2
µu A

−1|µ=1,2

}

. (4.40)

We have anticipated the vanishing of Lvector−mixing upon filling in the gauge field expansion

in terms of vector mesons, which we will come back to shortly. Let us reinstate the factors

(2πα′) that we absorbed into the field strengths for notational convenience, and further

approximate5 the action to second order in (2πα′)2 ∼ 1/λ2:

L∼u1/4(2πα′)2
2∑

a,b=1

{

−1

4
f1(F̃

a
µν)

2− 1

2
g11f2(F̃

a
µu)

2− 1

2

g11
(2πα′)2

(

f2−
1

2
g−2
11 (2πα

′)2f3

)

(Ãa
µ)

2(2τ3)2

+

2∑

µ=1

(

−1

2
g−1
11 f3(Ã

a
µ)

2(2τ3)2 − 1

2
(
√

GuuFµν)
3ǫ3abÃ

a
µÃ

b
ν

)

−1

2

g211
(2πα′)2

(

f4 −
1

2
g−2
11 (2πα

′)2f5

)

(Ãa
u)

2(2τ3)2
}

(4.41)

with proportionality factor −1
2g

−1
s R

3
4
+3 and

f1=I(G
1/2
uu ), f2=I(G

−1/2
uu ), f3=I(G

−1/2
uu F

2
12), f4=I(G

−3/2
uu ) and f5=I(G

−3/2
uu F

2
12)

(4.42)

similar I-functions as encountered in section 4.1.1, again arising from the evaluation of the

STr using the prescriptions in appendix A.

Effective 4-dimensional meson fields are introduced via the assumption that the flavour

gauge field can be expanded in complete sets {ψn(u)}n≥1 and {φn(u)}n≥0 as follows [2]

Aµ(x
µ, u) =

∑

n≥1

B(n)
µ (xµ)ψn(u) = ρµ(x

µ)ψ(u) + · · · (4.43)

Au(x
µ, u) =

∑

n≥0

φ(n)µ (xµ)φn(u) = π(xµ)φ0(u) + · · · . (4.44)

The rho meson appears as the lowest mode of the infinite vector meson tower B
(n)
µ , and

the pion as the lowest mode of the infinite (pseudo)scalar meson tower φ
(n)
µ . We will

only retain these lowest-lying mesons in the fluctuation towers, as — with the purpose of

5We assume here that the expansion in 1/λ is justified because λ ≈ 15 is still large for the parameters

that we fixed in section 3.2. We will elaborate on the validity of this expansion in the next section.
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discussing a possible tachyonic vector instability — it makes sense that the least massive

vector meson will likely be the first to condense.

One obtains an effective 4-dimensional action for the mesons by plugging the above

fluctuation expansion for the gauge field into the 5-dimensional DBI-action governing the

dynamics of the flavour gauge field, and subsequently integrating out the u-dependence.

Some terms can already be understood to vanish during the integration over the extra

radial dimension u by looking at the parity of ψ(z) ≡ ψ(u(z)) and φ0(z) ≡ φ0(u(z)),

with u(z) = u30 + u0z
2 a commonly used coordinate transformation to the coordinate

z = −∞· · ·∞ following the brane from one asymptotic endpoint to the other. Both ψ(z)

and φ0(z) are even functions [2], hence coupling terms between rho mesons and pions of the

form ∼ DµÃ
a
u∂uÃ

a
µ ∼ Dµπ

aρaµφ0(u)∂uψ originating from (F̃ a
µu)

2 will give rise to vanishing

integrals
∫∞
−∞ dz{odd function of z} = 0. This means we can discuss the rho meson and

the pion terms separately. For the same reason the terms ∼ Ãi∂uÃj (with i, j = 1, 2)

coming from Lvector−mixing will not survive the u-integration. Note that this simplification

is a consequence of cutting the meson towers down to their lowest states.

4.3.1 Rho meson mass and rho meson condensation

Background dependent functions in the action. Before continuing with the strat-

egy outlined above to extract the 4-dimensional effective action for the rho mesons, we take

a closer look at the relevant functions f1, f2 and f3 as defined in (4.42), as well as the defini-

tions for τ3 and (G
1/2
uu F 12)

3 in terms of up- and down-components of the background fields.

Using (A.2) and (A.7), we have

f1 = I(G1/2
uu )=

1

2(∂τu−∂τd)

(

√

Gu
uu∂τu−

√

Gd
uu∂τd+

guu√
gττ

ln

[

∂τugττ+
√
gττGu

uu

∂τdgττ+
√

gττGd
uu

])

(4.45)

f2 = I(G−1/2
uu ) =

1

(∂τu − ∂τd)
√
gττ

ln

[

∂τugττ +
√
gττGu

uu

∂τdgττ +
√

gττGd
uu

]

(4.46)

f3 = I(G−1/2
uu F

2

12) =
1

2(∂τu − ∂τd)3g
3/2
ττ

{

(F d − Fu)

[√

gττGd
uu(∂τdF d + 3∂τdFu − 4∂τuF d)

+
√

gττGu
uu(∂τuFu + 3∂τuF d − 4∂τdFu)

]

−
(
2(∂τuF d−∂τdFu)

2gττ−(F d−Fu)
2guu

)

[

ln gττguu+ln

(

∂τugττ+
√
gττGu

uu

∂τdgττ−
√

gττGd
uu

)]}

, (4.47)

with ∂τ short for ∂uτ = (3.18), Gl
uu = Guu(∂uτ l) and F u = 2B

3 , F d = −B
3 , as defined

in (3.15). Because of the theta-functions θ(u − u0,l) contained in ∂uτ l, the contribution

of ∂uτu only kicks in at u > u0,u. Therefore these functions will all be discontinuous at

u = u0,u, as can be seen in the illustrative plot in figure 5 forB = 0.8GeV2. The dependence

on B is implicit through the embedding, except for f3 which also depends explicitly on B.

Further, τ3 gives a measure for the distance between up- and down-brane, defined as

τ3(u) =

∫ u

∞
∂uτ

3du =

∫ u

∞

∂uτu − ∂uτd
2

du =

∫ u0,u

∞

∂uτu − ∂uτd
2

du+

∫ u

u0,u

−∂uτd
2

du

such that τ3 fulfills the boundary condition that the flavour branes coincide at u → ∞:

τ ∼ 1 ⇒ τ3(∞) = 0. In figure 6 the resulting discontinuous τ3 is plotted for B = 0.8GeV2,
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Figure 5. (a) f1 (red), f2 (blue) and f3 (yellow) plotted as functions of x, related to u through

u = u0,d cos
−3/2 x mapping the infinite u-range to x = 0 · · ·π/2. (b) f1 = I(G

1/2
uu ) (blue) compared

to (Gd
uu)

1/2 (yellow) and (Gu
uu)

1/2 (red), i.e. the functions which would replace f1 if there were a

Tr instead of a STr in the action, reducing the non-Abelian to a sum of two Abelian actions. As

required, f1 → G
1/2
uu in the limit of coinciding branes at u→ ∞. (c) f2 = I(G

−1/2
uu ) (blue) compared

to (Gd
uu)

−1/2 (yellow) and (Gu
uu)

−1/2 (red). All plots for B = 0.8GeV2.

0.5 1.0 1.5
x

-0.20

-0.15

-0.10

-0.05

Τ
3HxL HGeV-1L

0.5 1.0 1.5
x

0.005

0.010

0.015

I2 Τ3 HxLM2

H2 ΠΑ 'L2
HGeV2L

Figure 6. The measure τ3(x) for the splitting of the branes and the resulting estimated contribution

to the mass term for the flavour gauge field and indirectly the rho meson. The range x = 0 · · ·π/2
maps to u = u0,d · · ·∞ and we chose B = 0.8GeV2.

along with (2τ3)2/(2πα′)2 which contributes to the ‘u-dependent mass’ of the 5-dimensional

gauge field. The contribution is small — although it is (2πα′)−2-enhanced — since the

splitting itself is a small effect. The last relevant background function in the action (4.41)

for the discussion of the rho mesons is

(G1/2
uu F 12)

3 =
√

Gu
uuF u −

√

Gd
uuF d. (4.48)

Eigenvalue problem. Upon substitution of the gauge field expansions (4.43) and (4.44)

into (4.41), the 5-dimensional DBI-Lagrangian to second order in the rho meson fluctuations

(and second order in (2πα′)) reads

L ∼ u1/4(2πα′)2
2∑

a,b=1

{

−1

4
f1(Fa

µν)
2ψ2 − 1

2
g11f2(ρ

a
µ)

2(∂uψ)
2 − 1

2

g11
(2πα′)2

f̃2(ρ
a
µ)

2ψ2(2τ3)2 (4.49)

+

2∑

µ=1

(

−1

2
g−1
11 f3(ρ

a
µ)

2ψ2(2τ3)2 − 1

2
(
√

GuuFµν)
3ǫ3abρ

a
µρ

b
νψ

2

)}

+ pions,

with Fa
µν = Dµρ

a
ν −Dνρ

a
µ and f̃2 = f2 − 1

2g
−2
11 (2πα

′)2f3.
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Demanding that the first line of this Lagrangian reduces to the standard 4-dimensional

form

∑

a=1,2

(

−1

4
(Fa

µν)
2 − 1

2
m2

ρ(ρ
a
µ)

2

)

(4.50)

after integrating out the u-dependences, leads to a normalization condition

∫ ∞

u0,d

du u1/4f1ψ
2 = 1 (4.51)

and a mass term condition
∫ ∞

u0,d

du

{

u1/4g11f2(∂uψ)
2 + u1/4

g11
(2πα′)2

f̃2(2τ
3)2ψ2

}

= m2
ρ (4.52)

on the ψ(u) functions,6 which combine through partial integration to an eigenvalue

equation for ψ(u):

u−1/4f−1
1 ∂u

(

u1/4g11f2∂uψ
)

− g11
(2πα′)2

f−1
1 f̃2(2τ

3)2ψ = −Λψ, (4.53)

with the eigenvalue Λ = m2
ρ the sought for rho meson mass squared. We can separate the

Higgs contribution to m2
ρ by defining

m̃2
ρ =

∫ ∞

u0,d

du u1/4g11f2(∂uψ)
2 and m2

ρ,Higgs =

∫ ∞

u0,d

du u1/4
g11

(2πα′)2
f̃2(2τ

3)2ψ2

(4.54)

such that

m2
ρ = m̃2

ρ +m2
ρ,Higgs. (4.55)

Let us also mention that from (4.52) one can see that m2
ρ > 0.

To solve the eigenvalue equation (4.53) numerically on a compact interval, we change

to the coordinate x = 0 · · ·xup · · · π2 related to u = u0,d · · ·u0,u · · ·∞ by

u3 = u30,d cos
−2 x. (4.56)

Rewritten as a function of x, the eigenvalue equation is invariant under x → −x, so we

can split up the eigenfunction set in even/odd ψn(x)’s, which correspond to odd/even

parity mesons:

ψn(0) = 0 or ∂xψn(0) = 0. (4.57)

Asymptotically, the eigenvalue equation (4.53) reduces to ∂u
(
u5/2∂uψ

)
= 0, with the

asymptotic solution ψ(∞) = cu
−3/2

−3/2 + d only normalizable through (4.51) if d = 0, i.e. if

ψ(u→ ∞) = 0 or ψ(x→ ±π/2) = 0. (4.58)

6We absorbed the total prefactor

√

V4T8g
−1
s R

3

4
+3(2πα′)2 into ψ such that ψ has a total mass dimension

of 5/8 instead of 2 (without the prefactor).
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The eigenvalue problem (4.53) for the (odd parity) rho meson with the appropriate

boundary condition (4.58) in the x-coordinate is thus of the form

· · · ∂2xψ + · · · ∂xψ + · · ·ψ = −Λψ with ψ(±π/2) = 0 , ∂xψ(0) = 0. (4.59)

To solve it we employ a shooting method, which consists of temporarily replacing (4.59)

with the well-defined initial value problem

· · · ∂2xψ + · · · ∂xψ + · · ·ψ = −Λψ with ψ(0) = 1 , ∂xψ(0) = 0 (4.60)

where Λ is treated as a ‘shooting’ parameter. We used the scaling freedom ψ(x) → hψ(x)

to impose that ψ(0) = 1 (the value of h will be fixed by the normalization condition in the

end). For each value of Λ, (4.60) can be solved numerically for ψΛ(x). Next, solving the

equation ψΛ(π/2) = 0 finally determines the eigenvalue Λ = m2
ρ.

For completeness we add a few comments about the numerical method we used to

solve the eigenvalue problem at hand (4.59), which in detail reads

9

4
R−3/2u

−1/2
0,d

cos11/6 x

sinx
f−1
1 ∂x

(

f2
cos1/2 x

sinx
∂xψ

)

−R−3/2
u
3/2
0,d

(2πα′)2
(cos−1 x)f̃2f

−1
1 (2τ3)2ψ = −m2

ρψ,

(4.61)

with ψ(±π/2) = 0 and ∂xψ(0) = 0. Near the origin x→ 0 the equation takes the form

m2
ρψ + ∂2xψ − lnx ∂2xψ − 1

x
∂xψ = 0, (4.62)

so we have to provide Mathematica with an ansatz for ψ(x) at small x to prevent the

equation from blowing up there. Demanding that ∂xψ ∼ x to avoid the last term in (4.62)

from diverging, would still give lnx ∂2xψ → −∞. Instead we demand that ∂2xψ ∼ 1
lnx

or ψ(x → 0) = 1 + x2
∑n

i=1
ai

lni x
(in practice we have set n = 13). With this ansatz

for ψ ⇒ ∂xψ ∼ LogIntegral(x) + c, the term 1
x∂xψ will only be finite if the integration

constant c = ∂xψ(0) = 0.7 Near x = xup, or y → 0 in the useful coordinate y defined

through u3 = u30,u cos
−2 y, the differential equation’s form

m2
ρψ + ∂2yψ − ln y ∂2yψ − 1

y
∂yψ = 0, (4.63)

again needs to be fed with an ansatz for ψ that keeps the equation finite,

i.e. ψ(y → 0) = ψ(x = xup) + y2
∑n

i=1
ai

lni y
with ∂yψ(0) = 0. This means we can

demand continuity of ψ at x = xup but not of its derivative.8 An example result of ψ(x)

and its derivative is shown in figure 7.

7This is consistent with vector mesons, but not with the initial condition on axial mesons (which we

have not considered). We have not looked into it further to see if there is a way around this, in order to

still be able to describe axial mesons in the presence of a magnetic field in this setting.
8It is known that the Schrödinger wave function can display kinks (thus jumps in its derivative),

depending on the potential (singularities), see e.g. [67]. This corresponds to the singular behaviour of some

of the coefficient functions for y → 0 in (4.63).
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Figure 7. Plots of the rho meson eigenfunction ψ(x) and its derivative ∂xψ(x), discontinuous at

x = xup ≈ 0.54, for B = 0.9GeV2, obtained numerically with a shooting method.

Effective 4-dimensional EOM and result for total eigenvalue. The effective 4-

dimensional action becomes

S4D =

∫

d4x
2∑

a,b=1

{

−1

4
(Fa

µν)
2 − 1

2
m2

ρ(B)(ρaµ)
2 +

2∑

µ=1

(

−1

2
m2

+(B)(ρaµ)
2 − 1

2
ǫ3abρ

a
µρ

b
ν k(B)F

3

µν

)}

(4.64)

with the normalized ψ, as determined in the previous paragraph, satisfying the normal-

ization and mass conditions (4.51) and (4.52), and the newly defined m+ and k to be

calculated from ∫ ∞

u0,d

du u1/4g−1
11 f3(2τ

3)2ψ2 = m2
+ (4.65)

and ∫ ∞

u0,d

du u1/4(
√

GuuF 12)
3ψ2 = k F

3
12 (4.66)

with F
3
12 = B. Here m+ is an extra contribution to the mass of the transverse (w.r.t. the

magnetic field ~B = B~e3) components of the charged rho meson, ρa=1,2
µ=1,2, as a consequence

of B breaking Lorentz invariance. The parameter k describes a non-minimal coupling

of the charged rho meson to the magnetic field, related to the magnetic moment µ via

µ = (1 + k)e/(2m) so to the gyromagnetic ratio g via g = 1 + k.

The standard 4-dimensional action used to describe the coupling of charged rho mesons

to an external magnetic field is the Proca action [68] (which is equivalent to the DSGS-

action [32] for self-consistent rho meson quantum electrodynamics to second order in the

fields). The Proca action is equal to (4.64) with m+ = 0 and mρ and k(= 1) independent

of B: there is only explicit dependence of the action on B, which is to be traced back to the

treatment of the rho mesons as point-like structureless particles. Instead, in our approach,

the effect of B on the constituent quarks is taken into account via the effect of B on the

embedding of the flavour probe branes,9 leading to an implicit dependence on B of both

the mass m2
ρ(B) and the magnetic coupling k(B). The effect of B on the embedding is

two-fold (see section 3.4 and in particular figure 2): the branes move upwards in the holo-

graphic direction, corresponding to chiral magnetic catalysis, and the up- and down-brane

get separated, corresponding to a stronger chiral magnetic catalysis for the up-quark than

for the down-quark. Both effects translate into a mass generating effect for the rho meson,

9In the antipodal Sakai-Sugimoto model where the embedding is B-independent, one recovers exactly

the Proca action [1].
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Figure 8. Numerical results for m2
ρ(B), m2

+(B) and k(B) in the (2πα′)2F 2-approximation of the

DBI-action.
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Figure 9. The Higgs contribution m2
ρ,Higgs(B) to the rho meson mass squared m2

ρ (B), as defined

in (4.54), in the (2πα′)2F 2-approximation of the DBI-action.

m2
ρ(B) ր, as can be seen in figure 8. The chiral magnetic catalysis causes the rho meson to

get heavier as its constituents do. The split between the branes adds to the mass of the rho

meson via a holographic Higgs mechanism: as the branes separate, the flavour gauge field

strings between up and down branes (i.e. representing charged quark-antiquark combina-

tions ud, ud) get stretched. Because of their string tension this results in an extra Higgs

mass term in the action for Ãa=1,2
µ — and thus for ρa=1,2

µ — of the form (Aa
µ)

2(τ3)2, with

τ3 ∼ τu − τd, originating from (Dµτ)
2
 ([Ãµ, τ ])

2 in the start action. Where in the ab-

sence of splitted branes, τ3 = 0, the 4-dimensional mass mρ as defined in going from (4.49)

to (4.50) is purely effective, i.e. only present after integrating out the fifth dimension u,

the Higgs contributions to the mass stem from the stringy mass of the 5-dimensional gauge

field itself. A direct interpretation of the stringy mass contribution in effective QCD-terms

we cannot offer. Since the splitting of the branes is small though, the induced mass con-

tribution is almost negligible, see figure 9. Further, as can be seen in figure 8, m+(B) ց
as f3 in (4.65) is negative, so the mass of the transversal components of the charged rho

mesons will already be slightly smaller than that of the longitudinal ones, and k(B) ր is

approximately equal to one, but not exactly, corresponding to a gyromagnetic ratio g ≈ 2.

The 4-dimensional EOMs for the charged rho mesons ρa=1,2
µ are given by

DµFa
µν − ǫa3b k(B) F

3
µνρ

b
µ −M2(B)ρaν = 0, (4.67)

M2(B) = m2
ρ(B) + (δν1 + δν2)m

2
+(B) (4.68)

with Dµ = ∂µ + [Aµ, ·] and Fa
µν = Dµρ

a
ν −Dνρ

a
µ. They combine into the EOM

Dµ(Dµρν −Dνρµ)− i k(B) F
3
µνρµ −M2(B)ρν = 0 (4.69)

with Dµ = ∂µ + iA
3
µ for the charged combination ρµ = (ρ1µ + iρ2µ)/

√
2, and the complex

conjugate of this equation for the other charged combination ρ∗µ = (ρ1µ − iρ2µ)/
√
2.
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Solving (4.69) with ρν → ei(~p·~x−Et)ρν for the eigenvalues of the energy, one finds

‘modified Landau levels’ that we will discuss in more detail in the next section, where

they will show up as a special case of the most general form of modified Landau levels

that we encounter solving the 4-dimensional EOMs that come from the use of the full

DBI-action. Only in the case that k = 1, m+ = 0 and mρ(B) = mρ(0) one retrieves the

standard Landau levels for a free relativistic spin-s particle moving in the background of

a constant magnetic field ~B = B~e3 (assuming B > 0):

E2 = m2
ρ + p23 + (2n− 2s3 + 1)B (4.70)

with n the Landau level number and s3 the eigenvalue of the spin operator

S3 =
1

2

(

0 σ2 − iσ1
σ2 + iσ1 0

)

(4.71)

giving the projection of the spin of the particle onto the direction of the magnetic field.

While the modifications due to k 6= 1, m+(B) 6= 0 and mρ(B) are a bit subtle for

higher levels, the energy of s3 = 1, p3 = 0 particles in the lowest Landau level n = 0 is

given by a straightforward generalization

E2 =M2(B)−B k(B) (4.72)

of E2 = m2
ρ − B. We conclude that the combinations of charged rho mesons that have

their spin aligned with the magnetic field, s3 = 1, i.e.

ρ = ρ1 + iρ2 and ρ∗ = ρ∗1 − iρ∗2, (4.73)

will have an effective mass squared

m2
ρ,eff =M2(B)−B k(B) (4.74)

going through zero at a critical magnetic field

Bc ≈ 0.78 GeV2, (4.75)

which marks the onset of rho meson condensation. Our result for m2
ρ,eff is shown in

figure 10.

The total action includes, next to the DBI-part, a Chern-Simons term. In general,

contributions from the Chern-Simons action are suppressed in the large λ expansion, but

in the presence of large background fields Chern-Simons effects can become important,

similar to the higher order terms in the (2πα′ ∼ 1
λ)-expansion of the DBI-action (see

comments in the upcoming section 4.4.1). The intrinsic-parity-odd nature of the Chern-

Simons action ensures that it will not contribute ρ2-terms to the effective 4-dimensional

action to second order in the fluctuations, but it will describe ρπB coupling terms between

rho mesons and pions. However, as discussed in more detail in [1], the antisymmetrization

over spacetime indices in the Chern-Simons action

SCS ∼
∫

Tr
(

ǫmnpqrAmFnpFqr +O(Ã3)
)

(4.76)
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Figure 10. The effective rho meson mass squared m2
ρ,eff (B) in the (2πα′)2F 2-approximation of

the DBI-action.

will make sure that the magnetic field B = F
3
12 only induces couplings between longitudinal

fluctuations (µ = 0, 3), hence not affecting the dynamics of transversal rho mesons (4.73)

and their condensation.

4.3.2 Pion mass

We briefly discuss the pion part of the DBI-Lagrangian (4.41), which upon substitution

of the gauge field expansion (4.44) and further approximation to second order in the pion

fields reads

L ∼ u1/4(2πα′)2
2∑

a,b=1

{

−1

2
g11f2(Dµπ

a)2φ20 −
1

2

g211
(2πα′)2

f̃4(2τ
3)2(πa)2φ20

}

(4.77)

with f̃4 = f4 − 1
2g

−2
11 (2πα

′)2f5. Ignoring in this section the 1/λ-suppressed ρπB-

contributions from the Chern-Simons action, the effective 4-dimensional action for the

pions becomes

S4D =

∫

d4x
2∑

a,b=1

{

−1

2
(Dµπ

a)2 − 1

2
m2

π(B)(πa)2
}

(4.78)

with φ0 satisfying the normalization condition
∫ ∞

u0,d

du u1/4g11f2φ
2
0 = 1 (4.79)

and the pions no longer massless:
∫ ∞

u0,d

du u1/4
g211

(2πα′)2
f̃4(2τ

3)2φ20 = m2
π. (4.80)

We can understand the emergence of this mass again as a consequence of the holographic

Higgs mechanism. The magnetic field breaks chiral symmetry explicitly (albeit only

slightly) by pulling the up- and down-brane apart. The previously massless pions, serving

as Goldstone bosons associated with the spontaneous breaking of chiral symmetry, hence

get a small mass, related to the distance τ3 ∼ τu − τd between the branes. Solving the

effective 4-dimensional EOM for the charged pions with π → ei(~p·~x−Et)π for the eigenvalues

of the energy, one finds ‘almost Landau levels’ for a spinless particle

E2 = m2
π(B) + p23 + (2n+ 1)B (4.81)
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Figure 11. Pion eigenfunction φ0(x) (with u = u0,d cos
−3/2 x) for B = 1.1GeV2. Numerical result

for m2
π(B) and the effective pion mass squared m2

π,eff (B) in the (2πα′)2F 2-approximation of the

DBI-action.

or an effective mass squared in the lowest Landau level

m2
π,eff = m2

π(B) +B. (4.82)

The pion thus gets a mass in the presence of a magnetic field, although we are working

in a model in the chiral limit (zero bare quark masses) and with no chiral condensate

(at least not in the setting we used, without incorporating a tachyon field as was done

in [43]). This violates the GMOR-relation relating the bare quark masses times chiral

condensate to the mass of the pion. It was however already discussed in e.g. [47, 69] that

the GMOR-relation is no longer valid for charged pions in the presence of a magnetic field.

To calculate the mass mπ in (4.80), we determine the form of the eigenfunction φ0(u)

analogously as in [2]. φ0 has to be orthogonal to all other φn≥1 (the higher eigenfunctions

that we left out in the expansion (4.44)). The eigenfunctions φn≥1 obey the same normaliza-

tion condition (4.79) as φ0, which upon comparison with the mass condition (4.54) for ψn≥1,

∫ ∞

u0,d

du u1/4g11f2φ
2
n≥1 = 1 and

∫ ∞

u0,d

du u1/4g11f2(∂uψn≥1)
2 = m̃2

ρ, (4.83)

leads to

φn≥1 =
∂uψn≥1
√

m̃2
ρ

. (4.84)

Then, orthogonality of φ0 and φn≥1 ∼ ∂uψn≥1 is ensured by proposing

φ0 ∼ u−1/4g−1
11 f

−1
2 (4.85)

(with normalization constant determined by the normalization condition (4.79)):

∫ ∞

u0,d

du φ0(u
1/4g11f2φn≥1) ∼

∫

du ∂uψn≥1 = 0 (4.86)

by virtue of the vanishing of ψn≥1 at the boundary u→ ∞. With φ0 given in (4.85) we can

determine the Higgs contribution to the mass mπ. In figure 11 we plot the eigenfunction

φ0(u) (which is discontinuous due to the discontinuous nature of f2), the mass mπ and

the total effective 4-dimensional mass mπ,eff .
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We end this section with a comment on the validity of the use of the non-Abelian

DBI-action for non-coincident branes.10

In the context of heavy-light mesons, which we encounter here as magnetically in-

duced through the splitting of the flavour branes, one often studies the separated branes

system by the use of two (Abelian) DBI-actions plus a Nambu-Goto action for the clas-

sical, i.e. macroscopic, heavy-light meson string (e.g. [70]). In [65] however, one uses the

non-Abelian DBI action for the description of heavy-light mesons, as we also did in this

paper. They do remark that as soon as the distance between the separated branes is larger

than the fundamental string length ℓs, the non-Abelian DBI-description is actually ex-

pected to break down. So let us show here that in our case the separation between up- and

down-brane and hence the length of the charged rho meson strings is not larger than ℓs.

The total length of a string stretching in the u- and τ -direction is given by

Ls =

∫

ds =

∫
√

gττdτ2 + guudu2.

Consider for example a string at τ = 0 stretching from u0,d(B) to u0,u(B). It has a length

Ls =

∫

ds =

∫ u0,u(B)

u0,d(B)

√
guudu

=

∫ u0,u(B)

u0,d(B)

(
R

u

)3/4

f(u)−1/2du

= − R3/4

11u20,du
2
0,u

√

u30,d − u3K

√

u30,u − u3K

4(u0,du0,u)
3/4

×
{

11u30,du
5/4
0,u

√

u30,u−u3K−6u
5/4
0,uu

3
K

√

u30,u−u3K+u
5/4
0,d

√

u30,d−u3K
(
−11u30,u+6u3K

)

+6u3K

(

u
5/4
0,u

√

u30,u−u3K 2F1

[

−11

12
, 1,

7

12
,
u30,d
u3K

]

−u5/40,d

√

u30,d−u3K 2F1

[

−11

12
, 1,

7

12
,
u30,u
u3K

])}

,

with the B-dependence of u0,u and u0,d implicit in the last line. Similarly, the same string

stretching between u0 and uK , corresponding to a constituent quark (i.e. this one is a

macroscopic string, cfr. the use of the Nambu-Goto action to obtain the expression for the

constituent quark mass (3.7)) has a length

Lq =

∫

ds =

∫ u0

uK

√
guudu

=

∫ u0

uK

(
R

u

)3/4

f(u)−1/2du

= R3/4

(

−4
√
πu

1/4
K Γ

[
11
12

]

Γ
[
5
12

] + 4u
1/4
0 2F1

[

− 1

12
,
1

2
,
11

12
,
u3K
u30

])

.

With our fixed holographic parameters, we have a numerical value for ℓs to compare these

lengths to:

ℓs =
√
α′ ≈ 0.76 GeV−1.

10We would like to thank K. Jensen for a private discussion about this.
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Figure 12. The length Ls(B) of a string at τ = 0 stretching between u0,d(B) and u0,u(B), and

the length Lq(B) of a down-quark string stretching between uK and u0,d(B).

From the plots in figure 12 of Ls and Lq as functions of B up to 2GeV2, we read of

estimations of the maximal Ls ≈ 0.25GeV−1 and minimal Lq ≈ 1.25GeV−1, from which

we can conclude that

Ls < ℓs and Lq > ℓs,

consistent with using the classical Nambu-Goto action for the constituent quark string,

but using the non-Abelian DBI-description for the charged rho meson string.

4.4 Vector sector for full DBI-action

4.4.1 Comments on the validity of the (2πα′)-expansion

In the previous section 4.3 and the previous paper [1] we approximated the DBI-action

to second order in (2πα′)F . The justification that we used for this expansion is roughly

that α′ ∼ 1/λ with λ ≈ 15 ‘large’ in our fixed units. The reader might worry that there

is some ambiguity in the proportionality factor α′ ∼ 1/λ since the parameter X = λℓ2s
can be chosen freely, as we did in (3.4). The ambiguity should however disappear from all

physical quantities and indeed will no longer be present in the full expansion parameter.

Let us take a closer look.

Expanding det(gD8
mn+(2πα′)iFmn) = det gD8

mk×det(δnk+(gD8
kr )

−1(2πα′)i(F rn+δ1Frn+

δ2Frn)) in the action (3.10), the expansion parameter (gD8
11 )−1(2πα′)iF 12 is supposed to

be small compared to 1, with (3.15):

( u

R

)−3/2
(2πα′)

∣
∣
∣
∣
∣

(
2
3eB 0

0 −1
3eB

)∣
∣
∣
∣
∣
≪ 1.

The same expansion parameter can be read off from the form of the matrix A as defined

in (3.19). The most strict condition would then be

(
u0,d(B = 0)

R

)−3/2

(2πα′)
2

3
eB ≪ 1,

or, in our fixed units,

eB ≪ 3

2

(
u0,d(B = 0)

R

)3/2

(2πα′)−1 ≡ 0.45 GeV2, (4.87)
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with the appearing combination independent of our choice of X since u0 ∼ X, R3 ∼ X and

(2πα′) ∼ X. The instability we found in the F 2-approximation sets in at Bc ≈ 0.8GeV2

(see (4.75)), where the used approximation is thus not necessarily valid anymore. On the

other hand, the above is the most strict condition we can impose, it is not so clear what

the impact of the u-dependence is on this argument. We will therefore use the full STr-

action and compare with the F 2-approximation results to provide a conclusive answer to

the question of the validity of the (2πα′)-expansion in our set-up. It will turn out that using

the full STr-action the instability is still present and the value of Bc is only slightly higher.

In [71] it is argued that α′-corrections can cause magnetically induced tachyonic

instabilities of W -boson strings, stretching between separated D3-branes, to disappear

when the inter-brane distance becomes larger than 2πℓs. The Landau level spectrum for

the W -boson is said to receive large α′-corrections in general [71, 72]. The paper [73] also

gives an example where consideration of the full non-Abelian DBI-action in all orders of

α′ — be it using an adapted STr-prescription — can change the physics, that is, the order

of the there discussed phase transitions changes.

4.4.2 Deriving the effective 4-dimensional equations of motion

Reconsider the vector part of the DBI-Lagrangian in unitary gauge (4.30),

L = LHiggs + Lvector = STr e−φ
√
− det a|Ã2

=
2∑

a=1

{

γ(u)
1

2

(

[Ãu, τ ]
a
)2

+ α(u)
1

2

(

[Ãµ, τ ]
a
)2

+ β(u)
2∑

µ=1

1

2

(

[Ãµ, τ ]
a
)2
}

+ STr x

{

−F 12g
−2
11 A

−1[Ã1, Ã2]−
1

4
g−2
11 F̃

2
µν A

−2|µ,ν=1,2 −
1

2
g−1
11 G

−1
uu F̃

2
µu A

−1|µ=1,2

}

(4.88)

where the notation |µ=1,2 as introduced in (4.17) can be written out as

F̃ 2
µνA

−2|µ,ν=1,2 = 2A−1(F̃ 2
i3 + F̃ 2

i0) + 2F̃ 2
03 + 2A−2F̃ 2

12 (i = 1, 2)

= F̃ 2
µν + 2

1−A

A
(F̃ 2

i3 + F̃ 2
i0) + 2

1−A2

A2
F̃ 2
12

and F̃ 2
µuA

−1|µ,ν=1,2 = F̃ 2
µu + F̃ 2

iu

1−A

A
(i = 1, 2). (4.89)

Instead of approximating this action further to (2πα′)2F 2, we now keep all factors of

A = 1− (2πα′)2F
2
12

R3

u3 . Upon evaluating the STr we then obtain

L ∼ u1/4(2πα′)2
2
∑

a,b=1

{

−(
√
GuuF 12A

−1/2)3ǫ3abÃ
a
1Ã

b
2 −

1

4
f1(F̃

a
µν)

2 − 1

2

2
∑

i=1

f1A((F̃
a
i3)

2 + (F̃ a
0i)

2) (4.90)

−1

2
f1B(F̃

a
12)

2− 1

2
g11f2(F̃

a
µu)

2− 1

2
g11

2
∑

i=1

f2A(F̃
a
iu)

2− 1

2
g11

1

T 2
f2(Ã

a
µ)

2(2τ3)2− 1

2
g11

1

T 2
f2A

2
∑

i=1

(Ãa
i )

2(2τ3)2
}

,

where we defined the new I-functions

f1 = I(G1/2
uu A

1/2), f1A = I

(
√

Guu
1−A√
A

)

, f1B = I

(
√

Guu

√
A
1−A2

A2

)

(4.91)

f2 = I(G−1/2
uu A1/2), f2A = I

(

G−1/2
uu

1−A√
A

)

, (4.92)

with f1 and f2 approaching their previous definition in (4.42) and f1A, f1B and f2A → 0

for A→ 1 in the (2πα′)2-approximation, as they should.
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Figure 13. (a) f1 (green) and f2 (yellow) compared to their F 2-approximated counterparts in red

and blue resp. (b) f1A (blue), f1B (red) and f2A (yellow). For B = 0.8GeV2 and u = u0,d cos
−3/2 x.

Extracting the effective 4-dimensional action from (4.90) is completely analogous to

the procedure described in section 4.3, so we will give a somewhat more schematic and

short explanation here and refer to section 4.3 for more details.

After plugging in the gauge field expansions (4.43)–(4.44) into the action in the ap-

proximation of only retaining the lowest modes of the meson towers, one can already notice

the vanishing of
∫
duLvector−mixing = 0 and of mixing terms between pions and rho mesons.

We will focus on the instability in the rho meson sector.

Background dependent functions in the action. The generalized I-functions

in (4.92) have to be calculated numerically. In figure 13 we compare them to their ap-

proximated counterparts for some fixed values of the magnetic field. The measure for the

distance between up- and down-brane τ3(u) is still as defined in (4.48), and finally

(G1/2
uu F 12A

−1/2)3 =
√

Gu
uuF uA

−1/2
u −

√

Gd
uuF dA

−1/2
d (4.93)

with Gl
uu = Guu(∂uτ

l) (with flavour index l = u, d), F u = 2B
3 and F d = −B

3 (see (3.15)),

and Al defined in (3.19).

Eigenvalue problem. The rho meson part of the DBI-Lagrangian to second order in

fluctuations (4.90) after substituting (4.43) reads

L ∼ u1/4(2πα′)2
2∑

a,b=1

{

−1

4
f1(Fa

µν)
2ψ2 − 1

2
g11f2(ρ

a
µ)

2(∂uψ)
2 − 1

2

g11
(2πα′)2

f2(ρ
a
µ)

2ψ2(2τ3)2

− 1

2
f1B(F

a
12)

2 +
2∑

µ,ν=1

(

−1

2

g11
(2πα′)2

f2A(ρ
a
µ)

2ψ2(2τ3)2 − 1

2
(
√

GuuFµνA
−1/2)3ǫ3abρ

a
µρ

b
νψ

2

−1

2
f1A((Fa

µ3)
2 + (Fa

µ0)
2)ψ2 − 1

2
g11f2A(ρ

a
µ)

2(∂uψ)
2

)}

, (4.94)
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which results in the following effective 4-dimensional action

S4D =

∫

d4x
2∑

a,b=1

{

−1

4
(Fa

µν)
2 − 1

2
m2

ρ(B)(ρaµ)
2 − 1

2
b(B)(Fa

12)
2

+
2∑

µ,ν=1

(

−1

2
a(B)((Fa

µ3)
2+(Fa

µ0)
2)− 1

2
m2

+(B)(ρaµ)
2− 1

2
ǫ3abρ

a
µρ

b
ν k(B)F

3
µν

)





. (4.95)

The function ψ (rescaled to absorb all constant prefactors in the action) satisfies the nor-

malization condition ∫ ∞

u0,d

du u1/4f1ψ
2 = 1 (4.96)

and ∫ ∞

u0,d

du

{

u1/4g11f2∂uψ
2 + u1/4

g11
(2πα′)2

f2(2τ
3)2ψ2

}

= m2
ρ, (4.97)

combining into the eigenvalue equation

u−1/4f−1
1 ∂u

(

u1/4g11f2∂uψ
)

− g11
(2πα′)2

f−1
1 f2(2τ

3)2ψ = −m2
ρψ (4.98)

to be solved for its B-dependent eigenvalue m2
ρ and eigenfunction ψ. The B-dependent

numbers m+, k, a and b can subsequently be calculated with the obtained eigenfunctions

from
∫ ∞

u0,d

du

{

u1/4g11f2A∂uψ
2 + u1/4

g11
(2πα′)2

f2A(2τ
3)2ψ2

}

= m2
+, (4.99)

∫ ∞

u0,d

du u1/4(
√

GuuF 12A
−1/2)3ψ2 = k F

3
12 (4.100)

and ∫ ∞

u0,d

du u1/4f1Aψ
2 = a,

∫ ∞

u0,d

du u1/4f1Bψ
2 = b. (4.101)

The numerical results for m2
ρ, m

2
+, k, a and b as functions of B, after having solved

the eigenvalue problem with the techniques described in the second paragraph of 4.3.1, are

shown in figure 14–15. The discussion of the behaviour of m2
ρ(B) in the third paragraph

of 4.3.1 is still applicable. The parameter k specifying the strength of the coupling to the

magnetic field is again approximately equal to one, but now decreasing as a function of B

as opposed to increasing in the (2πα′)2-approximation.

4.4.3 Solving the 4-dimensional equations of motion

The 4-dimensional EOMs for ρaν derived from the effective action (4.95) are given by

DµFa
µν−ǫa3bkF

3

µνρ
b
µ−m2

ρρ
a
ν−δνi(m2

+ρ
a
i +a(D3Fa

i3−D0Fa
i0)+bDjFa

ij)+δν3aDiFa
i3−δν0aDiFa

i0 = 0

(4.102)

with Dµ = ∂µ + [Aµ, ·] and Fa
µν = Dµρ

a
ν −Dνρ

a
µ, and where from now on we will not only

keep assuming the Einstein convention that double µ, ν indices are Minkowski sums over
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Figure 14. Numerical results for m2
ρ(B), m2

+(B) and k(B) from the full DBI-action.
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Figure 15. Numerical results for a(B) and b(B).

µ, ν = 0 . . . 3 but also that double i, j indices are sums over spatial indices i, j = 1, 2. For

notational clarity we will not explicitly write out the B-dependence of the parameters mρ,

m+, k, a and b in this section, but assume it understood.

The equations (a = 1) ± i(a = 2) combine into the EOM for the charged rho meson

ρµ = (ρ1µ + iρ2µ)/
√
2,

DµFµν− ikF
3

µνρµ−m2
ρρν−δνi

[
bDjFij + a (D3Fi3 −D0Fi0) +m2

+ρi
]
+δν3aDjFj3−δν0aDjFj0 = 0,

(4.103)

with Dµ = ∂µ + iA
3
µ and Fµν = Dµρν −Dνρµ , and the complex conjugate of this equation

for the other charged combination ρ∗µ = (ρ1µ− iρ2µ)/
√
2. Using [Dµ,Dν ] = iF

3
µν , (4.103) can

be rewritten to the following EOMs for resp. ν = i and ν = 3:
ν = i

(1+a)D2
µρν−i(1+b+k)F

3

µνρµ−(1+a)DνDµρµ−(m2
ρ+m

2
+)ρν+(b−a)(D2

jρν−DνDjρj) = 0,

(4.104)

ν = 3

D2
µρν −DνDµρµ −m2

ρρν + a(D2
jρν −DνDjρj) = 0. (4.105)

These equations have to be complemented with a subsidiary condition, obtained by acting

with Dν on the EOM (4.103) and again using [Dµ,Dν ] = iF
3
µν . We find the generalized

subsidiary condition (where by generalized we mean w.r.t. the Proca subsidiary condition

Dνρν = 0)

Dνρν =
i

m2
ρ

(1 + b− k)F
3
µνDνρµ − m2

+

m2
ρ

Diρi, (4.106)

still relating Dνρν (ν = 0 . . . 3) to transversal components ρi (i = 1, 2) only, such that

the EOMs for the transverse rho mesons can be rewritten as independent from any

longitudinal components. Before doing so, let us remark that the above system of EOMs

combined with the subsidiary condition reduces to its standard Proca form for a, b,
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m+ → 0, k → 1 and no B-dependence in mρ (or any of the previous parameters). The

non-zero and B-dependent a and b are present due to taking into account all powers in the

field strength in the non-linear non-Abelian DBI-action, which is also partly the reason

for the B-dependence of mρ, k and m+, in addition to their implicit description of the

response of the quark constituents to the magnetic field (cfr. the chiral magnetic catalysis

and holographic Higgs mechanism for heavy-light mesons discussed earlier).

To determine the solutions of the EOMs we follow and generalize the procedure used

in [74]. In order to make comparisons with the original expressions in [74] more clear, we

temporarily change notation to

φµ = ρ∗µ = (ρ1µ − iρ2µ)/
√
2 (4.107)

and

iπµ = D∗
µ = ∂µ − iA

3
µ (4.108)

such that πµ becomes pµ − A
3
µ when substituting a plane wave ansatz φµ → ei~p·~x−iEtφµ

into (4.104)–(4.105), and in particular we can write π2ν = −E2 + ~π2. In this new notation

the EOMs (4.104)–(4.105) combined with (4.106) can be recast in the form

E2φ± =

(

m2
ρ +m2

+

1 + a
+ B~π2

)

φ±+
B

2m2
(1+b−k)π±(π+φ−−π−φ+)±BKφ±−

1

2
Mπ±(π+φ−+π−φ+)

(4.109)

with

π± = π1 ± iπ2, φ± = φ1 ± iφ2, (4.110)

and

E2φ3 =
(
m2

ρ + (1 + a)~π2
)
φ3+

B

2m2
(1+ b−k)π3(π+φ−−π−φ+)−

1

2

(

a− m2
+

m2
ρ

)

π3(π+φ−+π−φ+),

(4.111)

where we defined

B =
1 + b

1 + a
, K =

1 + b+ k

1 + a
and M =

b− a

1 + a
− m2

+

m2
ρ

. (4.112)

The main trick for solving the system is to notice that the operators π± obey the algebra of

a simple harmonic oscillator, if one defines annihilation and creation operators â and â† as

â = (2B)−1/2π+ and â† = (2B)−1/2π−, (4.113)

which obey

[â, â†] = 1 and [â, π3] = [â†, π3] = 0. (4.114)

The ‘number operator’ N̂ is then defined as

N̂ = â†â, (4.115)
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allowing us to rewrite the system (4.109)–(4.111), using ~π2 = p23 + B(2N̂ + 1) and

π+π− = 2B(1 + N̂), to







(ω2 − X̂+)φ+ = Aξâ
2φ−

(ω2 − X̂−)φ− = −Bξ(â
†)2φ+

[

ω2
3−(1+a)(2N̂+1)ξ

]

φ3=ξ
2(1+b−k)a3(âφ−−â†φ+)−

(

a−m2
+

m2
ρ

)

ξa3(âφ−+â†φ+),

(4.116)

with ξ = B
m2

ρ
and

ω2 =
E2 − (m2

ρ +m2
+)/(1 + a)− Bp23
m2

ρ

(4.117)

ω2
3 =

E2 −m2
ρ − (1 + a)p23
m2

ρ

(4.118)

X̂+ = (2N̂ + 1)B ξ − Bξ

2
+K ξ − (2N̂ + 1)

Bξ

2
(4.119)

X̂− = (2N̂ + 1)B ξ − Aξ

2
−K ξ + (2N̂ + 1)

Aξ

2
(4.120)

Aξ = (1 + b− k) ξ2 −M ξ and Bξ = (1 + b− k) ξ2 +M ξ, (4.121)

and with π3 replaced by its eigenvalue p3 since it commutes with everything, or where

convenient for the notation by the number a3 = (2B)−1/2π3. The system (4.116) decouples

completely in the special case where Aξ = Bξ = 0 as well as 1 + b − k = a − m2
+

m2
ρ
= 0,

which is for example the case for standard Proca parameters a = b = m+ = 0 and k = 1.

In the latter situation the independent solutions for any n are given by

φ+ = |n− 2〉, φ− = φ3 = 0 (n = 2, 3, · · · )
φ− = |n〉, φ+ = φ3 = 0 (n = 0, 1, · · · )
φ3 = |n− 1〉, φ− = φ+ = 0 (n = 1, 2, · · · ) (4.122)

with eigenvalue ω2 = ω2
3 = (2n − 1)ξ. Here we formally defined the ‘number eigenstates’

|n〉 as
N̂ |n〉 = n|n〉, â|0〉 = 0, |n〉 = (n!)−1/2(â†)n|0〉. (4.123)

In the rest of the discussion of possible solutions below, we consider Aξ and Bξ different

from zero.

Condensing solution. Before decoupling the first two equations of (4.116) to discuss

the general form of the solution, let us first look at the one we are most interested in, the

condensing solution:

φ3 = φ+ = 0, φ− = |0〉 (⇒ âφ− = 0), (4.124)

for which the EOM reduces to

(ω2 − X̂−)|0〉 = 0 ⇒ ω2 = X̂−(N̂ → 0) = (B − K)ξ = − k

1 + a
ξ

– 36 –



J
H
E
P
0
1
(
2
0
1
4
)
0
5
5

with total eigenvalue

E2 =
m2

ρ +m2
+

1 + a
+

(
1 + b

1 + a

)

p23 −
k

1 + a
m2

ρξ, (4.125)

or, in the lowest state p3 = 0 (and 1+b
1+a > 0 in the considered range of B):

m2
ρ,eff =

m2
ρ +m2

+

1 + a
− k

1 + a
m2

ρξ. (4.126)

This indeed reduces to its (2πα′)2-approximated equivalent (4.74), m2
ρ,eff = m2

ρ + m2
+ −

kξm2
ρ, for a→ 0.

Family of solutions. We present the general discussion of the family of solutions

of (4.116). One family of solutions is

φ+ = φ− = 0, φ3 = |n〉, ω2
3 = (1 + a)(2n+ 1)ξ, n = 0, 1, 2, · · · , (4.127)

the other one

φ− = |n+ 1〉, φ+ = cn|n− 1〉, φ3 = c′n|n〉, n = 1, 2, 3, · · · . (4.128)

The corresponding eigenvalue ω can be determined from decoupling the first two equations

of (4.116) to
{

(ω2−X̂−)(ω
2−X̂+)+(N̂2+3N̂+2)AξBξ−2(2B ξ+Aξ)(ω

2−X̂+)
}

φ+ = 0 (4.129)
{

(ω2 − X̂−)(ω
2 − X̂+) + (N̂2 − N̂)AξBξ + 2(2B ξ −Bξ)(ω

2 − X̂−)
}

φ− = 0. (4.130)

Substitution of (4.128) has the effect of replacing N̂ in (4.129) by (n−1) and in (4.130)

by (n+1). With these replacements, the curly-bracketed expressions in the two equations

become identical, and either of them can be solved, with the result for our generalized

Landau levels finally given by

ω2 = (2n+ 1)ξ

(

B − M
2

)

+
(1 + b− k)

2
ξ2 (4.131)

± ξ

√

M
(

(2n+ 1)2

4
+K − 2B

)

+ (K − 2B)2 − (1 + b− k)(2n+ 1)ξ

(

K − 2B +
M
2

)

+
(1 + b− k)2

4
ξ2.

This reduces to Mathews’ solution for general k 6= 1, eq. (19) in [74], for a, b,m+ → 0,

i.e. B → 1,M → 0,K → 1 + k:

ω2(a, b,m+ → 0) = (2n+ 1)ξ +
1

2
(1− k)ξ2 ± (1− k)ξ

√

1 + (2n+ 1)ξ +
1

4
ξ2, (4.132)

and the modified Landau levels mentioned in section 4.3.1 are given by (4.131) with a, b→
0. Given the value of E2 from (4.131) and the ansatz (4.128) for φ3, the equation (4.118) can

be solved for c′n. The constant cn can be determined from substituting the solution (4.128)

and (4.131) into either one of the first two equations of (4.116).

For completeness, we mention the last remaining possible solution

φ− = |1〉, φ+ = 0, φ3 = c′0|0〉
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Figure 16. The effective rho meson mass squared m2
ρ,eff (B) from the full DBI-action.

with ω2 = X̂−(N̂ → 1) = (3B − K −M)ξ + (1 + b − k) ξ2 and c′0 to be determined from

ω2
3 − (1 + a)ξc′0 = (ξ2(1 + b− k)− aξ)a3.

In this whole discussion of the solutions of the EOMs for the rho meson, the key

observation is that the energy eigenstates are so-called ‘number eigenstates’, labeled by the

Landau level number n. They are not necessarily spin eigenstates, as we will discuss next.

Discussion of the spin of the solutions. Consider the eigenstates of the spin operator

S3 as defined in (4.71),

φ+ = φ− = 0 (s3 = 0)

φ+ = φ3 = 0 (s3 = +1)

φ− = φ3 = 0 (s3 = −1).

It is clear that only the branch of solutions (4.127) and the condensing solution (4.124)

are spin eigenstates, resp. with eigenvalues s3 = 0 and s3 = +1; the other branches of

solutions for general k 6= 1 case are not. This is in contrast with the special k = 1 Proca

case (4.122) where all Landau levels, including the excited states, are also spin eigenstates.

We conclude by summarizing that the condensing states are given by (4.124) and its

conjugate,

ρ∗ = φ− = ρ∗1 − iρ∗2 and ρ = φ∗− = ρ1 + iρ2

— where we translated back to the previously used notation — with energy eigenvalue

m2
ρ,eff = (4.126) and spin eigenvalue s3 = +1 corresponding to the spins being aligned

with the magnetic field. Our result for the effective rho meson mass squared m2
ρ,eff , as

shown in figure 16, again demonstrates the tachyonic instability, with the critical magnetic

field for rho meson condensation given this time by

Bc ≈ 0.85 GeV2.

The increase compared to the estimate for Bc in (4.75) using the (2πα′)2-approximation

is pretty small. This indicates that the expansion to second order in (2πα′)F was a valid

approximation, despite the ambiguities mentioned in section 4.4.1.

4.5 Comment on the antipodal case

For completeness, we consider the effect in the antipodal SSM, u0 = uK , of including all

higher order terms in the total field strength in the DBI-action. As mentioned before, the
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Figure 17. The effective rho meson mass squared m2
ρ,eff (B) from the full DBI-action for the

antipodal embedded flavour branes.

embedding of the flavour branes is independent of B in this case, resulting in standard

Landau levels and thus m2
ρ,eff (B) = m2

ρ −B if the action is approximated to second order

in (2πα′)F . In this set-up there is no constituent quark mass (3.7) and no chiral magnetic

catalysis.

To reproduce m2
ρ = 0.602GeV2 at zero magnetic field, along with fπ = 0.093GeV for

the pion decay constant, we have to use the holographic parameters fixed in [3] to

MK ≈ 0.949 GeV and κ =
λNc

216π3
≈ 0.00745, (4.133)

instead of the values (3.9) for u0 > uK . With these fixed parameters the estimate for the

maximum value of the magnetic field for the (2πα′)-expansion of the action to be valid, as

discussed in section 4.4.1, changes to

eB ≪ 3

2

(uK
R

)3/2
(2πα′)−1 ≡ 0.31 GeV2, (4.134)

which is even lower than the value 0.45 GeV2 obtained for the non-antipodal case.

As the flavour branes now remain coincident for any value of B, that is τ ∼ 1 ⇒ τ3 = 0

and ∂uτ = 0 ⇒ Guu = guu, we again obtain the effective 4-dimensional action (4.95),

but with the integrals and equations (4.96)–(4.101) changed in the sense that u0,d → uK ,

τ3 → 0 and every Guu → guu, in particular in the I-functions f1(A,B), f2(A) defined

in (4.91)–(4.92). The eigenvalue equation can be recast in the form

9

4

uK
R3

cos4/3 x
[

∂2xψ + I(A1/2)−1∂xI(A
1/2)∂xψ

]

= −m2
ρψ

with u = uK cos−2/3 x this time and I(A1/2) reducing to 1 for B = 0. With the numerical

result for the eigenfunction ψ and eigenvalue m2
ρ, the total effective rho meson squared

can be obtained using (4.126),

m2
ρ,eff =

m2
ρ +m2

+

1 + a
− k

1 + a
B.

The result is shown in figure 17, where the corresponding critical magnetic field can be

read off to be Bc ≈ 1.07GeV2.
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Figure 18. The effective rho meson mass squared m2
ρ,eff (B) in the antipodal embedding (left) and

the non-antipodal embedding (right), comparing the (2πα′)2F 2-approximated result in blue to the

full DBI-result in red.

5 Summary

We studied a magnetically induced tachyonic instability in the charged rho meson sector,

arising from the DBI-part of the two-flavour Sakai-Sugimoto model. We examined

both the case of antipodal and the more general non-antipodal embedding, each in the

(2πα′)2F 2-approximation of the action versus the full DBI-action, non-linear in the total

field strength F . The results for the effective rho meson mass squared m2
ρ,eff (B), vanishing

at the critical magnetic field Bc and thereby signaling the onset of the tachyonic instability,

are shown in figure 18 for each of the four set-ups.

The antipodal SSM reproduces exactly the standard 4-dimensional Proca picture and

Landau levels of the effective QCD-model used in [22], with Bc = m2
ρ ≈ 0.602GeV2.

The same picture was obtained in a holographic toy model involving an SU(2) Einstein-

Yang-Mills action for an SU(2) bulk gauge field in a (4+1)-dimensional AdS-Schwarzschild

black hole background [36], and more recently for a 3-dimensional field theory in a (3+1)-

dimensional DSGS-model generalized to AdS [38]. The non-antipodal SSM predicts a larger

value of Bc ≈ 0.78 GeV2 as a result of taking two mass-generating effects for the charged

rho meson into account, i.e. chiral magnetic catalysis for the rho meson constituents on one

hand, and a stringy Higgs-contribution to the mass from stretching the rho meson string be-

tween the magnetically separated up- and down-brane. Both effects are a direct result from

the B-dependence of the non-antipodal flavour branes’ embedding, and hence absent in the

antipodal set-up. Considering the full DBI-action instead of approximating it to second or-

der in the total field strength further increases the value of the magnetic field Bc at the onset

of rho meson condensation, more precisely to Bc ≈ 0.85GeV2 in the non-antipodal case.

The effect of taking the non-linear contributions in F 12 into account seems to be stronger for

the antipodal set of parameters compared to the non-antipodal one — in both cases param-

eters are fixed to reproduce QCD parameters at zero magnetic field. This leads us to con-

clude that the F 2-approximation is better justified for the considered problem in the non-

antipodal embedding than in the antipodal one. We are however very well aware of the fact

that the full DBI-action is not the complete non-Abelian action for a system ofNf branes —

a closed form of which is still to be found –, starting to show deviations at order F 6 [59, 60].

We do not claim the DBI-result is necessarily more correct than the F 2-result, yet we

wanted to examine the extent of the difference. In conclusion, the SSM-predictions for Bc

are close to order 1GeV2, as obtained in the NJL-model in [23] and on the lattice in [33].
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A main motivation for these comparisons within the SSM was to investigate what

holography can add to the QCD-phenomenological picture of rho meson condensation,

purposely working in a top-down approach — the downside of which are the technical

complications. We for example elaborated on evaluating the STr exactly (to second order

in fluctuations in the presence of an Abelian background field), the gauge fixing necessary

to disentangle scalar and vector fluctuations, the contribution of the Chern-Simons action,

the pion sector in the F 2-approximated DBI-part of the action, the Higgs mechanism

associated with the magnetically induced heavy-light character of the charged rho

mesons, numerically solving the eigenvalue equation for m2
ρ with a shooting method, and

analytically solving the generalized effective 4-dimensional EOMs. For the above reasons

of complexity we have not yet been able to construct the new ground state in which the

rho mesons are condensed. This ground state is expected to be an Abrikosov lattice of rho

meson vortices, as constructed in the DSGS-model in [34] and in a bottom-up holographic

model in [37]. The Abrikosov lattice forms an anisotropic and spatially inhomogeneous,

type II superconducting ground state of the QCD vacuum in the presence of a strong

magnetic field [35], with the interesting property that the magnetic field creates the

superconducting state instead of destroying it (cfr. Meissner effect). In [38], the real

part of the optical conductivity in the condensed phase is shown to contain a delta peak

at the origin, consistent with a superconducting condensed state. Another downside of

the top-down approach and in particular the SSM is the abundance of extra fields in the

bulk that do not have counterparts in the dual field theory. The mass scale ∼ MK of

these artifacts of the model is actually of the same order as the masses of the mesons.

Nevertheless the SSM can present a nice record of QCD-effects and properties that can be

modeled, suggesting the influence of the redundant modes is not necessarily substantial.

We have been able to show that the SSM has a magnetically induced instability towards

rho meson condensation, consistent with the studies of this phenomenon in phenomeno-

logical [22, 23], lattice [33] and bottom-up holographic [36, 38] approaches. To come closer

to the real-life quark-gluon plasma conditions where the presence of magnetic fields of the

order of ∼ 1GeV2 might eventually be obtained, it should be taken into account that there

are also very high temperatures/densities present, and that the magnetic field is very local-

ized both in space and time (see the more recent works cited under [24–29]). These features

may in the end seriously influence the possible occurrence of rho meson condensation.
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A STr-prescription

Prescription. We write down the prescription for the evaluation of the symmetrized

trace STr to second order in fluctuations in the presence of a constant Abelian background,

as derived in [59] and [63].

For an even function H(F ) of a diagonal background field F = F 0σ0 + F 3σ3 and

fluctuation X̃ = X̃ata (generator ta = − i
2σ

a), one finds that

STr
(

H(F )X̃2
)

= −1

2

2∑

a=1

(X̃a)2 I(H)− 1

2

∑

l=u,d

(X̃ l)2 Il(H) (A.1)

with

I(H) =

∫ 1
0 dαH(F 0 + αF 3) +

∫ 1
0 dαH(F 0 − αF 3)

2
, (A.2)

Iu(H) = H(F 0 + F 3), Id(H) = H(F 0 − F 3), (A.3)

X̃u =
X̃0 + X̃3

√
2

, X̃d =
X̃0 − X̃3

√
2

; (A.4)

and

STr
(

H(F )X̃
)

= Tr
(

H(F )X̃
)

. (A.5)

Generalized prescription. A straightforward generalization of the prescription when

dealing with two Abelian background fields can be written down.

For even functions H(∂τ) and G(F ) of diagonal background fields ∂τ = ∂τ0σ0+∂τ3σ3

and F = F 0σ0 + F 3σ3, and fluctuation X̃ = X̃ata (generator ta = − i
2σ

a), it reads

STr
(

H(∂τ)G(F )X̃2
)

= −1

2

2∑

a=1

(X̃a)2 I(HG)− 1

2

∑

l=u,d

(X̃ l)2 Il(HG) (A.6)

with

I(HG) =
∫ 1
0 dαH(∂τ0 + α∂τ3)G(F 0 + αF 3) +

∫ 1
0 dαH(∂τ0 − α∂τ3)G(F 0 − αF 3)

2
, (A.7)

Iu(HG) = H(∂τ0 + ∂τ3)G(F 0 + F 3), Id(HG) = H(∂τ0 − ∂τ3)G(F 0 − F 3), (A.8)

X̃u =
X̃0 + X̃3

√
2

, X̃d =
X̃0 − X̃3

√
2

; (A.9)

and

STr
(

H(∂τ)G(F )X̃
)

= Tr
(

H(∂τ)G(F )X̃
)

. (A.10)

A.1 Derivation of the prescription

For completeness, let us schematically recapitulate how the above prescription was ob-

tained. In this derivation we will temporarily write U(2)-indices as lower instead of upper

indices, to avoid notational clutter.
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• Properties of the Pauli matrices (a = 1, 2, 3):

Tr(σa) = 0, Tr(σaσb) = 2δab, σaσb = δab1+ iǫabcσc

{σa, σb} = 2δab1, [σa, σb] = 2iǫabcσc

• STr(σm3 σaσb):

STr(σm3 σaσb) =
1

(m+ 2)!

∑

all permutations

Tr(σm3 σaσb)

=
1

m+ 1

m∑

k=0

Tr(σk3σaσ
m−k
3 σb)

=

{

2[δ0aδ0b + δ3aδ3b +
δab
m+1 |a,b=1,2] for m even

2[δ0aδ3b + δ3aδ0b] for m odd
(A.11)

where now a, b = 0, 1, 2, 3 with σ0 = 1, and where we used

m∑

k=0

Tr(σk3σaσ
m−k
3 σb) =

m∑

k=0

Tr((−1)kσm3 σbσa). (A.12)

• STr(FmX̃2) with m even, F = F0σ0 + F3σ3 and X̃ = X̃ata with ta = −i
(
1

2 ,
σa
2

)
:

STr(FmX̃2) = Fm
3 STr(σm

3 X̃
2) + Fm−1

3 F0

(

m

1

)

STr(σm−1
3 X̃2) + Fm−2

3 F 2
0

(

m

2

)

STr(σm−2
3 X̃2)

+ · · ·+ Fm
0 STr(X̃2)

= −1

2
Fm
3 [X̃2

0 + X̃2
3 +

2
∑

a=1

X̃2
a

m+ 1
]− 1

2
Fm−1
3 F0

(

m

1

)

[X̃0X̃3 + X̃3X̃0]

− 1

2
Fm−2
3 F 2

0

(

m

2

)

[X̃2
0 + X̃2

3 +
2
∑

a=1

X̃2
a

m− 1
] + · · · − 1

2
Fm
0

3
∑

a=0

X̃2
a

= −1

2

2
∑

a=1

X̃2
a

{

Fm
3

m+ 1
+
Fm−2
3 F 2

0

m− 1

(

m

2

)

+ · · ·+ F 2
3 F

m−2
0

3

(

m

2

)

+ Fm
0

}

− 1

2
(X̃2

0 + X̃2
3 )

{

Fm
3 + Fm−2

3 F 2
0

(

m

2

)

+ · · ·+ Fm
0

}

− 1

2
(2X̃0X̃3)

{

Fm−1
3 F0

(

m

1

)

+ Fm−3
3 F 3

0

(

m

3

)

+ · · ·+ F3F
m−1
0

(

m

1

)}

(A.13)

• STr(H(F )X2) with H(F ) = a0 + a1F
2 + a2F

4 + · · ·+ amF
2m + · · · an even function

of the background field F :

STr(H(F )X̃2) = −1

2

2
∑

a=1

X̃2
a

{

a0 + a1

[

F 2
3

3
+ F 2

0

]

+ a2

[

F 4
3

5
+

(

4

2

)

F 2
3 F

2
0

3
+ F 4

0

]

+ · · ·
}

− 1

2
(X̃2

0 + X̃2
3 )

{

a0 + a1
[

F 2
3 + F 2

0

]

+ a2

[

F 4
3 +

(

4

2

)

F 2
3 F

2
0 + F 4

0

]

+ · · ·
}

− 1

2
(2X̃0X̃3)

{

a1

[(

2

1

)

F0F3

]

+ a2

[(

4

1

)

F 3
0 F3 +

(

4

1

)

F0F
3
3

]

+ · · ·
}
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= −1

2

2
∑

a=1

X̃2
a

{

∫ 1

0
dαH(F0 + αF3) +

∫ 1

0
dαH(F0 − αF3)

2

}

− 1

2
(X̃2

0 + X̃2
3 )

{

H(F0 + F3) +H(F0 − F3)

2

}

− 1

2
(2X̃0X̃3)

{

H(F0 + F3)−H(F0 − F3)

2

}

(A.14)

which is the prescription (A.1).
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