

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Laurens De Vocht, Ben De
Meester, Gerald Haesendonck, and Pieter Colpaert

In: Journal of Web Semantics, 37–38, 184–206, 2016.

http://linkeddatafragments.org/publications/jws2016.pdf

To refer to or to cite this work, please use the citation to the published version:

Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De Meester, B.,
Haesendonck, G., and Colpaert, P. (2016). Triple Pattern Fragments: a Low-cost Knowledge Graph
Interface for the Web. Journal of Web Semantics 37–38 184–206.
doi:10.1016/j.websem.2016.03.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55896765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

Ruben Verborgha,∗, Miel Vander Sandea, Olaf Hartigb, Joachim Van Herwegena, Laurens De Vochta, Ben De Meestera,
Gerald Haesendoncka, Pieter Colpaerta

aGhent University – iMinds, Sint-Pietersnieuwstraat, 9000 Gent, Belgium
bHasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany

Abstract

Billions of Linked Data triples exist in thousands of RDF knowledge graphs on the Web, but few of those graphs
can be queried live from Web applications. Only a limited number of knowledge graphs are available in a queryable
interface, and existing interfaces can be expensive to host at high availability. To mitigate this shortage of live queryable
Linked Data, we designed a low-cost Triple Pattern Fragments interface for servers, and a client-side algorithm that
evaluates SPARQL queries against this interface. This article describes the Linked Data Fragments framework to
analyze Web interfaces to Linked Data and uses this framework as a basis to define Triple Pattern Fragments. We
describe client-side querying for single knowledge graphs and federations thereof. Our evaluation verifies that this
technique reduces server load and increases caching effectiveness, which leads to lower costs to maintain high server
availability. These benefits come at the expense of increased bandwidth and slower, but more stable query execution
times. These results substantiate the claim that lightweight interfaces can lower the cost for knowledge publishers
compared to more expressive endpoints, while enabling applications to query the publishers’ data with the necessary
reliability.

Keywords: Linked Data, Linked Data Fragments, querying, SPARQL

This is the revised manuscript of an article that has been accepted for publication in Journal of Web Semantics.
DOI: doi:10.1016/j.websem.2016.03.003
URL: http://www.sciencedirect.com/science/article/pii/S1570826816000214

This article is the main reference for Linked Data Fragments and Triple Pattern Fragments.
Please cite as follows:
Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De Meester, B., Haesendonck, G.,
Colpaert, P.: Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web. Journal of Web Semantics.
(2016). DOI: doi:10.1016/j.websem.2016.03.003

c© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

∗Corresponding author
Email address: ruben.verborgh@ugent.be (Ruben Verborgh)

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

1. Introduction

Before the Linked Data initiative [1], the Semantic
Web suffered from a chicken-and-egg situation: there
were no applications because there was no data, and
there was no data because no applications were using it.
Fortunately, Tim Berners-Lee’s credo “Raw data now”
has caught on, and now more knowledge graphs exist
as Linked Data than ever before [2]. Statistics from the
LODstats project [3] indicate that, as of March 2015,
there are over 88 billion Linked Data triples distributed
over 9,960 knowledge graphs.1 Thus, the ball is now
back in the Semantic Web’s court: given this tremendous
amount of data in various domains, we should be able to
build the envisioned intelligent applications [4].

Unfortunately, the availability of live queryable knowl-
edge graphs on the Web still appears to be low. With “live
queryable”, we mean Linked Data that can be queried
without first downloading the entire knowledge graph.
With “low availability”, we mean the two-sided problem
the Semantic Web is currently facing: i) the majority of
knowledge graphs is not published in queryable form [3]
and ii) knowledge graphs that are published in a public
SPARQL endpoint suffer from frequent downtime [5].
This unavailability becomes all the more problematic if
we consider queries over multiple, distributed knowledge
graphs. It is therefore understandable that many publish-
ers choose the safe option, avoiding the responsibility
of hosting a SPARQL endpoint by offering a data dump
instead. Yet, this does not bring us closer to the Semantic
Web because such data dumps need to be downloaded
and stored locally so that the actual querying can happen
offline. Furthermore, their consumption is only possi-
ble on sufficiently powerful machines—not on mobile
devices, whose popularity continues to increase—and
requires a technical background to set up. A significant
amount of Linked Data knowledge graphs is therefore
not reliably queryable, nor easily accessible, on the Web.

If we want Semantic Web applications on top of live
knowledge graphs to become a reality, we must recon-
sider our options regarding Web-scale publication of
Linked Data. Between the two extremes of data dumps
and SPARQL endpoints lies a whole spectrum of pos-
sible Web interfaces, which has remained largely un-
explored. The challenge is to methodically analyze the
benefits and drawbacks an interface brings for clients and
servers. In particular, we aim for solutions with minimal
server complexity (minimizing the cost for data publish-
ers) while still enabling live querying (maximizing the
utility for Semantic Web applications).

1http://stats.lod2.eu/

In this article, we present and extend our ongoing
work on Linked Data Fragments [6], a framework to
analyze Linked Data publication interfaces on the Web,
and Triple Pattern Fragments [7], a low-cost interface to
triples. Novel contributions include in particular:

• an extended formalization (Sections 4 and 5) that
details the response format and its considerations
(Section 5.3);

• a detailed discussion of Triple Pattern Fragments
publication and their relationship to existing inter-
faces (Sections 4.3 and 5.4);

• an extension of the query execution algorithm to-
ward other SPARQL constructs (Section 6.3) and
toward a federation of interfaces (Section 6.4);

• additional experimental results that

– measure queries on the real-world knowledge
graph DBpedia, revealing that the type of
queries has a stronger influence than knowl-
edge graph size (Section 7.2);

– assess the impact of different serialization for-
mats, which reveals a limited gain for special-
ized binary formats, likely due to the small
page size (Section 7.3);

– extend the application from one knowledge
graph to multiple knowledge graphs, where
we find that our proposed solution performs
well for certain types of queries with regard
to precision, recall, and/or execution time, but
less so for other types (Section 7.4).

The remainder of this paper is structured as follows.
Section 2 derives the research questions and hypotheses
underlying this work, based on quantifiable characteris-
tics for Web APIs. In Section 3, we describe existing
solutions and highlight their advantages and disadvan-
tages, focusing especially on the potential for live query
execution. Section 4 introduces the Linked Data Frag-
ments conceptual framework, followed by the definition
of the Triple Pattern Fragments interface in Section 5.
Section 6 details a client-side query algorithm for ba-
sic graph patterns, and extends it toward both general
SPARQL queries and federations of knowledge graphs.
We present an experimental evaluation in Section 7. Fi-
nally, Section 8 concludes the article with lessons learned
and starting points for further research.

doi:10.1016/j.websem.2016.03.003 2

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

2. Problem Statement

For querying knowledge graphs on the Web, there
exist interfaces with powerful query capabilities (e.g.,
SPARQL endpoints) and interfaces with low server-side
CPU cost (e.g., data dumps). The task of query evalu-
ation currently happens either fully on the server side,
or fully on the client side. However, there is a lack of
options that balance these and other trade-offs in differ-
ent ways. In this article, we aim to define and analyze
an interface that distributes the load of query evaluation
between a client and a server. To this end, we first de-
fine different characteristics relevant to Web Application
Programming Interfaces (Web APIs) in Section 2.1. Us-
ing these characteristics, we then formulate a research
question and associated hypotheses in Section 2.2.

2.1. Characteristics for Web APIs

A crucial architectural choice is the definition of the
interface, which in turn reflects on characteristics such
as performance, cost, cache reuse, and bandwidth. Each
of these can be considered from the perspective of ei-
ther servers in general, or clients performing a specific
task [8].

performance Performance is the rate at which tasks can
be completed. For the server, performance can be
measured as the number of requests it can handle
per time interval, i.e., the inverse of the average
request processing time. However, we need to take
into account that one API might offer more granular
requests than another. Therefore, to solve the same
task, a client might require a different number of
requests on different APIs.

cost Cost is the amount of resources a request consumes.
For the server, the resources typically involve CPU,
RAM, and IO consumption. From the client per-
spective, the cost consists of processing one or mul-
tiple server responses into the desired result for
a given task.

cache reuse Cache reuse is the ratio of items that are
requested multiple times from the cache versus the
number of items it stores. The server might offer
responses that can be reused by multiple clients,
which can then subsequently be served from a cache
instead, saving on server cost.

bandwidth The bandwidth for the client is the product
of the number of retrieved responses and the av-
erage response size (ignoring the relatively small

request size). This is the same for the server, ex-
cept that a portion of the responses might be cached
and thus involve cache bandwidth instead of server
bandwidth.

Given a task T a client needs to complete, two
Web APIs I and I′ might exhibit different behavior.
For instance, a client might be able to complete T us-
ing a single large operation o with server-side cost c
against I, whereas n smaller operations o′1, . . . , o

′
n with

costs c′1, . . . , c
′
n might be needed in the case of I′. We

assume here that the cost c′i of each individual smaller
operation o′i is less than the cost of the large operation,
c, but the total server cost for I′ is

∑n
1 c′i , which may be

greater than c. If, however, some of these n smaller op-
erations are cacheable, multiple clients executing tasks
similar to T could reuse already generated responses
from a cache, lowering the total number of requests—
and thus the cost—for the server. Which of these factors
dominates depends on the number of clients, the cost per
request, the cache reuse ratio, the similarity of tasks, and
other factors. In general, if costs increase to a certain
level, a server might become fully occupied and unable
to fulfill new incoming requests, and hence start a period
of unavailability. Due to its impact on availability, it
is thus important to examine how choosing a specific
interface influences the cost for the server.

Lastly, we introduce an important practical charac-
teristic. When designing an API, we need to consider
the restrictions the interface places on clients. For this
reason, we also assess the overhead for clients, which
we express as follows:

efficiency Efficiency for the client is the fraction of data
retrieved from the server during the execution of
a task over the amount of data required to execute
that task.

2.2. Balancing trade-offs for publishing and querying
Linked Data on the Web

Our goal is to enable reliable applications on top of
knowledge graphs on the Web. This requires Linked
Data that is i) available for a high percentage of time
ii) in a queryable form. Given that the interface is the
aspect of cost we have most control over, and that the
interface directly determines queryability, we define our
main research question as follows.

Q1 To what extent can a restricted Web API for knowl-
edge graphs provide live querying with low server
cost?

doi:10.1016/j.websem.2016.03.003 3

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

Note that we are not looking for an “optimal” interface,
as such an optimum (if it exists) is likely application
and use-case dependent. Instead, we specifically aim to
investigate the following question.

Q2 What trade-offs are involved in clients’ execution of
SPARQL queries over knowledge graphs accessible
through Web APIs whose expressiveness is limited
to a small subset of that of SPARQL?

Here, we consider the notion of the expressiveness of a
Web API as the (possibly infinite) set of different query
expressions a client can send to the interface. Note that,
in comparison to other typical Web APIs, SPARQL end-
points offer an interface with a relatively high expressive-
ness; it goes beyond the expressive power of the Rela-
tional Algebra (which has been shown to have an expres-
sive power equivalent to a core fragment of SPARQL [9]).
Hence, the answer to question Q2 will indicate whether
it makes sense to investigate other means of publishing
knowledge graphs besides SPARQL endpoints and data
dumps.

Concretely, we propose an interface I, for which we
formulate the following hypotheses. First, we expect the
overall server cost to be lower, as we improve the usage
of CPU, caching and concurrency.

H1 In comparison to the state-of-the-art in single-
machine SPARQL endpoints, I reduces the
server-side costs to publish knowledge graphs in
a queryable form.

H1.1 The CPU usage is smaller and increases more
slowly with an increasing number of clients
that access the interface concurrently.

H1.2 The number of requests answered by an HTTP
proxy cache increases with the number of
clients.

H1.3 The average response time is less affected by
increasing client numbers.

Next, we predict that this approach is sufficiently fast
for scenarios with real-world queries, i.e., randomly se-
lected queries from query logs from knowledge graphs
such as DBpedia. We set 1 second as a target response
time, which is generally accepted as maximum waiting
time without additional feedback to the user [10, 11].

H2 The majority of typical real-world queries execute
over I in less then 1 second.

Then, we study the required bandwidth of client and
server communication by experimenting with different

RDF serialization formats. A lower response size per re-
quest could reduce transfer time or advise us on optimal
page sizes, likely improving the overall query execution
time.

H3 Serialization formats that result in a lower response
size of I, compared to N-Triples, decrease query
execution times.

We anticipate that an approach with a low-cost server-
side interface will form an efficient architecture for query
evaluation over a federation of interfaces. We use the
term “federation” in the context of Sheth and Larson,
who define a federated database system as “a collection
of cooperating database systems that are autonomous and
possibly heterogeneous” [12]. With “query evaluation
over a federation of interfaces”, we mean that a whole
of multiple interfaces is considered for the evaluation of
a query, that is, the result of evaluating a given query
over these multiple interfaces is correct if and only if
it is identical to the result that would be obtained when
the query would be evaluated (under set semantics) over
one interface that combines the data of all considered
interfaces.

H4 When a client evaluates queries over a federation
of interfaces of type I under public network latency,
performance is similar to that of state-of-the-art
SPARQL query federation frameworks.

H4.1 For the majority of queries, result complete-
ness is similar to that of the state-of-the-art.

H4.2 For the majority of queries, average query
execution time is of the same magnitude com-
pared to the state of the art.

We test these hypotheses by the definition of a con-
crete interface (Sections 4 and 5), an associated query
execution algorithm (Section 6), and an experimental
evaluation thereof (Section 7).

3. Related Work

In this section, we first give a brief introduction to Web
APIs in general. This is followed by detailed discussions
for three common interface types to RDF triples [13]:
data dumps, SPARQL endpoints, and Linked Data doc-
uments. We finish with an overview of miscellaneous
approaches. For each interface type, we specifically
address the possibilities for query execution by clients
and/or servers using the SPARQL language [14], which
is the W3C standard to express declarative queries over
collections of RDF triples.

doi:10.1016/j.websem.2016.03.003 4

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

3.1. Web APIs

The notions of “Web service” and “Web API” (Web
Application Programming Interface) have been used in
various contexts [15]. In the broadest sense, a Web API
is any application that communicates through the HTTP
protocol. Regular websites can be conceived of as APIs
for humans, where the interface is determined by the
HTML pages offered by a server. In the stricter sense,
the term “Web API” mostly refers to interfaces that have
been designed for an automated, machine-based con-
sumption of Web content. Such an interface can range
from providing access to a single resource to an entire
dynamic network of interconnected resources.

In particular, we distinguish two architectural styles
for Web APIs. Some APIs follow a remote-procedure
calling (RPC) style, in which HTTP simply acts as a tun-
neling mechanism for method invocation. Other APIs
use the Representational State Transfer (REST) archi-
tectural style [16], in which hyperlinked resources (as
opposed to actions) form the interface building blocks.
In contrast to RPC, REST captures the design of the
human Web: we browse the Web by clicking links and
forms (respectively <a> and <form> in HTML). There-
fore, with REST Web APIs, machines similarly use such
hypermedia controls to navigate from one resource to
another [17, 18]. A hypermedia control is a declarative
construct that informs clients of a hypermedia interface
of possible application and/or session state changes in
their interaction with a server, and explains them how
to effectuate such changes. The Hydra Core Vocabu-
lary [19] allows Web APIs to describe the equivalent of
links and forms in RDF. The benefit of REST APIs is
that, like websites, they are self-describing: once the ba-
sic mechanisms (HTML, Hydra, . . .) are implemented,
no external documentation is necessary to browse and
consume the API or website.

Architectural styles have an influence on the API char-
acteristics discussed in Section 2.1. For instance, RPC-
based APIs tend to involve more individualized and un-
cached requests, analogous to the one-on-one communi-
cation of software APIs and system APIs on local ma-
chines. REST APIs tend to offer reusable resources that
are consumed by multiple clients; for instance, a person-
alized webpage might still reuse images and other assets
from a cache. Many individual variations are however
possible, depending on the granularity of operations/re-
sources in the API.

3.2. Data dumps

The most straightforward way to publish Linked Data
knowledge graphs is to upload an archive containing one

or more files in an RDF format such as N-Triples or
N-Quads. Clients download an archive through HTTP,
extract its files, and process them as they see fit.

This solution requires only a low-complexity file
server, but potentially a lot of bandwidth and client pro-
cessing cost if archives are large. The main advantage
of data dumps is their universality: clients obtain the
entire knowledge graph and can ingest it into an access
point of choice, optimized for the kind of task they want
to perform. Depending on the use case and total graph
size, this also means the cost for clients to use the data
is high, and thus possibly out of reach for a significant
number of consumers. Furthermore, the efficiency of the
approach is likely limited, unless clients need to execute
many data-intensive tasks over a knowledge graph. In
an extreme case, a client only needs a few triples, but
has to download the entire dump to retrieve these triples.
Finally, if (part of) the data becomes outdated, the client
has to restart downloading and processing entirely. The
above arguments question the Web-appropriateness of
data dumps as only access mechanism. After all, human
consumers of Web content do not need to download an
entire website before being able to read one or more
webpages—so why should machine clients have to?

Some initiatives have aimed to facilitate the usage of
data dumps. For instance, the LOD Laundromat [20]
harvests data dumps from the Web in various RDF for-
mat, cleans up quality issues relating to the serialization,
and republishes the dumps in standards-conform formats.
However, this effort still does not tackle the issue that
data is not live queryable: clients have to download data
dumps and ingest them in a SPARQL-aware system be-
fore SPARQL queries can be executed.

3.3. SPARQL endpoints

From the viewpoint of the client, the easiest way to
execute a SPARQL query is to dispatch this query in its
entirety to the server that hosts the corresponding knowl-
edge graph. The SPARQL protocol [21] standardizes
this interaction: clients send SPARQL queries through
a specific HTTP interface, and the server attempts to exe-
cute these queries and responds with their results. Many
triple stores, such as Virtuoso [22] and Jena TDB [23],
offer a SPARQL interface. Exposing such a query inter-
face on the public Web contrasts with most other Web
APIs, whose main purpose is to expose a less powerful
interface than the underlying database. While enabling
clients to send arbitrary SPARQL queries leads to low
bandwidth consumption and low client cost, the process-
ing of individual requests is potentially very expensive
in terms of server CPU time and memory consumption.

doi:10.1016/j.websem.2016.03.003 5

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

In fact, it has been shown that the evaluation problem for
SPARQL is PSPACE-complete [24].

A 2013 survey revealed that the majority of public
SPARQL endpoints had an uptime of less than 95% [5].
In other words, the average endpoint is down for more
than 1.5 days each month. This makes developing and
running live applications on top of public endpoints an
unrealistic endeavor in practice. A practical use case for
public SPARQL endpoints as identified by a developer
of the popular Virtuoso triple store is to provide such
endpoints “for lookups and discovery; sort of a dataset
demo” [25]. If reliable access is needed, a common
practice is to download a data dump and host a local
endpoint; the scenario then becomes that of Section 3.2,
inheriting the same drawbacks.

A characteristic of SPARQL endpoints is that, in addi-
tion to the unpredictability of the total number of users
and requests, the processing cost per request can vary
significantly because of the relatively high expressive
power of SPARQL (with different fragments of SPARQL
having a different computational complexity [24]). In
most other Web APIs, the cost per request is bounded
more strongly, because the interface is designed to re-
strict the query capabilities. Regardless of the absolute
value of this cost, the high variations in the individual
factors of the product make it difficult to correctly pro-
vision an infrastructure for a public SPARQL endpoint.
While high availability is possible, it is potentially ex-
pensive and not within reach for most knowledge graph
publishers, who rather use a more reliable but less ex-
pressive interface such as a data dump, rather than facing
frequent unavailability.2

Another characteristic of SPARQL endpoints is that,
due to the relatively high expressive power of SPARQL,
clients perform very individualized requests. As a con-
sequence, caching such requests only allows for limited
reuse, since other clients likely have different requests.

Note that in the case of private SPARQL endpoints,
the number of users, requests, and the cost per request
are under stricter control, and cache reuse is possibly
higher, allowing for more efficient provisioning. There-
fore, highly available endpoints in enterprise contexts
can be viable and cost-effective. On the public Web, how-
ever, availability of SPARQL endpoints remains a two-
sided problem. Because of the high cost, few knowledge
graphs are available through a SPARQL endpoint—and
some of the endpoints that exist are sometimes unac-

2We note that some systems allow publishers to expose only a sub-
set of all SPARQL queries; for instance, by placing restrictions on the
allowed query execution times. However, even with such restrictions,
the availability of public SPARQL endpoints remains low [5].

cessible. For instance, in March 2015, the LODstats
project [3] listed 10,059 dataset descriptions, out of
which only 464 referred to a SPARQL endpoint, and
only 230 of these endpoints responded within 10 seconds
with an HTTP 200 OK status code to our GET request for
their base URL.

3.4. Linked Data documents
A different category of approaches follows the Linked

Data principles by Berners-Lee [1]. RDF triples are di-
vided across several Linked Data documents, each of
which contains triples related to a specific entity. Typi-
cally, the contents of each document de about an entity
with URI e are chosen such that de contains (a part of)
the knowledge graph’s triples of the form (e, p, o) and
(s, p, e). For instance, the URI http://dbpedia.org/

resource/Nikola_Tesla denotes the inventor Nikola
Tesla, and looking up this URI leads to a document with
triples in which the URI is the subject or the object. The
possibility of performing such a lookup is a crucial prop-
erty of Linked Data: if a client does not know what entity
an URI represents, it can find information by performing
an HTTP GET request.

The server performance for responses can be high,
and their cost is low, since the required data lookups
to generate each document are light. Furthermore, the
set of resources per knowledge graph is finite, and re-
sources can be reused by many clients, leading to high
cache reuse. These factors allow high availability of the
interface at low cost.

Several approaches exist to execute queries over
Linked Data documents, as surveyed by Hartig [26]. One
family of approaches uses pre-populated index struc-
tures [27] and another focuses on live exploration by
a traversal-based query execution [28]. Typically, such
query approaches have longer query execution times than
SPARQL endpoints, but—unlike data dumps—allow
for live querying. The required bandwidth is generally
smaller than that of data dumps, but the efficiency can
still be low depending on the type of query. Further-
more, completeness with regard to a knowledge graph
cannot be guaranteed, and certain queries are difficult
or impossible to evaluate without an index [26]. In par-
ticular, queries for patterns with unbound subjects (e.g.,
?s foaf:made <o>) pose problems, since Linked Data
documents are by definition subject-centric.

3.5. Other specialized Web APIs to Linked Data
Finally, several other HTTP interfaces for triples have

been designed. The Linked Data Platform [29] is a W3C
recommendation for a read/write Linked Data HTTP in-
terface. It details several concepts that extend beyond

doi:10.1016/j.websem.2016.03.003 6

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

the Linked Data principles, such as containers and write
access. The API has been designed primarily for consis-
tent read/write access to Linked Data resources, not to
enable reliable and/or efficient query execution. Another
read/write interface is the SPARQL Graph Store Proto-
col [30], which describes HTTP operations to manage
RDF graphs through SPARQL queries.

Additionally, several other fine-grained HTTP inter-
faces for triples have been proposed, such as the Linked
Data API [31] and Restpark [32]. Some of them aim
to bridge the gap between the SPARQL protocol and
the REST architectural style underlying the Web [33].
However, none of these proposals are widely used and
no query engines for them are implemented to date.

4. Linked Data Fragments

4.1. Concept and context
To understand and analyze existing Web APIs for

RDF-based knowledge graphs, we need a uniform view
on them. To derive such a view, we look at what all
such APIs have in common: in one way or another,
they publish specific fragments of a knowledge graph.
A SPARQL endpoint response, a Linked Data document,
and a data dump each offer specific parts of all triples
of a given knowledge graph. Rather than presenting
these APIs as fully distinct approaches, we uniformly
call the response to each request against such an API
a Linked Data Fragment (LDF). Informally, an LDF of
an RDF-based knowledge graph is a resource consisting
of a specific subset of RDF triples of this graph, poten-
tially combined with metadata, and hypermedia controls
to retrieve related LDFs. Each LDF thus consists of the
following three (possibly empty) parts.

data: RDF triples obtained from the knowledge graph;

metadata: RDF triples that describe the data triples;

controls: links and forms to retrieve other LDFs of the
same or other knowledge graphs.

As Figure 1 illustrates, different types of LDFs differ
in the granularity of the selection mechanism through
which they expose the underlying knowledge graph. De-
pending on this granularity, the workload to execute
queries is divided differently between clients and servers.
The key to efficient and reliable Web querying is to find
fragments that strike a balance between client and server
cost. For instance, we expect a relationship between the
per-request cost of an interface and the granularity of its
selection mechanism.

In the remainder of this section we formalize the no-
tion of a Linked Data Fragment (Section 4.2) and show

how existing interfaces can be analyzed in terms of our
conceptual framework of such fragments (Section 4.3).

4.2. Formal definition
As a basis of our formalization, we use the following

concepts of the RDF data model [13]. We write U, B,
and L, to denote the disjoint, infinite sets of URIs, blank
nodes, and literals, respectively. Then, the (infinite) set
of all RDF triples is T = (U ∪B) ×U × (U ∪B ∪ L).

For the sake of a more straightforward formalization,
we assume without loss of generality3 that every knowl-
edge graph G published via some kind of fragments on
the Web is a finite set of blank-node-free RDF triples; i.e.,
G ⊆ T ∗ where T ∗= U ×U × (U ∪L). Each fragment
of such a graph contains triples that somehow belong
together; they can be obtained from the graph based on
some function, which we refer to as a selector function.

Definition 1 (selector function). A selector function is
a function that maps from 2T

∗

to 2T
∗

.

A selector function can be very precise (e.g., selecting
all triples of the knowledge graph whose subject is the
URI u) or loosely defined (e.g., selecting triples “related”
to the entity identified by u). Moreover, a selector func-
tion may also return triples that are not contained in the
dataset (as is the case with SPARQL CONSTRUCT queries).
Usually, any type of fragment comes with a specific type
of selector functions. A concrete example are the triple-
pattern-based selector functions that we shall introduce
to define Triple Pattern Fragments in Section 5.2 (see in
particular Definition 6).

As discussed in Section 3.1, Web APIs that follow
the REST architectural style equip their representations
with hypermedia controls [17, 18]. All controls that do
not change resource state (e.g., those used for HTTP
GET) have in common that, given some (possibly empty)
input, the activation of such a control results in a client
performing a request of a specific URL. We capture the
notion of these controls formally as follows.

Definition 2 (hypermedia control). A (resource-state-
invariant) hypermedia control is a function that maps
from some set toU.

A hyperlink or a URL is a zero-argument control (i.e.,
a constant function), and a form is a multi-argument con-
trol whose domain is the Cartesian product of the form’s
possible field values. We are specifically interested in

3This assumption is possible because skolemization [13] enables
the conversion from blank nodes to well-known URIs and back.

doi:10.1016/j.websem.2016.03.003 7

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

more generic requests
higher client cost
lower server cost

more specific requests
lower client cost

higher server cost

data
dump

Linked Data
document

SPARQL
result

triple pattern
fragments

various types of
Linked Data Fragments

Figure 1: All Web APIs to RDF triples offer Linked Data Fragments of a knowledge graph. These fragments differ in the specificity of the data they
contain, and thus the cost to create them.

hypermedia controls whose domain is a set of selector
functions, because a URL generated to encode a selec-
tor function can be used to denote the data obtained by
applying that selector function.

By now, we have introduced all concepts needed to
define fragments of an RDF-based knowledge graph.

Definition 3 (Linked Data Fragment). Let G ⊆ T ∗be
a finite set of blank-node-free RDF triples. A Linked
Data Fragment (LDF) of G is a tuple f = 〈u, s, Γ,M,C〉
with the following five elements:

• u is a URI (which is the “authoritative” source from
which f can be retrieved);

• s is a selector function;

• Γ is a set of (blank-node-free) RDF triples that is
the result of applying the selector function s to G,
i.e., Γ = s(G);

• M is a finite set of (additional) RDF triples, includ-
ing triples that represent metadata for f ;

• C is a finite set of hypermedia controls.

Any source of RDF-based data on the Web can be de-
scribed as an LDF by specifying the corresponding val-
ues for u, s, Γ, M, and C. The definition of well-known
interfaces is discussed in the next section. In particu-
lar, we shall distinguish different types of LDFs, each
of which represents LDFs that have the same type of
selector functions and the same kind of conditions on
their metadata M and on their hypermedia controls C.

For some LDFs, the set Γ can be very large. For
instance, a data dump may contain millions of triples.
Retrieving such a large fragment completely can be un-
desired in certain situations. For instance, suppose we
want to inspect only a part of the data in a fragment, or
we are interested only in the metadata of a fragment but
not its actual data. To address these use cases and avoid
overly large responses, a server that hosts LDFs may
partition them into pages. Formally, we capture such
a page as follows.

Definition 4 (LDF page).
Let f = 〈u, s,Γ,M,C〉 be an LDF of some finite set of

blank-node-free RDF triples G ⊆ T ∗. A page partition-
ing of f is a finite, nonempty set Φ whose elements are
called pages of f and have the following properties:

1. Each page φ ∈ Φ is a tuple φ = 〈u′, uf , sf , Γ
′,M′,C′〉

with the following six elements: (i) u′ is a URI
from which page φ can be retrieved, where u′ , u,
(ii) uf = u, (iii) sf = s, (iv) Γ′ ⊆ Γ, (v) M′ ⊇ M,
and (vi) C′ ⊇ C.

2. For every pair of two distinct pages
φi = 〈u′i , uf , sf ,Γ

′
i ,M

′
i ,C

′
i 〉 ∈ Φ and

φ j = 〈u′j, uf , sf ,Γ
′
j,M

′
j,C

′
j〉 ∈ Φ it holds that

u′i , u′j and Γ′i ∩ Γ′j = ∅.

3. Γ =
⋃
〈u′,uf ,sf ,Γ′,M′,C′〉∈Φ Γ′.

4. There exists a strict total order ≺ on Φ such that,
for every pair of two pages
φi = 〈u′i , uf , sf ,Γ

′
i ,M

′
i ,C

′
i 〉 ∈ Φ and

φ j = 〈u′j, uf , sf ,Γ
′
j,M

′
j,C

′
j〉 ∈ Φ with φ j being the

direct successor of φi (i.e., φi ≺ φ j and
¬∃φk ∈ Φ : φi ≺ φk ≺ φ j), there exists a
hypermedia control c ∈ C′i with u′j ∈ img(c).

We emphasize that, in addition to the control c for navi-
gating from one page to the next, each page contains all
metadata and controls of the corresponding fragment. If
a server provides paging, it should avoid sending overly
large chunks by redirecting clients from a fragment to
the first page of the fragment.

Additionally, we should distinguish the formalization
of LDFs and LDF pages (Definitions 3 and 4) from their
representation in a response to clients (e.g., Section 5.3).
For instance, even though a selector function is a compo-
nent of their definitions, this function is not necessarily
represented inside of the response.

In many cases, a Web server that provides access to
a knowledge graph exposes an interface to retrieve mul-
tiple, different fragments of the graph. As a last general
concept, we define such a collection of LDFs.

Definition 5 (LDF collection). Let G ⊆ T ∗ be a finite
set of blank-node-free RDF triples, and let c be a hy-
permedia control. A c-specific LDF collection over G

doi:10.1016/j.websem.2016.03.003 8

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

is a set F of LDFs such that, for each LDF f ∈ F with
f = 〈u, s,Γ,M,C〉, the following three properties hold:
i) f is an LDF of G; ii) s ∈ dom(c); iii) c(s) = u.

4.3. Application to existing interfaces

To connect the concepts of the previous sections to
practice, we now apply them to three existing interfaces
discussed in Section 3: SPARQL endpoints, data dumps,
and Linked Data documents.

4.3.1. A data dump as an LDF
A data dump of a knowledge graph is a single fragment

that consists of the following components.

data: all triples of the graph; hence, in terms of our
formalization, the selector function of data dumps
is the identity sid with sid(G) = G for all G ∈ 2T

∗

;

metadata: data about the knowledge graph or the dump,
such as version, author, or licensing details (the
metadata set may be empty for some data dumps);

controls: controls to obtain other fragments of the
knowledge graph are not necessary because a data
dump contains the entire graph.

While some data dumps are divided across multi-
ple archives (e.g, DBpedia 2014, see: http://wiki.

dbpedia.org/Downloads2014), we can regard such
archives as dumps of sub-graphs of a larger knowledge
graph. Hence, our conceptual framework still applies.

4.3.2. A SPARQL endpoint as LDFs
Depending on the kind of SPARQL query executed,

a SPARQL endpoint returns either a set of RDF triples
(for CONSTRUCT or DESCRIBE clauses), a boolean value
(ASK), or solution mappings (SELECT). Since our concep-
tual framework is concerned with interfaces that return
triples from a knowledge graph, only the CONSTRUCT

and DESCRIBE clauses are under consideration. Since
DESCRIBE queries, whose behavior is implementation-
specific [14], can be written more exactly as CONSTRUCT
queries, we focus on describing only the latter. However,
since it is also possible to specify a triple-based descrip-
tion of any other result form, such as solution mappings
from SELECT, focusing on CONSTRUCT does not present a
major conceptual limitation.

The response to a SPARQL CONSTRUCT query can be
considered an LDF with the following properties.

data: all triples that are contained in the result of the
query; thus, the selector function of the LDF is
defined based on the query;

metadata: the metadata set is empty;

controls: often, no explicit hypermedia controls are pro-
vided in the response because it is assumed that the
client using the interface can extract the endpoint
URL (e.g., /sparql) from the request URL (e.g.,
/sparql?query=. . .).

The control of the LDF collection exposed by a SPARQL
endpoint is the endpoint URL, on which SPARQL
queries can be executed.

4.3.3. A Linked Data documents interface as LDFs
Each Linked Data document for a specific entity with

URI e in a Linked Data documents interface can be
considered an LDF with the following characteristics.

data: RDF triples that are related to the entity and
selected with an implementation-specific selector
function such as:

se(G) = {〈s, p, o〉 ∈ G | s = e or o = e};

metadata may describe the provenance of the Linked
Data document [34] or other types of metadata;

controls HTTP URIs in the data triples act as derefer-
enceable hyperlinks; in particular, links to entities
belonging to the same knowledge graph as e are
expected.

Note that different fragments may have different hyper-
media controls for this type of interface (which is not the
case for data dumps or SPARQL endpoints).

5. Triple Pattern Fragments

5.1. Concept and context
The Linked Data Fragments framework not only en-

ables us to analyze existing Web APIs to RDF in a uni-
form way, it also allows us to define new APIs with
a different combination of characteristics. In particu-
lar, we aim to design an interface that enables reliable
applications over public RDF-based knowledge graphs.
That is, such an interface must be able to counter the
availability issues of SPARQL endpoints [5], while still
allowing live querying of a knowledge graph. Hence, we
require that the interface:

• facilitates query execution;

• limits the cost for the server;

• makes reuse of cached responses likely;

• returns responses that are hypermedia-driven and
describe the interface.

doi:10.1016/j.websem.2016.03.003 9

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

The first two properties should facilitate higher availabil-
ity, provided we incorporate a mechanism to reduce the
number of requests needed per client. The notion of “live
queryable” means in practice that clients at least must
be able to execute SPARQL queries without having to
download the entire knowledge graph. Finally, to avoid
the inflation of custom APIs for which dedicated clients
are needed [8], we aim for an interface with hypermedia
controls. Such controls allow clients to identify whether
they are talking to a TPF interface or some other inter-
face, and how to access TPFs through it. A hypermedia-
aware client should be able to access the API by using
hypermedia controls provided in the responses [18].

To facilitate querying on the client side, clients should
be able to access fragments that can be used to answer
query parts. To maximize availability on the server side,
servers should only offer fragments they can generate
with minimal CPU and memory cost. In other words,
we have to find a compromise along the axis in Figure 1.
Offering triple-pattern-based access to RDF knowledge
graphs seems an interesting compromise because i) triple
patterns are the most basic building blocks of SPARQL
queries [14], and ii) servers can select triples that match
a given triple pattern at low processing cost [35].

Therefore, we define the Triple Pattern Frag-
ments (TPF) interface, consisting of Linked Data Frag-
ments with the following properties:

data: all triples of a knowledge graph that match a given
triple pattern;

metadata: an estimate of the number of triples that
match the given triple pattern;

controls: a hypermedia form that allows clients to re-
trieve any TPF of the same knowledge graph.

A TPF server should divide each fragment into reason-
ably sized pages (e.g., 100 data triples), such that clients
cannot accidentally download very large chunks. For
instance, a response for a triple pattern with three un-
bound variables would contain all triples of the knowl-
edge graph if it is not paged. This explains the presence
of the metadata: like in any paged interface on the Web,
it is beneficial to know how many items there are in total
since each page only shows a part of the whole.

In the following, we define TPFs formally. Thereafter,
we detail a concrete response format for TPFs in Sec-
tion 5.3, and explain the relation to existing Web APIs
for RDF in Section 5.4.

5.2. Formal definition
We define TPFs based on our general formalization

of LDFs as given in Section 4.2. As preliminaries, we

first recall some standard definitions of concepts related
to SPARQL. We use V to denote the infinite set of all
variables that is disjoint from the sets U (the set of all
URIs),B (all blank nodes), andL (all literals). Any tuple
tp ∈ (U ∪L ∪V) × (U ∪V) × (U ∪L ∪V) is called
a triple pattern4 and any finite set of such triple patterns
is a basic graph pattern (BGP), usually denoted by B.
Other SPARQL graph patterns, usually denoted by P,
combine triple patterns (or BGPs) using specific opera-
tors [14, 24]. For any such pattern P we write vars(P) to
denote the set of all variables that occur in P.

The standard (set-based) query semantics for SPARQL
defines the query result of a graph pattern P over a set of
RDF triples G as a set that we denote by [[P]]G and that
consists of so called solution mappings, that is, partial
mappings µ : V → (U ∪ B ∪ L). An RDF triple t is
a matching triple for a triple pattern tp if there exists
a solution mapping µ such that t = µ[tp], where µ[tp]
denotes the triple (pattern) that we obtain by replacing
the variables in tp according to µ. Usage of µ[tp] can
be extended to a BGP B by applying µ to every triple
pattern in B, which we denote by µ[B].

We are now ready to define TPFs. We start by intro-
ducing a specific type of selector functions.

Definition 6 (triple-pattern-based selector function).
Let tp be a triple pattern. The triple-pattern-based
selector function for tp, denoted by stp, is a selector
function that, for every set G ∈ 2T

∗

, is defined by
stp(G) = {t ∈ G | t is a matching triple for tp}.

We now define a Triple Pattern Fragment and a Triple
Pattern Fragment collection, which we introduce to-
gether because of their close connection.

Definition 7 (Triple Pattern Fragment). Given a con-
trol c, a c-specific LDF collection F is called a Triple
Pattern Fragment collection if, for every possible triple
pattern tp, there exists one LDF 〈u, s,Γ,M,C〉 ∈ F, re-
ferred to as a Triple Pattern Fragment, that has the fol-
lowing properties:

1. s is the triple-pattern-based selector function for tp.

4For the sake of simplicity, in this paper we ignore triple patterns
that contain blank nodes, which are possible in the standard SPARQL
syntax. However, the query execution algorithm that we shall introduce
in Section 6.2 is easily extensible to support queries that contain blank
nodes. To this end, every blank node has to be replaced by a unique
fresh variable that is not used in the given query; then, for every basic
graph pattern of the query (which may now include such new variables),
the pattern is evaluated as described in Section 6.2 and, afterwards,
these new variables have to be projected out of the query result by an
additional iterator that implements a projection operator [36].

doi:10.1016/j.websem.2016.03.003 10

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

2. There exists a triple 〈u, void:triples, cnt〉 ∈ M
with cnt representing an estimate of the cardinality
of Γ, that is, cnt is an integer that has the following
two properties:

(a) If Γ = ∅, then cnt = 0.

(b) If Γ , ∅, then cnt > 0 and abs
(
|Γ| − cnt

)
≤ ε

for some F-specific threshold ε.

3. c ∈ C.

The threshold ε accommodates for implementation
differences in calculating the approximate number of
triples matching a given triple pattern; interfaces are not
required to return the exact number, but they should strive
to minimize ε. By Definition 7, TPFs have to include
the collection-specific hypermedia control, which makes
any TPF collection a hypermedia-driven REST API [18].
Hence, by discovering an arbitrary fragment of such
a collection, TPF clients can directly reach and retrieve
all fragments of the collection, which covers the com-
plete set of all possible triple patterns.

Finally, we define a semantics of SPARQL graph pat-
terns when used to query a knowledge graph that is
published as a collection of TPFs; that is, the following
definition specifies the expected query result of evaluat-
ing a SPARQL graph pattern over a TPF collection.

Definition 8 (query semantics). Let G ⊆ T ∗ be a finite
set of blank-node-free RDF triples, and let F be some
TPF collection over G. The evaluation of a SPARQL
graph pattern P over F, denoted by5 [[P]]F , is defined by
[[P]]F = [[P]]G.

Observe that, by Definition 8, an approach to execute
SPARQL queries over TPF collections is sound and com-
plete if and only if the approach returns query results that
are equivalent to the results expected from evaluating the
queries directly over the knowledge graphs exposed as
TPF collections. While this requirement seems trivial
in the context of TPF collections, we emphasize that
for other types of LDF collections it is not necessar-
ily possible to ensure such an equivalence. For instance,
query evaluation over a Linked Data documents interface
(which is an LDF collection) cannot be guaranteed to be
complete with respect to all data in the knowledge graph
that is exposed by the interface [38, 39] (unless all links
between the Linked Data documents are bidirectional).

5.3. Response format and specification
The definition in the previous section brings us to the

question of how servers can represent TPF resources.
Since metadata and controls should not be considered
data from the dataset itself, TPF resources are best rep-
resented in quad-based formats such as N-Quads [40],
TriG [41], or JSON-LD [42]. Triple-based formats
should only be considered if content negotiation reveals
the client does not support quads. Such formats are not
recommended, since a proper separation of data, meta-
data, and controls cannot be guaranteed. We will discuss
the representation of data, metadata, and controls sepa-
rately below.

The data component of a TPF (i.e., Γ) is straightfor-
ward to represent, as it is a set of triples. These triples
should be serialized to the default graph in the cased of
quad-based formats. The pagination of data needs to be
consistent; the exact order is not determined, as long as
it remains the same. Dynamic knowledge graphs can
have version-specific URLs in order to achieve result
consistency.

Note that we specifically opt to respond with RDF
data triples, instead of only solution mappings. For in-
stance, a representation of the TPF for the triple pattern
〈<s>, <p>, ?o〉 could in theory only list solution mappings
with bindings for variable ?o, since the predicate and sub-
ject are fixed through the request. We did not choose
this option for three reasons: i) clients might have navi-
gated to the TPF by following a link rather than filling in
a form, unaware of the other triple pattern components
and thus unable to complete them; ii) interpreting such
a document would require information outside of the
response and thus limit its interpretation to clients that
know the TPF specification; iii) the possible overhead
of component repetition is avoided anyway by common
compression techniques for HTTP, such as GZIP.

The metadata, consisting of the estimated total number
of data triples in an entire fragment, can also be repre-
sented as a triple. Each page φ of a given TPF f with
URI u contains the triple 〈u, void:triples, cnt〉 with
cnt an xsd:integer representing the count estimate. In
quad-based formats, data and metadata should be sepa-
rated by placing the metadata in a named graph, say gM ,
that is not the default graph. The named graph gM must
explicitly relate itself to the fragment f by including
a triple 〈gM , foaf:primaryTopic, u〉, so clients can find
the metadata of the fragment and interpret it as such.

5As usual when introducing multiple evaluation functions to define
query semantics (e.g., [37]), we overload notation here. That is, de-
pending on the object represented by the subscript, [[P]]· denotes the
evaluation of P over a set of RDF triples or over a TPF collection.

doi:10.1016/j.websem.2016.03.003 11

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

<http://fragments.dbpedia.org/2014/en#metadata> {

<http://fragments.dbpedia.org/2014/en#metadata> foaf:primaryTopic <>.

<http://fragments.dbpedia.org/2014/en#graph> void:subset <>;

hydra:filter [

rdf:type hydra:IriTemplate;

hydra:template "http://fragments.dbpedia.org/2014/en{?s,p,o}";

hydra:mapping [hydra:variable "s"; hydra:property rdf:subject],

[hydra:variable "p"; hydra:property rdf:predicate],

[hydra:variable "o"; hydra:property rdf:object]

].

}

Listing 1: TriG and other RDF representations can use the Hydra Core Vocabulary to represent a three-field form.

Through the Hydra Core Vocabulary [19], we can rep-
resent the hypermedia control as a templated link [17] in
an RDF-based representation, as illustrated in Listing 1.
Such a templated link functions similarly as a form in
HTML, which users regularly encounter in a browser.
The listing describes a control that lets a client fill in
rdf:subject, rdf:predicate, and rdf:object fields,
which are mapped to s, p, and o, respectively. Note that
the choice of field names depends on the interface and is
thus not imposed; on the contrary, the use of an in-band
hypermedia control avoids the need to standardize these
field names and/or the structure of TPF URLs. Note that
the hypermedia control in the description (i.e., the in-
stance of hydra:IriTemplate) is attached to the knowl-
edge graph rather than to the fragment or page. After
all, this control is meant to search the entire knowledge
graph, not the fragment. Like metadata, the descrip-
tion of hypermedia controls should reside in a different
named graph than the data triples if the RDF serialization
supports named graphs. Metadata and controls may be
placed together in one named graph without interference.

Note that the number of different responses per TPF
collection is finite, even though the number of possi-
ble triple patterns—and thus TPFs—is infinite. Indeed,
given two TPFs f1, f2 ∈ F of some TPF collection F,
where tp1 and tp2 are the triple patterns of the selector
functions of f1 and f2, respectively, we say that f1 and
f2 are equivalent if tp1 = tp2 or if there exists a bijec-
tive mapping r : V → V such that tp2 can be obtained
from tp1 by replacing all variables in tp1 using r. Hence,
the number of mutually non-equivalent TPFs that have
a nonempty set Γ is finite for any TPF collection, since
only a finite number of non-equivalent triple patterns re-
sult in a non-zero number of matching triples. Therefore,
for a static knowledge graph, the set of all non-equivalent
TPF responses with a nonempty set Γ could be generated

beforehand; all empty TPFs could be represented by the
same response.

The TPF specification [43] is available as part of the
ongoing work in the Hydra W3C Community Group.
As expected from a hypermedia-driven REST API, this
specification spends “almost all of its descriptive effort
in defining the media type(s) used for representing re-
sources and driving application state” [18]. Given a built-
in understanding of (generic) hypermedia controls as
defined in the Hydra Core Vocabulary, this results in an
evolvable interface.

5.4. Relation to existing interfaces
We now compare the TPF interface to existing in-

terfaces. In particular, we compare it to Linked Data
documents, SPARQL endpoints, and Web APIs in gen-
eral.

5.4.1. Relation to Linked Data documents
The TPF interface has a strong relation to the Linked

Data documents interface. In fact, TPFs can be seen as an
extension of the Linked Data principles from hyperlinks
to hypermedia forms, which overcomes two drawbacks
of dereferencing, single authority and unidirectionality,
as we explain below.

First, while multiple providers may have data about
an entity, looking up a URI as per the Linked Data prin-
ciples leads to data from a single provider, which is
considered authoritative with regard to the URI (but
not to the entity). For instance, the DBpedia project
has minted the URI http://dbpedia.org/resource/

Joan_Miró for the artist Joan Miró; looking up this URI
leads to triples about Miró from the DBpedia knowl-
edge graph only. This does not mean that DBpedia
is the only provider—let alone the best or most rele-
vant one—that has triples about Miró. In fact, muse-
ums that have Linked Data for Miró might even reuse

doi:10.1016/j.websem.2016.03.003 12

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

the DBpedia URI in their triples, yet this would not
make these triples available through URI lookups. In
the case of TPFs, users can query arbitrary servers
for URIs from any domain in a uniform way. For
example, while the official DBpedia TPF interface
is hosted at http://fragments.dbpedia.org/2014/en,
it can still show triples about http://dbpedia.org/

resource/Joan_Miró, despite different domain names.
Second, Linked Data documents only allow for uni-

directional lookups, which severely limits the kind of
information clients can derive from a URI. For instance,
given the aforementioned Joan Miró URI, it is easy to
determine that Miró is a person. On the other hand,
given the URI http://xmlns.com/foaf/0.1/Person, it
is hard to find data about Miró or any other person. This
issue stems from the fact that Web linking is unidirec-
tional: for scalability reasons, a hyperlink is maintained
only at the outgoing side, not at the incoming side. Such
a fundamental limitation puts bounds on which query
evaluations can yield results using the interface; typically,
one or more triple patterns with non-variable subjects
are necessary to obtain results with a purely traversal-
based strategy. By using triple-pattern forms, queries
with variable subjects become possible at roughly the
same per-request cost for the server.

Most importantly, the TPF interface is compatible
with the Linked Data principles. For instance, a URI
lookup could be redirected using the HTTP status code
303 See Other to the TPF with the triples that have the
requested URI as a subject. As a result, Linked Data
clients can look up URIs as usual, without requiring any
TPF-specific extension. For example, the server for the
domain http://example.org/ may redirect requests of
the URI http://example.org/people/Joan_Miró to
http://example.org/knowledge-graph/?subject=

http%3A%2F%2Fexample.org%2Fpeople%2FJoan_Miró,
which would be the TPF with triples where Miró occurs
in the subject position. This compatibility allows
for a seamless integration of TPFs and Linked Data
documents, reaffirming the importance of a generic
triple-based format that does not require special
interpretation, as argued in Section 5.3.

5.4.2. Relation to SPARQL endpoints
Conceptually, accessing a TPF interface is equivalent

to accessing a SPARQL endpoint with queries that con-
tain a single triple pattern only (disregarding metadata
and controls momentarily). Such a practice would, how-
ever, lead to substantially different characteristics than
those of the proposed interface.

Cache reuse would decrease, as there are many syn-
tactical variants of such a single triple pattern query,

which a simple HTTP proxy server cannot identify as the
same query. Crucially, even though some clients might
limit themselves to triple pattern queries, this does not
stop other clients from requesting more complex queries,
thereby still endangering availability. If the triple pattern
restriction is not enforced on the server side, there is
thus no immediate benefit for clients to use a SPARQL
endpoint in that way.

Furthermore, because the TPF interface explicitly
states which requests are supported, it can be extended
using the same mechanism. That is, publishers are free
to provide a TPF-based API with additional function-
ality by extending responses with additional metadata
and controls. This extensibility will be discussed further
in Section 8. A query protocol such as SPARQL, that
depends on external specification documents instead of
in-band metadata and hypermedia controls, necessarily
evolves at a slower, centralized pace. While SPARQL
endpoints might serve as a back-end for a TPF API,
other options exist, some of which provide faster ac-
cess to triple patterns and approximate counts (such as
HDT [35]).

5.4.3. Relation to Web APIs in general
Finally, like most Web APIs, a TPF API is a restricted

interface to the underlying database. For instance, Web
applications with traditional setups usually consist of
a front-end that generates HTML and/or JSON from
a relational (or other) database in the back-end. It is very
unlikely to find back-end databases directly exposed on
the Web in a native query language such as SQL. There
are many reasons for this, including security, but the
possibly high per-request cost is an important factor.

In contrast to other Web APIs, however, the TPF
interface does not expose domain-specific resources.
Like SPARQL endpoints, the interface is model-specific,
which makes it reusable across many different scenar-
ios. This universality is important to counter the current
overgrowth of heterogeneous Web APIs [8].

6. Client-side SPARQL query execution

Given the TPF interface as introduced in the previ-
ous section, we now specify how clients can use this
interface to execute SPARQL queries over remote knowl-
edge graphs. To this end, we first focus on BGPs and
describe the general idea of TPF-based query execution
in Section 6.1. Thereafter, in Section 6.2, we introduce a
concrete algorithm to evaluate a BGP over a TPF collec-
tion. Given such an algorithm, Section 6.3 details how
other SPARQL features, such as OPTIONAL and UNION,

doi:10.1016/j.websem.2016.03.003 13

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

SELECT ?person ?city WHERE {

?person a dbpedia-owl:Architect. # tp1 (± 2,300 matches)
?person dbpprop:birthPlace ?city. # tp2 (± 572,000 matches)
?city dc:subject dbpedia:Category:Capitals_in_Europe. # tp3 (± 60 matches)

} LIMIT 100

Listing 2: This example SPARQL query finds architects born in European capitals.

can be supported. Finally, Section 6.4 elaborates on how
TPF query clients can be extended to support queries
over a federation of multiple TPF collections.

6.1. General workflow of TPF-based query execution

To start an execution of a SPARQL query over a
knowledge graph exposed as a TPF collection on the
Web, a TPF query client has to be given the query
and the URI of an arbitrary page of some fragment
of the TPF collection. As a running example, assume
the client is given the query in Listing 2, and the URI
http://fragments.dbpedia.org/2015/en to retrieves
a page from a TPF interface to the DBpedia 2015 knowl-
edge graph. By Definitions 4 and 7, any such TPF page
contains a hypermedia control, informing the client in-
side of the response that the server supports lookups by
triple pattern. After obtaining such a hypermedia control,
the client can start the query execution process that is
based on evaluating the BGPs in the given query.

Listing 3 outlines an approach to perform such an
evaluation of BGPs over a TPF collection. We empha-
size that Listing 3 is meant to illustrate our general idea
of TPF-based query execution rather than being a con-
crete algorithm to be implemented in a TPF query client.
This idea uses a divide-and-conquer strategy that splits
each BGP Bi recursively into a triple pattern tpε and
a BGP B′i = Bi \ {tpε} with one less triple pattern, until a
singleton BGP remains. The triple pattern tpε to split off

in each step is determined based on the estimated num-
ber of matching triples for tp in the queried knowledge
graph, as indicated by the metadata of the first page of
the TPF for tpε . In the following, we discuss Listing 3 in
more detail.

First of all, the given BGP B is split into connected
sub-BGPs (line 3) since recursive invocations may lead
to independent patterns that can be evaluated in parallel.
For instance, two sub-BGPs might have been connected
by a single variable previously, but due to a candidate
mapping involving this variable, the patterns could have
become independent of each other. In Listing 2, this
would happen if tp2 is resolved first, which would leave
{tp1} and {tp3} as independent sub-BGPs. However, List-

ing 2 itself contains a single connected sub-BGP, namely
the entire BGP.

For each such independent sub-BGP Bi, we aim to
find solution mappings. To this end, we first col-
lect the count metadata for each of the triple pat-
terns in Bi by retrieving the first page of the TPFs
for these triple patterns (lines 5 to 9). For List-
ing 2, this results in the following approximate counts:
{(tp1, 2 300), (tp2, 572 300), (tp3, 60)}. If one or more of
the triple patterns have no matches, then the result of the
entire sub-BGP Bi is empty.

Next, we determine the triple pattern tpε ∈ Bi with
the smallest estimated number of matches (line 10). By
selecting tpε we minimize the number of immediately
following recursive calls—and thus HTTP requests—
since each matching triple results in a solution mapping.
We retrieve all pages of the TPF for tpε and use the
obtained data triples to compute a set Ωε of solution
mappings for tpε (lines 11 to 13). For the query in List-
ing 2 we have tpε = tp3, which results in 60 solution
mappings, such as µ1 = {?city 7→ dbpedia:Amsterdam}

and µ2 = {?city 7→ dbpedia:Athens}.

We apply each of the solution mappings in Ωε to
the BGP that remains after removing tpε from the
given sub-BGP Bi (line 16), which reduces the num-
ber of variables in the pattern. Each resulting BGP
B′i is then considered by recursion to obtain a set of
solution mappings Ω′i , respectively (line 17). The
mappings in these sets are joined with their respec-
tive mapping from Ωε (line 18). For instance, apply-
ing our aforementioned example mapping µ1 to BGP
{tp1, tp2} results in a BGP {tp1, tp

′
2}, in which the orig-

inal triple pattern tp2 is replaced by tp′2 that contains
dbpedia:Amsterdam as a substitute for the ?city vari-
able in tp2. By evaluating this BGP {tp1, tp

′
2} recursively,

we obtain a result that contains solution mappings such
as µ′1 = {?person 7→ dbpedia:Erick_van_Egeraat},
which is then joined with µ1 to yield a complete solu-
tion mapping {?city 7→ dbpedia:Amsterdam, ?person 7→
dbpedia:Erick_van_Egeraat}.

doi:10.1016/j.websem.2016.03.003 14

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

1 Function EvaluateBGP(B, c)
Input: A basic graph pattern B = {tp1, . . . , tpn}; a control c of a c-specific TPF collection F
Output: A set of solution mappings Ω = {µ1, . . . , µm} such that Ω = [[B]]F

2 return {µ∅} with µ∅ the empty mapping if B = ∅;
3 SB ← {B1, . . . , Bk} such that SB is the largest possible partition of B for which the following property holds:

∀Bi, B j ∈ SB : Bi , B j ⇒ vars(Bi) ∩ vars(B j) = ∅;
4 foreach sub-BGP Bi ∈ SB do
5 foreach triple pattern tp j ∈ Bi do
6 φ

j
1 = 〈u j

1, u j, s,Γ
j
1,M

j
1,C

j
1〉 ← GET c({tp j}), resulting in page 1 of the TPF for tp j;

7 cnt j ← cnt where 〈u j, void:triples, cnt〉 ∈ M j
1;

8 return ∅ if cnt j = 0;
9 end

10 tpε ← tpk such that tpk ∈ Bi and cntk ≤ cnt j for all tp j ∈ Bi;
11 Φε ← {φε1, . . . , φ

ε
l } through consecutive GET requests for each page φεp using the control on φεp−1;

12 Γε ←
⋃
〈uεl ,uε ,s,Γ

ε
l ,M

ε
l ,C

ε
l 〉 ∈Φε Γεl ;

13 Ωε ← {µ | dom(µ) = vars(tpε) and µ[tpε] ∈ Γε};
14 Ωi ← ∅;
15 foreach µ ∈ Ωε do
16 B′i = µ[Bi \ {tpε}];
17 Ω′i ← EvaluateBGP(B′i , c);
18 Ωi ← Ωi ∪ {µ ∪ µ

′ | µ′ ∈ Ω′i};
19 end
20 end
21 return {µ1 ∪ . . . ∪ µk | (µ1, . . . , µk) ∈ Ω1 × . . . ×Ωk};
22 end

Listing 3: A recursive function that illustrates the general process of evaluating a BGP B over a c-specific TPF collection F.

6.2. Incremental algorithm
While Listing 3 is easy to understand because it

presents the entire evaluation strategy in a single list-
ing, it is not suited for actual implementation. It can only
return all solution mappings at once, and they all have
to remain in memory until completion. If the number
of mappings is large, this might lead to excessive mem-
ory consumption, and if only a subset of the mappings
is required (for instance, in combination with LIMIT),
a significant amount of unnecessary work happens. Fur-
thermore, such a monolithic algorithm would be difficult
to extend toward other SPARQL features.

Therefore, we now introduce a concrete algorithm
whose execution resembles the execution process out-
lined in Listing 3, but it does not have the drawbacks
as mention before. We achieve this by using the well-
known iterator model [44] as a basis of our algorithm.

The iterator model is widely used in query execution
systems to enable incremental result computation and
to increase the flexibility of implementing query oper-
ators [45]. This model introduces the concept of an
iterator as a particular implementation of an operator

that allows a consumer to obtain individual results of
each operation separately, one at a time. An iterator pro-
vides three functions: Open, GetNext, and Close. Open
initializes the data structures needed to perform the op-
eration, GetNext returns the next result of the operation,
and Close ends the iteration and releases allocated re-
sources. Query execution plans are implemented as a
tree of iterators. Such an iterator tree computes a query
result in a pull-based fashion; that is, during execution,
the GetNext function of each iterator calls GetNext on
the child(ren) and uses the input obtained by these calls
to produce the next result(s).

An iterator is said to be blocking if it first has to pull
all input results before it can return a first output result.
Hence, such a blocking iterator cannot be used to pro-
duce a query result incrementally [46, 47]. In contrast,
a non-blocking iterator is able to compute and return
output results without having to pull all input results first.
Hence, if all iterators in an iterator-based query execu-
tion plan are non-blocking, then the plan can produce the
query result incrementally. While some query constructs
can be implemented by a non-blocking iterator (as well

doi:10.1016/j.websem.2016.03.003 15

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

1 Function RootIterator.GetNext()
Output: µ∅ on first invocation; nil on all subsequent invocations

2 return nil if self.finished has been assigned;
3 self.finished ← true;
4 return µ∅;
5 end

Listing 4: A RootIterator returns the empty mapping once.

as by a blocking iterator), others can be implemented
only by iterators that are blocking.

Our algorithm employs two core iterators, TriplePat-
ternIterator and BasicGraphPatternIterator, both
of which are non-blocking. The former generates so-
lution mappings for a triple pattern using a TPF inter-
face, and the latter generates solution mappings for a ba-
sic graph pattern using a TPF interface and a combi-
nation of multiple TriplePatternIterators. Addition-
ally, a helper RootIterator does not depend on a source
iterator and, thus, can act as the source of any other
iterator without initialization.

Listing 4 describes the GetNext method of the Root-

Iterator: it returns the empty mapping µ∅ (with
dom(µ∅) = ∅) exactly once. This empty mapping can
be used as a starting point for a TriplePatternItera-

tor or a BasicGraphPatternIterator. For instance, if
a TriplePatternIterator reads µ∅ from an input Root-
Iterator, it simply returns solution mappings for its
triple pattern, without extending them.

A TriplePatternIterator (Listing 5) reads solu-
tion mappings from a source iterator Is and combines
them with possible mappings for a given triple pat-
tern tp. For example, if its triple pattern is 〈?person,
dbpprop:birthPlace, ?city〉 and the source iterator
has returned µs = {?city 7→ dbpedia:Amsterdam},
the TriplePatternIterator will subsequently request
〈?person, dbpprop:birthPlace, dbpedia:Amsterdam〉
triples through the TPF interface. If the TPF re-
sponse contains a triple 〈dbpedia:Erick_van_Egeraat,
dbpprop:birthPlace, dbpedia:Amsterdam〉, then the
iterator will return the combined solution mapping
µ ∪ µs = {?city 7→ dbpedia:Amsterdam, ?person 7→
dbpedia:Erick_van_Egeraat}. A TriplePatternIt-

erator has two member variables: self.φ to hold the
current TPF page from which it is reading, and self.µs

to hold the most recently read mapping from self.φ.
If this page is read, the next page of the same TPF is
requested if it exists (line 5). If the fragment has no
more pages, the next mapping self.µs is read from the
source iterator Is, and the first page of the TPF for the
mapped triple pattern self.µs[tp] is fetched (lines 7 to 9).

That way, the solution mappings resulting from match-
ing triples in the TPF’s pages are compatible with the
corresponding input mappings self.µs.

Finally, a BasicGraphPatternIterator combines the
above two iterators to evaluate BGPs. For an empty
BGP, the BasicGraphPatternIterator constructor cre-
ates a RootIterator instead (since the corresponding
query result contains only the empty mapping µ∅); for
a singleton BGP, a TriplePatternIterator is con-
structed (since no further decomposition is needed). In
all other cases, Listing 6 is executed.

The main principle of a BasicGraphPatternItera-

tor is that it creates a separate iterator pipeline for
each incoming solution mapping. The iterator has two
member variables: self.Ip to hold the current iterator
pipeline, and self.µs to hold the most recently read
mapping from its source iterator Is. As in Listing 36,
upon reading a mapping self.µs, a BasicGraphPat-

ternIterator identifies which of the triple patterns
in {self.µs[tp j] | tp j ∈ B} has the lowest estimated
total matches by fetching the first pages of the cor-
responding TPFs (lines 8 to 13). Then, a new itera-
tor pipeline self.Ip is created, consisting of a Triple-

PatternIterator for the identified triple pattern and
a BasicGraphPatternIterator for the remainder of B
(lines 14 to 15). The mappings µ returned by this pipeline
are then combined with the input mapping self.µs and
returned (lines 18 to 21). In other words, the BGP is
evaluated by splitting off the “simplest” triple pattern at
each stage. For Listing 2, the BasicGraphPatternIter-

ator would thus split off tp3, and create a pipeline for
{tp1, tp

′
2}. This process is dynamic: instead of construct-

ing a static pipeline for a BGP upfront, a local pipeline
is decided at each step.

Note in particular that only TriplePatternIterators
read more than one page of a TPF. BasicGraphPattern-
Iterators only fetch first pages, and never read actual
data, only metadata. In an efficient implementation,
pages are cached locally, so that the TriplePattern-

6For simplicity, Listing 6 does not display the process of splitting
the BGP into connected subpatterns as shown in Listing 3 (line 3).

doi:10.1016/j.websem.2016.03.003 16

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

1 Function TriplePatternIterator.GetNext()
Data: A source iterator Is; a triple pattern tp; a control c of a c-specific TPF collection F
Output: The next mapping µ′ such that µ′ ∈ [[{tp}]]F , or nil when no such mappings are left

2 self.φ← an empty page without triples or controls if self.φ had not been assigned to previously;
3 while self.φ does not contain unread triples do
4 if self.φ has a control to a next page with URL uφ′ then
5 self.φ← GET uφ′ ;
6 else
7 self.µs ← Is.GetNext();
8 return nil if self.µs = nil;
9 self.φ← GET c({self.µs[tp]}), resulting in page 1 of the TPF for self.µs[tp];

10 end
11 end
12 t ← an unread triple from self.φ;
13 µ← a solution mapping µ′ such that dom(µ′) = vars(tp) and µ′[tp] = t;
14 return µ ∪ self.µs;
15 end

Listing 5: A TriplePatternIterator incrementally evaluates a triple pattern tp over a c-specific TPF collection F.

1 Function BasicGraphPatternIterator.GetNext()
Data: A source iterator Is; a BGP B with |B| ≥ 2; a control c of a c-specific TPF collection F
Output: The next mapping µ′ such that µ′ ∈ [[B]]F , or nil when no such mappings are left

2 µ← nil;
3 self.Ip ← nil if self.Ip has not been assigned previously;
4 while µ = nil do
5 while self.Ip = nil do
6 self.µs ← Is.GetNext();
7 return nil if self.µs = nil;
8 foreach triple pattern tp j ∈ B do
9 φ

j
1 = 〈u j

1, u j, s,Γ
j
1,M

j
1,C

j
1〉 ← GET c({self.µs[tp j]}), resulting in page 1 of that TPF;

10 cnt j ← cnt where 〈u j, void:triples, cnt〉 ∈ M j
1;

11 end
12 if ∀ j : cnt j > 0 then
13 ε ← j such that cnt j ≤ cntk ∀tpk ∈ B;
14 Iε ← TriplePatternIterator(RootIterator(), self.µs[tpε], c);
15 self.Ip ← BasicGraphPatternIterator(Iε , self.µs[B \ {tpε}], c);
16 end
17 end
18 µ← self.Ip.GetNext();
19 self.Ip ← nil if µ = nil;
20 end
21 return µ ∪ self.µs;
22 end

Listing 6: A BasicGraphPatternIterator incrementally evaluates a BGP B over a c-specific TPF collection F.

doi:10.1016/j.websem.2016.03.003 17

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

Iterator need not fetch the first page again—and in
general, no page should be fetched more than once.

Several improvements to this algorithm are possible.
For instance, consider the following query:

SELECT * WHERE {

?s1 <p1> ?o1. # tp1 (± 10 matches)
?s1 <p2> ?o2. # tp2 (± 1,000,000 matches)
?s2 <p3> ?o2. # tp3 (± 100 matches)

}

The algorithm of Listing 6 will first consider tp1, which
will supply mappings for ?s1 to the remaining subpat-
tern B′ = {tp2, tp3}. The BasicGraphPatternIterator

will then instantiate ?s1 with each of the supplied values,
leading to instantiated subpatterns such as B′′ = {tp′2, tp3}

with tp′2 = 〈s1, p2, ?o2〉 for specific s1. If the estimated
match count of tp′2 is higher than that of tp3 (100), then
tp3 will be selected first. This leads to a Cartesian prod-
uct between tp1 and tp3, since they share no variables. To
mitigate this problem, Acosta and Vidal [48] proposed
to prefer triple patterns that share variables with the first
triple pattern during initial query plan generation. In
this example, this would change the execution order to
(tp1, tp2, tp3) rather than (tp1, tp3, tp2). Combined with
adaptive query execution, this typically leads to faster
evaluation [48]. Other improvements include the usage
of a symmetric hash join instead of a nested loop join
whenever this results in fewer HTTP requests [48, 49].

6.3. Evaluating other SPARQL query constructs
The discussed query algorithm focuses on BGPs, as

they are the main parts of SPARQL queries. Even though
subtleties of other query constructs make it hard to cover
their full usage range on a high level, it is interesting to
look at common occurrences. An important considera-
tion is whether or not the query result can be produced
incrementally, in which case first solutions of the result
can be presented to the user while the query execution
is still running. Due to the non-blocking iterators in
Section 6.2, our iterator-based implementation is able to
produce results for BGPs incrementally. However, for
SPARQL queries with query constructs other than BGPs,
such a behavior may not be guaranteed anymore.

First, let us consider SPARQL query modifiers [14].
For LIMIT we use a non-blocking iterator that simply
pulls the iterator tree the required number of times.
OFFSET is equally simple, though less efficient: drop the
required number of elements and continue from there,
which we implemented with a non-blocking iterator. If
LIMIT and OFFSET are used for paging, which is often the
case, it is possible to keep the iterator open between sub-
sequent queries. This allows paged results without extra

computational cost. DISTINCT requires keeping the re-
sults in memory to validate whether the same mappings
have occurred before; we implemented this as a non-
blocking iterator. In contrast, given that a regular TPF
interface does not impose an ordering, we had to im-
plement ORDER BY with a blocking iterator that retrieves
all input solution mappings and sorts them by using a
variant of the well-known quicksort algorithm. Similarly,
aggregates such as COUNT and SUM use blocking iterators.

Next, let us consider graph patterns other than BGPs.
With TPFs, FILTER constructs can generally only be
evaluated client-side, for which we use a non-blocking
iterator that has to be applied after bindings for the
variables in the filter have been computed. For ex-
ample, a query on DBpedia looking for English la-
bels of movies would have to include a filter such
as FILTER(LANGMATCHES(LANG(?label),"EN")). The
client would necessarily first find bindings for ?label
and then execute the filter over them. This does
not pose performance problems for filters with rela-
tively low selectivity compared to other parts of the
query. However, filters with high selectivity benefit
from early scheduling in the query plan, possibly be-
fore bindings for all of its variables have been com-
puted. For instance, a query for “movies whose ti-
tle contains ‘silence’” would include a filter such as
FILTER(REGEX(?label, "silence", "i")). Only few
labels satisfy such a condition in practice, so it would be
beneficial to execute the filter early in the plan. Unfor-
tunately, with a TPF interface, we have no option but to
retrieve all movies and their titles, since we need a bind-
ing for ?label. This makes the execution of such queries
significantly slower than similar queries without filters.
Finally, UNION is also implemented as a non-blocking
iterator (that, similar to DISTINCT, requires keeping a list
of results under set semantics), and OPTIONAL is imple-
mented with a blocking iterator.

In general, all SPARQL queries can be executed with
full completeness using TPFs; some of them efficiently,
some only very slowly. This is a consequence of the fact
that a TPF interface allows clients to obtain all data in the
knowledge graph by retrieving the ?s ?p ?o fragment.
Even though this observation might appear trivial, note
that is not necessarily possible to execute all SPARQL
queries over any public SPARQL endpoint: some end-
points limit the kind of queries client can execute, and/or
the number of triples that can be returned and/or disallow
high OFFSETs. Therefore, some queries can neither be
executed remotely (because the server disallows them)
nor locally (because not all data can be downloaded)
using a SPARQL endpoint. With a TPF interface, it is by
definition possible to download the entire dataset, and

doi:10.1016/j.websem.2016.03.003 18

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

hence, to execute any SPARQL query.

6.4. Mediator to query a federation of TPF interfaces

To conclude this section, we propose a mediator layer
to query multiple TPF interface instances with a sin-
gle query. A mediator is a software module that ab-
stracts a collection of data resources for a higher soft-
ware layer [50], making them independent from each
other. In this case, each TPF interface acts as a data-
source wrapper, with the mediator creating a unified
TPF view over the interfaces [51]. As a result, the task of
a TPF client when executing a (regular) SPARQL query
over a federation of TPF interfaces is to compute results
identical to those it would obtain when the query would
be evaluated over a single TPF interface that combines
the data of all considered interfaces. That is, a user can
“query using a classical query language against the feder-
ated schema with an illusion that he or she is accessing a
single system” [12].

6.4.1. Comparison with SPARQL federation frameworks
Federated query processing has been studied in the

context of SPARQL endpoints, where most SPARQL
endpoint federation frameworks apply a client-server
architecture with multiple SPARQL endpoints and one
or more clients [52]. An important step in federated
query execution frameworks is source selection [53–55],
determining which endpoints are relevant to evaluate
a given query. Based on this information, a SPARQL
query is divided in subqueries that are sent to the relevant
endpoints. These partial results are then combined into
results for the entire query.

Source selection usually involves pre-computed sum-
maries and/or the retrieval of extra (meta-)data from the
endpoints, and happens as a separate step before the
actual execution. While this step is intended to reduce
the number of requests to servers, and hence the overall
query evaluation time, source selection itself also takes
time. Since source selection can be performed inde-
pendently of the actual query execution, existing source
selection algorithms can be used in conjunction with dif-
ferent execution strategies. Therefore, in the following,
we will not focus on source selection. Instead, we pro-
pose only a TPF-specific federation mediator, which can
optionally be preceded by an existing source selection
step.

6.4.2. Mediator layer
The mediator federates TPF requests to candidate

sources and uses runtime source elimination during
query execution to prevent HTTP requests we know

would not result in a match. Source elimination either re-
fines the optional source selection step at every iteration
by excluding more specific patterns, or, if no prior source
selection was performed, acts as a runtime optimization.

The client is given a query, and a pre-defined list of
TPF interfaces (instead of a single TPF interface). This
list can optionally be pre-filtered by a source selection
algorithm. The mediator creates an abstraction layer to
the fragment request operation: all interfaces are exposed
to the query algorithm as a single interface. Initially, all
interfaces are marked as possible candidates for each
triple pattern (unless explicitly ruled out by the optional
source selection step). Each time the client requests
a TPF, the mediator consults all candidate interfaces for
the same triple pattern.

When a TPF interface returns an empty fragment for
a certain triple pattern, it becomes an eliminated source
for that pattern, which is stored in an interface-specific
elimination list. For each triple pattern requested from
this interface, we check the elimination list for a possible
ancestor pattern. A tpa is an ancestor of tpb if each term
of tpa is either a variable or equal to the corresponding
term of tpb. If an ancestor pattern is found, the inter-
face is no longer marked as a candidate, since it has no
matches for the ancestor pattern, nor for more specific
patterns.

For all interfaces, the fragments’ data and metadata
are merged in a streaming way. The count metadata are
combined into a single value using an aggregation func-
tion ϑ(tp j), which is a cost function that can be optimized
to the type of interface. For example, ϑ(tp j) can be a
weighted sum, taking into account practical differences
between N servers, such as response time, page size, etc.
In our implementation, we chose an ordinary sum for
simplicity; i.e., ϑ(tp j) =

∑N
i=1 cnti j.

The application of this algorithm is evaluated in Sec-
tion 7.4, where the query evaluation over a federation of
TPF interfaces is considered without prior source selec-
tion.

7. Evaluation

In this section, we experimentally test the hypotheses
H1–H4 as introduced in Section 2.2. The results of
all experiments are published at https://github.com/
LinkedDataFragments/TPF-Experiment-Results.

As a basis for the experiments, we implemented the
query execution approach of Section 6.2 as an open-
source LDF client for SPARQL queries. This client is
written in JavaScript, so it can be used either as a stan-
dalone application, or as a library for browser and server

doi:10.1016/j.websem.2016.03.003 19

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

applications. We provide all source code of the imple-
mentations, as well as the full benchmark configuration,
at https://github.com/LinkedDataFragments/.

7.1. Experiment 1: Influence of client numbers

With our first experiment, we aim to validate hypothe-
sis H1: “In comparison to the state-of-the-art in single-
machine SPARQL endpoints, I reduces the server-side
costs to publish knowledge graphs in a queryable form.”

7.1.1. Experimental setup
In this experiment, we compare a TPF client/server

setup to four SPARQL endpoint based setups. For the
latter we use Virtuoso (6.1.8 and 7.1.1) [22] and Jena
Fuseki [23] (TDB 1.0.1 and HDT 1.1.1), respectively;
and for the TPF server we use an HDT [35] backend. Vir-
tuoso was configured with NumberOfBuffers = 595000,
MaxDirtyBuffers = 455000, and MaxCheckintRemap

as 1/4 of NumberOfBuffers.
To measure the cost and performance of the TPF server

and the SPARQL endpoints under varying loads, we set
up an environment with one server and a variable number
of clients on the Amazon AWS platform. The complete
setup consists of 1 server (4 virtual CPUs, 7.5 GB RAM),
1 HTTP cache (8 virtual CPUs, 15 GB RAM) and
60 client machines (4 virtual CPUs, 7.5 GB RAM), ca-
pable of running 4 single-threaded clients each. All
machines have Intel Xeon E5-2666 processors running
at 2.60 GHz. The HTTP cache acts as a proxy server
between servers and clients and was chosen for its band-
width capabilities (which Amazon associates with spe-
cific CPU/RAM combinations). The maximum lifetime
of cached resources is set to 5 mins.

As a benchmark for the experiment, we chose the
Berlin SPARQL Benchmark (BSBM) [56], for the fol-
lowing reasons:

• the BSBM was designed to compare SPARQL end-
points across architectures [56], and we aim to com-
pare our client–server architecture to such tradi-
tional server architectures;

• the BSBM aims to simulate realistic workloads with
large amounts of RDF data [56];

• the BSBM contains parametrized queries to create
different workloads for large numbers of clients.

In particular, we used a BSBM instance with a knowl-
edge graph size of 100M triples. To mimic the variability
of real-world scenarios, each client executes different
BSBM query workloads based on its own random seed.
Some of the BSBM queries use the ORDER BY operator,

which our TPF client implements with a blocking iter-
ator, so the first solution can only be output after all
solutions have been computed. Therefore, (only) for
measurements of the first solution time we use variants
of these queries without ORDER BY, assuming the user
application prefers streaming results and sorts locally.
After every 1-second interval during the evaluation, we
measure on the server, cache, and clients the current
value of several properties, including CPU usage of each
core and network IO.

7.1.2. Results
Figures 2.1 to 2.8 summarize the main measurements

of the evaluation. All x-axes use a logarithmic scale,
because we varied the number of clients exponentially.
We measured all data points for Virtuoso 7 (as latest
and best performing version) and our proposed solution.
For the other alternatives, we measured the points most
relevant for the analyses. Figure 2.1 shows that the per-
formance of SPARQL endpoints decreases significantly
with the number of clients. Even though a TPF setup
executes SPARQL queries with lower performance, the
performance decrease with a higher number of clients
is significantly lower. Because of caching effects, TPF
querying starts performing slightly better with a high
number of clients (n > 100). The per-core processor
usage of the SPARQL endpoints grows rapidly (Fig-
ure 2.5) and quickly reaches the maximum; in practice,
this means the endpoint spends all CPU time processing
queries while newly incoming requests are queued. The
TPF server consumes only limited CPU, because each
individual request is simple to answer, and due to the
coarser granularity of the selector function, the cache
can answer several requests (Figure 2.4).

At the client side, we observe the opposite (Figure 2.6):
clients of SPARQL endpoints hardly use CPU, whereas
TPF clients use between 20% to 100% CPU. With an
increasing number of concurrent TPF clients, the net-
working time dominates and, thus, the per-client CPU
usage decreases, whereas the memory consumption does
not vary significantly (ca. 0.5 GB per client, and 8 GB
on the server).

Figure 2.2 shows the outbound network traffic on the
server with an increasing number of clients. This traffic
is substantially higher for the TPF server, because TPF
clients need to perform several requests to evaluate a sin-
gle query. The cache ensures that responses to identical
requests are reused; Figure 2.4 shows that caching is far
more effective with TPFs.

Some of the BSBM queries perform comparably slow
on TPF clients, especially those queries that depend on
operators such as FILTER, which in a triple-pattern-based

doi:10.1016/j.websem.2016.03.003 20

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

100 101 102

101

102

103

104

clients

qu
er

ie
sp

er
ho

ur

Virtuoso 6 Virtuoso 7
Fuseki–TDB Fuseki–HDT
Triple Pattern Fragments

Figure 2.1: Server performance (log-log plot)

100 101 102
0

2

4

clients

da
ta

se
nt

(M
B

)

Figure 2.2: Server network traffic

100 101 102
0

50

100

150

200

clients

#t
im

eo
ut

s

Figure 2.3: Query timeouts

100 101 102
0

10

20

clients

se
nt

(M
B

)

Figure 2.4: Cache network traffic

100 101 102
0

50

100

clients

C
PU

us
e

(%
)

Figure 2.5: Server processor usage per core

100 101 102
0

50

100

clients

C
PU

us
e

(%
)

Figure 2.6: Client processor usage per core

100 101 102
10−3

10−2

10−1

100

101

clients

av
g.

tim
e

(s
)

Figure 2.7: Query 3 execution time (log-log plot)

100 101 102
10−1

100

101

clients

av
g.

tim
e

(s
)

Figure 2.8: Query 3 execution and 1st solution time (dotted) (log-log plot)

interface can only be evaluated on the client. The execu-
tion times of some of these queries exceed the timeout
limit of 60s (Figure 2.3). A “timeout” means that query
execution was stopped before all results arrived; at least
a partial result set was already computed. An example
of such queries are instances of BSBM query template 3
(finding products that satisfy 2 numerical inequalities
and an OPTIONAL clause). Focusing only on the queries
of this template, we observe that the average execution
time of these queries is comparably higher for TPFs (Fig-
ure 2.7). However, with an increasing number of clients,
these times increase only very gradually in the TPF setup,
whereas they rise very rapidly for the SPARQL endpoints
(which have to compute the queries of all clients con-
currently). Furthermore, the time to the first solution
increases more slowly with increased load (Figure 2.8).
Only on the TPF server, CPU usage remains low for this
query at all times.

7.2. Experiment 2: Performance of queries on a real-
world knowledge graph

Our second experiment aims to extend the results of
Experiment 1 toward real-world knowledge graphs and
different dataset sizes, as per H2: “The majority of typi-
cal real-world queries execute over I in less then 1 sec-
ond.”

7.2.1. Experimental setup
The experimental setup is the same as that of Sec-

tion 7.1. However, this time, we want to validate the
behavior of the TPF client for increasing real-world
knowledge graph sizes. To this end, we execute the
DBpedia SPARQL benchmark [57], which uses a real-
world dataset. The benchmark incorporates queries from
the public DBpedia SPARQL endpoint log, filtering non-
relevant variations and queries with a low frequency [57].
We use three knowledge graph sizes as made available on-
line: 14,274,065 triples and 52,323,498 triples from the
DBpedia benchmark website7, and 377,367,913 triples

7http://benchmark.dbpedia.org/

doi:10.1016/j.websem.2016.03.003 21

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

14M 52M 377M
0

100

200

knowledge graph size

ex
ec

ut
io

n
tim

e
(s

)

10 clients 48 clients 96 clients

Figure 3: Average execution times per client of a DBpedia query mix
with variable knowledge graph sizes

14M 52M 377M
Q1 0.44 0.42 0.37
Q2 0.50 0.50 0.46
Q3 0.50 0.51 0.91
Q4 0.53 0.60 1.49
Q5 0.47 0.48 0.86
Q6 1.80 10.06 35.16
Q7 0.47 0.46 0.40
Q8 0.50 0.49 0.46
Q9 0.47 0.45 0.39
Q10 0.47 0.45 0.46
Q11 0.52 0.92 0.43
Q12 60.03 60.03 59.95
Q13 2.29 3.16 21.80
Q14 0.48 0.47 0.43
Q15 0.73 1.08 7.69
Total 70.19 80.09 131.27

Table 1: Average individual query execution time (in seconds) for the
three DBpedia knowledge graph sizes with 48 concurrent TPF clients

from the 2014 version of DBpedia (without long ab-
stracts). In contrast to the BSBM we used in the last
experiment, the DBpedia query logs do not contain pa-
rameters. Therefore, clients execute a mix of 15 queries
with different template values for each client. The gener-
ated queries are available along with the benchmark data.
Query timeout was set to 60s.

7.2.2. Results
Figure 3 shows the results for 10, 48, and 96 TPF

clients. We observe an increase in query execution time,
which is minor when going from the 14M graph to the
52M graph, but more visible for the entire version of
DBpedia 2014. The main cause for this increase is the
increased number of elements in the result set, as the
total number of triples influences the number of matching
triples per query. To a lesser degree, the execution times
are also influenced by an increased number of triples that
match one pattern but cannot be used in joins.

The most important observation in this experiment
is, however, the high variance in execution time across
queries. Table 1 shows the average query execution
times for an individual client per query, for the case of
48 concurrent clients. Note how Q12 reaches the 60s
timeout even for the small knowledge graph. This is due
to the presence of various UNION, OPTIONAL, and FILTER

constructs, for which our client does not generate effi-
cient query plans. Most of the query execution times
remain at the same magnitude for the different knowl-
edge graph sizes, with small differences accounting for
factors such as caching and increasing bandwidth con-
sumption. Queries Q6, Q13 and Q15 are affected more
clearly by increasing knowledge graph sizes; at the same
time, however, they also yield more results. This indi-
cates that, more than knowledge graph size, the type of
query seems to be a crucial factor for queries against
real-world knowledge graphs such as DBpedia.

7.3. Experiment 3: Influence of serialization formats
With our third experiment, we aim to validate H3:

“Serialization formats that result in a lower response size
of I, compared to N-Triples, decrease query execution
times.”

The delay to transfer triples from the server into
a memory-based representation of the client is much
more crucial for TPF clients than for SPARQL endpoints,
because the number of required HTTP requests per query
can be high. Therefore, we study the impact of the RDF
serialization format of TPF responses on SPARQL query
execution performance. The serialization format con-
tributes to the delay in two ways: i) response processing
delay, i.e coding and decoding triples, and ii) response
download delay, i.e. transporting the response over net-
work. A serialization format offers a specific mix of
both, which can be more or less suited for a certain Web
application. We evaluated different existing formats to
discover a balanced mix between processing and down-
load cost in the context of our client-side querying algo-
rithm. Subsequently, we can obtain recommendations
on i) characteristics for new serialization formats, and
ii) server page size configurations.

7.3.1. Serialization formats
To test with a diverse mix of formats we identified

three categories—text-based, processing-oriented binary,
and download-oriented binary—from which we selected
an overall number of twelve different formats, and used
each of them with and without additional GZIP compres-
sion, which is common with HTTP.

Text-based formats are string-encoded notations aimed
at both human and machine consumption. We selected

doi:10.1016/j.websem.2016.03.003 22

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

the W3C standards N-Triples [58] and its superset Tur-
tle [59]. The Apache Jena RIOT library8 was used for
both formats, using stream processing when possible.
For Turtle, we tested the three configurations pretty (pre-
sorted by subject with maximal grouping; non stream-
ing), flat (not pre-sorted and not grouped; triple-based
streaming), and block (pre-sorted by subject and grouped
in fixed windows; window-based streaming). In addi-
tion, we tested with the Sesame RIO9 library to include
a possible implementation difference.

Processing-oriented binary formats are binary nota-
tions optimized to reduce processing delay, which often
comes with a response size penalty. Fortunately, such
formats tend to work well with common compression,
e.g., GZIP. This compensates response size increase at
the cost of processing time. In this category, we se-
lected RDF Thrift [60], implemented by Jena RIOT, and
Sesame Binary RDF [61], implemented by Sesame RIO.
For RDF Thrift we tested both the default configuration
and the Values configuration, where literals are encoded
more efficiently. For Sesame Binary we used both a
buffer size of 800 and of 1,600 triples.

Download-oriented binary formats are optimized to
reduce download delay. They offer compression tech-
niques that greatly reduce response size, often sacrificing
processing time. We added the recent ERI format [62]
using a custom implementation by the authors. We tested
with the recommended block sizes of 1,024, 2,048, and
4,096 triples.

7.3.2. Experimental setup
To obtain collections of TPF responses for which we

could measure the impact of each of the selected serial-
ization formats, we instructed our TPF client implemen-
tation to store each TPF page retrieved during a query
execution as a local RDF file. Then, to take the mea-
surements for this experiment we implemented a single-
threaded Java application that loads such a local RDF
file into main memory and serializes and deserializes
the loaded data using the different serialization formats
mentioned before. This application was deployed on an
Intel Xeon CPU (E5-2640 2.50 GHz) with 1 TB HDD
RAID storage and 64 GB DDR3 1333 MHz RAM.

To ensure diversity of the collections of TPF responses
as considered for this experiment, we used queries and
a knowledge graph of the Waterloo SPARQL Diversity
Test Suite (WatDiv) [63]. In contrast to the previous
two experiments, which focus on realistic loads, we here

8https://jena.apache.org/documentation/io/
9http://rdf4j.org/sesame/2.8/docs/programming.docbook?

view#Parsing_and_Writing_RDF_with_Rio

te
m

pl
at

e
na

m
e

tr
ip

le
pa

tt
er

ns

va
ri

ab
le

s

jo
in

ve
rt

ic
es

TP
F

pa
ge

s

L1 3 3 2 9,159
L2 3 2 2 14,815
L3 2 2 1 59,062
L4 2 2 1 357
L5 3 3 2 315
F1 6 5 2 900
F2 8 8 2 184
F3 6 6 2 1,793
F4 9 8 2 869
F5 6 6 2 216

te
m

pl
at

e
na

m
e

tr
ip

le
pa

tt
er

ns

va
ri

ab
le

s

jo
in

ve
rt

ic
es

TP
F

pa
ge

s

S1 9 9 1 251
S2 4 3 1 1,415
S3 4 4 1 455
S4 4 3 1 67
S5 4 3 1 304
S6 3 3 1 33
S7 3 3 1 594
C1 8 9 4 869
C2 10 11 6 431
C3 6 7 1 4

Table 2: Properties of our WatDiv queries (template from which the
query is generated, number of triple patterns, number of variables, join
vertex count [63]), and the number of TPF pages requested during their
execution. WatDiv distinguishes linear queries (L), snowflake-shaped
queries (F), star queries (S), and complex queries (C).

specifically want to assess the impact of different query
patterns, which WatDiv is designed for. We set up our
TPF server with the WatDiv 10 million triple knowledge
graph10 and queried it using 20 BGP queries that we
generated from the 20 query templates in the basic testing
use case11 of WatDiv. These query templates span a wide
spectrum of various graph pattern structures (cf. Table 2).
For each of the 20 queries, Table 2 shows the number of
TPF pages requested by our client-side query execution
algorithm.

7.3.3. Results
First, we analyze how much data the collected TPF

pages contain (which is independent of serialization for-
mats). Figure 4 shows a distribution of the number of
triples per page. The histogram starts with 25 triples,
because a response always includes at least 26 triples for
metadata and controls, and ends with 130 triples because
a page size of 100 triples was used. All queries show
a similar bimodal distribution with a peak at a triple count
of 25 to 35 triples and a small peak at 125 to 130 triples.
The former indicates the presence of many requests that
are used to verify the presence of a single triple, which
results in 0 or 1 data triples. The latter denotes the ini-
tial phase of query execution where many non-selective
triple patterns are requested. Most frequent, these are
the triple patterns as they occur in the query’s BGP and
some of their early bound derivatives. These patterns
contain the highest number of variables, more likely to

10http://dsg.uwaterloo.ca/watdiv/watdiv.10M.tar.bz2
11http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

doi:10.1016/j.websem.2016.03.003 23

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

[25-30[[35-40[[45-50[[55-60[[65-70[[75-80[[85-90[[95-100[[105-110[[115-120[[125-130[

102

104

[30-35[[40-45[[50-55[[60-65[[70-75[[80-85[[90-95[[100-105[[110-115[[120-125[
number of triples per page

nu
m

be
r

of
pa

ge
s L1 L2 L3 L4 L5 S1 S2 S3 S4 S5

S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

Figure 4: The distribution of average number of triples per used TPF page for different queries shows that most fragments either contain either few
data triples (20–30 triples are metadata), or the maximum number (page size).

N-Trip
les

*

ERI 1,024*

ERI 4,096*

ERI 2,048*

Sesa
me Turtl

e*

ERI 4,096

ERI 2,048

ERI 1,024

RDF Thrif
t Value*

RDF Thrif
t*

Jen
a Turtl

e Blocks*

Jen
a Turtl

e Pret
ty*

Jen
a Turtl

e Flat*

Sesa
me Binary

800*

Sesa
me Binary

1,600*

Sesa
me Turtl

e

Jen
a Turtl

e Blocks

Jen
a Turtl

e Pret
ty

Jen
a Turtl

e Flat

RDF Thrif
t Value

RDF Thrif
t

N-Trip
les

Sesa
me Binary

800

Sesa
me Binary

1,600
0

10,000

20,000

av
er

ag
e

tim
e

(m
s)

deserialization

transfer

serialization

Figure 5: The chosen RDF format impacts the time to serialize, transfer, and deserialize TPF pages. Additionally applying GZIP compression and
decompression (indicated by *) has an important effect, except on ERI, which is already small.

exceed the given page size. Examples are the triple pat-
terns tp1 and tp2 from Listing 2, that have a cardinality
of 2 300 and 572 300, respectively. On average, only 2%
of all responses contain between 35 and 125 triples. This
means HTTP responses are in most cases very small, in
a few cases very big (depending on the page size), and
almost never in-between. Two queries (L2 and L3) have
more fragment pages in the in-between groups, which is
directly related to the fact they have more pages overall.

Next, we executed the response serializer for each
combination of query and format, with and without ap-
plied GZIP compression. For each response, we mea-
sured its serialization time, deserialization time and trans-
fer time. We estimate the transfer time by dividing the
response size when serialized with an average network
speed of 1MB/s (as in other evaluations [62]). The sum
of all three measurements over all HTTP responses give
the total overhead per query.

Figure 5 shows the average overhead over all queries.
A first observation is that transfer time clearly dominates
over serialization and deserialization time. Therefore, the
small-size ERI format results in roughly 3 times less over-
head compared to Turtle and even 5 times less compared

to N-Triples, RDF Thrift, and Sesame Binary. How-
ever, since text-based formats and processing-oriented
formats can be compressed effectively, the response size
difference can be reduced significantly by applying GZIP
compression. On average, text-based formats can be re-
duced to 110% of the ERI response size. Nonetheless,
the processing penalty by applying compression does
not compensate the dominance of transfer delay for most
formats, as ERI keeps an average gain of 1s per query.
For N-Triples though, the combination of its high com-
pression rate and lower processing cost match the low
overhead of ERI.

In general, the impact of binary formats is rather
limited. This is likely because TPF pages are small,
while such formats are designed to be effective on large
amounts of triples. All responses are serialized as a sin-
gle block or buffer, which explains the insignificant dif-
ference between block sizes for ERI and Sesame Binary.
A larger page size could result in a potential overhead
decrease. However, for all tested queries, only 0.24%
of all fragments requested more than one page and only
0.001% more than two. As a result, the benefit of a larger
page size would be negligible in the current algorithm.

doi:10.1016/j.websem.2016.03.003 24

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

Still, future algorithms could optimize more in this direc-
tion. For instance, Van Herwegen et al. [49] reduce the
number of requests by downloading all pages first to per-
form a local join, which could justify a larger page size.

7.4. Experiment 4: Querying federated knowledge
graphs

With this final experiment, we aim to validate H4:
“When a client evaluates queries over a federation of
interfaces of type I under public network latency, perfor-
mance is similar to that of state-of-the-art SPARQL query
federation frameworks.” In accordance with the sub-
hypotheses, we study whether the evaluation of SPARQL
queries over a federation of TPF interfaces results in sim-
ilar recall and query execution time.

7.4.1. Experimental setup
We implemented the mediator approach from Sec-

tion 6.4 in the TPF client, which now accepts a set of
TPF interfaces and a SPARQL query. As the previously
considered benchmarks only use a single knowledge
graph, we chose the popular FedBench benchmark [64].
The original datasets12 were first cleaned through the
LOD Laundromat service [20], since some of them con-
tained invalid RDF. Then, each dataset was published
through a TPF API on a dedicated Amazon EC2 machine
(2 virtual CPUs, 7.5 GB RAM) located in the US, each
running their own HTTP cache.

The client can execute the same (regular) SPARQL
queries as in the single-server scenario, i.e., queries with-
out the SERVICE keyword. As a query-mix, we selected
the Linked Data (LD), Life Science (LS), and Cross Do-
main (CD) queries from FedBench, appended with the
complex queries (C) by Montoya et al. [65]. The com-
plete query-mix was ran 20 times in sequence on the
public Web, accessed from a desktop computer in Bel-
gium in order to represent realistic long-distance latency.
Per executed query, the client cache was cold and the
timeout was set to 5 minutes.

We compare our measurements with numbers re-
ported by Castillo et al. [66], who tested the following
SPARQL endpoint federation systems: ANAPSID [53],
ANAPSID EG (ANAPSID using Exclusive Groups),
FedX [67] (with a warmed-up cache), and SPLEN-
DID [68]. Castillo et al. obtained their measurements
with one client and 10 SPARQL endpoints on different
machines in a fast local network. We opted to perform
our tests on a public network in order to validate the
federated TPF solution within the context of the Web.

12https://code.google.com/p/fbench/wiki/Datasets

Measuring recall and execution time on the Web gives an
indication of the practical feasibility of real-world TPF-
based federation, and a comparison with measurements
of the state-of-the-art on a closed network positions TPF
relative to an ideal baseline without connection delays.

7.4.2. Results: recall
Table 3 shows the average result recall for each query.

For the queries LD, LS, and CD, the TPF setup reaches
a recall of 99% or 100% for all queries except LS3, which
reaches only 24% before it timeouts. Most C queries
have low recall (6 queries have close to 0%), except
for C3 and C5 that reach 100%. In total, 13 queries
have less than 100% recall, the causes of which can
be assigned into three categories. First, 6 queries (L3,
LS5, C2, C4, C7, C9) time out before all results have
been computed. Especially for the complex queries,
this is due to the amount of data needed by the client
to complete the algorithm. Second, 3 queries (CD1,
LD2, LS2) reach 0.99% recall on average: they achieve
100% in some runs, but less than 100% in others. This
is likely due to the client sending many requests out
at once, which can sometimes not all be answered in
time. Third, 4 queries (C1, C6, C8, C10) stop before
the timeout without full recall. They cause the client
to send out so many simultaneous requests that these
do not all complete in time, causing the client to abort
the execution. The last two causes indicate the client’s
vulnerability to single request time-outs, leading to the
omission of (partial) results. In general, the low recall on
the C queries is explained by large numbers of joins (C1)
and/or the presence of complex optional statements
(C6, C7, C8, C9, C10). This requires a large number
of triples from all servers, making request time-outs
more likely.

Comparing these (real-Web-based) recall measure-
ments to Castillo et al.’s results for state-of-the-art
SPARQL endpoint federation systems in a fast local
network [66], we observe the following. Overall, TPF
and SPLENDID have the highest number of queries with
> 0% and ≥ 10% recall (32 and 30 queries, respectively),
TPF has the highest number of queries with ≥ 90% re-
call (27), and only SPLENDID has more queries with
complete results (24). For the LD queries, the TPF setup
is the only one not obtaining 100% recall for LD2. On
the other hand, all other systems except FedX have less
than 100% recall for some of the other LD queries that
the TPF setup evaluates with full completion. For the LS
queries, none of the systems obtain 100% recall for LS2.
The LS3 query, for which TPF only has 24% recall, is
evaluated completely by all others. For the CD queries,
TPF has the highest recall in all cases and only has less

doi:10.1016/j.websem.2016.03.003 25

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10 LD11 CD1 CD2 CD3 CD4 CD5 CD6 CD7

50

100

ex
ec

ut
io

n
tim

e
(s

)

300 300 300 300

LS1 LS2 LS3 LS4 LS5 LS6 LS7 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0

50

100

150

200

250

300

ex
ec

ut
io

n
tim

e
(s

)

TPF ANAPSID ANAPSID EG FedX SPLENDID

Figure 6: Evaluation times of FedBench query execution on the TPF client/server setup compared to SPARQL endpoint federation systems (timeout
of 300s). These measurements should be considered together with the recall for each query (Table 3). The TPF-related measurements were performed
in the context of this article; the numbers for the four SPARQL endpoint federation systems are adopted from [66].

than 100% average recall for CD1. Especially ANAP-
SID and ANAPSID EG score badly on CD queries. In
contrast, the C queries are problematic for most systems
except ANAPSID, which achieves 100% recall for 7
out of 10 queries. This contrast for FedX (and ANAP-
SID EG) with results of the other queries is related to
their usage of so-called exclusive groups [67], which is
not always the best strategy for the complex queries [69].
Remarkably, TPF and SPLENDID are the only ones to
achieve 100% recall for C3, for which ANAPSID and
FedX do not find results. Finally, none of the systems
seem to obtain significant recall for C7–C10, with the
exception of ANAPSID for C7 and C8.

7.4.3. Results: execution time
Next, we study the total query execution times. Our

intention is to relate current query execution over TPF
collections to the state-of-the-art in SPARQL endpoint
federation systems. Hence, we compare to recently pub-
lished results for the same queries [66]. In general, we
notice that the performance gap observed with the single-
server experiments in Sections 7.1 and 7.2 becomes
smaller in the case of federation. This indicates that
the native query decomposition of TPF, combined with
light requests and metadata, is more effective in federated
environments, and should be examined further.

Figure 6 presents the execution times for all FedBench
queries, measured in seconds. The general trend is that
the TPF client performs in between ANAPSID (lower

bound) and ANAPSID EG (upper bound). TPF is occa-
sionally faster than SPLENDID (LD1, LD3, and notably
C5), but sometimes several times as slow (LD7, CD6,
LS5, LS7). We should, however, recall that we com-
pare against a TPF setup on a public network, so the
TPF measurements include network delay. FedX with
a warmed-up cache outperforms all systems for most
queries, with a few notable exceptions such as C6. The
timings in Figure 6 should, however, be considered to-
gether with the recall in Table 3, since not all results
might have been obtained in a shorter executions time.
FedX, for instance, does not find results for the C queries.
A likely explanation for this difference is again FedX’s
usage of exclusive groups.

Considering the added network delay, a number of
queries show promise: CD1, CD2, CD4, LD2, LD5,
LD6, LD8, LD9, LD10, LS1, LS2, LS4, and LS6. These
queries are answered in less than 4 seconds. This ex-
ecution time is comparable to that of ANAPSID and
SPLENDID, and even approximates FedX. A likely ex-
planation is the presence of highly selective triple pat-
terns in the query, for which the simplicity of TPF re-
quests seems to compensate the overhead of query plan-
ning in other systems. For other queries (CD5, CD7,
LD1, LD3), the TPF client performs worse than ANAP-
SID and SPLENDID, but remains within comparable
bounds. A probable cause is the presence of patterns
like ?x rdf:type ?y, which can be answered by all data
sources. Thus, other systems clearly benefit from prior

doi:10.1016/j.websem.2016.03.003 26

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

T
PF

A
N

A
PS

ID

A
N

A
PS

ID
E

G

Fe
dX

(w
ar

m
)

SP
L

E
N

D
ID

LD1 1.00 1.00 1.00 1.00 1.00
LD2 0.99 1.00 1.00 1.00 1.00
LD3 1.00 1.00 1.00 1.00 0.98
LD4 1.00 1.00 1.00 1.00 1.00
LD5 1.00 0.00 0.00 1.00 1.00
LD6 1.00 0.00 0.00 1.00 1.00
LD7 1.00 0.00 0.09 1.00 1.00
LD8 1.00 1.00 1.00 1.00 1.00
LD9 1.00 1.00 1.00 1.00 1.00
LD10 1.00 1.00 1.00 1.00 1.00
LD11 1.00 1.00 0.00 1.00 1.00
LS1 1.00 1.00 1.00 1.00 1.00
LS2 0.99 0.88 0.88 0.88 0.88
LS3 0.24 1.00 1.00 1.00 1.00
LS4 1.00 1.00 1.00 1.00 1.00
LS5 0.99 1.00 0.00 1.00 1.00
LS6 1.00 0.00 0.00 1.00 1.00
LS7 1.00 1.00 1.00 0.09 1.00
CD1 0.99 0.97 0.97 0.95 0.97
CD2 1.00 1.00 1.00 1.00 1.00
CD3 1.00 0.60 1.00 0.80 0.60
CD4 1.00 0.00 0.00 1.00 1.00
CD5 1.00 0.00 0.00 1.00 1.00
CD6 1.00 0.00 0.00 1.00 1.00
CD7 1.00 0.00 0.00 0.50 0.50
C1 0.02 1.00 0.00 0.00 0.02
C2 0.93 1.00 0.00 0.00 1.00
C3 1.00 0.00 0.00 0.00 1.00
C4 0.00 1.00 0.00 0.00 0.00
C5 1.00 1.00 0.00 0.00 1.00
C6 0.77 1.00 1.00 0.00 1.00
C7 0.00 1.00 0.00 0.00 0.00
C8 0.01 1.00 0.00 0.00 0.00
C9 0.01 0.00 0.00 0.00 0.00
C10 0.00 0.00 0.00 0.00 0.00

queries
= 1.00 22 21 14 20 24
≥ 0.90 27 23 15 21 26
≥ 0.10 30 24 16 24 30
> 0.00 32 24 17 25 32

Table 3: Recall of FedBench query execution on the TPF client/server
setup compared to SPARQL endpoint federation systems (timeout of
300s). All occurrences of incomplete recall are highlighted. The TPF-
related measurements were performed in the context of this article; the
numbers for the other four systems are adapted from [66].

source selection, which the current TPF client does not
use.

For the remaining regular FedBench queries, the TPF
client distinctly reveals its limitations. These queries
(LS3, LS5) time out, or execute significantly slower
(CD3, CD6, LD7, LS7) than SPARQL endpoint feder-
ation systems. They contain common predicates like
owl:sameAs or foaf:name that trigger requests to all in-
terfaces. Additionally, a high number of subject joins
causes inefficiencies, since they potentially produce
many “membership requests” to all sources, checking
whether a triple is present or not. A possible enhance-
ment is to include metadata that prevents this, at the
expense of a more costly server-side interface [70]. An-
other cause is the presence of a FILTER statement (LS7),
which is currently executed client-side. This indicates
room for interface extensions for such clauses [71].

The limitations of TPF become more apparent with
the C queries, 4 of which time out and another 4 end
prematurely (as discussed above). The high number
of produced HTTP requests (3,692 on average) caused
by the many triple patterns, contributes significantly to
this delay. SPLENDID, FedX, and ANAPSID show
similar results, but fail on different queries. For the
queries where TPF reaches complete recall (C3, C5), the
total execution time is comparable and even outperforms
ANAPSID. These findings, measured on the public Web,
motivate a more in-depth study of complex queries for
TPF, to discover possible client or server enhancements.

8. Conclusions and future work

How useful are limited Linked Data APIs for the Se-
mantic Web? If we design them the right way, they al-
low more with higher performance than intuition would
predict—if we are willing to accept the combination
of trade-offs they bring. Then again, each Web API to
Linked Data comes with its own trade-off mix, so the
question becomes: is it worthwhile to look at other trade-
offs than those that the currently existing APIs already
bring? The Triple Pattern Fragments API introduced
in this article is a deliberately simple one: clients can
only ask for ?s ?p ?o patterns. Its responses explicitly
describe the interface, so clients can discover without
external documentation what the interface supports and
how to access it. The aim of the interface is to lower the
cost for knowledge publishers to offer live queryable data
on the open Web, the availability of which is currently
low [3, 5], hindering application development. Have we
found a candidate interface with TPFs, either for direct
use or as the base of other APIs, and is this direction
viable for future research and development?

doi:10.1016/j.websem.2016.03.003 27

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

8.1. Discussion of the results

The results of the first experiment (Section 7.1) in-
dicate that TPF query execution succeeds in reducing
server usage, at the cost of increased query times. TPF
servers cope better with increasing numbers of clients
than SPARQL endpoints. They have a generally low and
regular CPU load (H1.1), accompanied by less variation
in response time (H1.3). Furthermore, querying bene-
fits strongly from regular HTTP caching (H1.2), which
can be added at any point in the network. These three
facts validate the hypothesis H1 that the interface re-
duces the server-side cost to publish knowledge graphs.
This is all the more remarkable since, to allow compar-
isons with other work, these results were obtained with
an existing SPARQL benchmark that focuses on perfor-
mance, not server cost. Even though certain queries
make it difficult for an LDF client to find all results
within the timeout window the first results to all queries
arrive before the timeout period. In that sense, TPF query
execution challenges the traditional query paradigm of

“send the query – wait for the server – act on all re-
sults” and proposed instead “start the query – act on
each incoming result”. In other words, since we know
that we will be waiting longer for results anyway, we
should focus on handling individual results as they ar-
rive rather than on processing the whole result set at
the end. Concretely, instead of waiting for queries con-
taining constructs TPF clients cannot implement with
a non-blocking iterator (e.g., ORDER BY), an application
might prefer to use queries without such constructs and
then perform additional result transformations itself as
part of a self-updating interface.

The second experiment (Section 7.2) generalizes these
findings and validates the hypothesis H2 that this be-
havior extends to real-world knowledge graphs such as
DBpedia. A vast majority of queries stays well below the
1 second limit, despite being affected by the knowledge
graph size. We note a strong influence of the type of
query, especially when non-BGP SPARQL constructs
are involved.

Experiment 3 (Section 7.3) falsifies the hypothesis H3.
Although more compact formats show a decrease in
query execution time, these findings no longer apply
when responses are compressed by GZIP, commonly
used within the HTTP protocol. Also, the serialization
and deserialization costs can be decisive, especially if
they involve relatively few triples—which is the case for
typical page sizes (e.g., 100) of a TPF interface. The
experiment shows the importance of carefully consider-
ing serializations. Even though removing or shortening
metadata and control triples would work for specialized

TPF clients, the applicability of the application would be
narrowed.

The extension to federated querying in Experiment 4
(Section 7.4) shows the scalability of the approach to-
ward multiple knowledge graphs on the Web. The mea-
surements show a competitive recall compared to the
state-of-the-art, validating H4.1. Even though low server
cost—not performance—is the main concern of TPFs,
certain queries perform comparably as with state-of-the-
art SPARQL federation systems. Therefore, we validate
hypothesis H4.2—and, together with H4.1, thus also H4.
Some of the queries still execute more slowly or time out,
however, we emphasize that the TPF setup was tested
on the public Web, whereas the other federation engines
were considered in a fast local network. Hence, if we
focus on improving some of the remaining bottlenecks,
either through query optimizations [49] or limited inter-
face extensions [70, 71], TPF might serve as a realistic
solution to federations of knowledge graphs on the Web.
Moreover, the experiments show a TPF client without
a prior source selection step; the runtime source elimi-
nation of sources with zero-result ancestor patterns thus
seems adequate for a number of cases. Any of the ex-
isting source selection algorithms could be incorporated
beforehand in order to reduce the number of considered
sources, but doing so might involve additional metadata
and/or computations, and thereby influence the measured
parameters.

8.2. Usage potential

An important concern is whether we have practical
evidence to assume that the TPF interface is a possi-
ble candidate for adoption. To address this concern,
we can point to the already existing TPF interfaces on
the Web. Since October 2014, the DBpedia Founda-
tion provides the popular DBpedia knowledge graph as
TPFs13 in addition to data dumps, Linked Data docu-
ments, and SPARQL endpoint. The TPF interface had
an uptime of 99.99% during its first 9 months, handling
16,776,170 requests [72]. Since February 2015, the LOD
Laundromat [20] publishes more than 650,000 knowl-
edge graphs from the Web not only as data dumps, but
also as TPFs [73]. While these knowledge graphs are
currently published on a single machine, the LOD Laun-
dromat source code14 is publicly available for a straight-
forward setup of large-scale TPF servers. In addition,
a few independent data publishers have made knowledge
graphs available as TPFs through our software or other

13http://fragments.dbpedia.org/
14https://github.com/LODLaundry/

doi:10.1016/j.websem.2016.03.003 28

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

libraries.15 Because the number of fragments per knowl-
edge graph is finite, TPFs of smaller knowledge graphs
can be pregenerated and published on the Web through
free hosting platforms, while enabling live querying [74].

8.3. Future directions

The TPF interface proposed in this article is not the
final solution to querying knowledge graphs on the Web.
Instead, our main goals have been to i) gather evidence
that low-cost interfaces can enable the efficient execution
of common SPARQL queries; ii) provide a starting point
for further interface development. While there is still
room to improve query evaluation efficiency over TPFs
(e.g., [48, 49]), this will eventually reach a limit. There-
fore, TPF responses explicitly describe the interface,
allowing clients to find out dynamically if this and other
features are supported [8]. If a new feature is proposed
to filter data in a different way, this can be implemented
on top of TPFs. Clients that support TPFs will still be
able to execute their algorithm; clients that also support
the additional feature can make use of it if the interface
indicates so.

In future work, we aim to explore such additional
features and other possible interface along the axis of
Figure 1—and invite others to do the same. In partic-
ular, we consider features such as sorting (in order to
optimize ORDER BY clauses) and substring search (in or-
der to support FILTER more efficiently) [71]. Another
possibility is the incorporation of additional metadata
in the interface, which allows clients to further reduce
the number of requests [70]. Each feature can have an
impact on server cost and client efficiency, sometimes
in very subtle ways. For instance, even though a cer-
tain feature might introduce extra server complexity, this
feature could reduce the number of client requests for
a certain task, perhaps making the one costly operation
more efficient than several inexpensive ones. These are
the kind of questions that future research should answer.
All of these supported features must take into account
real-world concerns, such as rapidly changing data, a di-
rection we recently started to explore [75]. Additionally,
we consider the creation of SPARQL benchmarks that
focus on other aspects besides performance, such as cost
and cache reuse.

Interestingly, query evaluation over TPFs reveals a pat-
tern in which clients and servers engage in a dialog
to tackle a problem, asking questions such as “What
kinds of fragments do you offer?” and “How can I access
them?” This dialog becomes possible because servers

15http://linkeddatafragments.org/data/

enable clients to perform complex behavior on the Web,
rather than centralizing the complexity. As different in-
terfaces in addition to TPF evolve, explicitly describing
their functionality inside their responses, we come closer
to the original vision of the Semantic Web [4] in which
clients—not servers—are intelligent. An important chal-
lenge to arrive at such a queryable Web is to find realistic
balances of client/server trade-offs, to which TPFs are
an initial step.

Acknowledgments

The research activities in this article were funded by
Ghent University, iMinds, the Institute for the Promotion
of Innovation by Science and Technology in Flanders
(IWT), and the European Union. R. Verborgh is a post-
doctoral fellow of the Research Foundation Flanders.

References

[1] C. Bizer, T. Heath, T. Berners-Lee, Linked Data – the story so far,
International Journal on Semantic Web and Information Systems
5 (3) (2009) 1–22.

[2] M. Schmachtenberg, C. Bizer, H. Paulheim, Adoption of the
linked data best practices in different topical domains, in: P. Mika,
T. Tudorache, A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić,
P. Groth, N. Noy, K. Janowicz, C. Goble (Eds.), Proceedings of
the 13th International Semantic Web Conference, Vol. 8796 of
Lecture Notes in Computer Science, Springer, 2014, pp. 180–
196.

[3] I. Ermilov, M. Martin, J. Lehmann, S. Auer, Linked open data
statistics: Collection and exploitation, in: P. Klinov, D. Mouromt-
sev (Eds.), Knowledge Engineering and the Semantic Web, Vol.
394 of Communications in Computer and Information Science,
Springer, 2013, pp. 242–249.
URL http://dx.doi.org/10.1007/978-3-642-41360-5_19

[4] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Sci-
entific American 284 (5) (2001) 34–43.

[5] C. Buil-Aranda, A. Hogan, J. Umbrich, P.-Y. Vandenbussche,
SPARQL Web-querying infrastructure: Ready for action?, in:
H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann, J. X.
Parreira, L. Aroyo, N. Noy, C. Welty, K. Janowicz (Eds.), Pro-
ceedings of the 12th International Semantic Web Conference,
2013.

[6] R. Verborgh, M. Vander Sande, P. Colpaert, S. Coppens, E. Man-
nens, R. Van de Walle, Web-scale querying through Linked Data
Fragments, in: C. Bizer, T. Heath, S. Auer, T. Berners-Lee (Eds.),
Proceedings of the 7th Workshop on Linked Data on the Web,
2014.

[7] R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck,
L. De Vocht, M. Vander Sande, R. Cyganiak, P. Colpaert, E. Man-
nens, R. Van de Walle, Querying datasets on the Web with high
availability, in: P. Mika, T. Tudorache, A. Bernstein, C. Welty,
C. Knoblock, D. Vrandečić, P. Groth, N. Noy, K. Janowicz,
C. Goble (Eds.), Proceedings of the 13th International Seman-
tic Web Conference, Vol. 8796 of Lecture Notes in Computer
Science, Springer, 2014, pp. 180–196.

[8] R. Verborgh, E. Mannens, R. Van de Walle, Bottom-up web
APIs with self-descriptive responses, in: Proceedings of the 6th

International Workshop on Modeling Social Media, 2015.

doi:10.1016/j.websem.2016.03.003 29

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

[9] R. Angles, C. Gutierrez, The expressive power of SPARQL, in:
Proceedings of the 7th International Semantic Web Conference,
Lecture Notes in Computer Science, Springer, 2008, pp. 114–
129.

[10] R. B. Miller, Response time in man-computer conversational
transactions, in: Proceedings of the December 9-11, 1968, fall
joint computer conference, part I, ACM, 1968, pp. 267–277.

[11] S. K. Card, G. G. Robertson, J. D. Mackinlay, The information
visualizer, an information workspace, in: Proceedings of the
SIGCHI Conference on Human factors in computing systems,
ACM, 1991, pp. 181–186.

[12] A. P. Sheth, J. A. Larson, Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases, ACM
Computing Surveys 22 (3) (1990) 183–236.

[13] R. Cyganiak, D. Wood, M. Lanthaler (Eds.). RDF 1.1 concepts
and abstract syntax, Recommendation, World Wide Web Consor-
tium (Feb. 2014).
URL http://www.w3.org/TR/rdf11-concepts/

[14] S. Harris, A. Seaborne (Eds.). SPARQL 1.1 query language,
Recommendation, W3C (Mar. 2013).
URL http://www.w3.org/TR/sparql11-query/

[15] R. Verborgh, Serendipitous web applications through semantic
hypermedia, Ph.D. thesis, Ghent University, Ghent, Belgium
(Feb. 2014).

[16] R. T. Fielding, Architectural styles and the design of network-
based software architectures, Ph.D. thesis, University of Califor-
nia (2000).

[17] M. Amundsen, Hypermedia types, in: E. Wilde, C. Pautasso
(Eds.), REST: From Research to Practice, Springer, 2011, pp.
93–116.

[18] R. T. Fielding, REST APIs must be hypertext-driven (Oct. 2008).
URL http://roy.gbiv.com/untangled/2008/rest-apis-

must-be-hypertext-driven

[19] M. Lanthaler, C. Gütl, Hydra: A vocabulary for hypermedia-
driven Web APIs, in: Proceedings of the 6th Workshop on Linked
Data on the Web, 2013.

[20] W. Beek, L. Rietveld, H. Bazoobandi, J. Wielemaker,
S. Schlobach, LOD Laundromat: a uniform way of publishing
other people’s dirty data, in: P. Mika, T. Tudorache, A. Bern-
stein, C. Welty, C. Knoblock, D. Vrandečić, P. Groth, N. Noy,
K. Janowicz, C. Goble (Eds.), Proceedings of the 13th Interna-
tional Semantic Web Conference, Vol. 8796 of Lecture Notes in
Computer Science, Springer, 2014, pp. 213–228.

[21] L. Feigenbaum, G. T. Williams, K. G. Clark, E. Torres (Eds.).
SPARQL 1.1 protocol, Recommendation, W3C (Mar. 2013).
URL http://www.w3.org/TR/sparql11-protocol/

[22] O. Erling, I. Mikhailov, Virtuoso: RDF support in a native
RDBMS, in: R. de Virgilio, F. Giunchiglia, L. Tanca (Eds.),
Semantic Web Information Management, Springer, 2010, pp.
501–519.

[23] M. Grobe, RDF, Jena, SPARQL and the Semantic Web, in: Pro-
ceedings of the 37th Annual ACM SIGUCCS Fall Conference:
Communication and Collaboration, 2009.

[24] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of
SPARQL, ACM Transactions on Database Systems 34 (3) (2009)
16:1–16:45.

[25] O. Erling, SEMANTiCS 2014 (part 3 of 3): Conversations (Aug.
2014).
URL http://www.openlinksw.com/dataspace/doc/oerling/

weblog/Orri%20Erling%27s%20Blog/1815

[26] O. Hartig, An overview on execution strategies for Linked Data
queries, Datenbank-Spektrum 13 (2) (2013) 89–99.

[27] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, A. Polleres, Com-
paring data summaries for processing live queries over linked
data, World Wide Web 14 (5–6) (2011) 495–544.

[28] O. Hartig, C. Bizer, J.-C. Freytag, Executing SPARQL queries
over the Web of Linked Data, in: A. Bernstein, D. R. Karger,
T. Heath, L. Feigenbaum, D. Maynard, E. Motta, K. Thirunarayan
(Eds.), Proceedings of the 8th International Semantic Web Con-
ference, Springer, 2009, pp. 293–309.

[29] S. Speicher, J. Arwe, A. Malhotra (Eds.). Linked Data Platform
1.0, Recommendation, W3C (Feb. 2015).
URL http://www.w3.org/TR/ldp/

[30] C. Ogbuji (Ed.). SPARQL 1.1 Graph Store HTTP Protocol,
Recommendation, W3C (Mar. 2013).
URL http://www.w3.org/TR/sparql11-http-rdf-update/

[31] Linked Data API, retrieved at 2015-08-02.
URL https://code.google.com/p/linked-data-api/

[32] L. Matteis, Restpark: Minimal RESTful API for retrieving RDF
triples (2013).
URL http://lmatteis.github.io/restpark/restpark.pdf

[33] E. Wilde, M. Hausenblas, RESTful SPARQL? You name it!
– Aligning SPARQL with REST and resource orientation, in:
Proceedings of the 4th Workshop on Emerging Web Services
Technology, ACM, 2009, pp. 39–43.

[34] O. Hartig, J. Zhao, Publishing and consuming provenance meta-
data on the Web of Linked Data, in: D. L. McGuinness, J. R.
Michaelis, L. Moreau (Eds.), Proceedings of the 3rd International
Provenance and Annotation Workshop, 2010.

[35] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres,
M. Arias, Binary RDF representation for publication and ex-
change (HDT), Journal of Web Semantics 19 (2013) 22–41.

[36] M. Schmidt, M. Meier, G. Lausen, Foundations of SPARQL
query optimization, in: Proceedings of the 13th International
Conference on Database Theory, 2010, pp. 4–33.

[37] P. Barceló, Querying graph databases, in: Proceedings of the
32nd Symposium on Principles of Database Systems (PODS),
2013.

[38] O. Hartig, SPARQL for a Web of Linked Data: Semantics and
Computability, in: E. Simperl, P. Cimiano, A. Polleres, O. Cor-
cho, V. Presutti (Eds.), Proceedings of the 9th Extended Semantic
Web Conference, Springer, 2012.

[39] O. Hartig, How caching improves efficiency and result complete-
ness for querying Linked Data, in: C. Bizer, T. Heath, T. Berners-
Lee, M. Hausenblas (Eds.), Proceedings of the 4th Workshop on
Linked Data on the Web, 2011.

[40] G. Carothers (Ed.). RDF 1.1 N-Quads, Recommendation, W3C
(Feb. 2014).
URL http://www.w3.org/TR/n-quads/

[41] C. Bizer, R. Cyganiak. RDF 1.1 TriG, Recommendation, W3C
(Feb. 2014).
URL http://www.w3.org/TR/trig/

[42] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, N. Lindström.
JSON-LD 1.0, Recommendation, W3C (Jan. 2014).
URL http://www.w3.org/TR/json-ld/

[43] R. Verborgh. Linked Data Fragments, Unofficial draft, Hydra
W3C Community Group.
URL http://www.hydra-cg.com/spec/latest/linked-data-

fragments/

[44] G. Graefe, Query evaluation techniques for large databases, ACM
Computing Surveys 25 (2) (1993) 73–169.

[45] J. M. Hellerstein, M. Stonebraker, J. Hamilton, Architecture of
a database system, Foundations and Trends in Databases 1 (2)
(2007) 141–259. doi:10.1561/1900000002.

[46] J. M. Smith, P. Y.-T. Chang, Optimizing the performance of a
relational algebra database interface, Communications of the
ACM 18 (10) (1975) 568–579.

[47] S. B. Yao, Optimization of query evaluation algorithms, ACM
Transactions on Database Systems 4 (2) (1979) 133–155.

[48] M. Acosta, M.-E. Vidal, Networks of linked data eddies: An

doi:10.1016/j.websem.2016.03.003 30

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web

adaptive Web query processing engine for RDF data, in: M. Are-
nas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin,
K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan,
K. Thirunarayan, S. Staab (Eds.), The Semantic Web – ISWC
2015, Vol. 9366 of Lecture Notes in Computer Science, Springer
International Publishing, 2015, pp. 111–127.

[49] J. Van Herwegen, R. Verborgh, E. Mannens, R. Van de Walle,
Query execution optimization for clients of triple pattern frag-
ments, in: F. Gandon, M. Sabou, H. Sack, C. d’Amato, P. Cudré-
Mauroux, A. Zimmermann (Eds.), Proceedings of the 12th Ex-
tended Semantic Web Conference, 2015.

[50] G. Wiederhold, Mediators in the architecture of future informa-
tion systems, Computer 25 (3) (1992) 38–49.

[51] M. T. Özsu, P. Valduriez, Principles of distributed database sys-
tems, Springer Science & Business Media, 2011, Ch. 9.2, p.
299.

[52] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, A.-C. Ngonga
Ngomo, A fine-grained evaluation of SPARQL endpoint federa-
tion systems, Semantic Web Journal Accepted for publication.

[53] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, E. Ruckhaus,
ANAPSID: An adaptive query processing engine for SPARQL
endpoints, in: L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bern-
stein, L. Kagal, N. Noy, E. Blomqvist (Eds.), The Semantic Web
– ISWC 2011, Vol. 7031 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2011, pp. 18–34.

[54] M. Saleem, A.-C. N. Ngomo, Hibiscus: Hypergraph-based
source selection for SPARQL endpoint federation, in: The Se-
mantic Web: Trends and Challenges, Springer, 2014, pp. 176–
191.

[55] K. Hose, R. Schenkel, Towards benefit-based RDF source selec-
tion for SPARQL queries, in: Proceedings of the 4th International
Workshop on Semantic Web Information Management, SWIM
’12, ACM, New York, NY, USA, 2012, pp. 2:1–2:8.

[56] C. Bizer, A. Schultz, The Berlin SPARQL benchmark, Interna-
tional Journal on Semantic Web and Information Systems 5 (2)
(2009) 1–24.

[57] M. Morsey, J. Lehmann, S. Auer, A.-C. Ngonga Ngomo, DB-
pedia SPARQL benchmark – performance assessment with real
queries on real data, in: Proceedings of the 9th International
Semantic Web Conference, 2011.

[58] D. Beckett. RDF 1.1 N-Triples, Recommendation, W3C (Feb.
2014).
URL http://www.w3.org/TR/n-triples/

[59] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, G. Carothers.
RDF 1.1 Turtle, Recommendation, W3C (Feb. 2014).
URL http://www.w3.org/TR/turtle/

[60] A. Seaborne, RDF binary using Apache Thrift.
URL http://afs.github.io/rdf-thrift/

[61] J. Broekstra, Binary RDF in Sesame (Nov. 2011).
URL http://www.rivuli-development.com/2011/11/

binary-rdf-in-sesame/

[62] J. D. Fernández, A. Llaves, O. Corcho, Efficient RDF interchange
(ERI) format for RDF data streams, in: P. Mika, T. Tudorache,
A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić, P. Groth,
N. Noy, K. Janowicz, C. Goble (Eds.), Proceedings of the 13th

International Semantic Web Conference, Springer, 2014, pp. 244–
259.

[63] G. Aluç, O. Hartig, M. T. Özsu, K. Daudjee, Diversified stress
testing of RDF data management systems, in: P. Mika, T. Tu-
dorache, A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić,
P. Groth, N. Noy, K. Janowicz, C. Goble (Eds.), Proceedings of
the 13th International Semantic Web Conference, Springer, 2014,
pp. 197–212.

[64] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte,
T. Tran, Fedbench: A benchmark suite for federated seman-

tic data query processing, in: Proceedings of the International
Semantic Web Conference, Springer, 2011, pp. 585–600.

[65] G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus, C. Buil-
Aranda, Benchmarking federated SPARQL query engines: are ex-
isting testbeds enough?, in: P. Cudré-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler,
G. Schreiber, A. Bernstein, E. Blomqvist (Eds.), Proceedings of
the 11th International Semantic Web Conference, Springer, 2012,
pp. 313–324.

[66] S. Castillo, G. Palma, M.-E. Vidal, G. Montoya, M. Acosta,
Fed-DSATUR decompositions, retrieved at 2015-09-01.
URL http://scast.github.io/fed-dsatur-

decompositions/

[67] A. Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, FedX:
Optimization techniques for federated query processing on linked
data, in: L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein,
L. Kagal, N. Noy, E. Blomqvist (Eds.), The Semantic Web –
ISWC 2011, Vol. 7031 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2011, pp. 601–616.
URL http://dx.doi.org/10.1007/978-3-642-25073-6_38

[68] O. Görlitz, S. Staab, SPLENDID: SPARQL endpoint federation
exploiting VOID descriptions, in: O. Hartig, A. Harth, J. Sequeda
(Eds.), Proceedings of the Second International Workshop on
Consuming Linked Data, 2011.

[69] G. Montoya, M.-E. Vidal, M. Acosta, A heuristic-based ap-
proach for planning federated SPARQL queries, in: J. F. Sequeda,
A. Harth, O. Hartig (Eds.), Proceedings of the Third International
Workshop on Consuming Linked Data, 2012.

[70] M. Vander Sande, R. Verborgh, J. Van Herwegen, E. Mannens,
R. Van de Walle, Opportunistic Linked Data querying through
approximate membership metadata, in: M. Arenas, O. Corcho,
E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth,
M. Dumontier, J. Heflin, K. Thirunarayan, S. Staab (Eds.), Pro-
ceedings of the 14th International Semantic Web Conference,
2015.

[71] J. Van Herwegen, L. De Vocht, R. Verborgh, E. Mannens,
R. Van de Walle, Substring filtering for low-cost Linked Data
interfaces, in: M. Arenas, O. Corcho, E. Simperl, M. Strohmaier,
M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin,
K. Thirunarayan, S. Staab (Eds.), Proceedings of the 14th Inter-
national Semantic Web Conference, 2015.

[72] R. Verborgh, DBpedia’s Triple Pattern Fragments: Usage patterns
and insights, in: F. Gandon, C. Guéret, S. Villata, J. Breslin,
C. Faron-Zucker, A. Zimmermann (Eds.), Proceedings of the 12th

Extended Semantic Web Conference – Satellite Events, 2015.
[73] L. Rietveld, R. Verborgh, W. Beek, M. Vander Sande,

S. Schlobach, Linked Data-as-a-Service: The Semantic Web
redeployed, in: F. Gandon, M. Sabou, H. Sack, C. d’Amato,
P. Cudré-Mauroux, A. Zimmermann (Eds.), Proceedings of the
12th Extended Semantic Web Conference, 2015.

[74] L. Matteis, R. Verborgh, Hosting queryable and highly available
Linked Data for free, in: R. Verborgh, E. Mannens (Eds.), Pro-
ceedings of the ISWC Developers Workshop, 2014.
URL http://ceur-ws.org/Vol-1268/paper3.pdf

[75] M. Vander Sande, R. Verborgh, E. Mannens, R. Van de Walle,
Updating SPARQL results in real-time with client-side fragment
patching, in: A. Filipowska, R. Verborgh, A. Polleres (Eds.),
Proceedings of the 11th International Conference on Semantic
Systems – Posters and Demos, 2015.

doi:10.1016/j.websem.2016.03.003 31

