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We show that the electromagnetic superconductivity of vacuum in strong magnetic field background is

consistent with the Vafa-Witten theorem because the charged vector meson condensates lock relevant

internal global symmetries of QCD with the electromagnetic gauge group.
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The Vafa-Witten (VW) theorem shows that vectorlike
global symmetries (like isospin or baryon number) cannot
be spontaneously broken in vectorlike theories (for ex-
ample, in QCD) with zero theta angle [1]. According to
Ref. [2], a generalization of this theorem implies that
vector meson condensation cannot occur in QCD vacuum
in the background of a strong magnetic field because these
condensates would inevitably break certain internal global
symmetries of QCD and, consequently, lead to the appear-
ance of massless Nambu-Goldstone bosons associated with
this symmetry breaking.

The presence of the charged vector condensates is
crucial for the magnetic-field-induced electromagnetic
superconductivity of vacuum which appears in certain
hadronic models coupled to electromagnetism [3]. A suffi-
ciently strong magnetic field, eB� 1 GeV2, may lead to
the condensation of the charged vector mesons,

��ðxÞ ¼ h �c ðxÞ����c ðxÞi; (1)

where c ¼ ðu; dÞT is the quark spinor in Dirac, color and
flavor space; �� ¼ ð�1 � i�2Þ=2 and �� ¼ ð�1 � i�2Þ=2
are combinations of the Dirac (spinor) and Pauli (flavor)
matrices, respectively. Below we demonstrate—contrary to
the statement of Ref. [2]—that the presence of the non-
vanishing condensates (1) in QCD in the magnetic field
background is consistent with the VW theorem.

The Lagrangian of two-flavor QCD in the background of
the electromagnetic field Aem

� reads as follows:

L ¼ � 1

4
Ga

��G
a�� � �c ði��D� �mÞc ; (2)

where Ga
�� is the strength tensor of the gluon field Aa

�,

D� ¼ @� � igTaAa
� � iqAem

� ; (3)

is the covariant derivative, Ta are generators of the SUð3Þc
color group and

q ¼ e

2

�
�3 þ 1

3

�
(4)

is the electric charge matrix acting in the flavor space. For
simplicity, the masses of up and down quarks are taken to
be the same, mu ¼ md ¼ m.
Due to the difference in electric charges of up and

down quarks (4), qu ¼ 2e=3 and qd ¼ �e=3, the group
of the internal continuous global symmetries of Lagrangian
(2) is explicitly broken by the background electromagnetic
field Aem

� :

SUVð2Þ �UBð1Þ ! Uð1ÞI3 �Uð1ÞB; (5)

where Uð1ÞI3 is the diagonal subgroup of the isospin group
SUð2ÞV and Uð1ÞB is the baryon number symmetry.
The internal local symmetries of Lagrangian (2) include

the electromagnetic Uð1Þem gauge symmetry

Uð1Þem:
�Aem

� ðxÞ ! Aem
� ðxÞ þ @�!emðxÞ

c ðxÞ ! expfi!emðxÞqgc ðxÞ ; (6)

and the color SUð3Þc gauge symmetry. These local sym-
metries are not anomalously broken so that the fermion
determinant is invariant under the local SUð3Þc �Uð1Þem
gauge group. The background magnetic field itself does
not break explicitly the electromagnetic gauge symmetry
(6) since the magnetic field is defined by a component of
the gauge invariant Abelian field strength tensor Fem

�� ¼
@�A

em
� � @�A

em
� . Thus the Abelian symmetry (6) is the

symmetry of QCD in the background of magnetic field
(2) regardless if the background magnetic field is a quan-
tized (dynamical) field or a classical (static) field.
The condensates (1) are obviously invariant under the

baryonic Uð1ÞB transformations, c ! ei!Bc , while the

remaining global Uð1ÞI3 group, c ! ei!I3
�3=2c , trans-

forms the vector condensates (1) as follows:

Uð1ÞI3 : ��ðxÞ ! e�i!I3��ðxÞ: (7)

It was noted in Ref. [2] that a possible spontaneous
breaking of the Uð1ÞI3 global symmetry (7) by the vector

condensates (1) contradicts the VW theorem. The sponta-
neous breaking of the global symmetry should give rise
to appearance of a massless Nambu-Goldstone boson.*On leave from ITEP, Moscow, Russia.
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However, the corresponding massless boson does not
emerge in the superconducting phase of QCD because
the Uð1ÞI3 global transformation (7) is, in fact, a part of

the larger, electromagnetic symmetry group (6):

Uð1Þem: ��ðxÞ ! e�i!emðxÞ��ðxÞ: (8)

Equation (8) reflects the trivial fact that the vector quanti-
ties (1) are condensates of the electrically charged parti-
cles, so that they are sensitive to the electromagnetic
Uð1Þem transformation (6) as well. Thus, the condensates
(1) break the internal local symmetry (6) and in this case
the Nambu-Goldstone boson is known to be absent [4] in
agreement with the VW theorem [1]: the would-be Nambu-
Goldstone boson is absorbed into the Abelian gauge field
Aem
� thus making the photon massive (as it happens in the

ordinary superconductivity [4]).
Basically, the action (7) of the subgroup Uð1ÞI3 of the

global SUð2ÞV group on the condensates (1) is identical to
(or, ‘‘locked with’’) the action of a global subgroup of the
electromagnetic Uð1Þem gauge group (8) on the same
condensates.

Another argument against the breaking of the global
Uð1ÞI3 internal symmetry in the superconducting phase of

QCD is as follows. The positive, �þ, and negative, ��,
condensates (1)—which are, strictly speaking, independent
quantities—appear simultaneously in the superconducting
phase of the vacuum. These condensates have the same
absolute values and opposite phases [3] stressing the fact
that the superconducting vacuum is an electrically neutral
state. Therefore, the vacuum state is annihilated by the
conserved electric charge operator. Since the generators
of the Uð1Þem and Uð1ÞI3 groups are the same modulo the

global Uð1ÞB baryon symmetry (which is never broken
anyway), the Uð1ÞI3 charge operator annihilates the vac-

uum state as well. The latter fact highlights the absence of
the breaking of the global internal Uð1ÞI3 symmetry in the

superconducting QCD phase.
As a side remark, it is worth mentioning that analytical

derivations of Vafa-Witten-type theorems may contain
various technical loopholes which depend on particular
physical circumstances. A similar Vafa-Witten theorem

on parity violating condensates [5], for example, ‘‘cannot
be regarded as an established mathematical theorem’’ [6].
In other words, if under certain (external) conditions the
physical arguments allow for the presence of certain ‘‘VW-
forbidden’’ condensates then the analytical proof of the
VW theorem turns out to be invalid due to technical
reasons related to specific features of these physical con-
ditions. The relevant examples related to flavor and/or
parity violating condensates are discussed in the context
of finite temperature QCD [7], lattice regularized QCD
withWilson fermions [8], in QCD at finite isospin potential
[9], etc.
Finally, we would like to stress an important difference

between spontaneous breaking of external and internal
continuous symmetries.1 The spectrum of the supercon-
ducting phase of QCD should contain the massless bosonic
modes associated with breaking of certain external (rather
than internal) global symmetries of Lagrangian (2). These
modes are related not to the fact of the very presence of
the superconducting condensates (1) and not to the internal
global symmetries of QCD, but rather to the spatial
(‘‘external’’) inhomogeneities of the condensates (1) in
the superconducting ground state of the theory. The inho-
mogeneous condensates possess the vortex lattice structure
which breaks spontaneously translational and rotational
symmetries of the vacuum [3] in a complete analogy
with the mixed Abrikosov phase of the type-II supercon-
ductors [4,10]. The spontaneous breaking of these external
symmetries leads to appearance of the so called ‘‘supersoft
Goldstone shear modes’’ related to vibrations of the vortex
lattice in the ground state of the theory [10].
Summarizing, we have shown that the electromagnetic

superconductivity of vacuum in strong magnetic field
background is consistent with the Vafa-Witten theorem.

The author is grateful to Y. Hidaka and A. Yamamoto for
useful correspondence. The work was supported by Grant
No. ANR-10-JCJC-0408 HYPERMAG (France).

[1] C. Vafa and E. Witten, Nucl. Phys. B234, 173 (1984).
[2] Y. Hidaka and A. Yamamoto, arXiv:1209.0007.
[3] M.N. Chernodub, Phys. Rev. D 82, 085011 (2010); Phys.

Rev. Lett. 106, 142003 (2011); M.N. Chernodub, J. Van
Doorsselaere, and H. Verschelde, Phys. Rev. D 85, 045002
(2012).

[4] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 1996) Vol. II.

[5] C. Vafa and E. Witten, Phys. Rev. Lett. 53, 535 (1984).

[6] T. Kanazawa, T. Wettig, and N. Yamamoto, J. High
Energy Phys. 12 (2011) 007.

[7] T.D. Cohen, Phys. Rev. D 64, 047704 (2001).
[8] S. Aoki and A. Gocksch, Phys. Rev. D 45, 3845 (1992);

S. R. Sharpe and R. L. Singleton, Jr., Phys. Rev. D 58,
074501 (1998).

[9] D. T. Son and M.A. Stephanov, Phys. Rev. Lett. 86, 592
(2001).

[10] B. Rosenstein and D. Li, Rev. Mod. Phys. 82, 109 (2010).
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symmetries of QCD by the condensates (1) may be found in
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