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Gilbert Swinnen
Hasselt University

5.1 IntroductIon

Making valid comparisons of latent variable (LV) mean scores1 across 
groups is anything but a trivial task as it relies on stringent measurement 
invariance conditions. Many authors (e.g., Little, 1997; Meredith, 1993; 
Van de Vijver & Leung, 1997) have firmly stated that in order for such 
comparisons to be valid, all factor loadings as well as all indicator inter-
cepts need to be invariant across groups (i.e., they are required to exhibit 
scalar invariance, also referred to as full score invariance across groups; 
Van de Vijver & Leung, 1997, p. 144).

In contrast, some authors have promoted the use of less stringent 
measurement invariance conditions. For instance, according to Alwin 
and Jackson (1981) the equality of all factor loadings (i.e., an invari-
ance condition referred to as “metric invariance” across groups) would 

1 In this study, we deal only with the comparison of LV means across groups. Cross-group compari-
sons of structural relationships between observed or LVs are not considered. Such comparisons 
require only the factor loadings of LV indicators to be identical across the groups (i.e., metric 
invariance across groups) involved in the comparison (see, for instance, Van de Vijver & Leung, 
1997, De Beuckelaer et al., 2007).
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be a sufficient condition. Still others (Byrne, 1989; Byrne, Shavelson, & 
Muthén, 1989; Marsh & Hocevar, 1985; Muthén & Christofferson, 1981; 
Reise, Widaman, & Pugh, 1993) have argued that only a subset of all  factor 
 loadings (i.e., “partial metric invariance” across groups) would be a suf-
ficient condition. The willingness to accept less stringent measurement 
invariance  conditions (when comparing latent variable mean [LV] mean 
scores) may be caused by a growing belief that (survey) measurement 
instruments can hardly ever be totally invariant across groups (e.g., Byrne 
& Watkins, 2003; Horn, McArdle, & Mason, 1983). As a matter of fact, many 
large-scale  international studies (e.g., Davidov, 2008; Davidov, Schmidt, 
& Schwartz, 2008; De Beuckelaer, Lievens, & Swinnen, 2007) have shown 
that survey instruments typically do not exhibit scalar invariance across a 
large  number of nations—a group delimiter that is very frequently used in 
cross-cultural comparative research (e.g., Schaffer & Riordan, 2003).

A major point of concern is that much supportive evidence exists to sup-
port the claim that many researchers doing cross-cultural comparative 
research fail to test formally for possible sources of noninvariance of mea-
surement parameters across groups (for instance, see Cheung & Rensvold, 
1999; He, Merz, & Alden, 2008; Schaffer & Riordan, 2003; Vandenberg & 
Lance, 2000; Williams, Edwards, & Vandenberg, 2003). As such, many 
researchers run a high risk of drawing erroneous conclusions from a 
cross-group comparison of LV mean scores. For this reason it makes sense 
to examine the consequences of falsely assuming that the measurement 
instrument used exhibits a high level of measurement invariance, namely, 
scalar invariance across groups.

As argued by Vandenberg (2002), there is a growing need for research 
to help understand the sensitivity of the analytical procedures when mak-
ing cross-cultural comparisons (e.g., multigroup mean and covariance 
structure (i.e., multigroup MACS) analysis, and the extent to which less 
stringent measurement invariance conditions (if unnoticed) can affect 
LV mean comparisons across groups. One way to adequately explore the 
extent to which the requirement of scalar invariance can be relaxed (with-
out threatening the validity of cross-group comparisons) is to make use of 
carefully designed simulation research. Such simulation research may (at 
least potentially) provide valuable empirical evidence to justify the adop-
tion of less stringent measurement invariance conditions. Except for an 
older study by Kaplan and George (1995) that did not include invariance 
conditions relating to indicator intercepts, we did not find any published 
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simulation study that enables us to infer to what degree the measurement 
invariance conditions across groups can be relaxed without running the 
risk of drawing erroneous conclusions from cross-group comparisons of 
LV mean scores.

In this chapter, we will try to fill this gap in the literature by presenting 
a simulation study that investigates the extent to which noninvariance of 
factor loadings and indicator intercepts may lead to false statistical con-
clusions in terms of (the reported significance of) LV mean differences 
across groups. The next sections will elaborate on the method of research 
and the analysis strategy, the presentation of some detailed results, and 
the general conclusions.

5.2 Method

In this simulation study, Satorra and Bentler’s scaled chi-square  statistic2 
was used because of its superior performance in earlier simulation stud-
ies (Chou & Bentler, 1995; Curran et al., 1996; Hu et al. 1992; Olsson et al. 
1995). The design characteristics of this simulation study resemble, at 
least to some extent, the design characteristics of the simulation study by 
Kaplan and George (1995). As will be explained in the next paragraphs 
however, there are also some important differences.

5.2.1 experimental design Factors Included

In this simulation study, noninvariance conditions were represented by 
just one LV indicator (i.e., always the second LV indicator) with a nonin-
variant factor loading applied to the LV indicator and/or a noninvariant 
indicator intercept.

The following design factors were used in the simulation study:

Number of indicators for the LV (design factor 0)•	
Type of distribution of the indicators (design factor 1)•	
Sample size in the different groups (design factor 2)•	

2 More precisely, it is the mean- and variance-adjusted chi-square statistic with robust standard 
errors (see Muthén & Muthén, 1999), which is used in this simulation study.

AU: Please 
add a refer-
ence with full 
publication 
information 
for Chou 
& Bentler, 
1995.

AU: Please 
add a 
reference for 
Curran et al., 
1996 with full 
publication 
information.

AU: Please 
add a refer-
ence with full 
publication 
information 
for Hu et al., 
1992.

AU: Please 
add a refer-
ence with full 
publication 
information 
for Olsson et 
al., 1995.

AU: Please 
check the 
shortened 
running head.

RT8233X_C005.indd   121 7/7/10   11:02:11 PM



122 • Alain De Beuckelaer and Gilbert Swinnen

LV mean difference between groups at population level (design •	
 factor 3)
Noninvariance of factor loadings and indicator intercepts (design •	
factor 4 and design factor 5, respectively)

The simulation was set up using a full-factorial experimental design so 
that all possible combinations are represented in the simulation study.

We make a distinction between two groups of design factors: “side 
design factors” and (measurement) “noninvariance design factors.” Side 
design factors relate to characteristics of the data that are not related to 
the measurement (non)invariance of the data across groups. They include 
(see Table 5.1):

A fixed number of two groups to be involved in the LV mean •	
comparison
The number of indicators used to measure the LV under study (either •	
3 or 4)
The statistical or empirical distribution underlying LV indicator •	
scores (standard normal distribution)
Discrete 5-point response scales showing either a unimodal left-•	
skewed distribution or a symmetric bimodal distribution3

The size of the sample in the two groups involved in the LV mean •	
comparison.

Next, measurement noninvariance design factors create noninvari-
ance conditions as they determine the degree of measurement nonin-
variance of the noninvariant indicator (i.e., always the second indicator 
of the LV). Specifications regarding the levels of individual design fac-
tors are presented in Table 5.1. This table contains essential information 
about the simulations conducted. As the Results section often makes ref-
erence to abbreviations indicating simulated conditions that are speci-
fied in Table 5.1 (see further on in this chapter), a technically interested 
reader may benefit greatly from copying this table prior to examining 
in-depth the results discussed in that section. By doing so, technical 

3 Especially because of these scales, the present simulation study is to be conceived as more realistic 
than the study by Kaplan and George (1995).
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details  concerning the nature of the simulated experimental conditions as 
displayed in Table 5.1 are readily available to the reader at all times.

5.2.1.1 Noninvariance and Invariance Conditions

As explained before, (measurement) noninvariance is caused by only one 
indicator, namely, the second LV indicator out of three or four. Depending 
on the particular condition, the second LV indicator may exhibit non-
invariance due to a noninvariant factor loading across groups (F4 = 1 
or F4 = 3 [i.e., level 1 or level 3 is specified for design factor 4]; see F4 
in Table 5.1) and/or a noninvariant indicator intercept across groups 
(F5 = 2, 3 or 4; see F5 in Table 5.1). Alternatively, the second indicator may 
exhibit measurement invariance (i.e., if F4 = 2 and F5 = 1; see F4 and F5 
in Table 5.1). Further on in this chapter we will use the notation “λ2” and 
“Int2” to refer to the factor loading and the indicator intercept of the sec-
ond LV indicator, respectively. Whenever we refer to a group, we will add 
a suffix labeled “Gi” (i = 1 or 2).

The settings for factor loadings used in our study resemble the settings 
specified by Kaplan and George (1995). As indicated in Table 5.1, indicator 
reliabilities ranged between 0.24 (with a factor loading equal to 0.4) and 
0.56 (with a factor loading equal to 0.8).4 Differences in the indicator inter-
cepts across groups varied between 0.00 and 0.45. The latter value of the 
indicator intercept represents a distance of nearly one-tenth of the length 
of the total scale consisting of five response categories (see Table 5.1).

One may reasonably expect that differences in indicator intercepts 
across groups are more harmful than differences in factor loadings when 
(estimated) LV mean scores are to be compared across groups. Differences 
in indicator intercepts will bias estimated LV mean scores equally for each 
observation (or person), whereas the bias resulting from differences in fac-
tor loadings really depends on the observation’s (or person’s) score on the 
underlying construct.

As mentioned before, we specified (corresponding) measurement 
invariance conditions in addition to noninvariance conditions. The 
major advantage of doing so is that measurement invariance condi-
tions may serve as a natural benchmark (condition) against which the 

4 The reliability of the ith LV indicator is calculated as follows: 1 – (error variance / [λ_i2 + error 
variance]). The error variance is always fixed to 0.51 in the simulation study. 

AU: Please 
review 
footnote 4. Is 
this set cor-
rectly? There 
is a low line 
between 
lambda and 
number, is 
something 
missing?
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(statistical) performance of the LV mean difference test may be evaluated 
in  noninvariance  conditions. Further details concerning exactly how this 
will be done are provided in the Analysis section.

5.2.1.2 Asymmetrical Structure of the Simulation Design

The specific noninvariance conditions, as specified in Table 5.1, demon-
strate that the experimental design used has a structure that is asymmetri-
cal. The factor loading of the (possibly noninvariant) second LV indicator 
is specified to be smaller than, equal to, or larger than the corresponding 
factor loading in group one. In contrast, the indicator intercept of this 
LV indicator in the second group (G2) is specified to be either equal to 
or larger than the corresponding indicator intercept in group one. As 
the smaller than condition is missing here, the asymmetric structure is 
entirely due to the experimental settings specified for the intercept of the 
(possibly noninvariant) second indicator of the LV.

Because of this asymmetry, the effect of unequal indicator intercepts 
across groups on the estimated size of the (absolute) difference in LV 
means across groups were different for positive and negative discrepancy 
cases (i.e., conditions in which the LV mean in group 2 [G2] is higher 
[positive discrepancy] or lower [negative discrepancy] compared to the LV 
mean in group 1 [G1]). In positive discrepancy cases (i.e., µLV,G2 > µLV,G1), 
unequal indicator intercepts increase the estimated discrepancy between 
LV means. In negative discrepancy cases (i.e., µLV,G2 < µLV,G1), the estimated 
discrepancy between LV means decreases due to the inequality of indica-
tor intercepts across groups. Therefore, the inclusion of negative indicator 
intercepts in the simulation design (in addition to positive indicator inter-
cepts) would only lead to duplicate information as some conditions with a 
positive discrepancy between LV means would be identical to some other 
conditions with a negative discrepancy between LV means.

5.2.2 data Generation and analysis Strategy

5.2.2.1 Data Generation

Multiple data files (i.e., 50) were generated for each experimental condi-
tion. Several software programs were written to run the simulations. These 
software programs took care of the data preparation and data extraction 
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tasks. The actual parameter estimations were provided by a dedicated 
 software program, namely, Mplus (Muthén & Muthén, 1999). A more 
detailed description of all programs used and their functionality in the 
simulation process is available from the first author.

5.2.2.2 Data Analysis Strategy

The results from the simulation study were analyzed in two consecutive 
steps. These two steps are explained below.

Step 1: Correct and Incorrect Statistical Conclusions
Using the simulated data files, LV means were estimated for both groups. 
The estimation was carried out under the (possibly false) assumption that 
scalar invariance holds for all indicators across groups (i.e., imposing con-
straints regarding the equality of factor loadings and indicator intercepts 
across groups; i.e., imposing the scalar invariance model across groups 
onto the data).

The robust maximum likelihood procedure as implemented in the soft-
ware Mplus (Muthén & Muthén 1999) was used to estimate the model 
parameters. To test whether the LV mean in G2 was identical to the LV 
mean in G1 (the latter one is fixed to zero in all simulations; see Table 5.1), a 
simple z-statistic (i.e., the estimated LV mean in the second group divided 
by its standard error) was used. Provided that the estimated LV mean in 
G2 is zero (i.e., that the null-hypothesis holds), the z-statistic follows a 
standard normal distribution, asymptotically. The correctness of the LV 
mean difference test (i.e., reject or don’t reject the null-hypothesis) was 
then assessed using information about the true difference (if not zero) in 
the LV means (see Table 5.1, design factor 3). For each of the 50 replications 
of all experimental conditions the correctness of the statistical conclusion 
was flagged by a “not correct” [0]/“correct” [1] indicator. Incorrect deci-
sions in the opposite direction (e.g., finding a significant positive discrep-
ancy when the actual difference between LV means was negative) were not 
produced in this simulation study.

Next, the influence of the individual design parameters (see Table 5.1) on 
the correctness of statistical conclusions regarding the LV mean difference 
test across groups was assessed. Previous research (i.e., Kaplan & George 
1995) has shown that the effect of the difference between LV means at 
population level (i.e., design factor 3) is dominant when compared to other 
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effects. This is quite obvious as the probability of finding a  significant 
 difference between LV means in two independent samples is directly 
related to the size of the difference between LV means at population level. 
This effect is, however, not relevant for the research problem at hand. The 
main research question is to evaluate the extent to which measurement 
noninvariance conditions (i.e., design factor 4 and 5) and certain side 
conditions (such as number of indicators, distribution of indicators, and 
sample sizes) bias LV mean comparisons across groups. Therefore, the LV 
mean difference at population level may be regarded as an extraneous fac-
tor. Consequently, the effects of all other design parameters were assessed 
separately for various levels of the LV mean difference at population level.

The design parameters were indicated by means of binary variables (i.e., 
0/1 variables). The following notation was used: Fi_Dj with i  representing 
the number identifying the design factor and j representing the number 
identifying the level specified for that design factor (see Table 5.1). So, 
F5_D1 means that the first level applies to design factor 5 (i.e. indicator 
intercept of indicator 2 is identical in G2 and G1; see Table 5.1).

We made use of the classification and regression tree (C&RTree) tech-
nique by Breiman, Friedman, Olshen, and Stone (1984) to identify the 
impact of the design parameters (i.e., levels of design factors) on the cor-
rectness of the statistical conclusion regarding the LV mean difference 
between groups. In these C&RTree analyses, the particular values of 
design parameters (as represented by a series of binary Fi_Dj variables; see 
above) serve as independent variables, while the binary indicator showing 
the correctness of the LV mean difference test across groups (i.e., not cor-
rect [0]/correct [1]) acts as the dependent variable. By optimizing a statis-
tical criterion (i.e., the statistical significance of difference in percentage 
correct statistical conclusions), the C&RTree technique successively splits 
the entire sample into (sub)samples until at least one convergence criterion 
is reached. Just as in our study, a convergence or stop criterion is reached 
if statistical significance of the next candidate sample-split drops below 
a minimum level or, alternatively, the number of observations (or, in our 
study, replications of simulated conditions) in the sample to be split has 
dropped below a minimum value. Sample-splits can be made using a par-
ticular main effect (e.g., F2_D5, i.e., replications for which design factor 2 
has value 5 versus replications for which design factor 2 has values other 
than 5; for details regarding the design factors see Table 5.1), or a particular 
interaction effect (e.g., F2_D5 * F1_D3, i.e., replications for which design 
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factor 2 has value 5 and design factor 1 has value 3 versus replications for 
which other combinations of the design factors 2 and 1 apply).

The results of a C&RTree analysis are graphically depicted in a tree-based 
structure, which is referred to as a C&RTree. An example of a C&RTree is 
provided in Figure 5.1.

Provided that none of the convergence criteria are met, a first sample-
split is made based on one main effect or one interaction effect between 
(levels of) the design factors. The first sample-split in Figure 5.1 differenti-
ates between replications using very large datasets (i.e., 5th level of design 
factor 5 applies [F2_D5 = 1]; see Table 5.1), and replications using smaller 
data sets (F2_D5 = 0). So, a main effect (F2_D5 = 0 or 1) is used to split 
the overall sample (with 48% correct statistical conclusions) into two (sub)
samples with 31% (F2_D5 = 0) and 57% (F2_D5 = 1) correct statistical 
conclusions regarding the LV mean difference test, respectively. Among 
all candidate sample-splits (i.e., all main and interaction effects of levels 
of design parameters), the main effect F2_D5 = 0 or 1 leads to the largest 
possible difference between the percentage of correct statistical conclu-
sions as obtained for both subsamples.

Next, a C&RTree analysis will determine whether or not further sample-
splits can be made. To this end, some statistical evaluations are made for 
each of the two (sub)samples resulting from the first sample-split. In fact, 
for each subsample one statistical evaluation is made for all levels (or com-
binations of levels) of the design factors that have not been used in the first 
sample-split (or, in more general terms, higher up in the C&RTree). As far 
as the example is concerned (see Fig. 5.1), this means that the main effect 

Overall: 48%

Split 1 on F2_D5

31% 57%

F2_D5=0
(Nil node)

F2_D5=1
(One node)

Split 1.1 on F1_D3
F1_D3=0 F1_D3=1

(One node)

21% 42%

Split 1.2 on F2_D4

(Root)

F2_D4=0
(Nil node)

F2_D4=1
(One node)

45% 64%

(Nil node)

FIGure 5.1
Percentage correct statistical conclusions (4-indicator cases; only large negative discrep-
ancy cases [i.e., F3 = 1]).
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F2_D5 = 0 or 1 cannot be used anymore as a splitting variable after it has 
been used as the variable determining the very first sample split. Provided 
none of the convergence criteria are met, each (sub)sample emerging from 
the first sample-split may be split again in two new (sub)samples, pro-
ducing up to four different (sub)samples. In Figure 5.1 further sample-
splits are made using the following two main effects: F1_D3 = 0 or 1, and 
F2_D4 = 0 or 1. Once again, these sample-splits lead to the largest pos-
sible difference between the percentages of correct statistical conclusions 
as obtained for both subsamples. This process of splitting (sub)samples 
continues until no further sample-splits can be made (i.e., when at least 
one of the convergence criteria is met).

In order to correctly interpret the results of C&RTree analyses, one may 
therefore rely on the following two basic principles:

Principle #1: The importance of the individual design parameters (i.e., 
levels of the design factors) in terms of predicting the correctness of the LV 
mean difference test is reflected by the sequence in which these sample-
splits are made. In other words, sample-splits that are positioned lower 
down the C&RTree are, from a statistical point of view, somewhat less 
important than sample-splits that are positioned higher up the C&RTree.
Principle #2: All design parameters that have not been used anywhere in 
the C&RTree are, from a statistical point of view, of a lesser importance 
(i.e., they do not help very much in discriminating in terms of percentage 
of correct statistical conclusions regarding the LV mean difference test).

Step 2: Robust and Nonrobust Conditions
So far, the unit of analysis has been a replication of an experimental con-
dition (i.e., 50 replications per experimental condition). To assess the 
robustness of the experimental conditions against violations of the sca-
lar invariance assumption across groups (i.e., step 2), aggregated data are 
needed. In particular, the data of all replications need to be aggregated for 
every experimental condition.

The analysis strategy is to use the total number of correct statistical con-
clusions of invariance conditions as a reference against which the robust-
ness of all (related5) noninvariance conditions is evaluated. Based on the 

5 Related noninvariance conditions are characterised by an identical LV mean difference between 
both groups and a noninvariant indicator having an unequal factor loading and/or indicator 
intercept across groups.
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binomial distribution, a 99% confidence interval6 is specified around the 
number of correct statistical conclusions of invariance conditions. If the 
number of correct statistical conclusions of a related noninvariance con-
dition falls within this interval, the noninvariance condition is consid-
ered to be robust against violations of the scalar invariance assumption 
across groups. Otherwise, it is not considered to be robust. Based on such 
an analysis, all noninvariance conditions are flagged with a “not-robust” 
[0]/“robust” [1] indicator. In summary, the idea is to examine the decrease 
(or increase) in the number of correct statistical conclusions of nonin-
variance conditions using the number of correct statistical conclusions of 
invariance conditions as a benchmark (or reference condition).

C&RTree analyses are also used in this second step to determine the 
influence of the individual design parameters on the robustness of the 
experimental condition against violations of the scalar invariance assump-
tion across groups. So, instead of using the statistical correctness of the LV 
mean difference test (in each replication of an experimental condition), 
the robustness of the experimental condition (i.e., across all replications of 
that experimental condition) is used as the dependent or criterion variable 
in these C&RTree analyses. As the unit of analysis is an experimental con-
dition rather than a replication (of a particular experimental condition), 
a relatively small number of observations is available for these C&RTree 
analyses.

5.3 reSultS

Step 1: Correct and Incorrect Statistical Conclusions

5.3.1 descriptive results

The percentage of correct conclusions regarding the LV mean difference 
test varies around 66% across all simulated conditions, regardless of the 

6 The specification of a confidence interval (CI) is always a somewhat arbitrary decision. Changing 
from a 99% CI to a 95% CI would not have had a substantial impact on the decisions regard-
ing robustness/nonrobustness of the noninvariance condition (i.e., on average across all nonin-
variance conditions, less than one replication [i.e., 0.80; SD = 0.60] would have been classified 
differently).
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number of indicators used in the LV indicator model (i.e., 3 or 4 indica-
tors). This is shown in Table 5.2. The table also shows percentages of cor-
rect statistical conclusions tabulated for different levels of the LV mean 
difference at population level (i.e., the different levels for F3).

Table 5.2 shows that the percentage of correct statistical conclusions 
increases with an increasing positive difference in LV means. This find-
ing is in line with our expectations as the asymmetrical structure of the 
experimental design (in particular the larger indicator intercept in G2 
in noninvariance conditions including one unequal indicator intercept 
across groups) artificially increases the estimate of the LV mean in G2. 
The artificial increase works in favor of a rejection of the null-hypothesis 
in positive discrepancy cases (see Table 5.2) in which the LV mean at pop-
ulation level is higher in G2 than in G1. However, in negative discrepancy 
cases in which the LV mean at population level is lower in G2 than in G1, 
the (negative) difference in the LV means across both groups is underesti-
mated (i.e., pushed up toward zero, the LV mean of G1) because of a larger 
indicator intercept of one LV indicator in G2. This is particularly true in 
those noninvariance conditions that include one unequal indicator inter-
cept across groups (see F5 in Table 5.1).

When mutually comparing 4-indicator conditions with 3-indicator 
conditions, significantly different percentages of correct statistical con-
clusions were obtained (see plus or minus signs indicated between square 
brackets in Table 5.1). Taking into account the large number of (simulated) 

table 5.2

Percentage of Correct Conclusions Regarding the LV Mean Difference Test

Percentage of 
Correct 
Statistical 
Conclusions

Negative Discrepancy 
Cases

No Discrepancy 
Cases

Positive Discrepancy 
Cases

LV Mean in Group 2 (G2)

 = –0.30
(F3 = 1)

 = –0.15
(F3 = 2)

 = 0.00
(F3 = 3)

 = 0.15
(F3 = 4)

 = 0.30
(F3 = 5)

3 indicators 62.5% 32.9% 55.5% 79.4% 95.5%
Overall: 65.2%
4 indicators 69.5% 28.7% 67.3% 76.1% 95.0%
Overall: 67.3% [ + ] [–] [ + ] [–]

Note: A plus or minus sign between square brackets indicates the direction of significant increases 
[ + ] or decreases [–] in terms of the percentage of correct statistical conclusions (when 
comparing 4-indicator conditions to 3-indicator conditions).
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replications included in each cell (N/cell = 10,800) in Table 5.2, signifi-
cant differences in the percentage of correct statistical conclusions should 
not  come as a surprise. A further inspection of the sign of the significant 
differences across 4- and 3-indicator conditions shows that there is no 
winner. The 4-indicator conditions report higher percentages of correct 
statistical conclusions for F3 = 1 and F3 = 3, whereas the 3-indicator con-
ditions report higher percentages for F3 = 2 and F3 = 4. More detailed 
tables showing aggregated results for different noninvariance conditions 
as well as scalar invariance conditions may be obtained from the first 
author.7

5.3.2 Inferential results

As expected, the LV mean difference at population level (i.e., design fac-
tor 3) turned out to be the most influential design factor determining the 
correctness of the statistical conclusion regarding the LV mean difference 
test. In the C&RTree analyses for both 3- and 4-indicator conditions (not 
listed in Appendix A to save book space), all sample-splits involved differ-
ent levels of design factor 3.

Inferential results for large negative discrepancy cases: In large nega-
tive discrepancy cases (i.e., F3 = 1), the noninvariant factor loading (i.e., 
design factor 4) was selected as the first variable to split all (simulated) 
replications in two subsamples. This is shown in the C&RTrees CT_01 
(3-indicator condition) and CT_02 (4-indicator condition) in Appendix A. 
This sample-split indicated that a factor loading of 0.4 for the noninvariant 
indicator in G2 (versus 0.6 in G1) substantially lowered the probability of 
making correct conclusions regarding the LV mean difference test. Further 
sample-splits (in both subsamples) were based on the noninvariant indi-
cator intercept (i.e., design factor 5). Furthermore, the analyses showed 
that the larger the discrepancy in the noninvariant indicator intercept, the 

7 These additional tables were not included in this chapter to save space. These tables do however 
show that the test of equality of LV means in both groups does provide reasonable control over the 
type I error rate (i.e., as assessed in scalar invariance conditions). As type I error rates occur when 
one falsely rejects the hypothesis of equal LV means at population level (i.e., the null-hypothesis), 
the test’s control over the type I error rate is evaluated by examining statistical results obtained 
in “no discrepancy conditions” (i.e., those conditions in which the null-hypothesis truly holds at 
population level). In addition, such tables provide useful information on the power of the statisti-
cal test (i.e., as assessed in noninvariance conditions).

RT8233X_C005.indd   134 7/7/10   11:02:14 PM



A Simulation Study • 135

lower the probability of drawing the correct statistical conclusion based 
on the difference in LV means (i.e., as the noninvariant indicator inter-
cept is opposite to the direction of the difference between LV means at 
population level). In summary, the results showed that in large negative 
discrepancy cases, both a noninvariant factor loading and a noninvariant 
indicator intercept were factors that had a strong influence on the correct-
ness of the statistical conclusion regarding the LV mean difference test.

Inferential results for small negative discrepancy cases: In small negative 
discrepancy cases (i.e., F3 = 2), the sample of simulated replications was 
first split using the size of differences in the noninvariant indicator inter-
cept (i.e., design factor 5) as a variable on which to split the sample. This is 
shown in the C&RTrees CT_03 and CT_04 in Appendix A. Further down 
in both trees, more splits were made using other levels of design factor 5 
as splitting variables. The implication is (once again) that a larger nonin-
variant indicator intercept has a strong negative impact on the percentage 
of correct statistical conclusions in negative discrepancy cases. Further 
inspection of C&RTrees CT_03 and CT_04 revealed that additional 
 sample-splits were made using the degree of noninvariance of the factor 
loading as a variable on which to split the sample (e.g., F4_D1 and F4_D3). 
These findings support the conclusion that noninvariance conditions (i.e., 
design factors 4 and 5) have a strong impact on the percentage of correct 
statistical conclusions.

Inferential results for no discrepancy cases: In the no difference cases (i.e., 
F3 = 3) successive splits were made using various levels of design factor 5 
as splitting variables. This is shown in C&RTrees CT_05 and CT_06. The 
smaller the difference in the noninvariant indicator intercept, the higher 
the probability of drawing the right statistical conclusion with respect to 
the difference in LV means across groups. Since noninvariant indicator 
intercepts exert an upward bias on the estimated LV mean in G2, this will 
be reflected on the LV mean difference between G2 and G1. As a con-
sequence, the probability of rejecting the hypothesis of equal LV means 
at population level (i.e., in this case, the correct statistical conclusion) 
decreases.

Inferential results for small positive discrepancy cases: In small positive 
discrepancy cases (i.e., F3 = 4), the difference in the noninvariant indi-
cator intercept was successively used as the design factor on which sam-
ple-splits were made (see C&RTrees CT_07 and CT_08 in Appendix A). 
Larger differences in the noninvariant indicator intercept enlarge the 
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(estimated) difference between LV means at population level. As a result, 
the  probability of drawing the correct statistical conclusion (namely, a 
significant difference between the LV means in both groups) increased 
artificially because of the upward bias on the LV mean in G2 caused by the 
noninvariant indicator intercept.

Inferential results for large positive discrepancy cases: In large positive 
discrepancy cases (i.e., F3 = 5), the percentage of correct statistical conclu-
sions regarding the LV mean difference test turned out to be very high (i.e., 
around 95% in both 3- and 4-indicator conditions). The C&RTrees CT_09 
and CT_10 (see Appendix A) showed that the sample was first split using 
the first level of design factor 4 (i.e., a noninvariant factor loading of 0.4 in 
G2 versus a factor loading of 0.6 in G1) as the variable on which to split the 
sample. The small difference in the percentage of correct statistical con-
clusions reported for both subsamples (as well as the size of the calculated 
measure of improvement) showed that this sample-split was only mar-
ginally relevant. In conclusion, the difference in LV means at population 
level ( +0.30) was large enough to ensure a very high proportion of correct 
statistical conclusions (i.e., close to 95%). Obviously, the bias caused by 
a noninvariant indicator intercept (as present in many simulated condi-
tions) was to a large extent responsible for this high percentage in correct 
statistical conclusions.

Summary of inferential results on statistical correctness: Overall, the 
C&RT analyses showed that measurement noninvariance exerted a strong 
influence on the percentage of correct statistical conclusions regarding the 
LV mean difference test. In particular, a difference in the noninvariant 
indicator intercept as large as (approximately) one-tenth of the total length 
of the scale (a difference of 0.45 on a 5-point scale), or even smaller, was 
found to have a strong effect on the correctness of the outcome of the LV 
mean difference test. The effect could either be positive (in positive dis-
crepancy cases [i.e., F3 = 4 and F3 = 5]) or negative (in negative discrep-
ancy cases [i.e., F3 = 1 and F3 = 2] and the no difference cases [F3 = 3]). 
Next, a noninvariant factor loading showing a difference of 0.2 (factor 
loading in G1 is 0.6; factor loading in G2 is 0.4) was also found to have a 
substantial effect on the correctness of the outcome of the LV mean differ-
ence test. These findings were largely consistent across 3- and 4-indicator 
conditions.

Step 2: Robust and Nonrobust Conditions
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5.3.3 descriptive results

Robustness is only a relevant concept in noninvariance conditions. Of all 
noninvariance conditions, (only) about 35% was found to be robust. This 
conclusion applies to both the 3- and 4-indicator conditions. The percent-
age of robust noninvariance conditions was relatively high in large posi-
tive discrepancy cases (i.e., F3 = 5) as this percentage varied between 65% 
and 75%. In all other cases the percentage of robust noninvariance condi-
tions was much smaller (see Table 5.3). When comparing the percentage of 
robust conditions across 3- and 4-indicator conditions, no significant dif-
ferences were found. As a consequence, we had to conclude—once more—
that neither of the two LV indicator models outperformed the other and 
that the number of indicators (at least when 3 and 4 indicators are com-
pared) does not have an effect of the percentage of correct conclusions of 
the LV mean difference test.

5.3.4 Inferential results

In an overall C&RT analysis (i.e., across all levels of design factor 3) for both 
3- and 4-indicator conditions (C&RTrees are not included in Appendix 
A), design factor 3 popped up as the first design factor on which to split 
the sample. Large positive discrepancy cases (i.e., F3 = 5) were separated 

table 5.3

Percentage of Robust Noninvariance Conditions

Percentage of 
Robust Cases

Negative 
Discrepancy Cases

No Discrepancy 
Cases

Positive Discrepancy 
Cases

LV Mean in Group 2 (G2)

 = –0.30 
(F3 = 1)

 = –0.15 
(F3 = 2)

 = 0.00
(F3 = 3)

 = +0.15 
(F3 = 4)

 = +0.30 
(F3 = 5)

K = 3 
indicators

19.7% 39.4% 30.3% 15.2% 72.7%

Overall: 35.5%
K = 4 
indicators

28.3% 26.3% 34.9% 18.7% 66.2%

Overall: 34.9%

Note: The percentage of robust noninvariance conditions is not significantly different across 
3- and 4-indicator conditions.
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from all other conditions (i.e., F3 different from 5) in the first sample-split. 
Consistent with the results presented in Table 5.3, the percentage of robust 
noninvariance conditions were relatively large in conditions representing 
large positive discrepancy cases. Further down in the C&RTrees, subsam-
ples were formed based on the degree of noninvariance of the indicator 
intercept (i.e., design factor 5). Larger differences in the noninvariant indi-
cator intercept decreased the probability that the noninvariance condition 
was robust. In the next paragraphs C&RTrees will be presented for each 
level of design factor 3.

Inferential results for large negative discrepancy cases: As far as large 
negative discrepancy cases (i.e., F3 = 1) are concerned, C&RTrees RT_01 
and RT_02 in Appendix A reveal that the first important sample-split was 
made using the third level of design factor 4 (i.e., a noninvariant factor 
loading equal to 0.8 in G2 versus 0.6 in G1) as the variable on which to split 
the sample. Actually, in C&RTree RT_01 the very first sample-split was 
made using an interaction effect as the splitting variable (i.e., interaction 
effect: F4 = 3 and F5 = 2). This sample-split may be considered to be rela-
tively unimportant because of the limited number of observations in the 
right branch of the tree (N = 18, a detail that is not listed in Appendix A). 
In C&RTree RT_02, the very first sample-split was made using the third 
level of design factor 4 (i.e., F4 = 3) as the splitting variable. In the same 
tree, further sample-splits were made using various degrees of nonin-
variance of the indicator intercept as splitting variables. C&RTree RT_02 
clearly shows that a large noninvariant factor loading combined with a 
large noninvariant indicator intercept may lead to a very small percentage 
of robust cases (i.e., 16.7%). C&RTree RT_01 shows different sample-splits, 
but they all turned out to be relatively unimportant as indicated by the 
small score obtained for the measure of improvement (a detail that is not 
listed in Appendix A).

Inferential results for small negative discrepancy cases: In small negative 
discrepancy cases (i.e., F3 = 2), the first sample-split distinguished between 
conditions with very small sample sizes (N = 200 per group) and all other 
conditions (see C&RTree RT_03 and RT_04 in Appendix A). Small sample 
sizes seem to have a positive effect on the robustness of the noninvariance 
condition. Further down the C&RTrees (C&RT RT_03 and RT_04), the 
sample was split using a pair of interaction effects between the noninvari-
ant measurement parameters as splitting variables (i.e., the interaction 
effects: F4 = 1 & F5 = 4, and F4 = 3 & F5 = 2 in 3-indicator conditions, 
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and the interaction effect: F4 = 3 & F5 = 2 in 4-indicator  conditions). 
Apparently, a smaller noninvariant factor loading (in G2 when compared 
to G1) can partially compensate for the decrease in robustness due to a 
larger noninvariant indicator intercept (in G2 when compared to G1). Still 
further down the same C&RTrees, most sample-splits were made using 
various levels of the noninvariant indicator intercept or the noninvariant 
factor loading as splitting variables.

Inferential results for no discrepancy cases: In no difference cases (F3 = 3), 
successive sample-splits were made using various degrees of noninvari-
ance of the indicator intercept as splitting variables (see C&RTrees RT_05 
and RT_06). The results actually show that the larger the difference in the 
noninvariant indicator intercepts becomes, the smaller the probability 
that the noninvariance condition is robust against violations of the scalar 
invariance assumption (across groups).

Inferential results for small positive discrepancy cases: In small posi-
tive discrepancy cases (i.e., F3 = 4), various levels of noninvariance of 
the indicator intercept were successively chosen as splitting variables (see 
C&RTrees RT_07 and RT_08). The results may be interpreted as follows: 
the higher the noninvariance of the indicator intercepts, the smaller the 
probability that the noninvariance condition is robust against violations 
of the scalar invariance assumption (across groups).

Inferential results for large positive discrepancy cases: In large positive 
discrepancy cases (i.e., F3 = 5), the first pair of sample-splits were made 
using different sample sizes per group (i.e., F2) as splitting variables 
(see C&RTrees RT_09 and RT_10). In contrast to small negative discrep-
ancy cases, the first sample-split in C&RTrees RT_09 and RT_10 shows a 
negative rather than a positive impact of a small sample size per group (i.e., 
N = 200 in both groups) on the percentage of robust noninvariance con-
ditions. Further sample-splits were made using the degree of noninvari-
ance of the factor loading (i.e., F4) as the splitting variable. A substantially 
smaller percentage of robust noninvariance conditions were reported in 
conditions with a noninvariant factor loading equal to 0.4 in the G2 (and 
a corresponding factor loading of 0.6 in G1).

Summary of inferential results on robustness: Our inferential analyses 
have shown that violations of the scalar invariance assumption across 
groups may have a very strong impact on the robustness of (simulated) 
noninvariance conditions. The extent to which noninvariance condi-
tions are nonrobust depends on which measurement parameters (i.e., 
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factor loading and/or indicator intercept) fail to exhibit measurement 
 noninvariance across groups. The influence of a noninvariant intercept 
is dominant when compared to a noninvariant factor loading in nega-
tive discrepancy cases and in small positive discrepancy cases. In large 
positive discrepancy cases, the effect of a noninvariant factor loading is 
more significant than in all other noninvariance conditions. In negative 
discrepancy cases, a smaller noninvariant factor loading (in G2) may par-
tially compensate for the negative effect of a larger noninvariant indicator 
intercept on the robustness of the noninvariance condition (for instance, 
when sample size per group is small [i.e., F2 = 2]). The robustness of the 
noninvariance condition is also influenced by the size of the sample size 
in each group. This is true for small negative discrepancy cases and large 
positive discrepancy cases. The distribution of indicators does not affect 
the robustness of noninvariance conditions.

5.4 concluSIonS

Our simulation study has shown that a noninvariant LV indicator (if not 
noticed by the researcher) may have a very strong impact on the percent-
age of correct statistical conclusions of a LV mean difference test. Of all 
simulated replications about 65% resulted in a correct (statistical) outcome 
for the LV mean difference test.

A difference in the noninvariant indicator intercept as large as (about) 
one-tenth of the total length of the scale (a difference of 0.45 on a 5-point 
scale)—or even smaller—strongly reduced the probability of drawing cor-
rect statistical conclusions based on a LV mean difference test. The same 
is true for a 0.2 difference in a noninvariant factor loading. In our study, 
neither sample size (per group) nor the underlying distribution of the LV 
indicator(s) was found to exert a substantial influence on the correctness 
of the LV mean difference test. This finding is important as it shows that 
treating ordinal data as if they were metric does not seem to be problem-
atic. All of these conclusions apply equally well to 3- and 4-indicator con-
ditions (i.e., conditions in which the LV is measured by 3 or 4 indicator 
variables, respectively). Obviously, these conclusions are contingent on the 
choices made with respect to the design parameters in our study (e.g., only 
5-point Likert-type of scales with a left-skewed distribution or a symmetric 
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bimodal distribution; sample sizes exceeding 200 observations per group). 
However, these conditions are very common in survey research and thus 
reflect realistic conditions.

The main research question in this simulation study was to evaluate 
the extent to which noninvariance conditions are robust against viola-
tions of the scalar invariance assumption (across groups). Of all simulated 
noninvariance conditions, only about 35% turned out to be robust. The 
low overall percentage of robust noninvariance conditions shows that 
noninvariant measurement parameters (of one indicator across groups) 
have a very strong impact on the robustness of noninvariance conditions. 
In this simulation study, robust noninvariance conditions were rather 
exceptional.

Apart from a difference in LV means (at population level), the major 
determinant of the robustness of noninvariance conditions turned out 
to be the degree of noninvariance of the indicator intercept. This is true 
for all simulated noninvariance conditions, except for noninvariance 
conditions with a large positive discrepancy between LV means (i.e., 
the notion of positive and negative discrepancy is explained in detail in 
Table 5.1).

The effect of the noninvariant factor loading was somewhat more 
important in large positive discrepancy cases. In these cases, the percent-
age of robust noninvariance conditions was rather high (about 70%). The 
combination of: (1) a large difference in LV means at population level, 
and (2)  the positive bias due to a noninvariant indicator intercept was 
responsible for a small difference in the percentage of correct statistical 
conclusions between noninvariance conditions and their corresponding 
scalar invariance condition. As a consequence, a high percentage of robust 
noninvariance conditions were obtained.

A smaller factor loading (in group 2) could partially compensate for the 
bias due to a larger indicator intercept (in the same group). In addition 
to the effect of noninvariant measurement parameters, there was also an 
effect of sample size per group on the robustness of the noninvariance 
condition. This effect was found in small negative discrepancy cases and 
large positive discrepancy cases. The distribution of the indicators did 
not exert an influence on the robustness of noninvariance conditions. 
All conclusions regarding the design factors determining the robustness 
of noninvariance conditions were consistent across 3- and 4-indicator 
cases.
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Overall, this simulation study has shown that noninvariant  measurement 
parameters form a serious threat to the correctness of a LV mean differ-
ence test between two groups (when making a false assumption that all 
indicators exhibit scalar invariance across groups). A noninvariant fac-
tor loading, and in particular a noninvariant indicator intercept, have a 
strong impact on the percentage of correct statistical conclusions regard-
ing the LV mean difference test. The degree of noninvariance (as simu-
lated in this study) was severe enough to seriously affect the robustness 
of the LV mean difference test against violations of the scalar invariance 
assumption (across groups). Furthermore, it does not seem to matter very 
much if one uses three or four indicators to measure the underlying (one-
dimensional) LV. The results were highly consistent across 3- and 4-indi-
cator conditions.

For these reasons, the general advice for researchers is to conduct formal 
tests on measurement invariance of construct indicators (e.g., running 
multigroup mean and covariance structure analyses) prior to conduct-
ing any LV mean comparisons across groups. It is crucial that indica-
tors that do not exhibit measurement invariance across groups are either 
removed from the measurement model or, alternatively, adequate correc-
tions are made to correct for the bias of (a) noninvariant LV indicator(s). 
Provided that two indicators of the same construct exhibit scalar invari-
ance, such technical corrections are possible. This has been demonstrated 
by Steenkamp and Baumgartner (1998), and Scholderer, Grunert, and 
Brunsø (2005).

Even though such technical corrections (see Scholderer et al., 2005; 
Steenkamp & Baumgartner, 1998) have been introduced one never 
knows exactly what one is controlling for. For this reason, we recom-
mend (whenever possible) to identify the causes of measurement nonin-
variance prior to making statistical corrections to the LV mean difference 
test. For instance, response styles such as acquiescence response style or 
extreme response style are generally known to form a serious threat to 
measurement (scalar) invariance of indicators across groups (Weijters, 
2006).

A good overview of how response styles can be measured (and cor-
rected for) in survey research is provided in Baumgartner and Steenkamp 
(2006). An even more recent paper by Weijters, Schillewaert, and Geuens 
(2008) introduces a sound but sophisticated approach to correct for 
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different types of response styles. Their approach is based on the inclusion 
of a separate, heterogeneous set of response style indicators drawn from 
a wide universe of multi-item survey measures. This approach enables a 
valid and reliable assessment of response styles (i.e., due to the hetero-
geneity of response style indicators), while avoiding a possible confound 
between questionnaire content and response style of the respondent (i.e., 
as response style indicators are not used for substantive purposes; see De 
Beuckelaer, Weijters, & Rutten, in press).
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appendIx a: claSSIFIcatIon and 
reGreSSIon treeS (c&rtreeS)

Percentage of correct statistical conclusions(latent variable [LV] mean difference test)
ILLUSTRATIVE EXAMPLE of a C&RTree (see also Figure 5.A.1)
Example_C&RTree (4 indicators; N=198) {[Overall: 22.3%];
[Split 1=F4_D3 [upper=root]: nil=7.9%; one=63.9%];
[Split 1.1=F5_D2 [upper=nil]: nil=1.1%; one=25.0%];
[Split 1.2=F5_D4 [upper=one]: nil=79.6%; one=16.7%];
[Split 1.1.1=F2_D1 [upper=nil]: nil=0.0%; one=6.7];
[Split 1.1.2=F4_D1 [upper=one]: nil=50.0%; one=0.0%];
[Split 1.2.1=F4_D3*F5_D3 [upper=nil]: nil=88.9%; one=61.1%]}

Notes: This example C&RTree is identical to RT_02 (see below); clarification of the notation used: 
F4_D3=1 means the factor loading of indicator 1, i.e. λ2, equals 0.8 in Group 2 (see F4 
in Table 5.1); F5_D2=1 means the intercept of indicator 2 is 0.15 higher for Group 2 (see F5 in 
Table 5.1); F5_D4 means the intercept of indicator 2 is 0.45 higher for Group 2 (see F5 in 
Table 5.1).

Overall: 22.3%

Split 1 on F4_D3

7.9% 63.9%

F4_D3 = 0
(Nil node)

F4_D3 = 1
(One node)

Split 1.1 on F5_D2
F5_D2 = 0

(Nil node)
F5_D2 = 1
(One node)

1.1% 25.0%

Split 1.2 on F5_D4

(Root)

F5_D4 = 0
(Nil node)

F5_D4 = 1
(One node)

79.6% 16.7%

… and so on …

FIGure 5.a.1
Percentage robust noninvariance conditions (F3 = 1; 4 indicators).
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CT_01 (F3=1; 3 indicators; N=10,800): 
{[Overall: 62.5%];

[Split 1=F4_D1 [upper=root]: nil=73.3%; 
one=40.9%];

[Split 1.1=F5_D4 [upper=nil]: nil=81.8%; 
one=47.9%];

[Split 1.2=F4_D4 [upper=one]: 
nil=47.0%; one=22.3%];

[Split 1.1.1=F5_D3 [upper=nil]: 
nil=89.5%; one=66.5%];

[Split 1.1.2=F4_D3*F5_D4 [upper=one]: 
nil=33.1%; one=62.7%];

[Split 1.2.1=F5_D3 [upper=nil]: 
nil=58.9%; one=23.2%];

[Split 1.1.1.1=F4_D3*F5_D3 
[upper=one]: nil=53.6%; one=79.4%];

[Split 1.2.1.1=F5_D2 [upper=nil]: 
nil=71.5%; one=46.3%]}

CT_02 (F3=1; 4 indicators; N=10,800): 
{[Overall: 69.5%];

[Split 1=F4_D1 [upper=root]: nil=81.6%; 
one=45.1%];

[Split 1.1=F5_D4 [upper=nil]: nil=87.3%; 
one=64.6%];

[Split 1.2=F4_D1*F5_D4 [upper=one]: 
nil=52.8%; one=21.9%];

[Split 1.1.1=F5_D3 [upper=nil]: nil=92.6%; 
one=76.7%];

[Split 1.2.1=F4_D1*F5_D3 [upper=nil]: 
nil=62.6%; one=33.2%];

[Split 1.1.1.1=F4_D3*F5_D3 [upper=one]: 
nil=64.1%; one=89.3%];

[Split 1.2.1.1=F5_D2 [upper=nil]: nil=73.3%; 
one=51.9%]}

CT_03 (F3=2; 3 indicators; N=10,800) 
{[Overall: 32.9%];

[Split 1=F5_D3 [upper=root]: nil=37.5%; 
one=19.1%];

[Split 1.1=F5_D2 [upper=nil]: nil=43.3%; 
one=33.2%];

[Split 1.1.1=F5_D4 [upper=nil]: 
nil=51.7%; one=35.0%];

[Split 1.1.2=F5_D2 [upper=one]: 
nil=20.2%; one=37.0%];

[Split 1.1.1.1=F4_D3 [upper=nil]: 
nil=43.2%; one=68.9%];

[Split 1.1.1.2=F4_D1*F5D4 [upper=one]: 
nil=29.6%; one=45.8%]}

CT_04 (F3=2; 4 indicators; N=10,800) 
{[Overall: 28.7%];

 [Split 1=F5_D4 [upper=root]: nil=33.0%; 
one=15.8%];

[Split 1.1=F5_D3 [upper=nil]: nil=41.2%; 
one=16.5%];

[Split 1.2=F4_D3 [upper=one]: nil=17.8%; 
one=11.7%];

[Split 1.1.1=F4_D3 [upper=nil]: nil=33.5%; 
one=56.6%];

[Split 1.1.2=F4_D3 [upper=one]: nil=12.1%; 
one=25.2%];

[Split 1.1.1.1=F5_D2 [upper=nil]: nil=43.8%; 
one=23.2%];

[Split 1.1.1.2=F4_D3*F5_D2 [upper=one]: 
nil=12.1%; one=25.2%]}

[Split 1.1.1.1.1=F4_D1 [upper=nil]: 
nil=53.0%; one=34.6%];

[Split 1.1.1.1.2=F4_D1 [upper=one]: 
nil=28.9%; one=17.6%]}
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CT_05 (F3=3; 3 indicators; 
N=10,800) {[Overall: 55.5%];

[Split 1=F5_D4 [upper=root]: 
nil=67.6%; one=19.2%];

[Split 1.1=F5_D3 [upper=nil]: 
nil=80.7%; one=41.2%];

[Split 1.1.1=F5_D2 [upper=nil]: 
nil=87.7%; one=73.7%]}

CT_06 (F3=3; 4 indicators; N=10,800) {[Overall: 
67.3%];

[Split 1=F5_D4 [upper=root]: nil=76.4%; one=39.7%];
[Split 1.1=F5_D3 [upper=nil]: nil=85.3%; one=58.6%];
[Split 1.1.1=F5_D2 [upper=nil]: nil=90.0%; 
one=80.7%]}

CT_07 (F3=4; 3 indicators; 
N=10,800) {[Overall: 79.4%];

[Split 1=F5_D4 [upper=root]: 
nil=73.6%; one=97.0%];

[Split 1.1=F5_D3 [upper=nil]: 
nil=64.7%; one=91.5%];

[Split 1.1.1=F5_D2 [upper=nil]: 
nil=50.0%; one=79.3%];

[Split 1.1.1.1=F4_D3 
[upper=nil]: nil=42.8%; 
one=64.4%]}

CT_08 (F3=4; 4 indicators; N=10,800) {[Overall: 
76.1%];

[Split 1=F5_D4 [upper=root]: nil=70.3%; one=93.6%];
[Split 1.1=F5_D3 [upper=nil]: nil=62.0%; one=86.8%];
[Split 1.2=F4_D1*F5D4 [upper=one]: nil=96.9%; 
one=87.0%];

[Split 1.1.1=F5_D2 [upper=nil]: nil=51.1%; 
one=72.9%];

[Split 1.1.1.1=F4_D1 [upper=nil]: nil=59.5%; 
one=34.2%];

[Split 1.1.1.2=F4_D1*F5_D2 [upper=one]: nil=79.6%; 
one=59.4%]}

CT_09 (F3=5; 3 indicators; 
N=10,800) {[Overall: 95.5%];

[Split 1=F4_D1 [upper=root]: 
nil=97.8%; one=90.7%]}

CT_10 (F3=5; 4 indicators; N=10,800) {[Overall: 
95.0%];

[Split 1=F4_D1 [upper=root]: nil=97.9%; one=89.1%]}

Notes: % indicate percentage of correct statistical conclusions (LV mean difference test); nil and one 
indicate the nodes of the tree where the condition (e.g., F5_D1) equals zero and one, 
respectively.
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Percentage of robust noninvariance conditions
RT_01 (F3=1; 3 indicators; N=198) 
{[Overall: 19.7%];

[Split 1=F4_D3*F5_D2 [upper=root]: 
nil=12.8%; one=88.9%%];

[Split 1.1=F4_D3 [upper=nil]: 
nil=4.8%; one=31.5%];

[Split 1.1.1=F2_D1 [upper=nil]: 
nil=1.9%; one=19.0%];

[Split 1.1.2=F4_D3*F5_D4 
[upper=one]: nil=47.2%; one=0.0%];

[Split 1.1.1.1=F5_D2 [upper=nil]: 
nil=0.0%; one=6.7%];

[Split 1.1.2.1=F4_D3*F5_D3 
[upper=nil]: nil=72.2%; one=22.2%]}

RT_02 (F3=1; 4 indicators; N=198) {[Overall: 
22.3%];

[Split 1=F4_D3 [upper=root]: nil=7.9%; 
one=63.9%];

[Split 1.1=F5_D2 [upper=nil]: nil=1.1%; 
one=25.0%];

[Split 1.2=F5_D4 [upper=one]: nil=79.6%; 
one=16.7%];

[Split 1.1.1=F2_D1 [upper=nil]: nil=0.0%; 
one=6.7];

[Split 1.1.2=F4_D1 [upper=one]: nil=50.0%; 
one=0.0%];

[Split 1.2.1=F4_D3*F5_D3 [upper=nil]: 
nil=88.9%; one=61.1%]}

RT_03 (F3=2; 3 indicators; N=198) 
{[Overall: 39.4%];

[Split 1=F2_D1 [upper=root]: 
nil=31.5%; one=78.8%];

[Split 1.1=F4_D1*F5_D4 [upper=nil]: 
nil=26.0%; one=86.7%];

[Split 1.1.1=F4_D3*F5_d2 
[upper=nil]: nil=22.2%; one=60.0%];

[Split 1.1.1.1=F5_D3 [upper=nil]: 
nil=28.9%; one=8.9%];

[Split 1.1.1.1.1=F5_D2 [upper=nil]: 
nil=40.0%; one=6.7%];

[Split 1.1.1.1.2=F4_D1 [upper=one]: 
nil=3.3%; one=20.0%]}

RT_04 (F3=2; 4 indicators; N=198) {[Overall: 
26.3%];

[Split 1=F2_D1 [upper=root]: nil=19.4%; 
one=60.6%];

[Split 1.1=F4_D3*F5_D2 [upper=nil]: 
nil=14.0%; one=73.3%];

[Split 1.1.1=F4_D3 [upper=nil]: nil=8.6%; 
one=26.7%];

[Split 1.1.1.1=F5_D3 [upper=nil]: nil=12.0%; 
one=0.0%];

[Split 1.1.1.2=F4_D3*F5_D4 [upper=one]: 
nil=40.0%; one=0.0%];

[Split 1.1.1.1.1=F2_D3 [upper=nil]: nil=8.3%; 
one=26.7%]}
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RT_05 (F3=3; 3 indicators; 
N=198) {[Overall: 30.3%];

[Split 1=F5_D4 [upper=root]: 
nil=41.7%; one=0.0%];

[Split 1.1=F5_D3 [upper=nil]: 
nil=66.7%; one=0.0%];

[Split 1.1.1=F2_D4 [upper=nil]: 
nil=74.7%; one=26.7%];

[Split 1.1.1.1=F2_D3 [upper=nil]: 
nil=68.3%; one=100%];

[Split 1.1.1.1.1=F5_D2 
[upper=nil]: nil=87.5%; 
one=55.6%]}

RT_06 (F3=3; 4 indicators; N=198) {[Overall: 
34.9%];

[Split 1=F5_D4 [upper=root]: nil=47.9%; one=0.0%];
[Split 1.1=F5_D3 [upper=nil]: nil=71.1%; 
one=9.3%];

[Split 1.1.1=F5_D2 [upper=nil]: nil=94.4%; 
one=55.6%];

[Split 1.1.2=F1_D2 [upper=one]: nil=2.8%; 
one=22.2%];

[Split 1.1.1.1=F1_D3 [upper=one]: nil=47.2%; 
one=72.2]}

RT_07 (F3=4; 3 indicators; 
N=198) {[Overall: 15.1%];

[Split 1=F5_D4 [upper=root]: 
nil=20.8%; one=0.0%];

[Split 1.1=F5_D3 [upper=nil]: 
nil=33.3%; one=0.0%];

[Split 1.1.1=F5_D2 [upper=nil]: 
nil=55.6%; one=18.5%];

[Split 1.1.1.1=F4_D1 
[upper=one]: nil=8.3%; 
one=38.9%];

[Split 1.1.1.1.1=F4_D3*F5_D2 
[upper=nil]: nil=16.7%; 
one=0.0%]}

RT_08 (F3=4; 4 indicators; N=198) {[Overall: 
18.7%];

[Split 1=F4_D1*F5_D2 [upper=root]: nil=12.2%; 
one=83.3%];

[Split 1.1=F5_D4 [upper=nil]: nil=17.5%; 
one=0.0%];

[Split 1.1.1=F5_D3 [upper=nil]: nil=30.6%; 
one=0.0%];

[Split 1.1.1.1=F5_D2 [upper=nil]: nil=50.0%; 
one=11.1%];

[Split 1.1.1.1.1=F4_D3 [upper=one]: nil=22.2%; 
one=0.0%]}

RT_09 (F3=5; 3 indicators; 
N=198) {[Overall: 72.7%];

[Split 1=F2_D1 [upper=root]: 
nil=82.4%; one=24.2%];

[Split 1.1=F2_D6 [upper=nil]: 
nil=89.9%; one=60.6%];

[Split 1.1.1=F4_D1 [upper=nil]: 
nil=95.2%; one=75.0%];

[Split 1.1.1.1=F5_D2 [upper=nil]: 
nil=93.3%; one=100.0%];

[Split 1.1.1.1.1=F5_D4 
[upper=nil]: nil=88.9%; 
one=100.0%]}

RT_10 (F3=5; 4 indicators; N=198) {[Overall: 
66.2%];

[Split 1=F2_D1 [upper=root]: nil=73.3%; 
one=30.3%];

[Split 1.1=F2_D2 [upper=nil]: nil=79.6%; 
one=48.5%];

[Split 1.1.1=F2_D6 [upper=nil]: nil=85.9%; 
one=60.6%];

[Split 1.1.1.1=F4_D1 [upper=nil]: nil=95.2%; 
one=69.4%];

[Split 1.1.1.1.1=F4_D3 [upper=nil]: nil=100.0%; 
one=91.7%]}

Notes: % indicate percentage of robust noninvariance conditions; nil and one indicate the nodes of the 
tree where the condition (e.g., F5_D1) equals zero and one, respectively.

RT8233X_C005.indd   149 7/7/10   11:02:17 PM



RT8233X_C005.indd   150 7/7/10   11:02:17 PM


