
This	manuscript	is	a	post-print	copy	of	the	following	article	
	
Title:	SuMoTED:	An	intuitive	edit	distance	between	rooted	unordered	uniquely-labelled	
trees	
	
Authors:	Matt	McVicar,	Benjamin	Sach,	Cédric	Mesnage,	Jefrey	Lijffijt,	Eirini	Spyropoulou,	
Tijl	De	Bie	
	
The	final	publication	is	available	at	Elsevier	via	
http://dx.doi.org/10.1016/j.patrec.2016.04.012	

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55895994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pattern Recognition Letters 79 (2016) 52–59
Contents lists available at ScienceDirect

Pattern Recognition Letters
journal homepage: www.elsevier.com/locate/patrec

SuMoTED: An intuitive edit distance between rooted unordered
uniquely-lab elle d trees ✩
Matt McVicar a , ∗, Benjamin Sach b , Cédric Mesnage a , Jefrey Lijffijt a , c , Eirini Spyropoulou a ,
Tijl De Bie a , c
a Department of Engineering Mathematics, University of Bristol, Woodland Road, Bristol BS81UB, England
b Department of Computer Science, University of Bristol, Woodland Road, Bristol BS81UB, England
c Data Science Lab, Ghent University, Technicum, Ghent 90 0 0, Belgium
a r t i c l e i n f o
Article history:
Received 10 November 2015
Available online 4 May 2016
Keywords:
Tree edit distance
Taxonomies

a b s t r a c t
Defining and computing distances between tree structures is a classical area of study in theoretical com-
puter science, with practical applications in the areas of computational biology, information retrieval, text
analysis, and many others. In this paper, we focus on rooted, unordered, uniquely-labelled trees such as
taxonomies and other hierarchies. For trees as these, we introduce the intuitive concept of a ‘local move’
operation as an atomic edit of a tree. We then introduce SuMoTED, a new edit distance measure between
such trees, defined as the minimal number of local moves required to convert one tree into another. We
show how SuMoTED can be computed using a scalable algorithm with quadratic time complexity. Finally,
we demonstrate its use on a collection of music genre taxonomies.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction
The problem of computing how (dis)similar two trees are, and

the related problem of computing a consensus between a set of
trees, has applications in computational biology, chemistry, music
genre analysis, and automatic theorem-proving [14,18,23,25] . For
example, calculating the distance between RNA secondary struc-
tures (which have a tree structure) is necessary to understand
their comparative functionality [26] . Taxonomies, such as the one
shown in Fig. 1 , offer another natural application area. Indeed,
quantifying the similarity between different taxonomies may pro-
vide insight into what might be the consensus as well as the
nature of any subjective differences between different taxonomy
creators.

Given the wide range of application areas listed above, it is not
surprising that computing the similarity between trees is an ac-
tively studied problem within computer science, and the literature
is abundant with similarity measures for various types of trees.
However, computational tractability is often a problem. For exam-
ple, for rooted, unordered, fully-labelled trees (trees with a root, in
which every vertex is labelled and the left-to-right order of siblings

✩ This paper has been recommended for acceptance by Dr. D. Coeurjolly.
∗ Corresponding author. Tel.: +44 7739901492.

E-mail address: mattjamesmcvicar@gmail.com (M. McVicar).

carries no significance, such as taxonomies and other hierarchies),
a recent survey [5] discusses three distances that are all NP-hard.
More details are presented in Section 2 .

The current paper aims to tackle this problem in a specific
setting by introducing the Subtree Moving Tree Edit Distance
(SuMoTED): a new tree distance measure with several appealing
properties. First, it is an edit distance, defined intuitively as the
minimum number of atomic local moves of vertices up and down
required to turn one tree into the other, weighted by the size of
the moved subtree. Second, it is not only intuitive but is also a
metric distance, meaning it is easy to use in a wide range of in-
formation retrieval and machine learning algorithms. For example,
distance-based methods for clustering often require the distance
measure to be metric, and metric properties are also used for ef-
ficient document retrieval in databases. Third, it can be computed
in a time that is quadratic in the total number of vertices in the
trees. Finally, our method produces a consensus tree as part of the
procedure, allowing us to compute the agreement between a set of
trees at no additional cost.

We begin this paper with a literature survey on tree distances
in Section 2 . Subsequently, we define SuMoTED as a novel dis-
tance measure between two rooted, unordered, uniquely-labelled
trees (Section 3). We then give an efficient algorithm for its com-
putation (Section 4), before evaluating SuMoTED experimentally in
Section 5 and concluding in Section 6 .

http://dx.doi.org/10.1016/j.patrec.2016.04.012
0167-8655/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patrec.2016.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.04.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mattjamesmcvicar@gmail.com
http://dx.doi.org/10.1016/j.patrec.2016.04.012
http://creativecommons.org/licenses/by/4.0/

M. McVicar et al. / Pattern Recognition Letters 79 (2016) 52–59 53

Music

Classical String Quartet

Orchestra

Classical
Piano

Choir

Country

Disco

HipHop

Jazz BigBand

Jazz Quartet

Fusion

Jazz
Piano

Cool

Swing

Rock

Blues

Reggae

Pop

Metal

Fig. 1. Music genre hierarchy proposed by Tzanetakis and Cook [25] .
2. Related work
2.1. Distances between trees

The task of defining and computing distances between trees
can be considered a special case of the graph comparison prob-
lem, which has an extensive literature: see Gao et al. [13] for a
summary. When the graphs are directed and contain no cycles, the
graph becomes a Directed Acyclic Graph (DAG)—some authors have
studied the distances between DAGs [6,16] . Most graph and DAG
distances could ofcourse be deployed for trees. Despite this, often
the particular structure of trees such as the notion of a root, the
unique parent of a vertex, or sibling relationships, are important
in designing meaningful tree distance measures, such that mea-
sures for graphs become unnatural when applied to trees. 1 For
this reason, defining tree distances has become and active research
topic. Bille [5] offers a comprehensive overview of the most com-
mon methods for comparing trees, including best-known time and
space complexity bounds. Here we give only an overview, referring
the reader to Bille for further details.

The first and most widely-used method for comparing trees is
the tree edit distance , introduced by Tai [24] as an extension of the
well-known string edit distance. Tai allows insertion, deletion and
substitution of vertices in order to convert a source tree T s into a
target tree T t . A cost function is then applied to these operations
(most commonly setting the cost of each transformation to unity),
and the minimum number of these operations is defined to be the
distance between T s and T t . Several algorithms have been proposed
to efficiently solve the tree edit distance, but only on ordered trees
or other special cases. The case for unordered trees is known to be
NP-hard [5] . In the original formulation of the tree edit distance,
inserting a vertex u between a vertex v and its parent p meant that
u became a child of p , and v and all of its descendants became a
child of u . Restrictions were also introduced such as the top-down
distance [21] which only allowed insertions to occur at leaves. An-
other modification is the bottom-up distance: let the number of
nodes in the source and target tree be n s and n t and the size of
the largest common forest of T s and T t be f . The distance between
T s and T t is then defined to be 1 − f/ max (n s , n t) . The best known

1 This is particularly true for edit distances: edit operations for graphs could cre-
ate loops in a tree, which would lead to problems in interpretability.

algorithm for the bottom-up problem is linear in n s and n t , and is
applicable to both ordered and unordered trees.

Tree alignment is an alternative method and proceeds as follows.
Nodes with no labels are inserted into T s and T t until they are iso-
morphic 2 , producing T ′ s and T ′ t . This produces an alignment tree
A , whose vertex labels are pairs of labels taken from T ′ s and T ′ t .
The cost of A is the total cost of substituting each vertex pair such
that they are equal—the tree alignment distance between T s and
T t is the minimum such cost. Finally, the tree inclusion problem is
to determine if T t may be obtained from T s via deleting nodes. As
with the tree edit distance for unordered trees, computing either
the tree alignment distance or the tree inclusion problem is MAX
SNP-hard [5] .
2.2. Computing consensus trees

Given a set of trees, a distinct but clearly related task to the
tree distance problem is to determine what information is shared
by the set. Shasha et al. [22] claims there are five commonly-
used methods for achieving this, which we review here. The first
was introduced by Adams III [1] and is known as the Adams con-
sensus in the literature. This method is applicable to both fully-
labelled and leaf-labelled trees (where only leaf vertices have la-
bels). Leaf-labelled trees are more common in taxonomic biological
applications. Next, Day [11] proposed a new method for comput-
ing the consensus, and also introduced a distance measure based
on the number of common subtrees found within two trees in the
collection—this method is known as the strict consensus .

Margush and McMorris [17] pointed out that in the case that
many of the trees in a large set are identical (say, equal to T) and
one differs from T by a single edge, that the consensus should be
equal to T . To achieve this, he introduced the majority rule con-
sensus , where a parent–child relationship in the consensus is only
introduced if at least half the trees share the same link. The semi-
strict consensus tree for leaf-labelled trees [7] includes all subtrees
by Adams’ method, but also any subtrees which are not contra-
dicted by other members of the group. Finally, the Nelson consen-
sus [20] consists of the set of mutually compatible subtrees that
are most frequently replicated in the group.

Interestingly, the computation of a consensus tree can be con-
sidered a special case of frequent subtree mining, an area of re-
search which has received a good deal of attention in recent years
[4,8,9] .
2.3. Limitations of existing work

As seen above there are many existing methods which either
compute the distance between trees, or compute a consensus be-
tween a set of trees. Yet, all existing distance measures suffer from
one of both of the following problems:

Computational cost We are interested in the case of uniquely-
labelled unordered trees as these occur frequently in application
areas (such as biological sequence analysis, text mining and mu-
sic information retrieval). Although, to the best of our knowledge,
this specific case has not been studied, for general unordered la-
belled trees the three existing distances discussed above (tree edit
distance, alignment distance and tree inclusion) are not efficiently
computable.

Interpretability The top-down and bottom-up distances, which
can be computed efficiently, are defined in terms of disruptive edit
operations that may occur at any point in the tree, irrespective of
the depth of the vertex they occur on. We find this unsatisfactory,

2 T 1 and T 2 are isomorphic if there exists a tree isomorphism between them: a
bijection of the nodes which preserves the edges and maps the root of T 1 to the
root of T 2 .

54 M. McVicar et al. / Pattern Recognition Letters 79 (2016) 52–59
especially for applications related to taxonomies, where, for exam-
ple, substituting/deleting a child of the root has a dramatic effect
on the taxonomy, while that is not accounted for in the measure.

As noted above, there exist efficient methods for computing the
consensus between sets of trees. We discovered during the devel-
opment of our own algorithm however that it produces a consen-
sus tree as a natural part of the procedure, which is equivalent to
the strict consensus.
3. SuMoTED — Subtree Moving Tree Edit Distance

This section introduces the first main contribution of the paper:
a novel distance measure between trees, named SuMoTED (Subtree
Moving Tree Edit Distance). For the sake of mathematical rigour,
we formalise this distance in terms of vertex-labelled graphs and
supply all main proofs. The high-level concept however may be un-
derstood by defining a local move on a tree as a small ‘re-wiring’
of the edge connecting a vertex to its parent. The set of all possi-
ble local moves from a source tree then forms an extremely large
graph, with the edit distance being the shortest path from source
to target tree over this graph. We begin by introducing some nota-
tion and basic definitions.

Throughout, T (V , E , R) will represent a tree with directed edges
(v , w) ∈ E ⊆ V × V over a set of vertices V , and root R ∈ V . We de-
note the set of all possible trees with a given vertex set V and root
R as T V,R . We will also use T and T for brevity when V , E , R are
clear from the context. Note that |T V,R | = n n −2 with n = | V | (Ca-
ley’s number, [15]). To simplify notation we also define the parent
function of a vertex:
Definition 1 (Parent function) . The parent function of a tree T (V ,
E , R) on a vertex v , denoted Pa T (v) is defined as Pa T (v) = w ⇔
(w, v) ∈ E.

We also define a particular type of tree in which each vertex is
the child of the root, known as the bush over V with root R .
Definition 2 (Bush) . A tree T (V , E , R) is called the bush over V
with root R , denoted B (V , R) if the edge set E is such that E =
{ (R, v) | v ∈ V \ { R }} .
3.1. Tree edit distances

This subsection introduces our proposed method for computing
the edit distance between trees 3 . Quantifying the distance between
arbitrary trees T , T ′ ∈ T directly is challenging. However, for cer-
tain pairs of extremely similar trees, such a quantification is often
intuitive—for example, if there is exactly one edge which differs.
Denoting the set of (ordered) tree pairs (T , T ′) between which this
distance can be quantified as E, and the corresponding distance as
the output of a real-valued weight function W (T , T ′), we can define
a weighted directed graph over the set of all trees T , which we
call an edit graph :
Definition 3 (Edit graph, local tree edit) . Let E ⊆ T × T represent
a set of ordered tree pairs, with a positive and finite real-valued
weight function W : E → R + mapping each pair (T , T ′) ∈ E onto a
weight W (T , T ′). Then, the weighted graph G (T , E, W) will be re-
ferred to as the edit graph . The operation of changing a tree T into
a neighbour of this tree in the edit graph, will be referred to as a
local tree edit applied to T .

Clearly, to construct this graph, weights representing distances
need to be specified only for the pairs of nearby trees in E . Yet, it

3 Note that Tai [24] coined their method tree edit distance . In this paper we use
this term to refer to a class of methods that quantify the distance between trees in
terms of edit operations, rather than this specific method.

allows one to define a distance d (T , T ′) for any pair of trees (T , T ′)
as the tree edit distance —the weight of the shortest path between
the vertices representing T and T ′ in the edit graph:
Definition 4 (Tree edit distance) . Given an edit graph G (T , E, W)
over all trees T , the tree edit distance d : T × T → R between T
and T ′ is defined by:
d(T , T ′) = min

n,T 0 ,T 1 , ... ,T n
n ∑

i =1 W (T i −1 , T i) ,
s.t. n ∈ Z + , (T i −1 , T i) ∈ E ∀ i, T 0 = T , T n = T ′ ,
if this problem is feasible, and ∞ otherwise.

Criteria for a good edit graph. The challenge in defining a good
tree edit distance is twofold: deciding which trees are not too dis-
tant (which amounts to specifying E), and deciding how distant
precisely these trees are (specifying W). Intuitively, we wish the
edit graph to satisfy the following two criteria:
1. Symmetry: if (T , T ′) ∈ E, then also (T ′ , T) ∈ E, and W (T , T ′) =

W (T ′ , T) .
2. Connectedness: all T , T ′ ∈ T are connected by a path in the edit

graph. This means that the distance between any pair of trees
is finite: d (T , T ′) < ∞ , ∀ T , T ′ ∈ T .
Properties of tree edit distances Any tree edit distance d , sat-

isfying symmetry and connectivity has two appealing properties:
Proposition 1. d is a distance metric over the set of trees T .
Proof. Non-negativity and identity of indiscernibles follow from
the definition. Symmetry follows from the symmetricity of the edit
graph. Finally, the triangle inequality follows directly from the fact
that for any T , T ′ , T ′′ ∈ T , the shortest path between T and T ′ ′ is
at most as long as the sum of the distances of the shortest paths
between T and T ′ , and T ′ and T ′ ′ !

This proposition has an important immediate corollary regard-
ing bushes which we will later rely on:
Corollary 1. For any T , T ′ ∈ T V,R :
d(T , T ′) ≤ d(T , B (V, R)) + d(T ′ , B (V, R)) .
Proof. From symmetricity and the triangle inequality on d . !

In Subsection 3.2 and 3.3 we discuss how the criteria of sym-
metricity and connectedness of the edit graph can be realised. Note
that for simplicity in these sections we assume the label sets of
the source and tree are identical—this assumption will be relaxed
in Subsection 3.5 .
3.2. Local moves as tree edits

We will now define the set of edges E of the edit graph in
terms of a tree operation we refer to as a local move , which
amounts to deleting the edge between a vertex and its parent, and
adding an edge between either the edge’s grandparent, or one of
its siblings:
Definition 5 (Local move) . A local move on a tree T (V , E , R) is
an operation that changes it into a tree T ′ (V , E ′ , R) with E ′ = (E \
{ (Pa T (v) , v) }) ∪ { (w, v) } where w is either Pa T (Pa T (v)) —the grand-
parent of v —or w is a sibling of v . A local move is called upward
when w is Pa T (Pa T (v)) , and downward otherwise.

Local upward and downward moves are illustrated in Fig. 2 . Lo-
cal moves satisfy both our desired criteria:
Proposition 2. With local moves as edits, and a weight function
which assigns equal weights to upward and downward moves, the edit
graph G (T , E, W) is symmetric.

M. McVicar et al. / Pattern Recognition Letters 79 (2016) 52–59 55

a b c

Fig. 2. Local move operations on vertex F . In (a), the vertex F and all its descen-
dants (the triangle) are moved from being a child of B to be a child of A (F’s grand-
parent). (b): F and its descendants become a child of one of F’s siblings, D. Finally,
in (c), F moves to be a child of its other sibling E.
Proof. After a local upward move, the parent of the child vertex
becomes its sibling. Thus, this type of move can be undone by
rewiring the affected edge to a sibling. Similarly, after a down-
ward move, the parent of the child vertex becomes its grandpar-
ent. Thus, this local move can be undone by rewiring the rewired
edge to its grandparent. Since the costs of moves are equal, both
operations have equal cost and G is therefore symmetric. !

Proposition 3. With local moves as edits, the edit graph G (T , E, W)
is connected.
Proof. Any tree T (V , E , R) is connected to the bush B (V , R). Indeed,
an upward move on a tree decreases the sum of the depths of the
vertices in the tree by an amount of at least 1. Furthermore, any
tree that is not a bush will have a vertex to which an upward move
can be applied. Thus, we can successively apply upward moves to T
and be sure that eventually the bush B (V , R) will be reached. From
the symmetry of the edit graph, this also implies that any tree can
be reached from the bush by a sequence of downward moves. Put
together, there exists a path between any arbitrary pair of trees
T (V , E , R) and T ′ (V , E ′ , R), namely one that passes via the bush
B (V , R). !

3.3. The weight function for local moves
Having defined the set of edges E of the edit graph as those

between any pair of trees that are separated by one local move ,
we now need to define the weight function W (T , T ′) of such an
edge. A simple approach would be to set W (T , T ′) = 1 for any pair
(T , T ′) ∈ E . However, note that a local move allows for arbitrarily
large groups of vertices to move up or down the tree quickly and
cheaply. For example, in Fig. 2 (a), we see that all the descendants
of F have been moved up to be children of the root vertex at no
extra cost. To account for the varying number of vertices that are
affected, we therefore define the weight function as the total size
of the subtree with root v . This means that the weight is equal to 1

in the case where v is a leaf, and equal to 1 more than the number
of descendants of v in general.
3.4. A normalised similarity measure

A weakness of our proposed measure is that it will tend to
be larger for larger | V |, such that distances between pairs of trees
of different sizes are hard to compare. Recall that two trees can
always be reached using local moves which passes through the
bush—this is therefore an upper bound on the distance between
two trees. In order to be able to compare scores of trees of differ-
ent sizes, we propose a normalisation scheme in which we divide
the distance between two trees d (T , T ′) by the sum of the distances
from T , T ′ to the bushes: d(T , B (V, R)) + d(T ′ , B (V, R)) . Often it is
also more convenient to use similarity measures, so we define the
normalised similarity between T , T ′ ∈ T V,R as:
s (T , T ′) = 1 − d(T , T ′)

d(T , B (V, R)) + d(T ′ , B (V, R)) ∈ [0 , 1] (1)
3.5. An extension to trees with different label sets

So far, we have assumed that the trees we compare are label-
set consistent (meaning that the number of vertices and number
of labels coincide). When T ∈ T V,R and T ∈ T V ′ ,R with V ̸ = V ′ , we
generalise the tree edit distance metric d as follows: Add each
vertex v ∈ V \ V ′ as a direct child of the root R in T , yielding
T + ∈ T (V ∪ V ′ , R) . Similarly, add each vertex v ∈ V ′ \ V as a direct
child to the root R in T ′ , yielding T ′ + ∈ T (V ∪ V ′ , R) . We then de-
fine the distance d (T , T ′) as d(T + , T ′ +) . Placing ‘unseen’ vertices as
children of the root is conducted as we have no prior information
on any better position to place them. Note that if we consider this
step to be preprocessing, the (un-normalised) distance maintains
its metric property. An example of the optimal set of operations to
convert a source tree into a target tree (as well as to the normal-
ising bush) is shown in Fig. 3 , and is also available animated in-
teractively online at http://www.interesting-patterns.net/ds4dems/
sumoted-demo/ . Python code to compute SuMoTED is available on-
line 4 .
4. An efficient algorithm to compute SuMoTED

Computing SuMoTED amounts to finding the shortest path from
the source tree to the target tree (T , T ′) ∈ E in the edit graph
G (T , E, W) . Effective algorithms (polynomial complexity in number
of vertices and edges) for computing the shortest path between a
given pair of vertices in a graph exist [10] . However, the graph in
our case is far too large for such an approach to be feasible (re-
call from earlier: |T V,r | = | V | | V |−2). Remarkably, we have discovered
a fast algorithm for computing SuMoTED between any pair of trees
that is polynomial (quadratic) in the size of the trees , rather than in
the size of the edit graph. The current section outlines this algo-
rithm, which is based on the following theorem:
Theorem 1. Given trees T , T ′ ∈ T , the shortest path in the edit graph
between T and T ′ is equally as long as the shortest path that consists
of a sequence of local upward moves, followed by a sequence of local
downward moves.

The proof of the theorem rests on the following Lemma:
Lemma 1. Let (T 0 , . . . , T n) be a shortest path of trees between T 0 and
T n . Assume that there exists 0 < i < n such that T i is reached from
T i −1 by a downward move, and T i +1 is reached from T i by an upward
move. Then it is always possible to replace the subpath (T i −1 , T i , T i +1)

4 https://github.com/mattmcvicar/SuMoTED

http://www.interesting-patterns.net/ds4dems/sumoted-demo/
https://github.com/mattmcvicar/SuMoTED

56 M. McVicar et al. / Pattern Recognition Letters 79 (2016) 52–59

Fig. 3. Example of our proposed edit distance d (T , T ′). Intermediate trees are shown between blue arrows, together with the cost of edit. The severed edge for each tree in
the bottom row are shown as dashed arrows. This (optimal) overall path has length 3 + 1 + 2 + 1 + 1 + 1 = 9 , normalised similarity 1 − (9 / (9 + 4)) ≈ 0 . 31 . The consensus
DAG is shown in the top-right, from which we have generated the tree using solid arrows. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
for another subpath between T i −1 and T i +1 of equal cost that consists
of a sequence of upward moves followed by a sequence of downward
moves.
Proof. Let (Pa T i −1 (v) , v) be the edge involved in the downward
move on T i −1 , and (Pa T i (w) , w) the edge involved in the upward
move on T i . These moves can simply be swapped without alter-
ing the resulting tree T i +1 and the total cost, as long as Pa T i −1 (v) ̸ =
P a T i (w) . When P a T i −1 (v) = Pa T i (w) , on the other hand, the two
moves can be replaced with two upward moves followed by one
downward move. Referring to Pa T i −1 (v) = Pa T i (w) as u , and to the
parent of u (in T i −1 , T i , as well as T i +1) as z , these moves should
be:
1. An upward move of edge (u, v) , replacing (u, v) with (z, v) .
2. An upward move of edge (u, w) , replacing (u, w) with (z, w) .
3. A downward move of edge (z, v) , replacing (z, v) with (w, v) .

It is easy to verify that these three moves have the same cost
as the total cost of the original downward and upward moves. !

Proof of Theorem 1. Given any optimal path, iteratively apply
Lemma 1 until no more downward moves can be found that are
followed by an upward move. !

Theorem 1 implies that the edit distance d (T , T ′) can be ex-
pressed in terms of a consensus tree T c :
Definition 6 (Consensus tree) . A consensus tree for two trees
T , T ′ ∈ T is a tree T c ∈ T that can be reached from T as well as
from T ′ using local upward moves only.

By symmetry, Theorem 1 can be rephrased as saying: a shortest
path from T to T ′ exists in the edit graph that consists of upward
moves to T c , followed by downward moves to T ′ . Theorem 2 shows
that the distance between T and T c which can be reached using
upward moves only from T depends only on T , T c :
Theorem 2. Define a partial order between all vertices in a given tree
T as follows: 5
P T = { (v , w) | w is a descendant of v in T } ,

5 P T can equivalently be defined as the reflexive transitive closure of the edge set
E for a tree T(V , E , R) .

where we consider v to be a trivial descendant of itself. The to-
tal distance of any path (T 0 , . . . , T c) in the edit graph for which T i
is reached by a local upward move from T i −1 for all i , is given by
d(T 0 , T c) = | P T 0 | − | P T c | .
Proof. When an upward move on vertex v is applied to T i to yield
T i +1 , the number of pairs removed from P T i is equal to the size of
the subtree rooted at v . Indeed, the only change is that all descen-
dants of v (including v itself) no longer have Pa T i (v) as an ances-
tor. Thus, d(T i , T i +1) = | P T i | − | P T i +1 | . For a sequence of local upward
moves (T 0 , T 1 , . . . , T c) , this means that the total path length in the
edit graph is ∑ c

i =1 d(T i −1 , T i) = ∑ c
i =1 | P T i −1 | − | P T i | = | P T 0 | − | P T c | . !

The following is a direct consequence of the definition of
SuMoTED and the previous theorem:
Corollary 2. Given T , T ′ ∈ T : d(T , T ′) = min T c | P T | + | P T ′ | − 2 | P T c | ,
subject to T c being a consensus tree.

Thus, to compute the d (T , T ′), all that is needed is to compute
the size of the largest partial order P T c over all consensus trees T c
for T and T ′ . Clearly, P T c ⊆ P T ∩ P T ′ , and when the Hasse diagram
[3] of P T ∩ P T ′ is a tree, the optimal P T c = P T ∩ P T ′ . However, in gen-
eral, the Hasse diagram of P T ∩ P T ′ is a DAG. The task of maximizing
| P T c | then amounts to finding a subtree of this DAG representing
the largest possible partial order. This optimal consensus tree can
be found via a layer-assignment algorithm known as the Longest
Path Algorithm , which has linear time complexity [19] . Briefly, given
P T ∩ P T ′ this algorithm proceeds as follows:
• Initialise T c (V c , E c , r) with V c = { r} , E c = {} .
• Iterate: For each vertex v for which all w with (w, v) ∈ P T ∩ P T ′

are in T c , identify the deepest such vertex w in T c , and insert v
into V c and (w, v) into E c .
This algorithm ensures that each vertex is maximally deep in

the tree, such that the transitive closure of the tree is as large as
possible. The detailed proof works by induction: It is true for the
root, and given that it is true for a partial tree already built, it is
also true for the new vertices and edges added in each iteration. It
can be verified that the overall computational complexity of com-
puting SuMoTED for T , T ′ ∈ T V,r is O (| V | 2).

M. McVicar et al. / Pattern Recognition Letters 79 (2016) 52–59 57

Fig. 4. Edit cost (below diagonal) and normalised similarity (above diagonal) be-
tween the ground truth Deezer taxonomy and annotators (A 1–A 6) and for the
Ground Truth. Right: for the ReverbNation dataset.
5. Experiments

In this section we conduct a case study, applying SuMoTED to
three hierarchical datasets which describe popular music genres.
The genre of a song is a high-level musical attribute frequently
used for music organisation, playlisting, searching, and recommen-
dation. Often, songs are tagged with a set of labels which are hier-
archically arranged into a musical genre taxonomy. Unfortunately,
different musical experts and professional music services use very
different sets of genre labels in their categorisation schemes. Even
when these label sets overlap, they are often structured differently
which complicates their use for the applications listed above. To
investigate how SuMoTED could be used to analyse these kinds of
data, we experimented with three datasets: a small dataset where
the “true” hierarchy is known (5.1) , a medium-size dataset with
no existing ground truth (5.2) , and a large-scale dataset consisting
of commercially-used music genre hierarchies where the label sets
do not coincide (5.3) . Finally, we investigate the scalability of our
method in 5.4 .
5.1. Deezer dataset

The music genre taxonomy used by the web-based music
streaming service Deezer was used in these experiments, featur-
ing n = 101 genres. We asked 6 annotators (referred to as A 1–A 6
hereafter) to construct a taxonomy from these genres without con-
sulting the reference annotation or each other. We then computed
the SuMoTED (via corollary 2) and normalised similarity (Eq. 1) be-
tween each pair of annotations. Results can be seen on the left
of Fig. 4 . From this Figure, we see that the normalised similarities
are all equal to unity when the taxonomies are equal (diagonal en-
tries), as expected. We see that annotator A 4 was the closest to
the Deezer reference (normalised similarity 0.72), and that annota-
tors A 2 and A 5 were the most similar to each other (0.75). Annota-
tor A 5 has the highest mean similarity to other taxonomies (0.66),
meaning A 5 could be considered the ‘centre of mass’ of the set of
references. We were also interested in the overlap between anno-
tations, so we computed the Hasse diagram of the intersection of
all annotations in Fig. 5 . Interestingly, this Figure shows that there
was no consensus as to placement of rock and its descendants in
the taxonomy. For example, A 2 listed alternative as a child of rock ,
whereas in the Deezer reference this relationship was reversed.
5.2. ReverbNation dataset

From an existing project, we had 251 unique genre labels stored
from a set of over 50, 0 0 0 independent UK music artists from
ReverbNation.com . As before, A 1–A 6 were asked to make a taxon-
omy from this larger dataset. The annotator similarities are shown
in the right matrix of Fig. 4 . From this matrix, we see that simi-

Fig. 5. Hasse diagram for the intersection of the Deezer taxonomies. Genres which
were found to be a child of Music with no further children in common are omitted
for brevity.
Table 1
Comparison of existing taxonomies used in industry. Above diagonal entries show
normalised distance, below show Jaccard index.

Normalised similarity
A(allmusic) D(eezer) iT(unes) W(iki)

Jaccard A – 0.01 0.05 0.07
D 0.04 – 0.12 0.01
iT 0.16 0.16 – 0.06
W 0.15 0.03 0.10 –

larities are generally lower—we found that this was a result of the
increased depth of some of the taxonomies specified in the Reverb-
Nation dataset. For example, A 4 had one vertex of depth 6: Music
→ electronic → edm → uk → dnb → breakbeat → breakcore —two
levels deeper than any vertex in 5.1 . Interestingly, in both sets of
experiments A 2 and A 5 had the highest similarity, followed by A 4
and A 5.
5.3. Commercial datasets

We sourced four genre hierarchies for use in these experi-
ments: the Deezer dataset used above (n = 101 genres), Allmusic
(n = 1062), iTunes (340), and Wikipedia (730). As the label sets of
these taxonomies did not coincide, we computed the Jaccard sim-
ilarity of the label sets to investigate how similar they were. See
Table 1 for these results. We see from this Table that the similari-
ties between taxonomies (below-diagonal) are low in magnitude.
These values highlight and quantify the huge discrepancies be-
tween the choice of genre labels companies use when constructing
a taxonomy. Above-diagonal entries are also close to 0.0, indicat-
ing that there is little similarity between industrially-used music
genre hierarchies—something speculated about in previous work
[2] but never quantified. Given that these similarities were close
to zero, we wondered if they were significantly larger than ran-
dom. To assess this, we conducted a permutation test : for each tree
we generated a number of trees with identical topology but ran-
domly permuted labels. For given similarity between ‘true’ trees S ,
an empirical p-value was then computed:
ˆ p = | permuted trees with similarity ≥ S| + 1

| permuted trees | + 1
However, in all our experiments (Subsection 5.1 –5.3), we never
found a random tree pair with similarity greater than or equal to

http://ReverbNation.com

58 M. McVicar et al. / Pattern Recognition Letters 79 (2016) 52–59

Fig. 6. Scalability of our algorithm in practice. 10 Random trees with n (horizon-
tal axis) nodes were created and their average distance computation time (vertical
axis) was measured.
the true tree pairs, for 99 randomly-generated trees. Results were
in fact generally around 3 orders of magnitude lower. This resulted
in empirical p-values of 0.01 and indicates that all the similari-
ties we computed were significantly more self-similar than random
taxonomies at the 1% level.
5.4. Scalability experiments

We were interested in seeing how our algorithm scales with
input size. To this end, we computed the time required to compute
the distance between several random trees with a fixed number of
nodes. Random trees with n nodes labelled { 1 , . . . , n } with fixed
root 1 were created as follows: labels 2 , . . . , n were first randomly
permuted, and then attached to one of the existing nodes in the
tree until all labels were exhausted.

We created 10 trees for each n using the above procedure, com-
puted their pairwise distance, and recorded their average compu-
tation time. Experiments were conducted in the Python program-
ming language on a laptop with 2.6 GHz Intel Core i5 processor
and 8GB 1600 MHz DDR3 memory running OSX El Capitan 10.11.2.
Results can be seen in Fig. 6 . From this Figure, we see that our
method scales reasonably well to large tree sizes. We can com-
pute the distance between two trees with 10 0 0 nodes (consistent
with industrial datasets) comfortably in under 1 min. The quadratic
trend seen in the Figure is consistent with the theoretical result
presented in Section 4 . The code was implemented in the most
intuitive way possible, with no particular optimisation for data
structures or subroutines—further improvements in time complex-
ity may therefore improve the results seen in Fig. 6 . Recall that the
implementation is available online.
6. Conclusions and future work

We have presented a novel distance between trees, called
SuMoTED, defined as an edit distance via local moves . SuMoTED

has several appealing properties: it is a metric distance in the un-
normalised setting, is computable in quadratic time, and is appli-
cable to trees with different label sets. As a case study, we used
this distance metric to investigate the consistency between anno-
tators and existing music genre taxonomies, finding high similarity
between human-generated taxonomies in the case of small label
sets. We were also able to construct consensus annotations using
our method, which gave musical insight into agreed-upon hierar-
chical genre relationships amongst annotators. Besides the study
of commonalities and differences between various trees (such as
taxonomies), SuMoTED is ideally suited for more advanced analy-
ses such as clustering trees. Furthermore, it can be used to quan-
tify the performance of methods designed for inferring taxonomies
from data.

We focussed on music genre taxonomies in the current paper,
but are excited by the prospect of using our method to compute
taxonomy similarities in some of the domains listed in the intro-
duction of this paper. For example, we could use SuMoTED to in-
vestigate the similarities between biological or textual trees. A fur-
ther idea for future research is the investigation of information cas-
cades [12] , where trees are formed by information flowing through
a network. Also, we would like to investigate if our method can be
used to construct and evaluate methods which infer a taxonomy
from data, as this could be useful is assessing how reliable such a
taxonomy is. Finally, it appeared that there are no results on the
complexity of existing tree distance measures for the case when
all node labels are unique. This would also be worth investigating.
Acknowledgements

This work was sponsored by EPSRC grant number
EP/M0 0 0 060/1 and the ERC Consolidator Grant FORSIED (project
reference 615517).
References

[1] E.N. Adams III , Consensus techniques and the comparison of taxonomic trees,
Syst. Zool. 21 (4) (1972) 390–397 .

[2] J. Aucouturier , F. Pachet , Representing musical genre: a state of the art, J. New
Music Res. 32 (1) (2003) 83–93 .

[3] K. Baker , P.C. Fishburn , F. Roberts , Partial orders of dimension 2, Networks 2
(1) (1972) 11–28 .

[4] J.L. Balcázar , A. Bifet , A. Lozano , Mining frequent closed rooted trees, Mach.
Learn. 78 (1-2) (2010) 1–33 .

[5] P. Bille , A survey on tree edit distance and related problems, Theor. Comput.
Sci. 337 (1) (2005) 217–239 .

[6] F.J. Brandenburg , A. Gleißner , A. Hofmeier , Comparing and aggregating partial
orders with kendall tau distances, in: WALCOM: Algorithms and Computation,
Springer, 2012, pp. 88–99 .

[7] K. Bremer , Combinable component consensus, Cladistics 6 (4) (1990) 369–372 .
[8] Y. Chi , R. Muntz , J. Nijssen S.and Kok , Frequent subtree mining–an overview,

Fundam. Inform. 66 (1-2) (2005a) 161–198 .
[9] Y. Chi , Y. Xia , Y. Yang , R. Muntz , Mining closed and maximal frequent subtrees

from databases of labeled rooted trees, Knowl. Data Eng. IEEE Trans. 17 (2)
(2005b) 190–202 .

[10] T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein , et al. , Introduction to algo-
rithms, 2, MIT Press Cambridge, 2001 .

[11] W.H. Day , Optimal algorithms for comparing trees with labeled leaves, J. Clas-
sif. 2 (1) (1985) 7–28 .

[12] W. Galuba , K. Aberer , D. Chakraborty , Z. Despotovic , W. Kellerer , Outtweeting
the twitterers-predicting information cascades in microblogs., WOSN 10 (2010)
3–11 .

[13] X. Gao , B. Xiao , D. Tao , X. Li , A survey of graph edit distance, Pattern Anal.
Appl. 13 (1) (2010) 113–129 .

[14] J. Hsiang , M. Rusinowitch , Proving refutational completeness of theorem-prov-
ing strategies: the transfinite semantic tree method, J. ACM (JACM) 38 (3)
(1991) 558–586 .

[15] D.E. Knuth , The art of computer programming, volume 1: Fundamental algo-
rithms. 1968, Seminumer. Algorithms 3 (1969) .

[16] E. Malmi , N. Tatti , A. Gionis , Beyond rankings: comparing directed acyclic
graphs, Data Min. Knowl. Discov. 29 (5) (2015) 1–25 .

[17] T. Margush , F.R. McMorris , Consensusn-trees, Bull. Math. Biol. 43 (2) (1981)
239–244 .

[18] T.A. McMahon , R.E. Kronauer , Tree structures: deducing the principle of me-
chanical design, J. Theor. Biol. 59 (2) (1976) 443–466 .

http://dx.doi.org/10.13039/501100000266
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0018

M. McVicar et al. / Pattern Recognition Letters 79 (2016) 52–59 59
[19] K. Mehlhorn , Data Structures and Algorithms: Graph Algorithms and NP-Com-

pleteness, Vol. 2, Springer-Verlag, Heidelberg, Germany, 1984 .
[20] G. Nelson , Cladistic analysis and synthesis: principles and definitions, with a

historical note on adanson’s familles des plantes (1763–1764), Syst. Zool. 28
(1) (1979) 1–21 .

[21] S.M. Selkow , The tree-to-tree editing problem, Inf. Process. Lett. 6 (6) (1977)
184–186 .

[22] D. Shasha , J.T. Wang , S. Zhang , Unordered tree mining with applications to
phylogeny, in: Data Engineering, 2004. Proceedings. 20th International Confer-
ence on, IEEE, 2004, pp. 708–719 .

[23] R.E. Stobaugh , Chemical substructure searching, J. Chem. Inf. Comput. Sci. 25
(3) (1985) 271–275 .

[24] K.-C. Tai , The tree-to-tree correction problem, J. ACM (JACM) 26 (3) (1979)
422–433 .

[25] G. Tzanetakis , P. Cook , Musical genre classification of audio signals, IEEE Trans.
Speech Audio Process. 10 (5) (2002) 293–302 .

[26] K. Zhang , D. Shasha , Simple fast algorithms for the editing distance be-
tween trees and related problems, SIAM J. Comput. 18 (6) (1989) 1245–
1262 .

http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0020
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0020
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0021
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0021
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0024
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0024
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0025
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0025
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0025
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0026
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0026
http://refhub.elsevier.com/S0167-8655(16)30064-2/sbref0026

	SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees
	1 Introduction
	2 Related work
	2.1 Distances between trees
	2.2 Computing consensus trees
	2.3 Limitations of existing work

	3 SuMoTED - Subtree Moving Tree Edit Distance
	3.1 Tree edit distances
	3.2 Local moves as tree edits
	3.3 The weight function for local moves
	3.4 A normalised similarity measure
	3.5 An extension to trees with different label sets

	4 An efficient algorithm to compute SuMoTED
	5 Experiments
	5.1 Deezer dataset
	5.2 ReverbNation dataset
	5.3 Commercial datasets
	5.4 Scalability experiments

	6 Conclusions and future work
	 Acknowledgements
	 References

