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Abstract: It is well-known that geometrical variations due to manufac-
turing tolerances can degrade the performance of optical devices. In recent
literature, polynomial chaos expansion (PCE) methods were proposed to
model this statistical behavior. Nonetheless, traditional PCE solvers require
a lot of memory and their computational complexity leads to prohibitively
long simulation times, making these methods non-tractable for large optical
systems. The uncertainty quantification (UQ) of various types of large,
two-dimensional lens systems is presented in this paper, leveraging a novel
parallelized Multilevel Fast Multipole Method (MLFMM) based Stochastic
Galerkin Method (SGM). It is demonstrated that this technique can handle
large optical structures in reasonable time, e.g., a stochastic lens system
with more than 10 million unknowns was solved in less than an hour by
using 3 compute nodes. The SGM, which is an intrusive PCE method, guar-
antees the accuracy of the method. By conjunction with MLFMM, usage
of a preconditioner and by constructing and implementing a parallelized
algorithm, a high efficiency is achieved. This is demonstrated with parallel
scalability graphs. The novel approach is illustrated for different types
of lens system and numerical results are validated against a collocation
method, which relies on reusing a traditional deterministic solver. The last
example concerns a Cassegrain system with five random variables, for which
a speed-up of more than 12× compared to a collocation method is achieved.
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1. Introduction

Variability analysis and uncertainty quantification (UQ) have become a major concern during
the design step of optical systems and components as manufacturing tolerances and process
variations can have a dramatic influence on the performance [1]. In particular, even small vari-
ations of geometrical dimensions or material properties affect the electromagnetic behavior
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of the structures under design. To model these variations, one may simply combine statistical
analysis with traditional, deterministic, full-wave solvers. The widely used Monte Carlo (MC)
technique is an example of such an approach, repeatedly solving a large number of determinis-
tic problems (samples), leading to an easy to implement and robust analysis. Unfortunately, MC
has a slow convergence rate, yielding a high computational cost. For large full-wave problems,
as typically encountered during the UQ of optical lens systems, this method rapidly becomes
non-tractable.
To more efficiently assess variability, methods based on Polynomial Chaos Expansions (PCE)
have been devised [2]. The basic idea of PCE methods is that any variation of a set of (geo-
metric or material) parameters can be represented as a linear combination of polynomials that
depend on these input parameters. Subsequently, the pertinent system equations, e.g. Maxwell's
equations, are solved, taking these polynomial variations into account. This leads to a stochastic
description of the variability of the desired output parameters, which can for example be elec-
tric field strengths. Traditionally, PCE-based methods can be subdivided into two classes. First,
the class of non-intrusive PCE methods, such as the Stochastic Collocation Method (SCM),
relies, like the MC method, on reusing the deterministic code to solve the system equations. In
contrast to MC, SCM chooses the samples in a more clever way, depending on the Probability
Density Function (PDF) of the input parameters. Second, the class of intrusive PCE methods,
such as the Stochastic Galerkin Method (SGM), requires a thorough modification of the solver
that tackles the system equations. In literature, it is argued that the SGM often leads to better
accuracy than the SCM. In the domain of electrical engineering, intrusive methods are already
successfully applied in the variability analysis of on-chip interconnects [3, 4] and scattering
problems [5–7]. Recently, in the domain of photonics, the non-intrusive SCM method has been
applied for the UQ of a silicon-on-insulator based directional coupler [8].
In this paper, the focus is on the UQ of large optical lens systems. Thereto, an intrusive full-wave
SGM scheme is proposed. The full-wave character of the problem is described by means of a
set of boundary integral equations (BIE) that are solved by means of the Method of Moments
(MoM) [9]. To expedite the computations, the Multilevel Fast Multipole Method (MLFMM)
has been combined with a SGM-MoM solver. In [7] it was shown that such an approach leads
to the traditional O(N logN) computational complexity, N being the number of unknowns, but
scaled with a factor that depends on the number of polynomials. Whereas in [7] relatively small
scattering problems were handled, here, we aim to model large optical setups. Therefore, we
present the parallelization of the full-wave intrusive SGM-MLFMM solver and we propose
an effective preconditioning scheme to further accelerate the computations. Parallelization of
SGM applied to elliptic partial differential equations is reported in [10], but as explained fur-
ther it is still prohibitively slow to deal with the optical systems presented in this paper. In [11],
an asynchronous parallelization of MLFMM for deterministic structures consisting of multiple
dielectric objects is described. To our best knowledge, however, present paper is the first that
proposes the parallelization of a full-wave SGM-MLFMM solver for Maxwell’s equations, ca-
pable of handling both dielectric and perfectly electric conducting (PEC) objects.
This paper is organized as follows. In Section 2, we present the theoretical framework of the
SGM-MLFMM paradigm for solving BIEs. Section 3 deals with the implementation of the al-
gorithm with a focus on its parallelization and on the design of a preconditioner. In Section 4,
we report simulation results for several large optical structures, such as lens systems. We vali-
date our method by comparing the results with a traditional SCM. Finally, in Section 5, we give
some concluding remarks.
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2. Theoretical framework

We start with a very general description of the electromagnetic problem geometry under con-
sideration, which allows deriving a rigorous theoretical framework. Consider two-dimensional
(2D) dielectric objects with a refractive index ni, or equivalently, by means of their permittiv-
ity εi and permeability µi, and perfectly electrically conducting (PEC) objects, residing in free
space (Fig. 1). The geometry of these objects is stochastically described by means of a set of
M random variables (RV) that are collected in the random vector ξξξ = [ξ1 ξ2 ... ξM] with do-
main Ω. One object can depend on zero, one or more RVs. The objects are illuminated by an
incoming transverse magnetic (TM) electromagnetic wave E i

z. In the sequel, an exp( jωt) time
dependence, with ω the angular frequency, is assumed and suppressed throughout the text.

Perfect electrical conductor (PEC)

µ1,ε1,ξ1 C1

µ2,ε2,ξ2 C2

µ3,ε3,ξ3

C3

µ0,ε0

ξ4 C4

E i
z, HHH i

t

ŷyy

x̂xx

ẑzz

Fig. 1. Canonical problem geometry. Objects are described by their electrical properties µi, εi and their ge-
ometries are defined with contours Ci. Stochastic variations of the geometry are introduced and indicated by
means of a set of random variables ξi, i = 1, ...,M.

Starting from Maxwell’s equations, the scattering problem is cast as a boundary integral equa-
tion (BIE), which for dielectric objects was first written down in [12]. For conciseness, we limit
the description to the case of a single object with contour C, for which the pertinent BIEs are
given by [13]:

E i
z− lim

r→C+

∮
C

[
Ez

∂G0

∂n′
−

jk2
0

ωε0
G0Ht

]
dc′

= lim
r→C−

∮
C

[
Ez

∂G
∂n′
− jk2

ωε
GHt

]
dc′, (1)

H i
t − lim

r→C+

∮
C

[
− jωεo

k2
0

Ez
∂ 2G0

∂n∂n′
− ∂G0

∂n
Ht

]
dc′

= lim
r→C−

∮
C

[
− jωε

k2 Ez
∂ 2G

∂n∂n′
− ∂G

∂n
Ht

]
dc′, (2)
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where Go represents the Green’s function of the free space background medium with wavenum-
ber k0 given by:

G0(ρρρ,ρρρ
′) =

j
4

H(2)
0 (k0|ρρρ−ρρρ

′|), (3)

and G represents a similar Green’s function for the i-th medium with wavenumber ki = k0ni,
corresponding to the material the object is made of. The unknowns are the z-oriented elec-
tric field Ez and the magnetic field Ht tangential to the contour C. C+ and C− represents the
path of integration along the contour C when integrating just outside and just inside the ob-
ject respectively. To solve the BIE, the contour is divided into a number of segments Nseg. The
unknown magnetic field Ht is expanded into pulse basis functions bi(ρρρ

′) defined over these
segments, while the unknown electric field Ez is expanded into triangular basis functions ti(ρρρ ′)
as follows:

Ht =
Nseg

∑
i=1

Ht,i bi(ρρρ
′), (4)

Ez =
Nseg

∑
i=1

Ez,i ti(ρρρ ′). (5)

This discretization leads to a number of N = 2Nseg scalar unknown expansion coefficients Ht,i
and Ez,i. To create a traditional MoM linear system of equations, triangular testing functions
ti(ρρρ) for Ht and pulse testing functions bi(ρρρ) for Ez are used. The resulting linear system of
equations is written as:

Vi =
N

∑
j=1

Zi j I j, for all i = 1, ...,N, (6)

with
Vi =

∫
li

E i
z bi(ρρρ)dρρρ (7)

or
Vi =

∫
li

H i
t ti(ρρρ)dρρρ, (8)

and:

Zi j =
∫

li

∫
l j

Ez, j bi(ρρρ) t j(ρρρ
′)

∂G0

∂n′
dρρρdρρρ

′+
∫

li

∫
l j

Ez, j bi(ρρρ) t j(ρρρ
′)

∂G
∂n′

dρρρdρρρ
′, (9)

or

Zi j =−
∫

li

∫
l j

Ht, j bi(ρρρ) b j(ρρρ
′)

jk2
0

ωε0
G0 dρρρdρρρ

′−
∫

li

∫
l j

Ht, j bi(ρρρ) b j(ρρρ
′)

jk2

ωε
Gdρρρdρρρ

′, (10)

or

Zi j =−
∫

li

∫
l j

Ez, j ti(ρρρ) t j(ρρρ
′)

jωεo

k2
0

∂ 2G0

∂n∂n′
dρρρdρρρ

′−
∫

li

∫
l j

Ez, j ti(ρρρ) t j(ρρρ
′)

jωε

k2
∂ 2G

∂n∂n′
dρρρdρρρ

′,

(11)
or

Zi j =−
∫

li

∫
l j

Ht, j ti(ρρρ) b j(ρρρ
′)

∂G0

∂n
dρρρdρρρ

′−
∫

li

∫
l j

Ht, j ti(ρρρ) b j(ρρρ
′)

∂G
∂n

dρρρdρρρ
′, (12)

where the integrations are done over line segments li and l j.
When the geometry of the objects is stochastic, meaning the location of several segments of the
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contours may depend on one or more of the RVs, the resulting MoM system becomes stochastic
and is in general written as:

ZZZ(ξξξ )III(ξξξ ) =VVV (ξξξ ), (13)

where the traditional N×N interaction matrix ZZZ, the known right-hand side (RHS) N-vector VVV ,
and the vector III collecting the N unknown expansion coefficients, all become dependent on the
random vector ξξξ . The reader is encouraged to consult [3, 14, 15] and the references therein to
gain familiarity with the SGM in the domain of electrical engineering. Here, similarly as in [6],
where the SGM was combined with the MoM for small scattering problems, we start from
expansions of the stochastic quantities introduced in Eq. (13) into polynomial basis functions.
These PCEs are given by:

ZZZ(ξξξ )≈
K

∑
k=0

ZZZkφk(ξξξ ), (14)

VVV (ξξξ )≈
K

∑
k=0

VVV kφk(ξξξ ), (15)

III(ξξξ )≈
K

∑
k=0

IIIkφk(ξξξ ), (16)

where φk(ξξξ ) are multivariate polynomials, i.e. products of M univariate polynomials for the
individual RVs ξi chosen according to the Wiener-Askey scheme [2] and such that they are
orthonormal with respect to the probability density function (PDF) W (ξξξ ) with domain Ω of the
random vector ξξξ , as follows:

< φ j(ξξξ ),φk(ξξξ )>= δ jk (17)

where δ jk is the Kronecker δ and with the inner product defined as:

< f (ξξξ ),g(ξξξ )>=
∫
Ω

f (ξξξ )g(ξξξ )W (ξξξ )dξξξ . (18)

The M univariate polynomials are multiplied following the total degree rule, i.e., so that sum of
the orders is at most P. Given this total order P, the number of polynomials K + 1, as used in
the PCEs Eqs. (14), (15) and (16), is determined as:

K +1 =
(M+P)!

M!P!
. (19)

The expansion coefficients in Eqs. (14) and (15) are found via projection:

XXXk =< XXX(ξξξ ),φk(ξξξ )>, (20)

where XXX represents ZZZ and VVV . Inserting PCE Eqs. (14), (15) and (16) into Eq. (13) yields:

K

∑
k=0

VVV kφk(ξξξ ) =
K

∑
k=0

K

∑
l=0

ZZZkIIIlφk(ξξξ )φl(ξξξ ), (21)

Galerkin projection of both sides of Eq. (21) onto the orthogonal polynomial basis functions
leads to:

<
K

∑
k=0

VVV kφk(ξξξ ),φm(ξξξ )>=<
K

∑
k=0

K

∑
l=0

ZZZkIIIlφk(ξξξ )φl(ξξξ ),φm(ξξξ )>, for all m = 0, ...,K, (22)

#250848 Received 30 Sep 2015; revised 6 Nov 2015; accepted 10 Nov 2015; published 17 Nov 2015 
(C) 2015 OSA 30 Nov 2015 | Vol. 23, No. 24 | DOI:10.1364/OE.23.030833 | OPTICS EXPRESS 30838 



which, after using the orthonormal property given by Eq. (17), again results in an equivalent
system of equations, in which the stochastic dependence is eliminated:

VVV m = ∑
m:γklm 6=0

ZZZk IIIl γklm (23)

with γklm =< φk(ξξξ )φl(ξξξ ),φm(ξξξ ) > and where the summation is taken for all non-zero values
of γklm. The linear system given by Eq. (23) shows that the traditional O(N2) complexity for a
standard deterministic MoM is now scaled with factor that corresponds to the number of non-
zero values of γklm and follows an O(K1.5) scaling law of [7]. Moreover, the total number of
unknowns in (23) is actually Nstoc = (K+1)N. In conclusion, although SGM-MoM is accurate
for small scattering problems, the approach rapidly becomes non-tractable for the variability
analysis of a large electromagnetic structures. Therefore, in the next section, MLFMM will be
introduced. This then further allows parallelization, which is necessary to expedite the compu-
tations.

3. Implementation of a parallel SGM-MLFMM solver with a preconditioner

3.1. SGM-MLFMM

A vast amount of literature is available describing the traditional, deterministic MLFMM
scheme [16]. This scheme has, e.g., also been applied to scattering from and radiation by in-
tricate dielectric objects such as printed circuit board antennas [17, 18] and to photonic crystal
waveguides [19]. The reader is encouraged to consult these references to gain familiarity with
the MLFMM scheme. Here, for conciseness, we only repeat the gist of it and immediately in-
troduce a stochastic variant. This algorithm allows improving the computational complexity
of the matrix-vector product (MVP) during the iterative solution of Eq. (23) and avoiding the
storage of ZZZ(ξξξ ) or its PCE coefficients ZZZk.

ρ
c
o−ρ

c
s

B

B′

R

x̂xx

ŷyy
R ρ(ξξξ o)

ρc
o

ρ ′(ξξξ s)

ρc
s

Fig. 2. Typical MLFMM constellation of a source box B′ and an observation box B.

The boundaries of all dielectric objects are discretized into N finite segments, corresponding
to the pertinent BIE-MoM approach. Next, all these segments are recursively subdivided in an
L-level MLFMM quad-tree. At each level l = 1,2, . . . ,L, the boxes are circumscribed by a hy-
pothetical circle of radius Rl . Any interaction between two segments in the BIE-MoM scheme,
corresponding to one element of the matrix ZZZ(ξξξ ), is readily rewritten as the interaction between
many elementary line sources si(ξξξ s) with strength Jsi(ξξξ ). In Fig. 2, one such single line source,
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located at ρρρ ′(ξξξ s) and residing in source box B′, and a single observer, located at ρρρ(ξξξ o) and
residing in source box B, is shown. Note that the locations ρρρ ′ and ρρρ depend on mutually inde-
pendent subsets ξξξ s and ξξξ o of the total set of RVs ξξξ , as in MLFMM algorithms the source and
observation boxes must be separated sufficiently far from each other. The centers of the source
and observation box are located at the deterministic locations ρρρc

s and ρρρc
o respectively.

We invoke the well-known plane-wave decomposition of the pertinent Green’s func-
tion G(ρρρ(ξξξ o),ρρρ

′(ξξξ s)) of the background medium to rewrite the MVP as follows [16]. First,
during the so-called aggregation step, the radiation pattern of box B′ is sampled into 2Q+ 1
outgoing plane waves (OPWs):

OPW B′
q′ (ξξξ ) = ∑

si

e jkkk(ϕq′ )·(ρρρ
′(ξξξ s)−ρρρc

s)Jsi(ξξξ ), (24)

where k(ϕq′) = k(cosϕq′ x̂ + sinϕq′ ŷ). The samples are taken at angles ϕq′ = 2πq′/(2Q +
1),q′=−Q, . . . ,Q, and the number of samples is typically chosen such that the radiation pattern
is reconstructed with a desired number of digits of accuracy, denoted as d0. In a well-constructed
MLFMM tree, any accuracy up to machine precision can be reached [16], provided Q is chosen
to be:

Q = 2kR+1.8d2/3
0 (2kR)1/3. (25)

The stochastic nature of this aggregation step is indicated by the ξξξ dependence. In the proposed
SGM-MLFMM approach, PCE expansion are again invoked:

OPW B′(ξξξ ) =
K

∑
k=0

OPW B′
k φk(ξξξ ) (26)

such that via projection, each PCE-coefficient of the OPWs is computed as:

OPW B′
m = ∑

m:γklm 6=0
AAAk IIIl γklm (27)

where AAAk are PCE coefficients of the aggregation matrix, defined as:

AAA(ξξξ s)q′,si = e jkkk(ϕq′ )·(ρρρ
′(ξξξ s)−ρρρc

s), q′ =−Q, . . . ,Q, (28)

and IIIl are PCE coefficients of the current density which contain PCE coefficients of the ele-
mentary current strengths Jsi(ξξξ ).
Second, during the translation step, a deterministic and diagonal translation matrix T converts
the PCE-coefficients of the OPWs about the center of box B′ to incoming plane waves (IPWs)
about the center of box B, as follows:

IPW B
k,q′ = Tqq(k, |ρcc

so |,ϕcc
so )OPW B′

k,q′ , q′ =−Q, . . . ,Q, k = 0, . . . ,K, (29)

where the numbers Tqq(k, |ρcc
so |,ϕcc

so ) represent the 2Q+ 1 (non-zero) diagonal elements of the
translation matrix, given by:

Tqq(k,ρ,ϕ) =
1

2Q+1

Q

∑
q′′=−Q

H(2)
q′′ (kρ)e jq′′(ϕ−ϕq− π

2 ) (30)

with ρcc
so = |ρρρc

o−ρρρc
s | the distance between the centers of the boxes and ϕcc

so the angle between
vector ρρρc

o−ρρρc
s and the x-axis.
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Third, during the disaggregation step, the IPWs are evaluated at the observation points. In
case of a single, elementary line source at ρρρ ′(ξξξ s), the field at a single observer at ρρρ(ξξξ o) in
box B is nothing else than the pertinent Green’s function, now expanded using the plane-wave
formalism, as follows:

G(ρρρ(ξξξ o);ρρρ
′(ξξξ s)) =

j
4

Q

∑
q=−Q

e− jkkk(ϕq)·(ρρρ(ξξξ o)−ρρρo)IPW B
q (ξξξ ) (31)

To obtain an efficient multilevel scheme, the interaction between boxes occurs at well-chosen
levels in the MLFMM tree. Up- and downsampling of OPWs and IPWs happens via Fast Fourier
Transforms (FFTs).
In the deterministic MLFMM simulation, the total cost of all steps is O(N logN). The ag-
gregation step and disaggregation steps are calculated with cost O(N). In the SGM-MLFMM
approach, as the aggregation and disaggregation steps now also depend on subsets of ξξξ , the
computational cost increases up to O(KN) [7]. Similar observations are valid for the memory
complexity.

3.2. Parallelization

An efficient implementation of the deterministic MLFMM has allowed handling problems with
up to one million of unknowns on a single workstation. Parallel implementations on several
nodes has led to tackling deterministic problems with billions of unknowns [20]. In our stochas-
tic case, however, the total number of unknowns is not only determined by the spatial discretiza-
tion into N segments, but also by the number of polynomials, i.e. K +1. Therefore, the UQ of
medium- and large-scale problems, such as the variability analysis of the optical lens systems
presented in this paper, should be performed via a parallel algorithm, leveraging the computa-
tional and memory resources of every available computing node.
Parallel solvers require a parallel iterative method (e.g. TFQMR [21]) and a parallel algorithm
to compute the MVP. For the former, libraries like PIM [22] can be readily applied. From SGM
Eq. (12), a straightforward way to parallelize the MVP may be revealed, namely the distribu-
tion of the matrix-vector products ZZZkIIIl among several processes. Each process then computes
only a subset of all required matrix-vector products ZZZkIIIl . This idea is applied in [10]. Despite
its simplicity, this approach suffers from the fact that a given product ZZZkIIIl in itself is not par-
allelized. Each such product can be handled by a single process, but as the dimensions of each
matrix ZZZk correspond to the number of spatial discretization elements N, the simulation of large
structures with high N is still prohibitively expensive.
As opposed to this approach, we proprose a parallelization scheme where each product ZZZkIIIl in
itself is parallelized among all of the processes. This scheme has the advantage that the geomet-
rical discretization elements are distributed among the processes. We provide an overview of
the underlying concepts and refer to the extensive literature that exists for parallel deterministic
MLFMM algorithms where appropriate.
The MLFMM tree is created for the complete electromagnetic structure under consideration.
The boxes at a prespecified level-of-partitioning (LoP) in this tree are partitioned and assigned
to different processes. If a certain box is a assigned to a certain process, the entire subtree of
that box and all corresponding geometrical segments and unknown stochastic expansion coef-
ficients (K + 1 coefficients per segment) are also assigned to that process. The partitioning is
done in such way that approximately the same number of expansion coefficients is assigned
to each process. To ensure a good spatial locality between boxes assigned to a given process,
boxes are ordered according to a Hilbert space filling curve (SFC) prior to partitioning. Smaller
dielectric regions will be partitioned among fewer processes whereas large dielectric regions
(e.g. the background medium) will be partitioned among many processes.
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For a given LoP and all levels below, it holds that a box is assigned to only one single process.
All K + 1 radiation patterns (both outgoing and incoming) in such a box are also assigned to
that process and the process is responsible for their computation. For levels higher than the LoP,
it becomes increasingly difficult to achieve a good load balance because the number of boxes
decreases for higher levels. Nevertheless, the amount of required computations on those levels
does not decrease because of the size of the radiation patterns increases with higher levels. To
deal with this, we propose to extend the hierarchical partitioning strategy [23,24] developed for
deterministic MLFMM to the stochastic case. As illustrated in Fig. 3, rather than assigning a
box and its radiation patterns as a whole to a single process, boxes are shared between an in-
creasing number of processes as the number of radiation pattern samples increases. Specifically,
from the LoP onwards, for every next level, each of the K+1 radiation pattern samples in a box
are partitioned in an increasing number of 2, 4, 8, 16, ... etc. partitions. A process then holds
only a single partition of the radiation pattern samples in its memory. It has been shown that,
in the deterministic case, such a hierarchical partitioning scheme is able to effectively balance
the load among processes [24]. Processes are responsible for the computation of all radiation

process 0

process 1

process 2

process 3

OPW B0
k

OPW B1
k

OPW B2
k

Fig. 3. Organization of MLFMM boxes and partitioning scheme for an arbitrary structure. On the lowest level
each box is handled by one process; on higher levels, K radiation samples are shared among all processes.
OPW Bi

k is k-th PCE coefficient of the box on the level i.

pattern samples and expansion coefficients that are locally held in memory using the execution
of the MLFMM algorithm. Some of these computations rely on data that is not locally stored
and thus needs to be communicated through the interconnection network. As we are dealing
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with multiple dielectric objects, we opted for the asynchronous approach described in [11].
At a given point in time, different processes can perform different kind of tasks: certain pro-
cesses might be communicating while others are performing (different kinds of) calculations.
All computations that need to be performed by a process are partitioned into work packages.
These work packages are sorted in a priority queue. Some work packages depend on data to be
received from other processes and can only be scheduled once these data have actually been
received. Similarly, certain work packages result in (intermediate) data that needs to be sent to
other processes. The priority queue ensures that work packages are handled in such order that
the overall idle time of processes is minimized. Organization of these working packages and
priorities of the operations are well described in [11].

3.3. Preconditioner

For any iterative process, the number of iterations needed to obtain a result with a predefined
accuracy is an important factor. This number depends on the condition number of the system
matrix [25] . By rewriting Eq. (23) in matrix form, it can be seen that the equivalent system
matrix of the SGM possesses a block-structure [4]. The zeroth-order PCE coefficient which
corresponds to the mean of the ZZZ(ξξξ ) matrix, i.e. ZZZ0, is located on diagonal blocks. Higher PCE
coefficients of the matrix only marginally contribute to these diagonal blocks. For small vari-
ations, which is the case in most practical applications, the equivalent SGM system matrix is
thus block-diagonal dominant and a block-Jacobi preconditioner could be used [26].
However, given our MLFMM-approach, the submatrix ZZZ0 is never stored. Moreover, calcula-
tion of its inverse for large structures would rapidly become prohibitively expensive. Therefore,
a different type of preconditioner is proposed here. Within ZZZ0, there are so-called near inter-
actions that are calculated with a classical MoM approach. These interactions are found on
and around the main diagonal of the ZZZ0 matrix. Our preconditioner is based on these “near”
blocks. The size of these blocks, i.e. the number of interactions which are calculated in this
classical MoM fashion, determines the efficiency of the preconditioner. On the one hand, if the
blocks are large, then preconditioning becomes stronger, but the memory, setup time and time
required for one MVP also increases. On the other hand, if these blocks are chosen small, then
the preconditioner may become rather useless, especially for large electromagnetic structures.

4. Numerical results

All simulations were performed on a system supporting the Message Passing Interface (MPI),
which was used to implement the parallel SGM-MLFMM solver. As indicated further, some
simulations were performed on one node with multiple cores, while others were performed on
several nodes connected by an InfiniBand network. The linear system of equations is solved
with Parallel Iterative Methods (PIM) using TFQMR.

4.1. Validation example: lens system with translational variation

As a validation example, we consider a lens system of two circular lenses with a permittivity
εr = 4 and a PEC aperture, as shown in Fig. 4. The size of the lenses is 2000λ and 5000λ ,
respectively, and they are separated by a distance of 30000λ . The size of the gap in the PEC
shield is 2500λ and the shield is placed at a distance of 20000λ from the leftmost lens. The
structure is illuminated with a Gaussian beam of width 500λ impinging upon the center of the
leftmost lens along the optical axis. A deterministic simulation of this system was presented
in [27], where good accuracy between Gaussian-beam, 1.5D and 2D full-wave methods was
reported. Moreover, the 2D full-wave method has been validated up to 100 million of unknowns
for both dielectric and PEC cylinders for which analytical solutions exist [28].
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Fig. 4. The lens system setup.

The structure and the total field calculated in a region with a width of 40000λ and a height of
8000λ is presented in Fig. 5. One pixel corresponds to a cell of size 10λ ×10λ . A block-Jacobi
preconditioner was used on blocks with dimension 16λ ×16λ . The iterative precision was set
to 10−3. For this deterministic simulation, the number of unknowns is 705008 and the iterative
precision is reached after Niter = 369 iterations.
To induce variations, the y-coordinates of the positions of the lenses are now uniformly varied
between −λ/20 and λ/20 of their nominal values. The uniform distribution is chosen as all
realizations are equally probable and it also leads to the largest variation in the field values.
Stochastic simulations are performed by two methods: (i) a robust and easy to implement SCM
and (ii) the novel SGM-MLFMM, in order to validate the accuracy of the latter. As our results
are validated with a non-intrusive SCM that merely reuses results from the deterministic 2D
algorithm [27], the output variability of our novel stochastic SGM-MLFMM is expected to
match well with Gaussian beam based methods.

0

0.5

1

Fig. 5. Field density |Ez|(V/m) for the deterministic simulation for the configuration of Fig. 4.

To present the influence of the variations, the average field density and its standard deviations
around the two focal points (indicated with F1 and F2 in Fig. 4), i.e. in an area with a width
of 2000λ and a height of 1000λ , are presented in Fig. 6. The influence of the geometrical
variations are clearly appreciated from this figure. It is also observed that left from the PEC slit
the variations are concentrated mainly around the focal point, i.e. where the field value reaches
its maximum. At the right side of the PEC slit, the variations are more evenly distributed in
the neighbourhood of the focal point. To give an indication of the variation, we mention that
at the point where the standard deviation is maximal and equal 0.0828 V/m, the average field
density is 1.5287 V/m, i.e. the output variation of the field is about 0.0828/1.5287 ≈ 5.4%.
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This location is near the right focal point, indicated with the red arrow in Fig. 4.

0

4.18

(a) mean - first focal point
0

0.06

(b) standard deviation - first focal point

0

2.71

(c) mean - second focal point
0

0.08

(d) standard deviation - second focal point

Fig. 6. Mean and standard deviation of the field density |Ez|(V/m) around the focal points.

To validate our method, its accuracy is compared to SCM, as presented in Table 1. The accuracy
of both solvers is set to 10−3. Both methods converge to the same result for different polynomial
orders and even for P = 1 we get accurate results. For all polynomial orders, the number of
iterations is about the same as in the deterministic case. This is important, since one MVP is
computationally expensive. For example, for P = 3, the total number of unknowns is Nstoc =
7050080 and the number of iterations is 372. This means that our preconditioner is efficient for
this stochastically varying structure. Note that for the SCM method, the number of iterations is
equal to the average number of iterations for all considered realizations of the RVs.

Table 1. Mean and standard deviation for the point indicated on Fig. 4, i.e. the point close to the second
focal point with maximum variance.

Method P Nstoc Niter Mean (V/m) Standard deviation (V/m) CPU time
SGM-MLFMM 1 2 115 024 365 1.5287 0.0828 2 h
SGM-MLFMM 2 4 230 048 355 1.5287 0.0828 5.1 h
SGM-MLFMM 3 7 050 080 372 1.5287 0.0828 9 h

SCM 1 2 115 024 385 1.5329 0.0829 3.8 h
SCM 2 4 230 048 363 1.5329 0.0829 8 h
SCM 3 7 050 080 370 1.5329 0.0829 15.5 h

Regarding the computational cost, SGM shows a clear advantage over SCM. To make a fair
comparison, both SGM and SCM simulations were performed on the same machine. In the
case of SCM, a wrapper function sequentially executes the parallelized deterministic code for
different realizations of a random vector. Using a single node containing two quad-core CPUs
(8 cores in total) running at 2 GHz, where simulations are performed with 8 parallel processes,
and for P = 2, the SGM-MLFMM computation takes about 5h, while the SCM simulation for
all realizations takes about 8 h.
For larger P, we need more nodes to get results in a reasonable time. To give an indication,
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running the SGM-MLFMM for this lens setup with P = 4 and Nstoc = 10575120, takes about
1h, when using 3 nodes and 16 parallel processes per node. This simulation was performed
on the Flemish Supercomputer Center (VSC) infrastructure where one node has a dual-socket
octo-core CPU (16 CPU cores in total) running at 2.6 GHz. On the same machine we also
performed a benchmark test for the MVPs for a varying number of processes and we calculated
the speedup and parallel efficiency. The speedup is defined as the ratio of the runtime on a
single process T1 and the runtime Tn using p processes:

Sp =
T1

Tp
. (32)

In the ideal case the speedup factor is equal to the number of processes that is used. The parallel
efficiency η is the ratio of the speedup and the theoretical maximum speedup:

ηp =
Sp

p
=

T1

pTp
. (33)

The graphs for the scalability and speedup are presented in Fig. 7. All simulations were per-
formed for the P = 2 case. It is visible that our algorithm scales very well with an increasing
number of processes. The efficiency decreases due to the increasing amount of data that needs
to be communicated.
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Fig. 7. Speedup and parallel efficiency for a varying number of parallel processes.

4.2. Application example 1: Lens system with rotational variation

As a second example, we consider the same lens system as in Section 4.1, but now, the vari-
ations of the lenses’ positions are induced by rotation in the (x,y)-plane of the lenses around
their centers. The lenses’ rotations are described by a uniform stochastic process with a maxi-
mum deviation of 1/60 of a degree. The average field pattern looks like in Fig. 6, but the field
pattern for standard deviation is different and is shown in Fig. 8. We can observe that the stan-
dard deviation is now slightly smaller. However, the relative variation is higher as the maximal
variations occurs at points where the field strength is low.
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Fig. 8. Standard deviation of the field density |Ez|(V/m) around the focal points.

The number of iterations required to obtain an iterative precision of 10−3 is higher in this case,
e.g. for P = 2, 1018 iterations are required. This is a consequence of the larger variations on
the phase of the field and the loss of symmetry with respect to the optical axis of the setup.
Additionally, in Table 2, we provide results for the point close to second focal point at which
the standard deviation is the highest.

Table 2. Mean and standard deviation for the point close to the second focal point with maximum
variance.

Method P Mean (V/m) Standard deviation (V/m)
SGM-MLFMM 1 0.4482 0.0407
SGM-MLFMM 2 0.4603 0.0541
SGM-MLFMM 3 0.4601 0.0526

In this case, we can see that P = 3 is sufficient to obtain convergence and with P = 2 we get
acceptable results. Due to the phase effect, P= 1 provides a slightly different result than for that
obtained for the higher orders. Simulation with P = 3 and Nstoc = 7050080 unknowns takes
about 1h on 3 nodes with 16 parallel processes.
A typical quantity of interest describing such lens system is the local intensity, defined as:

I =
cnε0

2
|Ez|2, (34)

where c is speed of light in vacuum and n is the refractive index. To get a better insight in
the variation of the local intensity when lenses are prone to variability, the PDFs of the local
intensity for the second focal point and the point with maximum variance are presented in
Fig. 9. It is clearly visible that the local intensity in both observation points is considerably
affected by the variation of the lenses.
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Fig. 9. PDF of the local intensity I (mW/m2) for two points behind the rightmost lens.

4.3. Application example 2: Cassegrain antenna system with induced variations

As a final example, we consider a Cassegrain antenna system, with a 35-meter parabolic main
reflector and a 6-meter hyperbolic sub-reflector. Additionally, this system consists of one flat
mirror and one elliptical mirror. The structure is based on a similar problem described in [28].
The operating frequency is chosen to be 32 GHz, so we perform one harmonic simulation at that
frequency. The structure is excited with a Gaussian beam with a waist of 2 m impinging upon
a coated lens with a 4 meter diameter. This is a lens with a relative permittivity of εr = 4 and
a λ/4 coating with a relative permittivity εr = 2, such that reflections are largely eliminated.
The uncertainty is induced by varying the relative positions of every part (lens, mirrors, one
reflector, one sub-reflector) of the system. In particular, the y-coordinate of every part is again a
random variable such that the relative variation w.r.t. its nominal center is uniformly distributed
within the interval [−λ/20,λ/20[. In this way, we introduce 5 RVs that describe the stochastic
nature of the geometry.
In Fig. 10, the average field density of the Cassegrain antenna system is shown. The standard
deviation of the total field for this structure is presented in Fig. 11. We can see that the highest
variation of the field is induced around the focal points, but due to the phase effect variation, a
standing wave pattern is also visible.
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Fig. 10. The average total field density |Ez|(V/m) of the Cassegrain antenna system illuminated with a Gaussian
beam incident from the bottom onto the coated lens. The results are obtained with a polynomial order P = 3.
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The simulation is performed by using 4 nodes with 16 CPU cores per node (64 parallel pro-
cesses in total). The block size of the preconditioner is chosen to be 16λ × 16λ . For P = 2,
K + 1 = 21 and Nstoc = 5073579, the system was solved after 2630 iterations and 2h 44 min.
For P = 3, K +1 = 56 and Nstoc = 13529544, the system was solved after 2767 iterations and
7h 47 min. The setup time and post-processing time are negligible compared to the solution
time. However, for a different block-Jacobi size of 32λ × 32λ , we get a better run time. For
example, then, for P = 3, the system is solved in 3h and 50 min after 783 iteration with a negli-
gible increase of the setup time. This shows that one should carefully select the preconditioner
size. We also remark that the time needed to solve this problem using the same computational
resources with the SCM and with P = 2 is about 30h, which again demonstrates the necessity
of the advocated parallel SGM-MLFMM solver.
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Fig. 11. The standard deviation of the total field density |Ez|(V/m) of the Cassegrain antenna system illu-
minated with a Gaussian beam incident from the bottom onto the coated lens. The results are obtained with
polynomial order P = 3.

Finally, we also provide a graph for the average total field density |Ez| radiated upward. The
field is calculated on the line segment connecting the left and the right top corner of Fig. 10, i.e.
1400λ above the center of the main parabolic reflector. The line segment has a length 3800λ

and the field is calculated in 380 points. The results are again compared with the SCM, showing
the accuracy of the proposed method.
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Fig. 12. The average total field density |Ez|(V/m) radiated away from the Cassegrain antenna system along an
3800λ long line segment, 1400λ above the center of the main parabolic reflector.

5. Conclusions

In this paper, we have described the parallelization of the MLFMM-based SGM solver. The
paper provides a theoretical background together with the complexity issues of the algorithm.
Since this complexity grows fast with the number of spatial and stochastic unknowns, the solver
leverages parallelization which allows simulation of large optical structures. Moreover, to de-
crease the number of iterations in the iterative solver, a block-Jacobi preconditioner is proposed.
It was shown that a carefully chosen size of the preconditioner can reduce the computational
time by a factor of two. Compared to a more traditional SCM, the selected examples clearly
demonstrate the effectiveness of our novel algorithm, with speed-up factors of more than 12×,
still maintaining excellent accuracy. Moreover, they show the need for the advocated intrusive
stochastic modeling algorithm when dealing with large-scale optical problems.
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