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ABSTRACT: In this follow-up paper of [1] we further discuss the occurrence of a magnet-
ically induced tachyonic instability of the rho meson in the two-flavour Sakai-Sugimoto
model, uplifting two remaining approximations in the previous paper. That is, firstly, the
magnetically induced splitting of the branes is now taken into account, evaluating without
approximations the symmetrized trace which enters in the non-Abelian Dirac-Born-Infeld
(DBI) action. This leads to an extra mass generating effect for the charged heavy-light
rho meson through a holographic Higgs mechanism. Secondly, we compare the results in
the approximation to second order in the field strength to the results using the full DBI-
action. Both improvements cause an increase of the critical magnetic field for the onset of
rho meson condensation. In addition, the stability in the scalar sector in the presence of
the magnetic field is discussed.
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1 Introduction

The Sakai-Sugimoto model [2, 3] is one of the most used holographic QCD-models to study
effective low-energy effects of a QCD-like theory at strong coupling. Its main merits are the

incorporation of spontaneous chiral symmetry breaking, closely related to the description

of confinement in the model, and the fact that previously constructed effective low-energy

QCD models (such as the Skyrme model for pions, the hidden local symmetry approach

for the coupling of pions and rho mesons, vector meson dominance for the pion formfactor,

etc.) drop out automatically.



In this paper we further investigate the stability of the two-flavour Sakai-Sugimoto
model in the presence of a magnetic field, and this in the confinement phase. We will find
stability in the scalar and an instability in the charged vector sector. Previous stability
analyses of the Sakai-Sugimoto model (SSM) have mainly focused on the case of a back-
ground chemical potential. In particular Chern-Simons-induced instabilities to spatially
modulated phases have received quite some attention recently [4-9]. Earlier works in this
context include [10-12], and [13, 14] on the (T, 4, B) phase diagram in the Sakai-Sugimoto
model. More relevant for our current purposes is the DBI-induced instability in the pres-
ence of an isospin chemical potential studied in [15], where a tachyonic instability of the rho
meson and ensuing rho meson condensation was described. We will encounter a somewhat
similar phenomenon here, but as a result of the presence of a background magnetic field B
and zero chemical potential.

The papers referred to above which include magnetic fields, use the original antipodal
SSM in which the flavour branes are positioned B-independently at opposite points on the
supersymmetry-breaking circle of the background. We will focus on the more general non-
antipodal embedding of flavour branes, in which case the embedding does depend on the
magnetic field, corresponding to chiral magnetic catalysis in the dual field theory [16-19].

The stability of the embedding of the flavour branes has been checked in [2] for the
antipodal case, and in [20, 21] for the non-antipodal case. We extend this analysis to the
non-antipodal, B-dependent embedding, finding what we referred to as ‘stability in the
scalar sector’ earlier.

We believe we are also the first to consider multiple non-antipodal embedded flavour
branes Ny > 1 that couple to the external magnetic field with different electric charges,
modeling differently charged up- and down-quarks. Taking this complication into account
will create a magnetically induced splitting of the flavour branes, interpreted as explicit
breaking of the U(Ny) chiral symmetry to a product of Abelian U(1) chiral symmetries,
which makes the evaluation of the symmetrized trace in the action significantly more cum-
bersome.

In the end, we find a holographic description of the instability towards rho meson
condensation in the presence of a very strong magnetic field, first discussed in phenomeno-
logical QCD-models in [22, 23]. This is one of the many effects studied recently in the
context of QCD in extreme conditions, a research area that has naturally gained more
interest with the growing availability of data on quark-gluon plasma from LHC and RHIC
experiments. There, not only high temperatures and high densities are present, but also,
when the plasma is created in non-central heavy ion collisions, very high magnetic fields (of
the order of 10 Tesla) [24-29]. For a review on strongly interacting matter in magnetic
fields, see [30] and references therein.

Many magnetic effects have been investigated in the Sakai-Sugimoto model, so, to
avoid incompleteness, let us refer here to the review paper [31] for a nice overview.



2 Goal and strategy

Basic argument for rho meson condensation in field theory. In [22], a possible
magnetic instability of the QCD vacuum towards a phase where charged rho mesons are
condensed is discussed. The basic argument for this rho meson condensation at some
critical value of the magnetic field B,, is that the charged rho meson combinations which
have their spin aligned with the magnetic field B, have an effective mass squared

m; .5(B) =m, —eB (2.1)
which vanishes at
eB, = m} = 0.602 GeV?, (2.2)

based on the fact that the n-th energy level of a free, structureless spin-s particle with
mass m in the presence of a background magnetic field B = Beéj is given by the well-
known Landau level quantization formula

E*=m.+p5+ (2n — 253+ 1)eB (2.3)

with p3 the particle’s momentum in the direction of the magnetic field, and sg its spin pro-
jection on the same direction. This leads to (2.1) for the lowest-energy rho meson p3 = 0,
n = 0 with spin s3 = 1.

The above argument holds in the context of the bosonic effective DSGS-model [32]
for rho meson quantum electrodynamics, used in [22]. Somewhat later, the rho meson
condensation effect was also shown to emerge in the NJL-model [23]. It should be clear
however that rho meson condensation is merely conjectured to occur in QCD based on
these descriptions in effective QCD-models, not proven nor experimentally observed. To
date, the effect of rho meson condensation has been discussed in [22, 23, 33-35] using phe-
nomenological and lattice approaches, in our work [1] using the Sakai-Sugimoto model, and
in [36-38] using a bottom-up holographic approach. Its possible occurrence has been ar-
gued against in [39] — followed by a rebuttal in [40, 41] showing that the counterarguments
of [39] should not apply.

Goal. Our goal is to study the effective rho meson mass squared mi o (B) in a full-blown
holographic top-down approach, using the Sakai-Sugimoto model. In a simplified set-up,
we were able to show in [1] that rho meson condensation does occur in this model. The
B-dependence of the rho meson mass will be further investigated here, thereby uplifting re-
maining approximations in [1]. The influence of chiral magnetic catalysis on the differently
charged constituents of the mesons is taken into account by considering the non-antipodal
embedding. This will lead to a modification of the energy levels (2.3). We shall however con-
tinue to use the nomenclature Landau levels. The instability is still present, at a somewhat
higher value of e B, than the estimate (2.2). We focus on the confinement phase of the model
and set the number of flavours equal to two, Ny = 2, necessary to describe charged mesons.



Outline. We start with an outline of the set-up in section 3, including a short review of
the Sakai-Sugimoto model. We fix the number of colours N. = 3 and the rest of the holo-
graphic parameters to numerical GeV units, in order to obtain results for mi eff and B, in
physical units, comparable to other — phenomenological and lattice — approaches. In the
same section, the effect of the magnetic field on the probe branes’ embedding is reviewed.

In section 4 we discuss the stability of the fluctuations. For that purpose we plug
a flavour gauge field ansatz containing a background (~ B) and a fluctuation part (~
mesons) into the non-Abelian DBI-action governing the dynamics of the flavour gauge field
living on the probe branes, and expand the action to second order in the fluctuations.
The eventual goal is to extract the effective rho meson mass from the 4-dimensional mass
equation for the vector meson, the effective 4-dimensional action to be obtained from the
DBI-action by integrating out the extra dimensions.

First, we have to choose a particular gauge to disentangle the scalar and vector fluctua-
tions in the action, this is done in section 4.1. Then we discuss the stability with respect to
scalar fluctuations, corresponding to the positions of the probe branes. Next, we consider
the vector fluctuations. This we already partly covered in our previous paper [1], where
we discussed the case of antipodal embedding and the case of non-antipodal embedding
with the action approximated to second order in the total field strength F' and with the ex-
tra assumption of coinciding branes. Here, we extend on these analyses by considering the
non-antipodal embedding with magnetically separated branes, both in the case of using the
action expanded to second order in F' (section 4.3) and the full non-linear DBI-action in F'
(section 4.4). Because the field strength F' in the DBI-action is accompanied with a factor
proportional to the inverse of the 't Hooft coupling A, which is large in the validity range of
the gauge-gravity duality, the expansion to second order in F' is commonly used. However,
in the presence of large background fields, the higher order terms may become important
(see section 4.4.1). We therefore compare the outcome of using the F?-approximated action
versus the full DBI-action, from which we can conclude that the difference in B, is very
small and the F?-expansion was justified in our case after all.

In section 4.3 the focus is on handling the magnetically separated branes. For non-
coinciding branes, the symmetrized trace (STr) over flavour indices in the DBI-action no
longer simplifies to a normal Tr. Instead, evaluating the STr (which can be done exactly
to second order in the fluctuations) gives rise to complicated functions in the action (de-
fined via integrals), which depend on the background fields and are discontinuous in the
holographic radius u. We pay some attention to solving the eigenvalue equation for the rho
meson eigenfunction with these functions present. The evaluation of the STr is discussed
in section 4.1.1, with the used — exact — prescriptions outlined in the appendix, including
a sketch of their derivation. In section 4.3.2, for completeness, we briefly discuss the pions
in the DBI-action. The section ends with a comment on the validity of the use of the
non-Abelian DBI-action for non-coincident branes.

In section 4.4 the focus is on handling the extra dependences on the magnetic field from
considering the full DBI-action. The resulting effective 4-dimensional equation of motion
(EOM) (to second order in the rho meson fields) has extra terms compared to the standard
Proca EOM used in phenomenological descriptions of the rho meson in a background



magnetic field, making it harder to analyze. We solve the EOMs for the complete energy
spectrum exactly in section 4.4.3, with the main result for the generalized Landau levels
given in eq. (4.131). The energy eigenstates are no longer spin eigenstates (as opposed to
the Proca energy eigenstates), except for the condensing state.

We comment on the antipodal set-up with full DBI-action in section 4.5 and summarize
in section 5.

3 Set-up

3.1 Review of the Sakai-Sugimoto model

The Sakai-Sugimoto model [2, 3] is a holographic QCD-model, involving Ny pairs of D8-D8
flavour probe branes placed in a D4-brane background

ds® = gmpdz™dz™ (m,n=0---9)

3/2 3/2 2
— (%) / (Muvdatdz” + f(u)dr?) + <R> (d“ +u2d93> :
u

4 3

¢ = g, (é)g/ R ]‘\264, flu)y=1— Z—K (3.1)
where in, €4 and Vy = 872 /3 are, respectively, the line element, the volume form and the
volume of a unit four-sphere, while R is a constant parameter related to the string coupling
constant gs, the number of colours N, and the string length ¢, through R? = mgsN.¢3. This
background has a natural cut-off at u = ux and is therefore dual to a confining QCD-like
theory, living on the boundary at u — oo. Imposing a smooth cut-off of space at u = ug
uniquely determines the period 7 of 7:

47 R3/?
0T = 3 12
Uk

=2r M (3.2)

with Mg the inverse radius of the 7-circle.
The parameters R, gs,ls, Mg, ug and 't Hooft coupling A\ = g}%MNc are related
through the following equations:

_ 1A _ 1 gy

R = =
o Mx’ T or Myt

2
U = §AMK£§. (3.3)

2
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without loss of generality, that %MIQ(@ = % [3] which is the same as stating that

Since all physical results are independent of the choice of A%, one can moreover impose,

1

Consequently, the remaining parameter relations reduce to
9 1 1 4 4
3 _ _ 3 _ 3
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Figure 1. The Sakai-Sugimoto model: antipodal (up = ux) and non-antipodal (ug > ux) embed-
ding.

The duality is valid in the limit of a large number of colours N. — oo and large
but fixed 't Hooft coupling A = g%/ uNe > 1 (with gypy — 0), which means one probes
the strong coupling regime of the 4-dimensional dual field theory in the 't Hooft limit.
The backreaction of the Ny < N, flavour degrees of freedom on the D4-brane geometry is
ignored. This is the so-called probe approximation [42] (or quenched approximation in QCD
language). Furthermore, bare quark masses are zero, so this model is in the chiral limit.!

On the stack of N coinciding D8-D8 flavour pairs, there lives a U(Ny), xU(Ny) g gauge
theory for the flavour gauge field A, (z*,u)(m = 0, 1,2, 3, u) describing massless excitations
of open strings attached to the branes. This gauge theory is interpreted as corresponding
to the global chiral symmetry in the dual QCD-like theory. The cigar-shape of the (u,T)
subspace of the D4-brane background enforces a U-shaped embedding of the flavour branes,
encoded in the embedding function u(7). This particular form of the embedding represents
the spontaneous breaking of chiral symmetry U(Ny)r x U(Nf)gr — U(Ny) as the merging
of the D8-branes and D8-branes at u = ug. The asymptotic separation L (at u — o0)
between D8- and D8-branes, indicated in figure 1, is related to ug as

L

> du .
2/u — (with v = du/dr)

o U

_ > E I —1 U?)f(uo)
‘2/u0 d“(u) fw) \/ W) — ud fluo) (3.6)

In the original set-up of [2, 3] the embedding is antipodal: the flavour branes merge at the

tip of the cigar, up = ug. In the more general non-antipodal embedding, ug > ug, the
distance between ux and wug is interpreted to be related to the constituent quark mass as

1To overcome this, in [43] the bifundamental ‘tachyon’-field connecting D8- and D8-branes is taken into
account. Other possible mechanisms to include bare quark masses can be found in [44, 45]. We did not
consider these options here for reasons of simplicity.



the energy stored in a string stretching from ug to ug [46]:
1 Y du
2ma Juye \/f(u)

with 2ma’ the inverse string tension, related to the string length through o/ = ¢2. In

(3.7)

myg

the latter set-up, unlike in the uyg = ug case, it is possible [16-19] to model the effect of
chiral magnetic catalysis [47] which says that a magnetic field boosts the chiral symmetry
breaking and hence the constituent quark masses. More precisely, the authors of [47]
discuss a low-energy theorem in the context of chiral perturbation theory, thereby finding
that the chiral condensate grows (linearly) in terms of an increasing magnetic field, with
the coefficient a function of the pion decay constant f.

In this work, we will interpret m, as an indicator for the chiral symmetry breaking order
parameter, for lack of a chiral condensate in the used set-up. Let us however remark that
possible alternatives to define chiral order parameters can be found in, for example, [48]
or [43-45, 49, 50].

3.2 Numerical fixing of the holographic parameters

In this paper, for the purpose of presenting the end results in physical GeV units, we will
fix the number of colours to three, N. = 3. We choose the number of flavours to be two,
Ny =2, in order to be able to model electromagnetically charged mesons consisting of up-
and down quarks. This means we are stretching the validity of the probe approximation,
but we will nonetheless ignore the backreaction. With these choices, we are then able to
fix the remaining free parameters in the model, R, \, {5, M, ug, gs and L, by matching to
the following QCD input parameters

mg = 0.310 GeV, fr =0.093 GeV and m, =0.776 GeV (3.8)

for resp. the constituent quark mass m,, the pion decay constant fr and the p meson mass
m,, in absence of magnetic field.
The results of our numerical analysis are (for the underlying details we refer to [1])

AN,
My ~0.7209 GeV, % ~138 and r= —-° ~ 0.006778. (3.9)
UK 21673
From these values we do extract a relatively large 't Hooft coupling, A ~ 15, and
(via (3.6)) a value for the asymptotic flavour brane separation L ~ 1.574 GeV~! that is

approximately 2.8 times smaller than the maximum value of L, given by Lj.x = %T =

MLK ~ 4.358 GeV ™. Our estimate for the effective string tension between a quark and an
antiquark becomes o ~ 0.19 GeV?2, in excellent agreement with the pure SU(3) lattice-QCD
value o ~ 0.18-0.19 GeV? [51, 52]. This means we could equally well have used the value
for o as input, instead of my, as it could be noted that the identification in (3.7) is rather
an indicator of magnitude than an exact correspondence.

Using the above values for the parameters enables us to present all our results in phys-
ical units, and in particular compare our result for the critical magnetic field for the onset
of rho meson condensation to the values obtained in other (phenomenological or lattice)

QCD approaches.



3.3 Non-Abelian probe brane action

The dynamics of the stack of Ny coinciding D8-D8 flavour branes in the 10-dimensional
D4-brane background is determined by the dynamics of open strings with their endpoints
attached to the branes. The spectrum of vibrational modes of these attaching strings con-
tains a massless U(Ny) flavour gauge field with 10 components, which can be decomposed
in a U(Ny) flavour gauge field A,,(z#,u) (m = 0,1,2,3,u) living on the world volume of
the branes (we set Ag, = 0 and 0q,A,, = 0) and a scalar field 7 describing fluctuations
of the branes along their transversal (7-)direction. Before writing down the action for the
flavour branes in terms of A,, and 7, a few comments are in order.

While the low energy effective action for a single brane is known to be the Dirac-
Born-Infeld action [53, 54], valid in the static gauge (i.e. alignment of the world volume
with space-time coordinates) and for slowly varying field strengths, the full non-Abelian
generalization of it for the description of a stack of coinciding branes is not. Tseytlin pro-
posed in [55] to non-Abelianize the Dirac-Born-Infeld action by introducing a symmetrized
trace STr. The action is still restricted to static gauge and the (in the non-Abelian case
slightly ambiguous) slowly-varying field strengths approximation, ignoring derivative terms
including [F, F] ~ [D, D|F terms. This action was shown to be valid up to fourth order in
the field strength, with deviations starting to appear at order F [59, 60]. For the probe
flavour branes we are dealing with, it is given by the following, which we will further refer
to as ‘the’ (non-Abelian) DBI-action [55-58]:

Sppr = —Tg/d4x 2/ du/e4 e ? STr\/— det [gD8 + (2m)iFon ], (3.10)
uo

where Ty = 1/((27)8¢Y) is the D8-brane tension, the factor 2 in front of the u-integration
makes sure that we integrate over both halves of the U-shaped D8-branes, STr is the sym-
metrized trace which is defined as

1

STr(Fy--- Fn) = —Tr(Fy - - - Fy, + all permutations), (3.11)
n!

g% is the induced metric on the D8-branes,
i = G + Grr (D7) (D7),
with covariant derivative Dy, 7 = 0,7 + [Asm, 7], and
Fon = OmAp — OnAp, + [Am, Ay = E5 t°
the field strength with anti-Hermitian generators
1% = —%(1,01,02,03), Tr(t*’) = —%, 7, 1%] = eapel. (3.12)

3.4 Effect of uniform magnetic field on the probe branes’ embedding

To model a uniform magnetic field B=B €3 in the dual field theory, B = F{J" = 01 A§", we
assume the background gauge field ansatz (e being the electromagnetic coupling constant



and Qcy, the electric charge matrix) [3]

A=A, = —ieQem A" (all other gauge field components zero)
2 . .
. zeB 0 z1eBd,9 1lo 103
- <30 —;,eB> =g\ )b (=5 ), (B13)
or
—3 -0 —3
A, =z1eB and Ay =A,/3; (3.14)
and
) _
_ _ 2eB 0 F, 0
Frg=01Ay =i 3° — i 3.15
12 142 2<0 —éeB) Z<0Fd ) ( )

where in the last line we defined the up- and down-components of the background field
strength, F,, and Fy. In the rest of the paper we will denote eB as B.

The embedding of the (8+1)-dimensional D8-branes in the 10-dimensional D4-brane
background (3.1) only requires the specification of one function, 7(u). This embedding
function can be determined as a function of B by first plugging the above gauge field
ansatz into the DBI-action (3.10), together with the metric ansatz

D8

D8 9u 0

g ° = , 3.16
() e

to allow for a different response of up- and down-brane to the magnetic field. Subsequently
one can solve for v’ = du/dr (for each flavour) by expressing conservation 9, H = 0 of the
‘Hamiltonian’ H = o/ %ﬁj — L7 with Sppr ~ [drL™ and assuming a U-shaped embedding,

i.e. v = 0atu = ug. The result for the B-dependent embedding is (for more details, see [1]):

T(u) =7 = (T“ v ) (3.17)

0 74

with

R\® 1 ud , foAoy
0T = <> — e x 0(u—ugy), (=u,d 3.18

w/) fRutfA =g, foido, (w=mop), | ) (3.18)

where f is short for f(u) = 1—u?. /u3, Ag and fo stand for A(ug) and f(ug), O(u—ug,) is the
Heaviside stepfunction, and all the B-dependence is collected in the newly defined matrix A:

3 3
am (A0 2y a2 (BY . am 14 @y (B —wa)
0 Ag “

w
(3.19)
The up- and down-brane are thus no longer coincident in the presence of B, as sketched
in figure 2.
The splitting of the branes represents the magnetically induced explicit breaking of
global chiral symmetry,

U©2) x U2)r 2 (UQ)L x UL)R)" x (UL x U(1)p)4, (3.20)
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Figure 2. The change in embedding of the flavour branes caused by the magnetic field B models
the chiral magnetic catalysis effect. The up-brane reacts the strongest to B, corresponding to a
stronger chiral magnetic catalysis for the up-quarks than for the down-quarks.

caused by the up- and down-quarks’ different coupling to the magnetic field. This is also
reflected in the fact that the non-Abelian DBI-action for the two D8-branes reduces to the
sum of two Abelian actions (the STr reduces to an ordinary Tr because the embedding
matrix (3.17) is diagonal).

The B-dependence of ug,, and ug 4 is determined by keeping the asymptotic separation
L between D8- and D8-branes, as a function of B given by

L) R 3/2 u8f0A0
L= 2/ du () -1 0 , 3.21
W ") T S A (3.21)

fixed to its value at B = 0. L serves as the boundary condition on the branes’ embedding,?

see also for example the work of Preis et al. [16-19]. The B-dependence of the constituent
quark masses then follows directly from (3.7), or in terms of the fixed parameters

uQ 1
VM AL = e

The results for uy(B) and my(B) (for both flavours) are shown in figure 3. The rising of

mq(Mg, uo, k) (3.22)

the constituent masses m, with B is consistent with the interpretation of the B-dependent
embedding as a modeling of the chiral magnetic catalysis effect (as already discussed in the
Sakai-Sugimoto model in [16-19]): as the value of ug, where the branes merge, rises, the
U-shaped embedding gets more strongly bent, diverging more and more from the chirally
invariant embedding of straight branes. The up-brane reacts twice as strongly to the pres-
ence of eB, corresponding to a stronger chiral magnetic catalysis for the up-quarks than for

2From the perspective of the asymptotic dual field theory, the flavour branes are infinitely extended,
massive objects in the bulk, requiring an infinite amount of energy to move them. In this sense it is natural
to keep L fixed as a boundary condition to probe the effects of the bulk dynamics in the presence of the
external field. The value of L determines how much of the gluonic bulk dynamics is probed, ranging from
all (ug = ug) for maximal L to none (ug — oo) for minimal L. In this interpretation, the choice of L (which
has no direct physical meaning in the dual field theory) corresponds to the choice of type of dual field theory,
ranging from QCD-like to NJL-like in the limit of L — 0 or 7 non-compact. To avoid confusion, with “NJL-
like” we refer to a model sharing some but not all features with NJL-models. For more details, see [61].

,10,
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Figure 3. (a) 5—}0( as a function of the magnetic field for the D8-brane corresponding to the up-
quark (red), and the one corresponding to the down-quark (blue). (b) The constituent masses of
the up-quark (red) and the down-quark (blue) as a function of the magnetic field.

the down-quarks. In the special case of an antipodal embedding uy = ugx at B = 0, turning
on the magnetic field has no influence on the brane embedding: fy =0=07T=0=7~ 1
so the branes remain antipodal and coincident for all values of the applied magnetic field.
Hence choosing the extremal antipodal model corresponds to ignoring the magnetic catal-
ysis.

It is interesting to notice that a similarly shaped plot as in figure 3b was presented
in [62, figure 12] for the in [48] proposed order parameter in terms of a background magnetic
field (be it for the case of a non-compact 7-direction).

4 Stability analysis

To investigate the stability of the set-up with respect to gauge and scalar field fluctuations,
let us first derive the form of the action to second order in the fluctuations by plugging the
total gauge field ansatz

?

{AT:ATjLAT (r = p,u) (41)
T=T+T
with (see (3.13) and (3.18))
Eu = —ieQemT1 B2
_ 3 ud fo A )
07 =\ (5" o e x 00— )

into the DBI-action (3.10). The background components of the field ansatz (4.1) describe
the background magnetic field (in A,) and the (B-dependent) embedding of the branes (in
0uT). The fluctuation components will be related to resp. vector and scalar mesons in the
dual field theory.

We have to evaluate (for notational brevity we temporarily absorb the factor (2wa/)
into the field strength)

Q/du STry/—det(ars) = 2/du STr\/— det(gP8 +iF).y), (4.3)

(4.2)

with

grD58 = Grs + Grr Dr7 D5, with D, = 0, + [AT? } (4.4)
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and
Fro = 0,4, — 0,A, + [Ay, AJ). (4.5)
If the argument a of the determinant (which runs over the Lorentz-indices) is written as
a=a+a +a? 4. ..

with a(™ being n-th order in the fluctuations A, the determinant can be expanded to
second order in the fluctuations as follows

1 1 2 1 1
V—det al jo=v—det a{l—i— itr(dfla(l))—i- 3 (tr(a’la(l))) = ztr <(6*1a(1))2) +§tr(a’1a(2) )}
(4.6)
We denote the trace in Lorentz-space with a small tr, and the trace in flavour space with
a capital (S)Tr. Splitting each component of a in its symmetric and antisymmetric parts

a'=G+B8
a® =g 4 5, F (4.7)
a® =a® + 02 F

the expansion of the determinant (4.6) to second order in the fluctuations becomes
V—detal 3o = V—deta + v—detax
1 1 2 1 1
X {Qtr(ga(l)) +3 (tr(ga(l))) — Ztr(ga(l)ga(l) + BaMBa) + 5tr(ga(2))

+ %tI‘(B(le) + é (tI‘(B(le»Q — itr(géngélF + B(glFBélF) + %tr(852F>
1 1 1
—I—Ztr(ga(l))tr(BélF) - 5tr(ga<1>15’51F) - 2tr(g61FBa(1))} . (4.8)

For our field ansatz we have

Qrs = Grs + g'rrar?as? + iFrs: (49)
al) =g, (8ﬁ ([As,ﬂ + Ds%) + ([/L,?] + Dﬁ) 05?) , (4.10)
51 F, = i(Dy Ay — DA,) " i F (4.11)
a? =g, ([/L,?] + DT%) ([As,ﬂ + Ds%) + Grr ([AT,%]GS?Jr 0, 7|A,, %]) . (4.12)
6o Fys = i[A,, Ay]. (4.13)
The symmetric part G of @' is diagonal,
900 1
g A7
g= gz_QlA’l ,  with Guy = guu + gTT(&J?)Q (4.14)

1
933

1

Guu
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and the antisymmetric part B has non-zero components
_ I R e Ry |
812 = *821 = ’LF12g11 922 A . (415)

As a check, the first order terms in (4.8) do vanish on-shell, that is upon using the embed-
ding function (3.18). The DBI-Lagrangian to second order in the fluctuations then reads

STre V—detal g 2o 4> = L1+ L2+ L3+ L4 (4.16)
with
£1—Tre V—deta
EQ—STrm{;< 7+ D, T) G;3+y[21u,ﬂ+%({AM,?HDM) Gt Az 2G }

_ ~ 1
Eg:STI' { 12911 g22 [Al? AQ] 79#;},91/1/ 2’M7V:172F31/_§g,u 1|M 1 QGuz}Fi’u}

L4=STr f{ (( +Du7'> F12+([A1,7]+D1%) Fgu—([/ig,ﬂ—l-DQ%) Flu)},
(4.17)
where
T=e¢? V—deta = €—¢g%1 \% Guuggﬁl \/Zv Y= G;}g‘rrau?, zZ = ?Fugﬂlgﬁlz‘rl
(4.18)

are functions of the background fields 0,7 and Fi9, so functions of u only, and diagonal in
flavour space. The notation for the factors g;/}A*II u=1,2 coming from G means that g;/j is

accompanied with a factor A~! = L only for u=1,2.
1—(27a/)2F {3 R3 /u3

4.1 Gauge fixing
4.1.1 STr-evaluation

The action (4.17) contains mixing terms between the scalar and gauge fluctuations in Lo
and L£4. We will disentangle these couplings here by choosing a particular gauge. First
we work out Lo a bit further by evaluating the STr (3.11). According to its definition
in [56] the STr takes a symmetric average over all orderings of F,,,, D,7 and 7 ap-
pearing in the non-Abelian Taylor expansions of the fields in the action. In particular,
commutators, such as [A,, 4, in F,,, or [A,,, 7] in D,,7, are handled as one matrix. The
STr-expressions we encounter in (4.17) can be classified into two types: expressions of the
form STr(H(0,7)G(F12)X) and STr(H(9,7)G(F12)X?). Here H, resp. G are even functions
of the diagonal background field

resp.
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and X = X% is some fluctuation — in the present case fully general fluctuations D,,7 and
off-diagonal fluctuations [A,,,7]. For expressions of these types the STr can be evaluated
exactly [59, 63] as elaborated on in the appendix A. Using the prescriptions presented and

Lt o))

% (Dﬁl)g} (4.19)

rederived there, we arrive at the following form for Lo:

LQZi{V(u);([éu,r]uaﬁ) +a(u ([Am] +Dﬂ) +B(w)

a=1

NE

Il
=

I

+ T (A7) + 3 {wm; (07) + antwyy (Du') + i)

l=u,d

T
Il »
A

) =y 1@GD, alw) =31 Gal), A =51 (FoGal 50 ), (120

<:chlG_ AA) (4.21)

containing what we will refer to as ‘I-functions’ and ‘I;-functions’, defined in (A.7)
and (A.8), e
1@G0) = e ghigd, I (Gl *(07) A (Fro) )

l\D\H N | —

W) =~ hFGL), aulw) = 5 (g Gal), () =

—¢, 2 2 1
_ & 9ngs, 9211954/ da{ G2 (07 +adT*) AV (FO 4 aF?) + G2 (07° a8?3)A1/2(FO—aF3)}’
0

L(TG) = e ghgd, Gl (07" + o7 AP (F° + F?),
with 07 short for 0,7 and (with 7 = 7¢%)
g T
T

Having used g, = g117,, and absorbing 7,, in the notation of the squares, (9,7%)? =

0y 70, TN = 0,7*0'7¢, all the products over p in the above Lagrangian (and in all
expressions following unless stated otherwise) are contracted Minkowski products.

The difficulty in evaluating the STr, although we restrict to second order in the
fluctuations, comes from the presence of the background fields 07 (appearing in the
induced metric on the flavour branes through Gy = guy + g--(9,7)?) and F12 (appearing
in A as defined in (3.19)), which have to be ordered® within the STr. The functions
containing the background fields have to be Taylor expanded before the ordering and
subsequently resummed. This gives rise to complicated [-functions as in (4.20), which in
general have to be calculated numerically.

4.1.2 Choosing a ’t Hooft gauge

We consider a 't Hooft gauge-fixing function [64] in the non-Abelian directions — assuming
the Einstein convention that double SU(2)-indices b, ¢ = 1,2, 3 are summed over —

G = \}g a(u)Dy A% + y(u)Dy A% + Y B(u) DAY | +2iy/Eeac T (a=1,2) (4.22)
i=1,2

3There is some ambiguity here in the sense that the background scalar field 8,7 itself depends on the

background gauge field Flg, so there is also the option to order the matrices F1o within 0.T, as opposed
to ordering 9,7 as independent. We however opted for the latter, which seems more logical to us.
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such that the gauge-fixed Lagrangian
LGP =Y {v(u)% {([Au,?]“)Q + (aﬁ)z} +alu)y [([Au,ﬂa)Q - (Dﬁ)?]

a=1
2

8D 5 [(Mma)2+<Dﬂ>ﬂ ~ 3¢ [(DA)* terms] + 5 s%“)?(273>2+2mzeabc#au<v(u>70>}
+Tr (zgldn, 71) + Y {0} (4.23)

l=u,d

will be free of mixing terms for a sensible choice of the gauge parameter £&. The Lagrangian
L is replaced by £ — %(G’C‘)2 by virtue of the Faddeev-Popov trick: the partition function
of a system with action S = [ dzL fulfilling the gauge-fixing constraints G*(A4,7) = 0 is
written as

Z = / DADr '/ @A) / DAD7 '/ WEADS [G(A, 7)) Agian (4.24)

with proportionality constant the volume of the gauge group, §[G(A,7)] =
;. (6 [GY(A(x),7(2))]) and Aga,) the associated Jacobian, or alternatively —
through introducing the gauge-fixing as 6(G*(A(x),7(z)) — w*(x)) and integrating over
w? having a Gaussian distribution around zero — as

Z ~ /DADTeifdz[ﬁ(A’T)_é(Ga(A’T))Q]AG(A )

_ ~a=1,2
a=12 _, T2 and choose the so-called

Now we rescale the charged scalar fluctuations 7 T

‘unitary’ gauge
& — o0. (4.25)

1

This boils down to deleting all dynamical terms for the fluctuations 7=2 and we are left

with
Lo - (G = i {w(u); (140,717)" + atw (14 717) " + Blw) i S (A7) + ;(%“)2(273)2}

a=1 p=1

+ Z {1}, (4.26)

l=u,d

With the above gauge choice we can see the Higgs mechanism at work that is associated with

the magnetic field pulling the up- and down-brane apart: the charged scalar fluctuations

712 now serve as Goldstone bosons that are eaten by the gauge bosons fl}r}z, acquiring

3 is essentially the vacuum expectation value of the diagonal

0,3

a mass ~ (7°)2, where T

component 73 of the 7-field. The remaining fluctuations 7% are the Higgs bosons.

4.1.3 Fixing the remaining gauge freedom

In the unitary gauge, L4, containing the only remaining mixing terms between gauge and

scalar fluctuations, reads
2

1 1 a tha 1 =1ara 1 =12 ra — ~1 7 ~l ~l 7=
L=t {I(mz)z (140, 71 B+ (A1, 717 o= (A2, 71" Fi] + 3 1i@2) [DurlngJrDlrlFéu—DzrlFfu]}

a=1 l=u,d

_ %1(%) S (<A 7I70uA8 + A2, 70, A7) (4.27)

a=1
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where we used partial integration. The neutral part vanishes due to the gauge choice
A3 =AY =0, (4.28)

hereby using the remaining gauge freedom in the a = 0,3 directions, as the 't Hooft
gauge (4.22) only fixes the gauge for a = 1, 2.
In the chosen gauge (4.22), (4.25), (4.28), the Lagrangian is free of A,,7 couplings:

STr e,¢ vV —det CL|A277~_2 = Z + £Higgs + Escalar + Evector + ‘Cvector—mixing (429)
with
L=Tre */—deta
2 1 ~7a2 1 1 —=la 21 ~7a2 1~a2732

Lingss = 3 A v(w)g (1A 71) +awyy (140,717) +8@) 2 7 (1A07?) — 392

a=1 pn=1

B 1/, . 1/ 2 21/ 2

[’scalar — l:Zu:d {’YZ(U)Z (auT ) + al(u)i ( /J,T ) + ﬁl(u) Hz::l 5 (D/J,T ) }
Lyector = STr E{_FIQQM [AlvAQ] 911 Wi nv A_2|H7V=172 - %gl_llG;}Fiu A_1|M:172}

1 2 1 a 1a 1 =ja 1a

»Cvector—mixing - 5 {I(LEZ) ; (_[Ah?] auAQ + [AQ,T} auAl) } . (430)

4.2 Stability in scalar sector

In this section we discuss the scalar part of the DBI-Lagrangian (4.30),

Lscalar = STr 6_‘15\/%\;2
2

= W(U)% (&ﬁl)Q - az(U)% (D,ﬁl>2 + Bi(w) Z% (D,ﬁl)z . (4.31)
I=ud

p=1

With the purpose of checking the stability of the B-dependent configuration with respect

to scalar fluctuations, it is important to keep track of the correct signs in the action. First

of all, we therefore replace (7/)? — —4(7')? such that the fluctuations 7/ = %Oi; ® are now

written in terms of the real components of the scalar fluctuation 7 = 7%0® (where in (4.19)
it was implicitly assumed in evaluating the STr that 7 = 7%t% = —i7%*/2 with imaginary
components 7%). Slightly redefining Lgca1ar to incorporate the sign of the full action,

Spprlz = —Tg/d4a: 2/ du/e4 e~ STrv/— det alz = Tg/d4x 2/ du/qﬁscalar
uo uo
we then end up with

Locatar =~ Y {Iz(mef) (&ﬁ ) + L(Tgp Gl (Dﬁl)Q s (xgw Gil=A ) 22: ( ) }

l=u,d p=1

with the convention (@ﬁ'l)Q = 3u7~'lau7~'l7llw-
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The Hamiltonian associated with the Lagrangian is given by

H— 555;‘1171“ o7 — Locatan (4.33)
2
=3 {Il (ZG,2) (8u%’> i +1(Tg, Gt <<E)0%l) “+ <63%1> 2) (TG  God AT (Dﬁ ) 2}
l=u,d =1

where we switched notation again to normal squares (8MTZ)2 = 8M7'l 8MTZ. For the embedding
to be stable towards scalar 7-fluctuations, the associated energy density has to obey

£ = / H >0, (4.34)
ug,d

which will be the case if each of the I;-functions is positive.

Let us discuss the two background functions that appear in the I)-functions, A(F12)
and Gy, (07). Using (3.18), the uu-component of the induced metric on the D8-branes as
a function of the embedding 07 reads

—0 —3 — _\2 R 3/2 1 1
Guu(aT + 07 ) = Guu(aTl) = Juu + gTT(auTl) = <u> ?W? (l =, d)
ud fA
(4.35)
with u > ug, implicitly understood, and, from (3.19),
—2 (R\?
A(FY+ F3) = A =1+ (2md))?F, <u> . (I=wu,d) (4.36)

with the plus (minus) sign corresponding to | = u (I = d). A; is an increasing function of
B, equal to 1 for B = 0, and a decreasing function of u, equal to 1 for u = 0o so

A;>1 (for all B and u).
. u§  foiAo . . . . . .
The function 1 — —usjA, s a monotonically increasing function of u going from 0 at wug
to 1 at u — oo for any fixed value of B, see figure 4. Then,

L(TG.) = e Pghgs, L(G./?AY%)
~—_———

Gai 2 (0m) A2 (F)

3/2
A A )
R uszl l
~—~—
(u—lg)?’/zu%moo ( _%3>3/2.,.1 0---1 for any fixed value of B >1
>0, (4.37)

uu

L(@g Gad) = e 09t gk.01 L(GRt2AY?)
~—_——

Gua* (7)) A2 (F))
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8
Figure 4. The function 1 — % as a function of u for [ = u,d for B = 0.2 GeV? in blue and

B =1.2GeV? in red. Up distinguishable from down through g, > ug 4.

1/2
e () e o ttrtr) g
R R u ufA !

1/2
- u5/2f1/2 1 ug,lfoleOJ A1/2
uszl 1
~ ~——
\/mmoo 0---1 for any fixed value of B >1
>0, (4.38)
and for the same reasons
LT GuuA™Y) = e ?gh1g%,01) N(G?A71?) >0 (4.39)
[

Gua 2 (0m) AP (Fy)

This concludes the proof of stability of the flavour branes’ embedding as depicted in figure 2
with respect to diagonal 7-fluctuations. Note that the off-diagonal 7-components have
disappeared through the gauge fixing in section 4.1 — except for an irrelevant mass term
for the undynamical 712 in Lttiggs- A similar mechanism in the context of the holographic
description of heavy-light mesons can be found in [65].

Let us briefly expand on the physical interpretation of the discussion of stability in
the scalar sector. While in the seminal work of [2] (the z#-dependent parts of) the scalar
modes 7 were identified with scalar mesons in the dual field theory, this interpretation was
revisited in [66], where it is argued that the 7-fluctuations are to be regarded as artifacts
of the SSM.# The reason is that they transform under a Zo-symmetry of the geometric
configuration (strictly speaking in the antipodal set-up), which is redundant in the sense
that it is not shared with QCD. This is similar to the gauge field components Ag, not
having a counterpart in the dual QCD-like field theory, as they transform under the SO(5)
isometry of the four-sphere in the background (3.1). Any concern about the interpretation
of the off-diagonal 7-components disappearing in the holographic Higgs mechanism coupled

4We would like to thank S. Sugimoto for private communication about this.
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to the gauge fixing, is hence resolved: the ‘eaten’ fluctuations do not correspond to physical
QCD-particles. The above discussion of the stability is not to be interpreted in terms of
mesons in the dual field theory, but rather establishes that the geometrical configuration
we will employ further is stable against small perturbations.

4.3 Vector sector in (27a’)?F2-approximation
Consider the vector part of the DBI-Lagrangian (4.30),

L = Litiggs + Lvector = STr e~ ?v/—det a4
= i {7(“); ([Zlu,?]“)Q —l—a(u)% ([Awﬂa)Q + Bu) i; ([AmT]a>2}

— 1
+STI' l’{F12g1_12A [Al,AQ}**gl 2F2 A 1G7“}F3u 1|#_172} . (440)

We have anticipated the vanishing of Lyector—mixing upon filling in the gauge field expansion
in terms of vector mesons, which we will come back to shortly. Let us reinstate the factors
(2ma’) that we absorbed into the field strengths for notational convenience, and further
approximate® the action to second order in (2ra’)? ~ 1/\%:

2

Y { AR ot Fi gt (gt ene s ) (A ey

2
1 “a . 1 =1 Aa A
+ Z <—29111f3(14u)2(273)2 - 5( GuuFW)SG%bAMAZ)

o (- gotnas ) (AP (141)

2 (2ma’)?
with proportionality factor —% gglR%+3 and

A=I(GY2), o=1(Gl?), fs=1(Gyl/*Fyy), fa=1(Gy2?) and fs=1(G2/*Fy,)
(4.42)
similar /-functions as encountered in section 4.1.1, again arising from the evaluation of the
STr using the prescriptions in appendix A.
Effective 4-dimensional meson fields are introduced via the assumption that the flavour
gauge field can be expanded in complete sets {1, (u)},~; and {¢,(u)},~, as follows [2]

=Y B (@) n(u) = pu(a)(u) + - - (4.43)
n>1
=D A (@) ba(u) = w(a")po(u) + -+ . (4.44)
n>0

The rho meson appears as the lowest mode of the infinite vector meson tower B( ) and
the pion as the lowest mode of the infinite (pseudo)scalar meson tower qu . We will
only retain these lowest-lying mesons in the fluctuation towers, as — with the purpose of

5We assume here that the expansion in 1/) is justified because A = 15 is still large for the parameters
that we fixed in section 3.2. We will elaborate on the validity of this expansion in the next section.
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discussing a possible tachyonic vector instability — it makes sense that the least massive
vector meson will likely be the first to condense.

One obtains an effective 4-dimensional action for the mesons by plugging the above
fluctuation expansion for the gauge field into the 5-dimensional DBI-action governing the
dynamics of the flavour gauge field, and subsequently integrating out the u-dependence.
Some terms can already be understood to vanish during the integration over the extra
radial dimension u by looking at the parity of (z) = ¢¥(u(2)) and ¢o(z) = ¢o(u(2)),
with u(z) = ud + upz? a commonly used coordinate transformation to the coordinate
z = —00--- 00 following the brane from one asymptotic endpoint to the other. Both ()
and ¢g(z) are even functions [2], hence coupling terms between rho mesons and pions of the
form ~ Duﬁfﬁuflz ~ D, pdo(u)0y1p originating from (Fﬁu)z will give rise to vanishing
integrals ffooo dz{odd function of z} = 0. This means we can discuss the rho meson and
the pion terms separately. For the same reason the terms ~ flﬁuflj (with i,7 = 1,2)
coming from Lyector—mixing Will not survive the u-integration. Note that this simplification
is a consequence of cutting the meson towers down to their lowest states.

4.3.1 Rho meson mass and rho meson condensation

Background dependent functions in the action. Before continuing with the strat-

egy outlined above to extract the 4-dimensional effective action for the rho mesons, we take

a closer look at the relevant functions f1, fo and f3 as defined in (4.42), as well as the defini-
1/2

tions for 72 and (Guu Flg)?’ in terms of up- and down-components of the background fields.
Using (A.2) and (A.7) we have
) (4.45)

o7, +1/9g
/ d — gu'U/ 1 ngTT 'TT
2(5'Tu 0T q) < i0Tu= ) Gl OTat l
(4.46)

h=1G=

V Grr angTT+ V g‘r‘r
1 OTugrr + /9::Gh
n
(8?71 - 87,1) V9rr a?dgr'r + V g‘rTGgu

1 .
— /27 _ _
f3=1(G,, F12) 207 — O7a)? g%g {(Fd Fy) [\/QTT W(OT4F g+ 3074F, — 407, F 4)

+Grr G (0T F oy + 307, F g — 407 4F )

B B - OTugrr+ U un
— (207, Fa=074F ) grr — (Fa—Fu)’ guu) lhlgffguu““< - \/97 H -

a?dg'r'r g'r'r

f2 _ I(G—I/Q) _

uu

with OF short for 9,7 = (3.18), G, = Guu(0,7) and F, = %, Fy = —%, as defined
n (3.15). Because of the theta-functions 6(u — ug;) contained in 9,7, the contribution
of 0,7, only kicks in at u > ug,. Therefore these functions will all be discontinuous at
u = gy, as can be seen in the illustrative plot in figure 5 for B = 0.8 GeV?. The dependence
on B is implicit through the embedding, except for f3 which also depends explicitly on B.
Further, 7> gives a measure for the distance between up- and down-brane, defined as

i U= _ 9= Wu A= _ A = u 9 =
_3 u) :/ 8u?3du :/ OuTu aqudu :/ OuTu aqudu—i—/ 8UTdd’u,
) o0 2 o] 2 UO,u 2

such that 7 fulfills the boundary condition that the flavour branes coincide at u — oo:
7~ 1 = 73(0c0) = 0. In figure 6 the resulting discontinuous 72 is plotted for B = 0.8 GeV?,
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Figure 5. (a) f1 (red), fo (blue) and f3 (yellow) plotted as functions of x, related to w through
u = ug,q cos~%/2 z mapping the infinite u-range to z = 0---7/2. (b) fi = I(Gx.’) (blue) compared
to (GZ,)Y/? (yellow) and (G¥,)'/? (red), i.e. the functions which would replace f; if there were a
Tr instead of a STr in the action, reducing the non-Abelian to a sum of two Abelian actions. As
required, f1 — G2 in the limit of coinciding branes at u — 0. (¢) fo = I(Giu / *) (blue) compared
to (G4,)~/? (yellow) and (G¥,)~/? (red). All plots for B = 0.8 GeV?.
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Figure 6. The measure 7> (z) for the splitting of the branes and the resulting estimated contribution
to the mass term for the flavour gauge field and indirectly the rho meson. The range @ =0---7/2
maps to u = ug q - - 00 and we chose B = 0.8 GeV?.

along with (273)2/(27a’)? which contributes to the ‘u-dependent mass’ of the 5-dimensional
gauge field. The contribution is small — although it is (2ra’)~2-enhanced — since the
splitting itself is a small effect. The last relevant background function in the action (4.41)
for the discussion of the rho mesons is

(GY2F 93 = \ /G, Fy — /G Fy. (4.48)

Eigenvalue problem. Upon substitution of the gauge field expansions (4.43) and (4.44)
into (4.41), the 5-dimensional DBI-Lagrangian to second order in the rho meson fluctuations
(and second order in (27a’)) reads

2

/ 1 a 1 a 1 (0 T
L~ u1/4(27ra )2 azbz:l {_4]01(}—;“/)2'4[]2 - 5911f2(pu)2(6u¢)2 - 5 (27€2/)2f2(p#)2¢2(2T3)2 (449)

2
1 . a1 _ . _
+> <29111f3(ﬂu)21/12(273)2 — 5V GuuFW)SE?)abPuPWz) } + pions,

pn=1

with 72, = D,pt — Dyp% and fo = fo — 3917 (2ma’)? f.
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Demanding that the first line of this Lagrangian reduces to the standard 4-dimensional
form

> (- - gmienr) (4.50)
a=1,2

after integrating out the u-dependences, leads to a normalization condition

/ du u*frp? =1 (4.51)
u0,d
and a mass term condition
> 1/4 2 14 911 7 5-3v2 2 _ 2
du S u’*g11 f2(0u0)” + u 5 [2(27°)7Y% b = m (4.52)
-y (2ma)

6

on the (u) functions,” which combine through partial integration to an eigenvalue

equation for ¥ (u):

u_1/4ff18u (u1/4g11f20u1/1) - (27{2,)2 ff1f2(2?3)2¢ = —AT/% (4'53)

with the eigenvalue A = m% the sought for rho meson mass squared. We can separate the
Higgs contribution to mf) by defining

mi _ / du U1/4gllf2(au7/})2 and m?),Higgs _ / du u1/4 gll/ 2]52(2?3)277&2
o o (2mal)
(4.54)
such that
P P p,Higgs- ’

Let us also mention that from (4.52) one can see that m% > 0.
To solve the eigenvalue equation (4.53) numerically on a compact interval, we change

LT

to the coordinate x = 0-- -z, 5

related to u = ugq- - ugy - - - 00 by
ud = “8,d cos 2 . (4.56)

Rewritten as a function of z, the eigenvalue equation is invariant under x — —z, so we
can split up the eigenfunction set in even/odd ), (x)’s, which correspond to odd/even
parity mesons:
P (0) =0 or 9,9,(0) =0. (4.57)
Asymptotically, the eigenvalue equation (4.53) reduces to 9, (u5/ 28uw) = 0, with the
asymptotic solution 1 (c0) = c% + d only normalizable through (4.51) if d = 0, i.e. if

P(u—>00)=0 or ¢P(x— +w/2)=0. (4.58)

5We absorbed the total prefactor \/V4ng;1R%+3 (2ma’)? into 1 such that ¢ has a total mass dimension
of 5/8 instead of 2 (without the prefactor).
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The eigenvalue problem (4.53) for the (odd parity) rho meson with the appropriate
boundary condition (4.58) in the z-coordinate is thus of the form

OO+ = —AY with  (Em/2) =0, 9,(0)=0.  (4.59)

To solve it we employ a shooting method, which consists of temporarily replacing (4.59)
with the well-defined initial value problem

OO+ = =AY with  (0) =1, 9.p(0) =0 (4.60)

where A is treated as a ‘shooting’ parameter. We used the scaling freedom ¢ (x) — hip(x)
to impose that 1(0) = 1 (the value of h will be fixed by the normalization condition in the

end). For each value of A, (4.60) can be solved numerically for ¢ (z). Next, solving the
2
5
For completeness we add a few comments about the numerical method we used to

equation ¢ (7/2) = 0 finally determines the eigenvalue A = m

solve the eigenvalue problem at hand (4.59), which in detail reads

0 poaya 2w oy (oo N s W 0 — i
= Uy ——— . _ LY | — ———(cos™T x T = —mi,
4 0d  ging ! > sing (2ra’)? 2 P

(4.61)
with ¢(£7/2) = 0 and 9,4 (0) = 0. Near the origin x — 0 the equation takes the form

7@¢+£¢—mm@¢—1&¢:a (4.62)
xr

so we have to provide Mathematica with an ansatz for () at small = to prevent the

equation from blowing up there. Demanding that d,¢ ~ x to avoid the last term in (4.62)

from diverging, would still give Inz 82¢) — —oo. Instead we demand that 921) ~ -

Inz

or p(x — 0) = 1+ 2237 “— (in practice we have set n = 13). With this ansatz

i=1 1y’
for v» = 0,9 ~ Loglntegral(z) + ¢, the term %8331/} will only be finite if the integration

constant ¢ = 9,1(0) = 0.7 Near z = Zyp, or y — 0 in the useful coordinate y defined

through u? = U%,u cos 2y, the differential equation’s form

1
7@¢+%¢—my%¢—§@¢:a (4.63)

again needs to be fed with an ansatz for 1 that keeps the equation finite,

Le. Yy — 0) = Y(x = zup) + Y2 D1y lr;liiy with 9,1(0) = 0. This means we can

demand continuity of 1 at & = z,, but not of its derivative.® An example result of ()

and its derivative is shown in figure 7.

"This is consistent with vector mesons, but not with the initial condition on axial mesons (which we
have not considered). We have not looked into it further to see if there is a way around this, in order to
still be able to describe axial mesons in the presence of a magnetic field in this setting.

8Tt is known that the Schrédinger wave function can display kinks (thus jumps in its derivative),
depending on the potential (singularities), see e.g. [67]. This corresponds to the singular behaviour of some
of the coefficient functions for y — 0 in (4.63).
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Figure 7. Plots of the rho meson eigenfunction v (z) and its derivative 9, (x), discontinuous at
T = 2y, ~ 0.54, for B = 0.9 GeV?, obtained numerically with a shooting method.

Effective 4-dimensional EOM and result for total eigenvalue. The effective 4-
dimensional action becomes

2 2
1, . 1 a 1 a 1 o —3
sip = [da Y {—4@)2 - B + Y (-~ gt BN - gt k(B)F,w)}
a,b=1

(4.64)
with the normalized v, as determined in the previous paragraph, satisfying the normal-
ization and mass conditions (4.51) and (4.52), and the newly defined m4 and k to be
calculated from

/ du u1/4gl_11f3(2F3)2w2 = mi (4.65)
Ug,d
and -
/ du u (/G uuF12)*0? = k Foy (4.66)
ug,d

with F?Q = B. Here m is an extra contribution to the mass of the transverse (w.r.t. the
magnetic field B = Bés3) components of the charged rho meson, pf;ll%, as a consequence
of B breaking Lorentz invariance. The parameter k describes a non-minimal coupling
of the charged rho meson to the magnetic field, related to the magnetic moment p via
w= (14 k)e/(2m) so to the gyromagnetic ratio g via g = 1 + k.

The standard 4-dimensional action used to describe the coupling of charged rho mesons
to an external magnetic field is the Proca action [68] (which is equivalent to the DSGS-
action [32] for self-consistent rho meson quantum electrodynamics to second order in the
fields). The Proca action is equal to (4.64) with m4 = 0 and m, and k(= 1) independent
of B: there is only explicit dependence of the action on B, which is to be traced back to the
treatment of the rho mesons as point-like structureless particles. Instead, in our approach,
the effect of B on the constituent quarks is taken into account via the effect of B on the
embedding of the flavour probe branes,” leading to an implicit dependence on B of both
the mass m%(B) and the magnetic coupling k(B). The effect of B on the embedding is
two-fold (see section 3.4 and in particular figure 2): the branes move upwards in the holo-
graphic direction, corresponding to chiral magnetic catalysis, and the up- and down-brane
get separated, corresponding to a stronger chiral magnetic catalysis for the up-quark than
for the down-quark. Both effects translate into a mass generating effect for the rho meson,

In the antipodal Sakai-Sugimoto model where the embedding is B-independent, one recovers exactly
the Proca action [1].
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Figure 8. Numerical results for m2(B), m3 (B) and k(B) in the (2ra/)? F?-approximation of the
DBI-action.
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Figure 9. The Higgs contribution m? ;,; . (B) to the rho meson mass squared m; (B), as defined
in (4.54), in the (27a’)? F2-approximation of the DBI-action.

mg(B) ", as can be seen in figure 8. The chiral magnetic catalysis causes the rho meson to
get heavier as its constituents do. The split between the branes adds to the mass of the rho
meson via a holographic Higgs mechanism: as the branes separate, the flavour gauge field
strings between up and down branes (i.e. representing charged quark-antiquark combina-
tions ud, ud) get stretched. Because of their string tension this results in an extra Higgs
mass term in the action for A%~"* — and thus for pZZl’z — of the form (A%)*(7%)?, with

3 ~ T, — T4, originating from (D,7)? ~ ([A,,7])? in the start action. Where in the ab-

=
sence of splitted branes, 7> = 0, the 4-dimensional mass m,, as defined in going from (4.49)
to (4.50) is purely effective, i.e. only present after integrating out the fifth dimension w,
the Higgs contributions to the mass stem from the stringy mass of the 5-dimensional gauge
field itself. A direct interpretation of the stringy mass contribution in effective QCD-terms
we cannot offer. Since the splitting of the branes is small though, the induced mass con-
tribution is almost negligible, see figure 9. Further, as can be seen in figure 8, m(B) \
as fs in (4.65) is negative, so the mass of the transversal components of the charged rho
mesons will already be slightly smaller than that of the longitudinal ones, and k(B) 7 is
approximately equal to one, but not exactly, corresponding to a gyromagnetic ratio g ~ 2.
The 4-dimensional EOMs for the charged rho mesons pZ:1’2 are given by

Dy Fe, — cagy k(B) Foypl — M*(B)pls = 0, (4.67)
M?*(B) = m,%(B) + (0u1 + 6u2)m?(B) (4.68)

with D), = 0, + [Ay, -] and F, = Dyp}, — Dypf,. They combine into the EOM
. =3
D.(Dyupy = Dupu) — i k(B) F,ypp — M*(B)p, =0 (4.69)

with D, = 0, + z'Zi for the charged combination p, = (plll + zpi) /v/2, and the complex
conjugate of this equation for the other charged combination pj, = (p}L - zpi) /V2.
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Solving (4.69) with p, — e'PE=Et) for the eigenvalues of the energy, one finds
‘modified Landau levels’ that we will discuss in more detail in the next section, where
they will show up as a special case of the most general form of modified Landau levels
that we encounter solving the 4-dimensional EOMs that come from the use of the full
DBIl-action. Only in the case that k = 1, my = 0 and m,(B) = m,(0) one retrieves the
standard Landau levels for a free relativistic spin-s particle moving in the background of
a constant magnetic field B = Bés (assuming B > 0):

E*=m}+p5+ (2n—2s3+1)B (4.70)

with n the Landau level number and s3 the eigenvalue of the spin operator

1 0 o9 — 101
Se = = 4.71
3 2 (O’Q—i-ial 0 ) ( )

giving the projection of the spin of the particle onto the direction of the magnetic field.

While the modifications due to k # 1, m(B) # 0 and m,(B) are a bit subtle for
higher levels, the energy of s3 = 1,p3 = 0 particles in the lowest Landau level n = 0 is
given by a straightforward generalization

E* = M*(B) — B k(B) (4.72)

of E? = m?) — B. We conclude that the combinations of charged rho mesons that have

their spin aligned with the magnetic field, s3 = 1, i.e.
p=p1+ipz and p*=p] —ip;, (4.73)
will have an effective mass squared
m” .y = M*(B) — B k(B) (4.74)
going through zero at a critical magnetic field
B, ~ 0.78 GeV?, (4.75)

which marks the onset of rho meson condensation. Our result for mi eff is shown in
figure 10.

The total action includes, next to the DBI-part, a Chern-Simons term. In general,
contributions from the Chern-Simons action are suppressed in the large \ expansion, but
in the presence of large background fields Chern-Simons effects can become important,
similar to the higher order terms in the (2ra’ ~ 1)-expansion of the DBI-action (see
comments in the upcoming section 4.4.1). The intrinsic-parity-odd nature of the Chern-
Simons action ensures that it will not contribute p?-terms to the effective 4-dimensional
action to second order in the fluctuations, but it will describe pm B coupling terms between
rho mesons and pions. However, as discussed in more detail in [1], the antisymmetrization

over spacetime indices in the Chern-Simons action

Scg ~ / Tr (em”quAanqur + 0(213)) (4.76)
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Figure 10. The effective rho meson mass squared m/i&.ﬁ” (B) in the (27a’)?F2-approximation of
the DBI-action.

will make sure that the magnetic field B = F?Q only induces couplings between longitudinal
fluctuations (p = 0,3), hence not affecting the dynamics of transversal rho mesons (4.73)
and their condensation.

4.3.2 Pion mass

We briefly discuss the pion part of the DBI-Lagrangian (4.41), which upon substitution
of the gauge field expansion (4.44) and further approximation to second order in the pion
fields reads

2
1 1 g% -
1/4 12 2,2 11 —312 2 42
£~ ui(2ral) bzl{—anfz(Dm - e RG] )
a,b=

with f4 = f1 — %gl_lz(27ro/ )2fs. Ignoring in this section the 1/A-suppressed prB-
contributions from the Chern-Simons action, the effective 4-dimensional action for the
pions becomes

2
1 1
Sip = / d'z {—Q(Dﬂ“)Q — 2m72r(B)(7r“)2} (4.78)
a,b=1
with ¢q satisfying the normalization condition
[ee]
/ du u1/4gnf2d>(2) =1 (479)
Uo,d
and the pions no longer massless:
> 1/4 9%1 3 312 /2 2
/uo d du u (27ra’)2f4(2T )25 = mi. (4.80)

We can understand the emergence of this mass again as a consequence of the holographic
Higgs mechanism. The magnetic field breaks chiral symmetry explicitly (albeit only
slightly) by pulling the up- and down-brane apart. The previously massless pions, serving
as Goldstone bosons associated with the spontaneous breaking of chiral symmetry, hence
get a small mass, related to the distance 7> ~ 7, — 74 between the branes. Solving the

i(FT—Et)

effective 4-dimensional EOM for the charged pions with 7 — e 7 for the eigenvalues

of the energy, one finds ‘almost Landau levels’ for a spinless particle

E?=mi(B)+p5+ (2n+1)B (4.81)
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Figure 11. Pion eigenfunction ¢o(x) (with u = ug 4 cos™3/2 z) for B = 1.1 GeV?. Numerical result
for m2(B) and the effective pion mass squared m? (B) in the (2ra’)? F?-approximation of the
DBI-action.

or an effective mass squared in the lowest Landau level
mZ .5 =m2(B) + B. (4.82)

The pion thus gets a mass in the presence of a magnetic field, although we are working
in a model in the chiral limit (zero bare quark masses) and with no chiral condensate
(at least not in the setting we used, without incorporating a tachyon field as was done
in [43]). This violates the GMOR-relation relating the bare quark masses times chiral
condensate to the mass of the pion. It was however already discussed in e.g. [47, 69] that
the GMOR-relation is no longer valid for charged pions in the presence of a magnetic field.

To calculate the mass m, in (4.80), we determine the form of the eigenfunction ¢o(u)
analogously as in [2]. ¢ has to be orthogonal to all other ¢,>1 (the higher eigenfunctions
that we left out in the expansion (4.44)). The eigenfunctions ¢,,>1 obey the same normaliza-
tion condition (4.79) as ¢, which upon comparison with the mass condition (4.54) for ¢,,>1,

/ du u1/4911f2¢72121 =1 and / du w4 g1y fo2 (Outhn>1)? = 7”7”&,2), (4.83)
ug,d uo,d
leads to 5
Gz = Dn21 (4.84)
mg

Then, orthogonality of ¢g and ¢,,>1 ~ 9yn>1 is ensured by proposing

po ~u Vgt £yt (4.85)

(with normalization constant determined by the normalization condition (4.79)):

/ du go(u'*g11 fapnz1) ~ /du OPn>1 =0 (4.86)

0,d

by virtue of the vanishing of 1,1 at the boundary u — co. With ¢¢ given in (4.85) we can
determine the Higgs contribution to the mass m,. In figure 11 we plot the eigenfunction
¢o(u) (which is discontinuous due to the discontinuous nature of f5), the mass m, and
the total effective 4-dimensional mass my ..
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We end this section with a comment on the validity of the use of the non-Abelian
DBI-action for non-coincident branes.©

In the context of heavy-light mesons, which we encounter here as magnetically in-
duced through the splitting of the flavour branes, one often studies the separated branes
system by the use of two (Abelian) DBI-actions plus a Nambu-Goto action for the clas-
sical, i.e. macroscopic, heavy-light meson string (e.g. [70]). In [65] however, one uses the
non-Abelian DBI action for the description of heavy-light mesons, as we also did in this
paper. They do remark that as soon as the distance between the separated branes is larger
than the fundamental string length ¢5, the non-Abelian DBI-description is actually ex-
pected to break down. So let us show here that in our case the separation between up- and
down-brane and hence the length of the charged rho meson strings is not larger than /.

The total length of a string stretching in the u- and 7-direction is given by

L, = /ds = / V GrrdT? + guudu?.

Consider for example a string at 7 = 0 stretching from wug 4(B) to uo.(B). It has a length

UOuB)
Ly —/dS—/ VGuudu

0,d(B)

UO,u(B) 3/4
-/ <R> Flu) 2 du
ug,d(B) u
R3/4
= - 4(uO,duO,u)

2 .92 3 3 3 3
Hug gug \/“o d Uk \/“0 u Uk

{11u0du5/4\/ —u3 — GUS/SUK\/UOU_UK_’_UE)/ZLW/uod uK 11u0u—|—6uK)
3 3
3 5/4 [ 3 1T 7 Upgy 5/4 11 7 Upy
+6uy GLOU uo —u% 2 Fy _ﬁ’l’ﬁ’ uﬁ( —Up g Uad—u%{ o F1 —57175; u% )

with the B-dependence of ug, and wg 4 implicit in the last line. Similarly, the same string

3/4

stretching between wup and wug, corresponding to a constituent quark (i.e. this one is a
macroscopic string, cfr. the use of the Nambu-Goto action to obtain the expression for the
constituent quark mass (3.7)) has a length

ug
Lq:/ds:/ v Guudu
UK

uQ 3/4
INONTE

4wy 'T [H] 1111
_ p3/4 1/4 _ - - 'K
. ( NEN QFl[ 12'2712° ug} ‘

With our fixed holographic parameters, we have a numerical value for ¢5 to compare these
lengths to:

0y = Vol ~0.76 GeV L.

10We would like to thank K. Jensen for a private discussion about this.
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Figure 12. The length L,(B) of a string at 7 = 0 stretching between ug 4(B) and ug ,(B), and
the length L,(B) of a down-quark string stretching between uyx and ug 4(B).

From the plots in figure 12 of Ly and L, as functions of B up to 2GeV?, we read of
estimations of the maximal Ly ~ 0.25GeV~! and minimal Ly~ 1.25 GeV~!, from which
we can conclude that

Ly <ty and Ly >l

consistent with using the classical Nambu-Goto action for the constituent quark string,
but using the non-Abelian DBI-description for the charged rho meson string.

4.4 Vector sector for full DBI-action
4.4.1 Comments on the validity of the (2wa’)-expansion

In the previous section 4.3 and the previous paper [1] we approximated the DBI-action
to second order in (27a/)F. The justification that we used for this expansion is roughly
that o/ ~ 1/X\ with A & 15 ‘large’ in our fixed units. The reader might worry that there
is some ambiguity in the proportionality factor o/ ~ 1/ since the parameter X = /(2
can be chosen freely, as we did in (3.4). The ambiguity should however disappear from all
physical quantities and indeed will no longer be present in the full expansion parameter.
Let us take a closer look.

Expanding det(g28 + (2n/)iFyyy) = det gD% x det(Sp, + (958) "1 (2ma i (Frp + 81 Frn +
62F,,,)) in the action (3.10), the expansion parameter (¢g1%)~!(2ma/)iF 15 is supposed to
be small compared to 1, with (3.15):

%eB 0
0 —ieB

(3) " e

The same expansion parameter can be read off from the form of the matrix A as defined
in (3.19). The most strict condition would then be

(uo,d(lj% =0)

< 1.

—3/2 5
> (27T0é/)§6B < 1,

or, in our fixed units,

3 [ up d(B =0)
B 2 Z0e T )
eB <K ( R

3/2
5 ) (2ma/) ™t = 0.45 GeV?, (4.87)
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with the appearing combination independent of our choice of X since ug ~ X, R* ~ X and
(2ma’) ~ X. The instability we found in the F?-approximation sets in at B. ~ 0.8 GeV?
(see (4.75)), where the used approximation is thus not necessarily valid anymore. On the
other hand, the above is the most strict condition we can impose, it is not so clear what
the impact of the u-dependence is on this argument. We will therefore use the full STr-
action and compare with the F2-approximation results to provide a conclusive answer to
the question of the validity of the (2wa/)-expansion in our set-up. It will turn out that using
the full STr-action the instability is still present and the value of B, is only slightly higher.

n [71] it is argued that o'-corrections can cause magnetically induced tachyonic
instabilities of W-boson strings, stretching between separated D3-branes, to disappear
when the inter-brane distance becomes larger than 27f;. The Landau level spectrum for
the W-boson is said to receive large o/-corrections in general [71, 72]. The paper [73] also
gives an example where consideration of the full non-Abelian DBI-action in all orders of
o/ — be it using an adapted STr-prescription — can change the physics, that is, the order
of the there discussed phase transitions changes.

4.4.2 Deriving the effective 4-dimensional equations of motion

Reconsider the vector part of the DBI-Lagrangian in unitary gauge (4.30),
L = Liiggs + Lyector = STr e~ ?v/—det al 4
2 2
1/ _.\2 1/ - o 1 2
-5 (s (o) e () s 3 ()
| = e.iri 1 90 = 1 _
+STrz {—F129112A 1[A17A2] - 19112F311 A 2|;W:1,2 §glllGu1}F3u 1u—1,2} (4~88)
where the notation |,—1 2 as introduced in (4.17) can be written out as

F2 A 10 =247 (FR + F) + 2F5 + 2A72F,  (i=1,2)
1—A - N 1— A?Z .

=F2 + QT(F;?, +Fp) + QTFfz

o =1,2). (4.89)

and FiuA_1|N7V:1,2 = F2 + I, A (’L

Instead of approximating this action further to (27a/)2F?, we now keep all factors of
A=1- (27ra’)2f?25—:. Upon evaluating the STr we then obtain

2 2
/ A A “a 7 1, =~ 1 ~ .
L~ u1/4(27ra )2 Z {_( GuuF124 1/2)3€3abA1A12) - Zfl(Fuu)z 3 ZflA((Fiza)Z + (Foz‘)z) (4.90)
i=1

a,b=1
1 . 1 11 2 f
—5fis ()" =S gn fa(Fi) 291lzf2A i) 2911T2f2(Aa) (27°)* = S 911775 foa ;(A?)2(273)2}7

where we defined the new I-functions

fi = 1(GY2417), f1A=1<\/Gw1¢‘ZA>, le:1<\ﬁGwﬂ1;l;‘2> (4.91)

1—A
fo=1(GuPAY?),  fop = I<G;u1/2m>a (4.92)

with f; and fo approaching their previous definition in (4.42) and fi4, fip and foa — 0
for A — 1 in the (2wa’)2-approximation, as they should.
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Figure 13. (a) fi (green) and fy (yellow) compared to their F?-approximated counterparts in red
and blue resp. (b) fi4 (blue), fi (red) and foa (yellow). For B = 0.8 GeV? and u = ug 4 cos~%/? .

Extracting the effective 4-dimensional action from (4.90) is completely analogous to
the procedure described in section 4.3, so we will give a somewhat more schematic and
short explanation here and refer to section 4.3 for more details.

After plugging in the gauge field expansions (4.43)—(4.44) into the action in the ap-
proximation of only retaining the lowest modes of the meson towers, one can already notice
the vanishing of f duLyector—mixing = 0 and of mixing terms between pions and rho mesons.
We will focus on the instability in the rho meson sector.

Background dependent functions in the action. The generalized I-functions
in (4.92) have to be calculated numerically. In figure 13 we compare them to their ap-
proximated counterparts for some fixed values of the magnetic field. The measure for the
distance between up- and down-brane 73(u) is still as defined in (4.48), and finally

(GLPF A2 =\ /Gu F A 2 — ) Gd, FyAY? (4.93)

with G!,, = Guu(9,7) (with flavour index | = u,d), F, = % and Fy = —% (see (3.15)),
and A; defined in (3.19).

Eigenvalue problem. The rho meson part of the DBI-Lagrangian to second order in
fluctuations (4.90) after substituting (4.43) reads

2

L ten P 30 { LA = Jan a0 - § s e

ot (27ra )2
le F12 + ,uyzl <_ ;_qual) f (PM) ¢2 27— \/ uuF/u/A 1/2 €3abPZP1b/¢2
S BB + (B - ;gllsz(PZ)2(5u¢)2> b (1.94)
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which results in the following effective 4-dimensional action
(1 1 1
sip= [[ate - {12 - GmABIL? - )

2
3 (=Rl BNE P+ ) - gt (BN pesaril MBIFL ) £ (499

The function ¢ (rescaled to absorb all constant prefactors in the action) satisfies the nor-
malization condition

/ duu'tfy? =1 (4.96)
uQ,d
and -
/ du S u g 20,07 + ul ST o (27207 | = i, (4.97)
-y (2ma)

combining into the eigenvalue equation

w0 (W g1 2000 ) = on s (27 = i (4.98)

to be solved for its B-dependent eigenvalue m% and eigenfunction 1. The B-dependent
numbers m4, k,a and b can subsequently be calculated with the obtained eigenfunctions

from
> g1
/ du U1/4911f2A3u¢2 + u1/47,2f2A(2?3)2?/)2 = mﬁ—v (4.99)
-y (2ma)
/ du w4 (/G FroA™Y2Y3y2 = K Ty (4.100)
ug,d

and - -
/ du u1/4f1,411)2 =a, / du uM* i = b. (4.101)

uQ,d U, d

2
p7
the eigenvalue problem with the techniques described in the second paragraph of 4.3.1, are

The numerical results for m m%r, k, a and b as functions of B, after having solved
shown in figure 14-15. The discussion of the behaviour of mf,(B) in the third paragraph
of 4.3.1 is still applicable. The parameter k specifying the strength of the coupling to the
magnetic field is again approximately equal to one, but now decreasing as a function of B
as opposed to increasing in the (27a’)%-approximation.

4.4.3 Solving the 4-dimensional equations of motion

The 4-dimensional EOMs for p¢ derived from the effective action (4.95) are given by

D, F&, —canhT,

P =M p =6, (m? pf +a(DsFiy — DoFi) +bD; Fiy) +6y3a D Fiy — 6,0aD; Ffy = 0

(4.102)
with D, = 8, + [A,, ] and Fiy = Dupl, — Dypy,, and where from now on we will not only
keep assuming the Einstein convention that double u, v indices are Minkowski sums over
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Figure 14. Numerical results for m?2(B), m% (B) and k(B) from the full DBI-action.
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Figure 15. Numerical results for a(B) and b(B).

w,v =0...3 but also that double 7, j indices are sums over spatial indices 7,7 = 1,2. For
notational clarity we will not explicitly write out the B-dependence of the parameters m,,
m., k, a and b in this section, but assume it understood.

The equations (a = 1) £ i(a = 2) combine into the EOM for the charged rho meson

pu = (pl, +1ip2)/V2,

DMFMV —Z']{JF?W/)M —mipl, —0ui [bDjFij +a (D3Fi3 — D()Fio) + mipl} +(5,,3aDij3 —5V0aDij0 =0,
(4.103)
with D, = 0, + Z'Zi and F,, = D,p, —D,p, , and the complex conjugate of this equation

for the other charged combination p}, = (p), —ip?)/v/2. Using [D,,D,] = ifzy, (4.103) can
be rewritten to the following EOMs for resp. v =i and v = 3:

V=1

(1+a)D2p, —i(1+b+k)Fpypu— (14+a)D,D,up, — (m+m2 ), + (b—a) (D2p, ~D,D;p;) = 0,
(4.104)

Dip,, —D,Dup, — m%py + a(D?p,, —D,Djp;) =0. (4.105)

These equations have to be complemented with a subsidiary condition, obtained by acting
with D, on the EOM (4.103) and again using [D,,D,] = iffw. We find the generalized
subsidiary condition (where by generalized we mean w.r.t. the Proca subsidiary condition
Dupu - 0) 5

Dupy = nz/%(l +b— k)FiuDl/p,U« - T:%Dipia (4.106)
still relating D, p, (v = 0...3) to transversal components p; (i = 1,2) only, such that
the EOMs for the transverse rho mesons can be rewritten as independent from any
longitudinal components. Before doing so, let us remark that the above system of EOMs
combined with the subsidiary condition reduces to its standard Proca form for a, b,
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m4 — 0, k — 1 and no B-dependence in m, (or any of the previous parameters). The
non-zero and B-dependent a and b are present due to taking into account all powers in the
field strength in the non-linear non-Abelian DBI-action, which is also partly the reason
for the B-dependence of m,, k and m_, in addition to their implicit description of the
response of the quark constituents to the magnetic field (cfr. the chiral magnetic catalysis
and holographic Higgs mechanism for heavy-light mesons discussed earlier).

To determine the solutions of the EOMs we follow and generalize the procedure used
in [74]. In order to make comparisons with the original expressions in [74] more clear, we
temporarily change notation to

bu =P} = (pp —ip})/V2 (4.107)

and
3

im, =D}, =9, —iA, (4.108)

such that 7, becomes p, — Zi when substituting a plane wave ansatz ¢, — eiﬁ'f_ithSM
into (4.104)-(4.105), and in particular we can write 72 = —E? + 72. In this new notation
the EOMs (4.104)—(4.105) combined with (4.106) can be recast in the form

m?2 +m? B 1
E¢p. = (H + B7—T’2> ¢i+m(1+b—k‘)ﬂi(7T+¢f—7T—¢+)iB’C¢i—§Mﬂi(ﬂ+¢7+7ﬂ¢+)

1+a
(4.109)
with
T4 =T T ime,  Gx = P1 T i, (4.110)
and
2 2 22 B 1 mi
E2¢3 = (m2+ (1+a)7 )¢3+ﬁ(1+b—k)7r3(77+¢, —W,¢+)—§ a——5 m3(myd_ +T_y),
P
(4.111)
where we defined
1 _ 2
g 1tb e Llrbrk o4 omobTeo ™ (4.112)
1+a 1+a 1+a m?

The main trick for solving the system is to notice that the operators m+ obey the algebra of
a simple harmonic oscillator, if one defines annihilation and creation operators @ and &' as

a=2B) V%1, and af=(©2B)"V%r_, (4.113)
which obey
[a,a"] =1 and [a,73] = [T, 73] = 0. (4.114)
The ‘number operator’ N is then defined as

N =ala, (4.115)



allowing us to rewrite the system (4.109)-(4.111), using 72 = p3 + B(2N + 1) and
mom_ =2B(1+ N), to

(w? )f+)¢+ = Aca’o_
(w? = X_)p- = —Be(al)?¢+ )
Wi = (1+a) 2N +1)€| 63=62(1+b—R)as(ap- ~aT6.) ~ (a— 77 ) €as(as+alo,),
(4.116)
with ¢ = £ and
e E? — (m2+m3)/(1+a) — Bp3 (4.117)
m?
E? —m? — (14 a)p3
wi = m% (4.118)
X+:(2N+1)B§—%+K§—(2N+1)% (4.119)
X_:(2N+1)B§—%—K§+(2N+1)% (4.120)
Ae=(1+b—Fk) &€ —-M¢ and Be=(1+b—k) &+ ME, (4.121)

and with 73 replaced by its eigenvalue p3 since it commutes with everything, or where
convenient for the notation by the number az = (2B)~'/?13. The system (4.116) decouples
completely in the special case where Ac = B¢ = 0 as wellas 1 +b—k = a — % = 0,
which is for example the case for standard Proca parameters a = b= m; = 0 and k=1

In the latter situation the independent solutions for any n are given by

¢+ =|n—2), ¢—=¢3=0 (n=23,--+)
¢ =|n), pr =¢3=0 (n=0,1,---)
b5 = In— 1), b =6y =0 (n=1,2,--) (1.122)
with eigenvalue w? = w% = (2n — 1)§. Here we formally defined the ‘number eigenstates’
In) as
Nin) =mnln), al0) =0, [|n)=(n!)""2(@""0). (4.123)

In the rest of the discussion of possible solutions below, we consider A¢ and B¢ different
from zero.

Condensing solution. Before decoupling the first two equations of (4.116) to discuss
the general form of the solution, let us first look at the one we are most interested in, the
condensing solution:

p3=0¢+ =0, ¢_=[0) (= ag-=0), (4.124)
for which the EOM reduces to

k
1+a

W =X)H)0)=0=w?=X_(N—=0)=(B —K){=— ¢
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with total eigenvalue

2 2
my +m 1+0b k
E*= £ % 53— 2 4.125
1+a + 1+a)P8 1+amp€’ ( )
or, in the lowest state ps = 0 (and %TJFZ > 0 in the considered range of B):

2 2
2 my, +m3 k 9
_ _ . 4.126
Mp.eff l+a 1+amp§ ( )

This indeed reduces to its (27a’)?-approximated equivalent (4.74), mi off = ml% +m% —

kfmz, for a — 0.

Family of solutions. We present the general discussion of the family of solutions
of (4.116). One family of solutions is

br—b- =0, dy—In), wi-(l+a)2n+1)E, n=012,  (4127)
the other one
d-=In+1), ¢ =cun—1), ¢3=c,n), n=1,23---. (4.128)

The corresponding eigenvalue w can be determined from decoupling the first two equations
of (4.116) to

{(w2—X,)(w2—X+)+(N2+3N+2)A§B§—2(26 £+A§)(w2—f(+)} by =0 (4129

{(w2 — X )(w? = Xy)+ (N? = N)AgBe +2(2B € — Be)(w? — f(_)} ¢_=0. (4.130)
Substitution of (4.128) has the effect of replacing N in (4.129) by (n—1) and in (4.130)
by (n+1). With these replacements, the curly-bracketed expressions in the two equations

become identical, and either of them can be solved, with the result for our generalized
Landau levels finally given by

w® = (2n+1)¢ (B — %) + sz (4.131)
iE\/M (W +IC—ZB) F(K—2B)2 — (1+b—k)2n+ 1)5</c—zzs+ %) + 7(1“’4_ RS o,

This reduces to Mathews’ solution for general k # 1, eq. (19) in [74], for a,b,my — 0,
ie. B>1,M—=0,K—1+k:

w?(a,b,my — 0) = (2n 4 1)€ + %(1 —k)E+(1- k){\/l +(2n+ 1)+ 352, (4.132)

and the modified Landau levels mentioned in section 4.3.1 are given by (4.131) with a,b —
0. Given the value of E? from (4.131) and the ansatz (4.128) for ¢3, the equation (4.118) can
be solved for ¢/,. The constant ¢, can be determined from substituting the solution (4.128)
and (4.131) into either one of the first two equations of (4.116).

For completeness, we mention the last remaining possible solution

¢-=I1), ¢+=0, ¢3=cgl0)
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Figure 16. The effective rho meson mass squared mp27eﬁ(B) from the full DBI-action.

with w? = X (N = 1) = 3B - K — M)+ (1 +b— k) € and ¢ to be determined from
wi — (1+a)écy = (E2(1+b— k) — af)as.

In this whole discussion of the solutions of the EOMs for the rho meson, the key
observation is that the energy eigenstates are so-called ‘number eigenstates’, labeled by the
Landau level number n. They are not necessarily spin eigenstates, as we will discuss next.

Discussion of the spin of the solutions. Consider the eigenstates of the spin operator
Ss3 as defined in (4.71),

¢+ =¢-=0 (s3=0)
¢y =¢3=0 (53 = +1)
p-=¢3=0 (s3=—1).

It is clear that only the branch of solutions (4.127) and the condensing solution (4.124)
are spin eigenstates, resp. with eigenvalues s3 = 0 and s3 = +1; the other branches of
solutions for general k # 1 case are not. This is in contrast with the special £k = 1 Proca
case (4.122) where all Landau levels, including the excited states, are also spin eigenstates.

We conclude by summarizing that the condensing states are given by (4.124) and its
conjugate,

pr=0¢-=pi—ip; and p=¢L =pi+ips

— where we translated back to the previously used notation — with energy eigenvalue
mp'g’ ff = (4.126) and spin eigenvalue s3 = +1 corresponding to the spins being aligned
with the magnetic field. Our result for the effective rho meson mass squared mf’ offr S
shown in figure 16, again demonstrates the tachyonic instability, with the critical magnetic
field for rho meson condensation given this time by

B. ~ 0.85 GeV?.

The increase compared to the estimate for B, in (4.75) using the (27a/)?-approximation
is pretty small. This indicates that the expansion to second order in (2ra/)F was a valid
approximation, despite the ambiguities mentioned in section 4.4.1.

4.5 Comment on the antipodal case

For completeness, we consider the effect in the antipodal SSM, ug = uk, of including all
higher order terms in the total field strength in the DBI-action. As mentioned before, the
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Figure 17. The effective rho meson mass squared mf)eﬁ(B) from the full DBI-action for the
antipodal embedded flavour branes.

embedding of the flavour branes is independent of B in this case, resulting in standard
2

2
in (2ra/)F. In this set-up there is no constituent quark mass (3.7) and no chiral magnetic

Landau levels and thus mf eﬁ(B) = m4 — B if the action is approximated to second order

catalysis.
To reproduce m% = 0.602 GeV? at zero magnetic field, along with f, = 0.093 GeV for
the pion decay constant, we have to use the holographic parameters fixed in [3] to

AN,
21673

Mk ~0.949 GeV and k= ~ 0.00745, (4.133)
instead of the values (3.9) for ug > ugx. With these fixed parameters the estimate for the
maximum value of the magnetic field for the (2wa’)-expansion of the action to be valid, as
discussed in section 4.4.1, changes to
3 3/2
eB <3 (%{) (2ma’)~! = 0.31 GeV?, (4.134)
which is even lower than the value 0.45 GeV? obtained for the non-antipodal case.

As the flavour branes now remain coincident for any value of B, thatis 7 ~ 1 = 73 = 0
and 0,7 = 0 = Guy = Guu, We again obtain the effective 4-dimensional action (4.95),
but with the integrals and equations (4.96)—(4.101) changed in the sense that ugq — ur,
73 — 0 and every Guy — guu, in particular in the I-functions J1(a,B)» f2(a) defined
in (4.91)-(4.92). The eigenvalue equation can be recast in the form

9u K _

~ oy costia [agw + I(AY?) 10, 1(AY2)0,0| = —m2y
with u = ug cos™ /% x this time and I(A'/?) reducing to 1 for B = 0. With the numerical
result for the eigenfunction v and eigenvalue m%, the total effective rho meson squared

can be obtained using (4.126),

2 mi+mi k
m = —
preff 1+a 1+a

The result is shown in figure 17, where the corresponding critical magnetic field can be
read off to be B, ~ 1.07 GeV?2.
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Figure 18. The effective rho meson mass squared mﬁ ot (B) in the antipodal embedding (left) and
the non-antipodal embedding (right), comparing the (2ra’)? F2-approximated result in blue to the
full DBI-result in red.

5 Summary

We studied a magnetically induced tachyonic instability in the charged rho meson sector,
arising from the DBI-part of the two-flavour Sakai-Sugimoto model. We examined
both the case of antipodal and the more general non-antipodal embedding, each in the
(2ma’)? F2-approximation of the action versus the full DBI-action, non-linear in the total
field strength F'. The results for the effective rho meson mass squared mi eff (B), vanishing
at the critical magnetic field B, and thereby signaling the onset of the tachyonic instability,
are shown in figure 18 for each of the four set-ups.

The antipodal SSM reproduces exactly the standard 4-dimensional Proca picture and
Landau levels of the effective QCD-model used in [22], with B, = mf, ~ 0.602 GeV?.
The same picture was obtained in a holographic toy model involving an SU(2) Einstein-
Yang-Mills action for an SU(2) bulk gauge field in a (441)-dimensional AdS-Schwarzschild
black hole background [36], and more recently for a 3-dimensional field theory in a (3+1)-
dimensional DSGS-model generalized to AdS [38]. The non-antipodal SSM predicts a larger
value of B, ~ 0.78 GeV? as a result of taking two mass-generating effects for the charged
rho meson into account, i.e. chiral magnetic catalysis for the rho meson constituents on one
hand, and a stringy Higgs-contribution to the mass from stretching the rho meson string be-
tween the magnetically separated up- and down-brane. Both effects are a direct result from
the B-dependence of the non-antipodal flavour branes’ embedding, and hence absent in the
antipodal set-up. Considering the full DBI-action instead of approximating it to second or-
der in the total field strength further increases the value of the magnetic field B, at the onset
of tho meson condensation, more precisely to B, =~ 0.85 GeV? in the non-antipodal case.
The effect of taking the non-linear contributions in F15 into account seems to be stronger for
the antipodal set of parameters compared to the non-antipodal one — in both cases param-
eters are fixed to reproduce QCD parameters at zero magnetic field. This leads us to con-
clude that the F?-approximation is better justified for the considered problem in the non-
antipodal embedding than in the antipodal one. We are however very well aware of the fact
that the full DBI-action is not the complete non-Abelian action for a system of Ny branes —
a closed form of which is still to be found —, starting to show deviations at order F° [59, 60].
We do not claim the DBI-result is necessarily more correct than the F2-result, yet we
wanted to examine the extent of the difference. In conclusion, the SSM-predictions for B,
are close to order 1 GeV?, as obtained in the NJL-model in [23] and on the lattice in [33].
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A main motivation for these comparisons within the SSM was to investigate what
holography can add to the QCD-phenomenological picture of rho meson condensation,
purposely working in a top-down approach — the downside of which are the technical
complications. We for example elaborated on evaluating the STr exactly (to second order
in fluctuations in the presence of an Abelian background field), the gauge fixing necessary
to disentangle scalar and vector fluctuations, the contribution of the Chern-Simons action,
the pion sector in the F2-approximated DBI-part of the action, the Higgs mechanism

associated with the magnetically induced heavy-light character of the charged rho

2
p

analytically solving the generalized effective 4-dimensional EOMs. For the above reasons

mesons, numerically solving the eigenvalue equation for m? with a shooting method, and
of complexity we have not yet been able to construct the new ground state in which the
rho mesons are condensed. This ground state is expected to be an Abrikosov lattice of rho
meson vortices, as constructed in the DSGS-model in [34] and in a bottom-up holographic
model in [37]. The Abrikosov lattice forms an anisotropic and spatially inhomogeneous,
type II superconducting ground state of the QCD vacuum in the presence of a strong
magnetic field [35], with the interesting property that the magnetic field creates the
superconducting state instead of destroying it (cfr. Meissner effect). In [38], the real
part of the optical conductivity in the condensed phase is shown to contain a delta peak
at the origin, consistent with a superconducting condensed state. Another downside of
the top-down approach and in particular the SSM is the abundance of extra fields in the
bulk that do not have counterparts in the dual field theory. The mass scale ~ Mg of
these artifacts of the model is actually of the same order as the masses of the mesons.
Nevertheless the SSM can present a nice record of QCD-effects and properties that can be
modeled, suggesting the influence of the redundant modes is not necessarily substantial.

We have been able to show that the SSM has a magnetically induced instability towards
rho meson condensation, consistent with the studies of this phenomenon in phenomeno-
logical [22, 23], lattice [33] and bottom-up holographic [36, 38] approaches. To come closer
to the real-life quark-gluon plasma conditions where the presence of magnetic fields of the
order of ~ 1 GeV? might eventually be obtained, it should be taken into account that there
are also very high temperatures/densities present, and that the magnetic field is very local-
ized both in space and time (see the more recent works cited under [24-29]). These features
may in the end seriously influence the possible occurrence of rho meson condensation.
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A STr-prescription

Prescription. We write down the prescription for the evaluation of the symmetrized
trace STr to second order in fluctuations in the presence of a constant Abelian background,
as derived in [59] and [63].

For an even function H(F) of a diagonal background field F' = F%° + F30% and

fluctuation X = X% (generator ¢* = —£0%), one finds that
1o 1
v2) _ _* a2 1 o1)\2
STy (H(F)X ) =2 2(){ 1) -5 l;d(x )2 I(H) (A.1)
with
1 1
d FO F3 d FO — oF3
I(H) = Jo daH(F" + );rfo oH(F" —a )’ (A2)
I,(H) = H(F° + F?), Iy(H) = H(F° — F3), (A.3)
B X0 + X3 y X0 _ x3
vz vz .
and
STt (%(F)f() _ (H(F)X) . (A.5)

Generalized prescription. A straightforward generalization of the prescription when
dealing with two Abelian background fields can be written down.
For even functions H(97) and G(F) of diagonal background fields 07 = 07°0" 4+ 0733

and F = FO00 + F303 and fluctuation X = X (generator t* = —10%), it reads
2
i 1< - 1 .
STr <7{(8?)Q(F)X2) = 5 (X I(HG) - 5 S (X L(HG)  (A6)
a=1 l=u,d
with
1(HG) = [ daH (970 + adT?)G(FO + aF?) ; [ daH (970 — ad7?)G(FO — ozF?’), A7)
I,(HG) = H(07° + 07°)G(FO + F?),  I14(HG) = H(97° — 07°)G(F° — F?), (A.8)
B X'O + XS . XO _ X?)
u _ Xé - . A.
Vi Vi (A9
and
ST (H(@?)Q(F)X’) —Tr (H(@?)Q(F)X'> . (A.10)

A.1 Derivation of the prescription

For completeness, let us schematically recapitulate how the above prescription was ob-
tained. In this derivation we will temporarily write U(2)-indices as lower instead of upper
indices, to avoid notational clutter.
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e Properties of the Pauli matrices (a = 1,2, 3):
Tr(o,) = 0, Tr(oqop) = 2dap, 0a0b = Oabl + i€ape0ec

{Uaa Ub} = 2041, [O-a, Ub] = 2i€4pc0c
o STr(c5'cq0p):

1
STr(o5'cq0op) = m+2) Z Tr(o3'oq0p)

m

all permutations

1
= —— Tr(oko,or o)
m+1 P
dq
_ 2[5()(1506 + 63a(53b + mi_fl|a,b:1,2] for m even (A.ll)
2[500,6311 + (53(1(505] for m odd

where now a,b = 0,1, 2,3 with o0y = 1, and where we used

m

Y Tr(ofoaoy o) =Y Tr((—1) o' op04). (A.12)

k=0
° STr(Fsz) with m even, F = Fyoo + Fyos and X = X,t, with t, = —i (2, 5
STr(F™X?) = Fy"STr(o4' X?) + Fy" ' Fy < . ) STr(oy ' X?) + F" °F3 (2 > STr(o4 > X?)
Foo FPSTH(X?)

2 2
1 o = X2 1 S L
:—§F§”[X§+X§+Z ]_*Fsm 1F0<1>[X0X3+X3X0]
-1

v 2

2
1 m—2,2[m o2 2 X, 1 m 2
- 55 F0<2>[X0+X3+;m_1]+..._2FO Z 2

X
2 m m—2 2 2 pm—2
1 59 F3 F3 FU m F3F0 m m
=——-N"X r
2 £~ “{m+1Jr m-1 \2) 7T 73 2 ) T

1o o _
—2(X§+X§){F?+F$ QFOQ(T;) +---+F5”}

1 vV m— m— m—
— (2% %) {F3 'Fy (T) + RS (’;) oo+ BEY ("f)} (A.13)

o STr(H(F)X?) with H(F)
of the background field F:

2
~ F3
ZXf {a0+a1 |:f+Fo:| + a2

(X5 + X3) {ao +a1 [F + F5] +a»

() ()
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=ao+ a1 F2+asF*+ -4 a, F?" + ... an even function

l\’)\»—\

STr(H(F)X?) =

=

2

+ a2

1 ~ o~
— 5(2X0X3) {a1



M.
Il

22 {H(Fo + Fy) ; ’H2(Fo — ) }

H(Fo + Fs) — H(Fo — Fs)
e

{ [ daH(Fo + aFs) + [ daH(Fy — aFs) }

2
1
-

Bl
JF
3

N = N = N

(2X0X3) { (A.14)

which is the prescription (A.1).
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