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Abstract 
 
Human beings benefit from a wide range of goods and services from the natural environment 
that are collectively known as ecosystem services. However, rapid natural habitat loss, 
overexploitation and climate change is causing accelerating losses of populations and species, 
with largely unknown consequences on ecosystem functioning and the sustainable provision 
of ecosystem services. It is crucial, therefore, to develop a suite of indicators of the health and 
status of ecosystems, to monitor and quantify services delivery and to facilitate policy 
responses to stop and reverse negative trends. An effective framework to facilitate the 
development of suitable indicators is by using the SMART approach, which defines five 
criteria that could be applied to set monitoring and management goals, which are Specific, 
Measurable, Achievable, Realistic and Time-sensitive. Remote Sensing provides a useful 
data source that can monitor ecosystems over multiple spatial and temporal scales. Although 
the development and application of landscape indicators (vegetation indices, for example) 
derived from remote sensing data are comparatively advanced, it is acknowledged that a 
number of organisms and ecosystem processes are not detectable by remote sensing. This 
paper explores several approaches to overcome this limitation, by examining the strong 
affinity of species with dominant habitat structures and through the coupling of remote 
sensing and ecosystem process models using examples drawn from a number of important 
ecosystems. 
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Introduction 
 
The health and well-being of Human beings benefit directly or indirectly from a wide range of 
goods and services from the natural environment that can be grouped into four main categories: 
Provisioning services, such as food, fibre, energy and water; Regulating services, such as such 
as climate regulation, water purification and flood protection; Cultural services, which have 
recreation and aesthetic value, for example, and; Supporting services, which underpin the 
provision of the other services categories (MEA, 2005). Collectively known as ecosystem 
services, many of these processes or structures arising from the interaction between living 
organisms and their physical habitats are fundamental to human well-being. All natural habitats 
produce a wide range of different ecosystem services providing benefits at multiple temporal 
and spatial scales, with some examples presented in Table 1. However, habitat loss and 
fragmentation (Brooks et al., 2002; Watson et al., 2004), pollution (especially excessive 
nutrient loading), overexploitation and climate change impacts on ecosystems as well as the 
synergistic effects of multiple drivers (Brook et al., 2008)  is resulting in accelerating losses of 
populations and species, with largely unknown consequences on the sustainable provision of 
ecosystem services. Whilst a number of recent studies have attempted to construct conceptual 
models of the interactions between species, ecosystems and human processes that modify 
(either deliberately or unintended) ecosystems functions that generate goods and services 
(Rounsevell et al., 2010), the dynamics of social-ecological systems (SES) are complex 
(Dawson et al., 2010). As a result, it remains difficult to assess and quantify the extent and 
abundance of species or habitat type necessary to maintain sufficient levels of ecosystem 
services to support human well-being in a sustainable manner (Luck et al., 2009).  It is crucial, 
therefore, to develop a suite of indicators of the health and status of ecosystems, to monitor and 
quantify services delivery and to facilitate policy responses to stop and reverse negative trends 
(Feld et al., 2010). An effective framework to facilitate the development of suitable indicators 
is through using the SMART approach, which defines five criteria that could be applied to set 
management goals, which are Specific, Measurable, Achievable, Realistic and Time-sensitive 
(Shahin and Mahbod, 2007). For ecosystem management objectives, remote sensing provides 
a useful data source that can monitor ecosystems over multiple spatial and temporal scales and 
that complies with the SMART criteria. Although the development and application of 
landscape indicators (vegetation indices, for example) derived from remote sensing data are 
comparatively advanced and operational for a number of environmental monitoring activities, 
it is acknowledged that a number of organisms and ecosystem processes are not detectable by 
remote sensing. However, there has been increasing use of high-resolution hyperspectral and 
hyper-spatial imagery from airborne and satellite-borne sensors for delineating individual tree 
canopies and identifying vegetation species (e.g. Sarrazin et al., 2011; Mehner et al., 2004). 
Remote sensing has also been used to detect and map impacts from invasive plant species that 
can have negative consequences for biodiversity and ecosystem function (Henderson & 
Dawson, 2009). Large mammals and herbivores including elephants, wildebeest and zebra 
have been monitored with remote sensing, either directly mapped from high spatial resolution 
data (Zheng, 2012) or the presence of species inferred from characteristic disturbance such as 
burrows (Löffler and Margules 1980).  Given the ever greater spatial and spectral resolution of 
airborne and satellite sensors, we can expect to see more publications in this area.  Indeed, the 
plethora of new sensors and remote sensing technologies that are likely to become available in 
the near future suggest the potential to estimate and map critical ecosystem indicators at local 
to regional scales will become ever more common and robust.  This paper outlines some 
research in progress and presents some examples of indicators that are derived from remote 
sensing to monitor important ecosystems and highlights a number of challenges and limitations 
that remain outstanding.  



Developing Indicators for Ecosystem Service Monitoring 
 
One of the main challenges in ecosystem monitoring remains the development of suitable direct 
indicators, i.e. indicators that directly refer to the component of biodiversity or to the functions 
and processes behind a certain ecosystem service. Scientists often discover that certain 
ecosystem services are provided by a small number of species or a functional group of species 
rather than by the whole diversity present in that ecosystem (Luck et al. 2009). Feld et al. 
(2010) have defined seven criteria to assess the general suitability of existing indicators of 
biodiversity and ecosystem services (Table 2). These criteria provide a checklist for indicator 
development and testing, which, if applied consistently, can help assist the development and 
application of indicators of biological relevance across multiple spatial scales. Of particular 
interest to the Earth Observation community is the seventh criterion, which addresses the 
applicability of remote sensing to obtain the required data for indication.  
 
Remote sensing data (for deriving knowledge about ecosystem and habitat area, vegetation 
status, degree of fragmentation, etc) can provide a generalised comparable data source (EEA 
2007). Satellite images are available at regional to global scales and across multiple time-
scales. Satellite-derived remote-sensing indicators, such as vegetation indices, enable us to 
compare and scale-up data measured from fieldwork to multiple spatial scales. Indicators that 
are based upon remote sensing data allow for cross-comparisons of biodiversity and ecosystem 
services at comparatively broad scales and across different ecosystems (Nagendra 2001; Duro 
et al. 2007).  

The development and the application of landscape indicators derived from remote sensing data 
are comparatively advanced (e.g., Gobin et al. 2004; EEA 2007) and some examples are 
provided (Table 3). The Normalised Difference Vegetation Index (NDVI; Tucker 1979), for 
instance, constitutes a well-described and widely applied indicator of green leaf biomass, which 
has been used to estimate changes in vegetation health, leaf area and forest canopy cover from 
landscape to global scales (e.g. Ares et al. 2001; Ingram and Dawson 2005). In a systematic 
review of the use of remotely sensed data in ecosystem service assessments, it was noted by de 
Araujo-Barbosa et al., (2015) that maps of land cover and NDVI were the most commonly 
used remote sensing-derived products among all ecosystem services categories. 

It is acknowledged that a number of organisms not detectable by remote sensing have a strong 
affinity with a dominant species that creates and maintains large-area physical structures over 
long (including evolutionary) time periods. For example, sphagnum bogs, wetlands, savannas, 
salt marshes and coral reefs create habitats that provide food sources, micro-environments and 
protection for a whole community of species that have specificity to these habitat types (see, 
for example, Jones et al., 1994).  The identification and classification of these macro structures 
by remote sensing is possible (e.g., Yang and Prince 2000; Ozesmi and Bauer 2002; Silvestri 
et al. 2003; Mumby et al. 2004; Harris and Bryant 2009) and quantitative assessments of 
biodiversity populations have also been made using the species-area relationship and extent of 
habitat derived from remote sensing (Turner et al. 2003; Jha et al. 2005). Other examples of 
the link between specific species and landscape indicators have been reported by Dormann et 
al. (2007) and Hendrickx et al. (2007). However, a reliable indication of the status and trends 
of biodiversity and ecosystem service provision beyond habitat mapping and based on remote 
sensing data, requires more research effort to validate the results. This in particular applies to 
the validation of statistically significant relationships of landscape metrics and measures of 
components of biodiversity by ground-based observations. The knowledge of these 



relationships at the landscape scale might provide a widely applicable and cost-effective tool 
for biodiversity monitoring (Lengyel et al. 2008). 

Clearly the potential of remote sensing as a source of information to obtain information relating 
to the provision of ecosystem services and indicators of ecosystem status is promising, and 
several authors have produced useful reviews illustrating this (e.g. de Araujo Barbosa et al., 
2015), and more particularly potential opportunities for applied ecology (Pettorelli et al., 2014) 
and as a tool for monitoring progress towards biodiversity targets (O’Connor et al., 2015).  Here 
we examine three case studies drawn from the authors own research that have utilised Earth 
Observation techniques over a range of temporal and spatial scales to illustrate the development 
of explicit linkages between ecosystem services and remote sensing indicators that adhere to 
the SMART concept.  The examples illustrate the use of both passive and active remote sensing 
systems, and whilst they are applied at the landscape scale, they are also applicable at the global 
scale.  The three examples have been deliberately chosen as they make use of existing data that 
are widely available and commonly used.  The potential of new sensors and remote sensing 
technologies are then discussed in the Discussion section, highlighting the enormous current 
potential in this arena. 

Case studies 
 
(i) Forests, carbon storage and provisioning services  

Tropical forests play critical roles in the functioning of our planet and the maintenance of life 
(Myers, 1996). They serve as regulators of global and regional climate systems (Gedney & 
Valdes, 2000), act as carbon sinks (Grace et al., 1995), are rich in biodiversity (Wilson, 1988), 
provide valuable ecosystem services, and serve as vital resources for human populations 
(Laurance, 1999). Thus, monitoring the state and condition of tropical forests can also provide 
indications of the health of our planet and its inhabitants. In southeast Madagascar, the coastal 
littoral forests have been identified as a national conservation priority (Ganzhorn et al. 2001) 
due to the concentrations of national and local endemic plant species, a diverse tree flora 
(Dumetz 1999), and high diversity of faunal taxa (Ganzhorn 1998; Ramananmanjato 2000; 
Watson et al. 2004). The forests also provide important ecological services for local 
communities, including food, energy, medicines and construction materials. Indeed, for many 
of the rural poor, these forests act as a critical safety net during times of shock, for example, 
crop failure arising from extreme climate events, such as drought or during seasonally ‘lean’ 
periods. Assessing the sustainability of forest resource use requires resolving appropriate 
spatial and temporal scales for establishing a baseline assessment. Ingram and colleagues 
(Ingram and Dawson, 2005a, 2005b; Ingram et al., 2005a, 2005b) undertook a synthesis of 
remote sensing techniques at multiple spatial and temporal scales combined with climatic data 
and information collected during ecological field surveys within a SES framework analysis to 
evaluate natural and anthropogenic processes acting upon littoral forest ecosystems in south 
eastern Madagascar. The provenance and temporality of the drivers and pressures of 
environmental change acting upon these forests are quite diverse, including natural climate 
change (both chronic and transient, including drought and cyclones) with human pressures on 
the system including processes such as logging for fuel-wood or construction purposes by local 
people or forest clearance (for charcoal-making) by itinerant groups of people. The long-term 
selective use of forest resources are chronic in nature whereas a large-scale forest clearance 
event would be transient. Both types of events can negatively affect both ecosystem functioning 
and biodiversity, which may compromise the ability of the natural forest system to provide 
essential ecological goods such as fuel-wood, wild food, medicines and/or vital ecological 



services such as soil stabilization for erosion prevention, windbreaks or water filtration. The 
project established fixed plots in several of the fragments; to determine plant and tree species 
composition and to provide Diameter at Breast Height (DBH) measurements for validation of 
a satellite-derived degradation map (Figure 1) (Ingram et al., 2005a).  They used an artificial 
neural network (ANN) to predict basal area from radiance values in Landsat TM bands 3, 4, 5 
and 7 to produce a predictive map of basal area for the entire forest landscape. The ANNs 
produced strong and significant relationships between predicted and actual measures of basal 
area using a jackknife method (r=0.79, pb0.01) and when using a larger data set (r=0.82, 
pb0.01). The map of predicted basal area produced by the ANN was assessed in relation to a 
pre-existing map of forest condition derived from a semi-quantitative field assessment. The 
predictive map of basal area provided finer detail on stand structural heterogeneity, captured 
known climatic influences on forest structure and displayed trends of basal area associated with 
degree of human accessibility. The inventories confirmed the importance of the majority 
(>84%) of the tree species as being of utilitarian value to the local communities (Figure 2) 
(Ingram et al., 2005b). The primary usages of tree species identified were energy provision 
(firewood and charcoal), construction materials, medicine, spiritual purposes, food, fibres and 
oil. This study demonstrated that forest structural features, such as basal area and stem density, 
known to indicate human impact or disturbance, can be related to species richness for utilitarian 
species. The high abundance, high basal area, and promising regeneration potential of highly 
exploited utilitarian species across the landscape indicates that these forests have significant 
value for human well-being, which has not been irreversibly lost despite long-term human 
pressure on these systems.   

 
Synthetic Aperture Radar for estimating biomass and carbon content in forest 
plantations  

Synthetic Aperture Radar (SAR) provides a viable method for monitoring forests’ resources at 
regional and national scales and for estimating carbon stocks. The microwave radiation used 
by SAR is of sufficiently long wavelengths not to be significantly affected by atmospheric 
attenuation, resulting in an operating capability which is independent of cloud cover. 
Importantly, microwave interactions are sensitive to the roughness and physical geometry of 
forests, an asset which, when combined with the ability of the radiation to penetrate forest 
canopies, results in the sensitivity of SAR backscatter to key biophysical variables, such as tree 
density and above ground biomass (Beaudoin et al., 1994; Baker et al., 1994; Green et al., 1996, 
Green, 1998; Cutler et al., 2012). The sensitivity of radar backscatter to above-ground biomass 
density is both wavelength and polarization dependent. This relates to the depth of penetration 
of different wavelengths, typically concentrating on the dominance of volume (canopy) 
scattering in X-band (3 cm) and C-band (5 cm) in contrast to branch scattering at 23 cm (L-
band) and trunk-ground interactions at P-band (50 cm) (Ranson and Sun, 1994). Whereas short 
wavelength X- and C-band backscatter is sensitive mainly to canopy architecture (e.g. Green, 
1998), it is the longer wavelength L- and P-band backscatter that is highly correlated with forest 
above-ground biomass density. As Baker et al. (1994) also demonstrated, the cross-polarized 
term is often most strongly correlated with forest biomass density. Relationships between 
backscatter and biomass density are characterized by a saturation of the radar signal before 
reaching high bole volume (Imhoff, 1995). Dobson et al. (1992) analysed radar responses at L-
, P- and C-band to forest biomass density and found an approximately linear response of 
backscatter with increasing biomass density with wavelength dependent saturation levels 
around 200 t ha-1 for P-band and 100 t ha-1 for L-band. In the study of Imhoff (1995) saturation 
was reached at 100 t ha-1 for P-, 40 t ha-1 for L- and 20 t ha-1 for C-band in coniferous and 



broadleaf evergreen forests. The accuracy with which biophysical parameters can be retrieved 
from SAR measurements of forests depends considerably upon vegetation structure and ground 
conditions. Thetford Forest is a Forestry Commission plantation in East Anglia, UK created 
from heathland early this century with an ongoing programme of crop rotation and a long 
history of experimental planting which provide both a large variety of tree species and a wide 
range of tree ages within the primary crop which is Corsican Pine (pinus negra). The minimal 
topographic variation, long management history and previous use as a remote sensing 
‘supersite' combine to make this an ideal site for remote sensing analysis of carbon stocks. 
Extensive fieldwork was carried out at Thetford in 1989 in order to quantify the above-ground 
biomass density in selected forest stands. A range of biomass densities were characterized at 
both sites with measurements of tree height, DBH and species. In addition, stand partition 
information on tree species and planting date were digitised from forest management maps in 
order to extrapolate the field measurements over a greater number of forest stands (Luckman 
and Baker, 1997). The biomass density was estimated by forming a regression between stand 
age and the measured biomass density and extrapolating to a large number of stands for which 
the planting date was provided by the UK Forestry Commission. SAR data used in this early 
study were L-band polarimetric AIRSAR data from Thetford acquired during the NASA/JPL 
1991 MAC-Europe campaign. The relationship between estimated above-ground biomass 
density and backscattering coefficient shows a reasonable dynamic range with saturation 
occurring at a stand biomass density of between 60-80 tonnes per hectare (Figure 3).  Many 
authors have since gone on to test the relationships between SAR backscatter coefficient and 
biomass in different forest types, stocking densities and biomass ranges, and clearly show the 
value of SAR for deriving indicators of forest status, extent, degradation and fragmentation. 

 (iii) Assessment of peatland habitat, degradation and erosion 

Whilst much research has focussed on forests as providers of important ecosystem services, 
less focus has been directed towards organic soils, and in particular areas of extensive organic 
soils such as peatlands. These are of high conservation value, not only for their intrinsic habitat 
value, but also because they offer a wide range of ecosystem services (Table 1), including water 
supply, recreation, biodiversity, carbon sequestration and storage (Evans and Lindsay, 2010). 
However, physical degradation of peatlands is widespread, particularly in the UK, and new 
methods for assessing the status of these environments is required to best regulate erosion and 
help manage regeneration. 
 
Remote sensing has often been suggested as a means for providing indicators of peatland 
degradation as an alternative to field-based methods that often rely on the subjective 
interpretation of the landscape, with varying degrees of agreement (Cherrill and McClean, 
1999).  However, the successful application of remote sensing for peatland mapping has been 
limited thus far, due in part to the spatial resolution of available data from broad-band satellite 
sensors (e.g. Landsat Thematic Mapper with a spatial resolution of 30 m).  The intrinsic scale 
of peatland features in the UK tend to be smaller than 30 m (e.g. patches of bare peat, pool 
systems, etc.), and satellite sensors have proved inadequate to provide high quality peatland 
habitat maps at appropriate scales (McMorrow and Hume, 1986).  As a result, remote sensing 
has rarely been used to inform erosion regulation in these environments, often limited to 
manual interpretation of peatland habitats from aerial photography. 
 
Recently, however, a number of high spatial resolution satellite sensors have been launched 
which provide multispectral observations suitable for automated land cover mapping and 
feature extraction (e.g. WorldView series of satellite).  These typically have spatial resolutions 



of between 4 and 0.5 m, often exceeding the minimum 3.45 m spatial resolution required for 
peatland habitat mapping suggested by Cole et al. (2014).  Indeed, such sensors have already 
been used to map upland vegetation species, providing accuracies in excess of those achieved 
with field-based methods (Mehner et al., 2004; Mills et al., 2006).  
 
To explore this new opportunity a WorldView-2 image was acquired for an area of northern 
Scotland, owned and managed by Wildland Ltd.  The image has a spatial resolution of 1.85 m 
for the multispectral data (8 wavebands located in the visible and near infrared) and 0.46 m in 
the panchromatic, and was used to map indicators of peatland status, including the extent of 
specific land cover classes, such areas of bare peat and vegetation associated with disturbance, 
and mapping expressions of physical disturbance associated with fires, peat cutting and 
drainage.  To make the most of the high frequency textural information in the panchromatic 
image, the data were pan-sharpened before deriving a map of land cover using a standard 
supervised maximum likelihood algorithm. Thirteen classes were mapped and the resulting 
image was assessed as having an overall accuracy of 89%.  Additionally, the presence or 
absence of linear features in mire and bare peat land cover classes were extracted using an 
analysis of image texture.  After extracting information for single classes, such as bare peat 
(figure 4), the area was then segmented into 1 km2 grid cells and the mean size and density of 
land cover patches in each cell determined using the FRAGSTATS software, thus providing 
an indication of habitat fragmentation and degradation severity in different parts of the estate 
(Figure 5). To help inform management and possible restoration of the site, the remote sensing-
derived land cover and feature data, along with a digital elevation model, were used to derive 
an assessment of erosion risk.  Using a knowledge-based classifier, a rule-base was developed 
to combine information indicating areas of high potential peat erosion.  For example, areas of 
bare peat that occurred on slopes or were hydrologically or fragmentally connected to an area 
of disturbance were deemed of high risk of erosion (Evans and Lyndsay 2010), whereas intact 
areas of mire that exhibited no pools or patches of bare peat where deemed at less risk (Figure 
6). Whilst further work is required to determine the applicability of these methods to other sites, 
the work highlights the potential of remote sensing for providing indicators of peatland 
fragmentation, connectivity, extent and erosion. 
 
Discussion 
 
The three case studies described above provide a snapshot of the application of existing remote 
sensing datasets and methods applied to derive landscape indicators of biodiversity and the 
status and provision of ecosystem services.  However, as alluded to in the introduction of this 
paper, we stand on the cusp of a significant change in the provision of remotely sensed data.  
The plethora of new satellite and airborne sensors now in operation or due for launch shortly 
(Table 4) represent a step change in both quantity and access to data.  In addition, by exploiting 
information from new technologies such as hyperspectral remote sensing and terrestrial laser 
scanning, it should be possible to derive additional landscape indicators that conform to the 
SMART approach. 
 
As an example of this, and in relation to the peatland example described above, new remote 
sensing methods have already been used to estimate a number of critical ecosystem variables, 
such as upland vegetation biochemistry and phenology (e.g. Cole et al., 2014), moisture stress, 
sphagnum distribution (e.g. Harris and Bryant, 2009), fine scale hydrological networks can be 
extracted (e.g. Korpela et al., 2009; Anderson et al., 2010) and peat physico-chemical 
properties (e.g. McMorrow et al., 2004).  The latter example, in particular, demonstrates the 
potential of hyperspectral sensors for assessing potential future erosion.  The physico-chemical 



properties of peat, especially the degree of humification, expresses the spatial severity and risk 
of further erosion.  Loss of the top, woody, more resistant layer (acrotelm) with its high 
hydraulic conductivity means removal of the major pathway for subsurface lateral drainage 
(Burt et al., 1997) and easier subsequent erosion of the less resistant sub-surface layers.  
McMorrow et al., (2004) were able to use data from a hyperspectral airborne sensor to map 
variation in the degree of humification of exposed peat in the southern Pennines, UK, providing 
indicators to inform future management and restoration.  Thus, with the availability of high-
spatial resolution satellite data and the development of hyperspectral and laser technologies, it 
is clear that remote sensing methods will play a critical role in regulating and managing 
peatlands, and the ecosystem services they provide. 
 
However, for any application there remains challenges in the application of these new datasets 
to derive landscape indicators.  For example, the scale-dependency of observations of 
landscape indicators and functionally relevant ecosystem processes in relation to the spatial 
resolutions now available from remote sensing requires investigation.  Additionally, further 
work needs to focus on the applicability and repeatability of methods and relationships 
developed for one sensor and / or site, to other sensors, sites and landscape situations (e.g. 
Cutler et al., 2012).  
 
To address this, there has been considerable recent focus on the development and use of 
standardised remotely sensed-products (Andrew et al., 2014; Seppelt et al., 2011).  These 
products, which are largely land cover/land use type products but also include NDVI and other 
remotely sensed variables, tend to be produced from a single satellite sensor, removing 
variability associated with multiple sensor characteristics.  Additionally, products may be 
single-year or multi-year products (e.g. European Space Agency’s Climate Change Initiative 
Land Cover Products), enabling change to be detected using a standardised set of data 
characteristics or land cover classes.  Thus the use of a standardised product may reduce some 
of the uncertainty associated with individuals deriving landscape indicator assessments 
themselves. However, the uptake in use of such products has been slow, put down partly to a 
lack of awareness but also a lack of confidence in spatial accuracy (Congalton et al., 2014).  
Most operational products are still restricted to spatial resolutions of between 1 – 5 km, which 
whilst providing frequent temporal updates may be a deterrent toward their use for some 
applications.  There also remains additional problems of reconciling different definitions of 
ecological variables and land cover classes from one product to another. 
 
Despite these challenges, the real value of remote sensing indicators to provide consistent and 
coherent information on the state of the Earth’s ecosystems over multiple spatial and temporal 
scales, is paramount.  Given the rapidly growing World population creating unprecedented 
demands and pressures on our natural resources, using the near real-time benefits of this 
technology for monitoring ecosystem changes is essential. 
 
Conclusion 
 
Although remote sensing provides the potential for the establishment of indicators for 
continuous monitoring and assessment of ecosystem services over multiple spatial scales, in 
many cases they provide only an indirect measure of the biodiversity and ecosystem function 
and process of interest. Research in progress to improve upon this situation includes the 
coupling of remote sensing data to ecosystem process simulation models (to estimate water and 
carbon exchange between the biosphere and the atmosphere, for example) or the use of species-
area relationships to assess individual species populations. Although it is unlikely that remote 



sensing will supply all the necessary indicators for the assessment and monitoring of ecosystem 
services, remote sensing data has considerable advantages over other indicator data sources 
due to its SMART compliance. With the development of new technologies and methods for 
exploiting information in remotely sensed data, such as illustrated in the case studies described 
here, it is clear that the role of remote sensing in ecosystem services assessment and monitoring 
is going to become more extensive, both in spatial terms but also in the types of critical 
ecosystem variables that can be retrieved. 
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Figures 
 
Figure 1. Satellite-derived map of forest fragmentation and degradation in south eastern 
Madagascar (from Ingram et al., 2005a). 
 
Figure 2. Utilitarian versus non-use species of trees for 22 transects surveyed in the fragmented 
forests of southeast Madagascar (from Ingram et al., 2005b). 
 
Figure 3. Relationships between AIRSAR backscattering coefficient and above-ground 
biomass density. 
 
Figure 4: Extract of land cover map derived from pan-sharpened WorldView-2 imagery, 
illustrating areas of bare peat and water. 
 
Figure 5:  Mean patch area (a), and patch density (b) per 1 km grid cell, derived from mapped 
areas of bare peat in the WorldView-2 image land cover classification. Areas in red have a 
higher mean patch area and higher patch density, indicating greater fragmentation and areas 
of bare peat. 
 
Figure 6:  (a) Extract of pan-sharpened WorldView-2 image; (b) supervised land cover 
classification; and(c) potential erosion risk derived from a knowledge—based classification 
incorporating image texture, lineament detection, land cover and a digital elevation model. 
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Figure 4: Extract of land cover map derived from pan-sharpened WorldView-2 imagery, 
illustrating areas of bare peat and water. 
 
  



 
 
Figure 5: Mean patch area (a), and patch density (b) per 1 km grid cell, derived from mapped 
areas of bare peat in the WorldView-2 image land cover classification.  Areas in red have a 
higher mean patch area and higher patch density, indicating greater fragmentation and areas 
of bare peat. 
 



Figure 6: (a) Extract of pan-sharpened WorldView-2 image; (b) supervised land cover 
classification; and(c) potential erosion risk derived from a knowledge—based classification 
incorporating image texture, lineament detection, land cover and a digital elevation model



Table 1. Services provided by terrestrial and freshwater ecosystems, categorized according to the MEA  (adapted from Vandewalle et al., 
2008). 
 

MEA Services 
category 

Ecosystem service Agro-
ecosystems 

Forests  Grasslands Heath/ 
shrubs 

Montane Soils Wetlands Rivers and 
floodplains 

Lakes Marine 

Provisioning Food, fibre and fuel • • • • • • • • • • 
 Genetic resources • • • • •  • • • • 
 Biochemical/natural medicines • • • • •     • 
 Ornamental resources • •  •       
 Fresh water  •  • •  • • •  
 Energy •      • • • • 
Regulatory Pollination • • • • •      
 Seed dispersal • • • • •  •   • 
 Pest regulation • • • • • • •  •  
 Disease regulation • • • • • •     
 Climate regulation • • • • • • • • • • 
 Air quality regulation • •  • •      
 Water regulation  •  • • • • • • • 
 Erosion regulation • • • • • •  • •  
 Natural hazard regulation • • • • • • • •  • 
 Invasion resistance  • • • •   •   
 Herbivory • • • • •  •    
 Water purification/waste treatment • • • • • • • • • • 
Cultural  Spiritual and religious values • • • • •  • • • • 
 Knowledge system • • • •   •    
 Education and inspiration • • • • •  • •  • 
 Recreation and ecotourism • • • • • • • • • • 
 Cultural heritage • • • • •  •   • 
 Aesthetic values • • • • • • • • • • 
 Sense of place • • • • • • • • • • 
Supporting Primary production • • • • • • • • • • 
 Photosynthesis • • • • •  • • • • 
 Provision of habitat • • • • • • • • • • 
 Soil formation and retention • • • • • •     
 Nutrient cycling • • • • • • • • • • 
 Water cycling • • • • • • • • •  



Table 2. Assessment criteria for indicators of biodiversity and ecosystem services (from 
Feld et al., 2010) 
 

Criteria Example categories Example 
1. Has the purpose 
been defined? 

ecosystem quality 
assessment; biodiversity 
status indication; 
environmental impact 
assessment 

Ecosystem quality assessment is different from 
biodiversity status indication. While the former 
requires indicators that are compared to quality 
reference values, the latter does not require predefined 
quality references (unless an assessment of 
biodiversity trends is being made). 

2. Is the indicator 
type appropriate? 

status/trend; impact; 
response indicators 

Species richness can be used to indicate and monitor 
the status/trends of taxonomic richness of an 
ecosystem. However, the application of species 
richness to indicate the impact of environmental 
stressors requires the knowledge about the kind of 
direct linkage between richness and the stressor.  

3. Is the indicator 
linked to 
biodiversity (i) and 
ecosystem 
services/service 
category (ii) 

(i) richness; genetic; 
structural; and 
functional biodiversity 
(ii) provisioning; 
regulating; supporting; 
and cultural services 

Aquatic species richness and dominance structure may 
be used to indicate freshwater ecosystem biodiversity. 
If related to water quality and ecosystem integrity, the 
indicators may also be used to indicate the service of 
fresh water provision.  

4. Does the spatial 
scale fit the 
purpose? Is up-
/down-scaling 
possible 

local to global scales; 
indicators may be 
applicable over a range 
of spatial scales and 
allow an up-
/downscaling of results 

Local taxon richness in grassland patches may refer to 
several square metres, while fragmentation in the same 
ecosystem is a measure at the landscape level and may 
refer to several hectares or larger areas. In contrast, 
nitrogen deposition, if normalised for area, can be 
easily scaled up or down and thus can be applied at 
regional, national and even global scales. 

5. Is a reference or 
benchmark 
definable? Is it 
already applied? 

yes/no to both questions. The trend in selected biomes, ecosystems and habitats 
may be positive, but anyhow below a level required to 
maintain a specific level of biodiversity. Hence, 
biodiversity assessment requires the comparison of 
actual results with reference/benchmark values.  

6. Are data / 
sampling protocols 
available? 

yes/no to both questions The widespread application of indicators across 
regions or ecosystems requires the use of comparable 
data of a sufficient quality. Data should be collected 
using standardized protocols  

7. Is remote sensing 
applicable? 

yes/no To compare for instance the protected area of certain 
ecosystems or habitats, a minimum requirement is a 
sufficient availability and resolution of spatial data. 
This is often ensured with the application of GIS to 
remote sensing data. For example, fragmentation 
indices can be easily derived from aerial photographs 
and CORINE data. 

 

 



Table 3. Some examples of Internationally-adopted indicators using remote sensing data 
(adapted from Feld et al., 2010) 

 
 

No. Indicator (references) Purpose(s) of 
indication 

Indicator 
type 

Direct/indirect link to 
biodiversity  

1 Trends in extent of biomes; 
ecosystems and habitats 
(UNEP/CBD/COP7 2003; 
EEA 2007) 

assessing 
progress 
towards 2010 
target & 
communicate 
trends in 
biodiversity 

status/trend indirect; areal 
measure 

2 Coverage of protected areas 
(UNEP/CBD/COP7 2003; 
EEA 2007) 

assessing 
progress 
towards 2010 
target & 
communicate 
trends in 
biodiversity 

status/trend indirect; areal 
measure 

3 Connectivity/fragmentation 
of ecosystems 
(UNEP/CBD/COP7 2003; 
EEA 2007) 

assessing 
progress 
towards 2010 
target & 
communicate 
trends in 
biodiversity 

status/trend, 
response 

indirect 

4 Normalized Differenced 
Vegetation Index NDVI 
(Ares et al. 2001) 

indication of 
management 
and disturbance 

status indirect 

5 Forest fragmentation 
(Riitters et al. 2003) 

fragmentation 
status 
assessment 

status/trend indirect 

6 Share of semi-natural 
habitat (Billeter et al. 2008) 

indication of 
management 
and disturbance 

status indirect; areal 
measure 

 
 



Table 4: Selected current and future Earth Observation missions which have the potential to provide landscape indicators of 
biodiversity and associated ecosystem services (Adapted from O’Connor et al., 2015) 
 
 
Satellite Sensor Spatial; spectral; temporal 

resolution* 
Launch / expected 
launch date 

Example ecosystem services / landscape 
indicators 

Landsat-8 Multispectral 
Imager 
 

15-30 m; 9 wavebands; 16 days Feb. 2013 Global assessment of land cover, extent of 
biomes, ecosystems and habitats; plant 
status and health; Ecosystem 
fragmentation and connectivity; NDVI 
and other vegetation indices; primary 
production; erosion monitoring.  

WorldView-3 Multispectral 
imager 

9 wavebands (VNIR); 0.31 – 1.3 
m; 1-4 days 

August 2014 

Sentinel-1  Multispectral 
Imager 
 

10-60 m; 13 wavebands; 5 days June 2015 

EnMap Hyperspectral 
imager 

30 m; 244 wavebands; 4 days 2018 Global assessment of plant biophysical 
and biochemical content; pest and disease 
detection; vegetation species mapping; 
mineral mapping; erosion monitoring. 

HYSPIRI Hyperspectral 
Imager 
 

60 m; 19 days; 0.3-12µm 2022 

Alos-2 L-Band Radar 10 m; 14 days May 2014 Global assessment of forest cover and 
fragmentation and disturbance; status and 
trends in above ground biomass; soil 
moisture; land cover mapping; 
topographic change. 
 

Sentinel-2 C-Band SAR 5-20 m; 6 days April 2014 
BIOMASS 2020 P-Band SAR 50 m 2020 

ICESat-2 Laser altimeter 91 day repeat cycle 2017 Global assessment of vegetation height at 
1 km resolution. 

* If available at the time of publication 
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