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a b s t r a c t 
Defining and computing distances between tree structures is a classical area of study in theoretical com- 
puter science, with practical applications in the areas of computational biology, information retrieval, text 
analysis, and many others. In this paper, we focus on rooted, unordered, uniquely-labelled trees such as 
taxonomies and other hierarchies. For trees as these, we introduce the intuitive concept of a ‘local move’ 
operation as an atomic edit of a tree. We then introduce SuMoTED, a new edit distance measure between 
such trees, defined as the minimal number of local moves required to convert one tree into another. We 
show how SuMoTED can be computed using a scalable algorithm with quadratic time complexity. Finally, 
we demonstrate its use on a collection of music genre taxonomies. 

© 2016 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 
The problem of computing how (dis)similar two trees are, and 

the related problem of computing a consensus between a set of 
trees, has applications in computational biology, chemistry, music 
genre analysis, and automatic theorem-proving [14,18,23,25] . For 
example, calculating the distance between RNA secondary struc- 
tures (which have a tree structure) is necessary to understand 
their comparative functionality [26] . Taxonomies, such as the one 
shown in Fig. 1 , offer another natural application area. Indeed, 
quantifying the similarity between different taxonomies may pro- 
vide insight into what might be the consensus as well as the 
nature of any subjective differences between different taxonomy 
creators. 

Given the wide range of application areas listed above, it is not 
surprising that computing the similarity between trees is an ac- 
tively studied problem within computer science, and the literature 
is abundant with similarity measures for various types of trees. 
However, computational tractability is often a problem. For exam- 
ple, for rooted, unordered, fully-labelled trees (trees with a root, in 
which every vertex is labelled and the left-to-right order of siblings 
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carries no significance, such as taxonomies and other hierarchies), 
a recent survey [5] discusses three distances that are all NP-hard. 
More details are presented in Section 2 . 

The current paper aims to tackle this problem in a specific 
setting by introducing the Subtree Moving Tree Edit Distance 
(SuMoTED): a new tree distance measure with several appealing 
properties. First, it is an edit distance, defined intuitively as the 
minimum number of atomic local moves of vertices up and down 
required to turn one tree into the other, weighted by the size of 
the moved subtree. Second, it is not only intuitive but is also a 
metric distance, meaning it is easy to use in a wide range of in- 
formation retrieval and machine learning algorithms. For example, 
distance-based methods for clustering often require the distance 
measure to be metric, and metric properties are also used for ef- 
ficient document retrieval in databases. Third, it can be computed 
in a time that is quadratic in the total number of vertices in the 
trees. Finally, our method produces a consensus tree as part of the 
procedure, allowing us to compute the agreement between a set of 
trees at no additional cost. 

We begin this paper with a literature survey on tree distances 
in Section 2 . Subsequently, we define SuMoTED as a novel dis- 
tance measure between two rooted, unordered, uniquely-labelled 
trees ( Section 3 ). We then give an efficient algorithm for its com- 
putation ( Section 4 ), before evaluating SuMoTED experimentally in 
Section 5 and concluding in Section 6 . 

http://dx.doi.org/10.1016/j.patrec.2016.04.012 
0167-8655/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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Fig. 1. Music genre hierarchy proposed by Tzanetakis and Cook [25] . 
2. Related work 
2.1. Distances between trees 

The task of defining and computing distances between trees 
can be considered a special case of the graph comparison prob- 
lem, which has an extensive literature: see Gao et al. [13] for a 
summary. When the graphs are directed and contain no cycles, the 
graph becomes a Directed Acyclic Graph (DAG)—some authors have 
studied the distances between DAGs [6,16] . Most graph and DAG 
distances could ofcourse be deployed for trees. Despite this, often 
the particular structure of trees such as the notion of a root, the 
unique parent of a vertex, or sibling relationships, are important 
in designing meaningful tree distance measures, such that mea- 
sures for graphs become unnatural when applied to trees. 1 For 
this reason, defining tree distances has become and active research 
topic. Bille [5] offers a comprehensive overview of the most com- 
mon methods for comparing trees, including best-known time and 
space complexity bounds. Here we give only an overview, referring 
the reader to Bille for further details. 

The first and most widely-used method for comparing trees is 
the tree edit distance , introduced by Tai [24] as an extension of the 
well-known string edit distance. Tai allows insertion, deletion and 
substitution of vertices in order to convert a source tree T s into a 
target tree T t . A cost function is then applied to these operations 
(most commonly setting the cost of each transformation to unity), 
and the minimum number of these operations is defined to be the 
distance between T s and T t . Several algorithms have been proposed 
to efficiently solve the tree edit distance, but only on ordered trees 
or other special cases. The case for unordered trees is known to be 
NP-hard [5] . In the original formulation of the tree edit distance, 
inserting a vertex u between a vertex v and its parent p meant that 
u became a child of p , and v and all of its descendants became a 
child of u . Restrictions were also introduced such as the top-down 
distance [21] which only allowed insertions to occur at leaves. An- 
other modification is the bottom-up distance: let the number of 
nodes in the source and target tree be n s and n t and the size of 
the largest common forest of T s and T t be f . The distance between 
T s and T t is then defined to be 1 − f/ max (n s , n t ) . The best known 

1 This is particularly true for edit distances: edit operations for graphs could cre- 
ate loops in a tree, which would lead to problems in interpretability. 

algorithm for the bottom-up problem is linear in n s and n t , and is 
applicable to both ordered and unordered trees. 

Tree alignment is an alternative method and proceeds as follows. 
Nodes with no labels are inserted into T s and T t until they are iso- 
morphic 2 , producing T ′ s and T ′ t . This produces an alignment tree 
A , whose vertex labels are pairs of labels taken from T ′ s and T ′ t . 
The cost of A is the total cost of substituting each vertex pair such 
that they are equal—the tree alignment distance between T s and 
T t is the minimum such cost. Finally, the tree inclusion problem is 
to determine if T t may be obtained from T s via deleting nodes. As 
with the tree edit distance for unordered trees, computing either 
the tree alignment distance or the tree inclusion problem is MAX 
SNP-hard [5] . 
2.2. Computing consensus trees 

Given a set of trees, a distinct but clearly related task to the 
tree distance problem is to determine what information is shared 
by the set. Shasha et al. [22] claims there are five commonly- 
used methods for achieving this, which we review here. The first 
was introduced by Adams III [1] and is known as the Adams con- 
sensus in the literature. This method is applicable to both fully- 
labelled and leaf-labelled trees (where only leaf vertices have la- 
bels). Leaf-labelled trees are more common in taxonomic biological 
applications. Next, Day [11] proposed a new method for comput- 
ing the consensus, and also introduced a distance measure based 
on the number of common subtrees found within two trees in the 
collection—this method is known as the strict consensus . 

Margush and McMorris [17] pointed out that in the case that 
many of the trees in a large set are identical (say, equal to T ) and 
one differs from T by a single edge, that the consensus should be 
equal to T . To achieve this, he introduced the majority rule con- 
sensus , where a parent–child relationship in the consensus is only 
introduced if at least half the trees share the same link. The semi- 
strict consensus tree for leaf-labelled trees [7] includes all subtrees 
by Adams’ method, but also any subtrees which are not contra- 
dicted by other members of the group. Finally, the Nelson consen- 
sus [20] consists of the set of mutually compatible subtrees that 
are most frequently replicated in the group. 

Interestingly, the computation of a consensus tree can be con- 
sidered a special case of frequent subtree mining, an area of re- 
search which has received a good deal of attention in recent years 
[4,8,9] . 
2.3. Limitations of existing work 

As seen above there are many existing methods which either 
compute the distance between trees, or compute a consensus be- 
tween a set of trees. Yet, all existing distance measures suffer from 
one of both of the following problems: 

Computational cost We are interested in the case of uniquely- 
labelled unordered trees as these occur frequently in application 
areas (such as biological sequence analysis, text mining and mu- 
sic information retrieval). Although, to the best of our knowledge, 
this specific case has not been studied, for general unordered la- 
belled trees the three existing distances discussed above (tree edit 
distance, alignment distance and tree inclusion) are not efficiently 
computable. 

Interpretability The top-down and bottom-up distances, which 
can be computed efficiently, are defined in terms of disruptive edit 
operations that may occur at any point in the tree, irrespective of 
the depth of the vertex they occur on. We find this unsatisfactory, 

2 T 1 and T 2 are isomorphic if there exists a tree isomorphism between them: a 
bijection of the nodes which preserves the edges and maps the root of T 1 to the 
root of T 2 . 
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especially for applications related to taxonomies, where, for exam- 
ple, substituting/deleting a child of the root has a dramatic effect 
on the taxonomy, while that is not accounted for in the measure. 

As noted above, there exist efficient methods for computing the 
consensus between sets of trees. We discovered during the devel- 
opment of our own algorithm however that it produces a consen- 
sus tree as a natural part of the procedure, which is equivalent to 
the strict consensus. 
3. SuMoTED — Subtree Moving Tree Edit Distance 

This section introduces the first main contribution of the paper: 
a novel distance measure between trees, named SuMoTED (Subtree 
Moving Tree Edit Distance). For the sake of mathematical rigour, 
we formalise this distance in terms of vertex-labelled graphs and 
supply all main proofs. The high-level concept however may be un- 
derstood by defining a local move on a tree as a small ‘re-wiring’ 
of the edge connecting a vertex to its parent. The set of all possi- 
ble local moves from a source tree then forms an extremely large 
graph, with the edit distance being the shortest path from source 
to target tree over this graph. We begin by introducing some nota- 
tion and basic definitions. 

Throughout, T ( V , E , R ) will represent a tree with directed edges 
(v , w ) ∈ E ⊆ V × V over a set of vertices V , and root R ∈ V . We de- 
note the set of all possible trees with a given vertex set V and root 
R as T V,R . We will also use T and T for brevity when V , E , R are 
clear from the context. Note that |T V,R | = n n −2 with n = | V | (Ca- 
ley’s number, [15] ). To simplify notation we also define the parent 
function of a vertex: 
Definition 1 (Parent function) . The parent function of a tree T ( V , 
E , R ) on a vertex v , denoted Pa T (v ) is defined as Pa T (v ) = w ⇔ 
(w, v ) ∈ E. 

We also define a particular type of tree in which each vertex is 
the child of the root, known as the bush over V with root R . 
Definition 2 (Bush) . A tree T ( V , E , R ) is called the bush over V 
with root R , denoted B ( V , R ) if the edge set E is such that E = 
{ (R, v ) | v ∈ V \ { R }} . 
3.1. Tree edit distances 

This subsection introduces our proposed method for computing 
the edit distance between trees 3 . Quantifying the distance between 
arbitrary trees T , T ′ ∈ T directly is challenging. However, for cer- 
tain pairs of extremely similar trees, such a quantification is often 
intuitive—for example, if there is exactly one edge which differs. 
Denoting the set of (ordered) tree pairs ( T , T ′ ) between which this 
distance can be quantified as E, and the corresponding distance as 
the output of a real-valued weight function W ( T , T ′ ), we can define 
a weighted directed graph over the set of all trees T , which we 
call an edit graph : 
Definition 3 (Edit graph, local tree edit) . Let E ⊆ T × T represent 
a set of ordered tree pairs, with a positive and finite real-valued 
weight function W : E → R + mapping each pair (T , T ′ ) ∈ E onto a 
weight W ( T , T ′ ). Then, the weighted graph G (T , E, W ) will be re- 
ferred to as the edit graph . The operation of changing a tree T into 
a neighbour of this tree in the edit graph, will be referred to as a 
local tree edit applied to T . 

Clearly, to construct this graph, weights representing distances 
need to be specified only for the pairs of nearby trees in E . Yet, it 

3 Note that Tai [24] coined their method tree edit distance . In this paper we use 
this term to refer to a class of methods that quantify the distance between trees in 
terms of edit operations, rather than this specific method. 

allows one to define a distance d ( T , T ′ ) for any pair of trees ( T , T ′ ) 
as the tree edit distance —the weight of the shortest path between 
the vertices representing T and T ′ in the edit graph: 
Definition 4 (Tree edit distance) . Given an edit graph G (T , E, W ) 
over all trees T , the tree edit distance d : T × T → R between T 
and T ′ is defined by: 
d(T , T ′ ) = min 

n,T 0 ,T 1 , ... ,T n 
n ∑ 

i =1 W (T i −1 , T i ) , 
s.t. n ∈ Z + , (T i −1 , T i ) ∈ E ∀ i, T 0 = T , T n = T ′ , 
if this problem is feasible, and ∞ otherwise. 

Criteria for a good edit graph. The challenge in defining a good 
tree edit distance is twofold: deciding which trees are not too dis- 
tant (which amounts to specifying E), and deciding how distant 
precisely these trees are (specifying W ). Intuitively, we wish the 
edit graph to satisfy the following two criteria: 
1. Symmetry: if (T , T ′ ) ∈ E, then also (T ′ , T ) ∈ E, and W (T , T ′ ) = 

W (T ′ , T ) . 
2. Connectedness: all T , T ′ ∈ T are connected by a path in the edit 

graph. This means that the distance between any pair of trees 
is finite: d ( T , T ′ ) < ∞ , ∀ T , T ′ ∈ T . 
Properties of tree edit distances Any tree edit distance d , sat- 

isfying symmetry and connectivity has two appealing properties: 
Proposition 1. d is a distance metric over the set of trees T . 
Proof. Non-negativity and identity of indiscernibles follow from 
the definition. Symmetry follows from the symmetricity of the edit 
graph. Finally, the triangle inequality follows directly from the fact 
that for any T , T ′ , T ′′ ∈ T , the shortest path between T and T ′ ′ is 
at most as long as the sum of the distances of the shortest paths 
between T and T ′ , and T ′ and T ′ ′ !

This proposition has an important immediate corollary regard- 
ing bushes which we will later rely on: 
Corollary 1. For any T , T ′ ∈ T V,R : 
d(T , T ′ ) ≤ d(T , B (V, R )) + d(T ′ , B (V, R )) . 
Proof. From symmetricity and the triangle inequality on d . !

In Subsection 3.2 and 3.3 we discuss how the criteria of sym- 
metricity and connectedness of the edit graph can be realised. Note 
that for simplicity in these sections we assume the label sets of 
the source and tree are identical—this assumption will be relaxed 
in Subsection 3.5 . 
3.2. Local moves as tree edits 

We will now define the set of edges E of the edit graph in 
terms of a tree operation we refer to as a local move , which 
amounts to deleting the edge between a vertex and its parent, and 
adding an edge between either the edge’s grandparent, or one of 
its siblings: 
Definition 5 (Local move) . A local move on a tree T ( V , E , R ) is 
an operation that changes it into a tree T ′ ( V , E ′ , R ) with E ′ = (E \ 
{ ( Pa T (v ) , v ) } ) ∪ { (w, v ) } where w is either Pa T ( Pa T (v )) —the grand- 
parent of v —or w is a sibling of v . A local move is called upward 
when w is Pa T ( Pa T (v )) , and downward otherwise. 

Local upward and downward moves are illustrated in Fig. 2 . Lo- 
cal moves satisfy both our desired criteria: 
Proposition 2. With local moves as edits, and a weight function 
which assigns equal weights to upward and downward moves, the edit 
graph G (T , E, W ) is symmetric. 
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a b c

Fig. 2. Local move operations on vertex F . In (a), the vertex F and all its descen- 
dants (the triangle) are moved from being a child of B to be a child of A (F’s grand- 
parent). (b): F and its descendants become a child of one of F’s siblings, D. Finally, 
in (c), F moves to be a child of its other sibling E. 
Proof. After a local upward move, the parent of the child vertex 
becomes its sibling. Thus, this type of move can be undone by 
rewiring the affected edge to a sibling. Similarly, after a down- 
ward move, the parent of the child vertex becomes its grandpar- 
ent. Thus, this local move can be undone by rewiring the rewired 
edge to its grandparent. Since the costs of moves are equal, both 
operations have equal cost and G is therefore symmetric. !

Proposition 3. With local moves as edits, the edit graph G (T , E, W ) 
is connected. 
Proof. Any tree T ( V , E , R ) is connected to the bush B ( V , R ). Indeed, 
an upward move on a tree decreases the sum of the depths of the 
vertices in the tree by an amount of at least 1. Furthermore, any 
tree that is not a bush will have a vertex to which an upward move 
can be applied. Thus, we can successively apply upward moves to T 
and be sure that eventually the bush B ( V , R ) will be reached. From 
the symmetry of the edit graph, this also implies that any tree can 
be reached from the bush by a sequence of downward moves. Put 
together, there exists a path between any arbitrary pair of trees 
T ( V , E , R ) and T ′ ( V , E ′ , R ), namely one that passes via the bush 
B ( V , R ). !

3.3. The weight function for local moves 
Having defined the set of edges E of the edit graph as those 

between any pair of trees that are separated by one local move , 
we now need to define the weight function W ( T , T ′ ) of such an 
edge. A simple approach would be to set W (T , T ′ ) = 1 for any pair 
(T , T ′ ) ∈ E . However, note that a local move allows for arbitrarily 
large groups of vertices to move up or down the tree quickly and 
cheaply. For example, in Fig. 2 ( a ), we see that all the descendants 
of F have been moved up to be children of the root vertex at no 
extra cost. To account for the varying number of vertices that are 
affected, we therefore define the weight function as the total size 
of the subtree with root v . This means that the weight is equal to 1 

in the case where v is a leaf, and equal to 1 more than the number 
of descendants of v in general. 
3.4. A normalised similarity measure 

A weakness of our proposed measure is that it will tend to 
be larger for larger | V |, such that distances between pairs of trees 
of different sizes are hard to compare. Recall that two trees can 
always be reached using local moves which passes through the 
bush—this is therefore an upper bound on the distance between 
two trees. In order to be able to compare scores of trees of differ- 
ent sizes, we propose a normalisation scheme in which we divide 
the distance between two trees d ( T , T ′ ) by the sum of the distances 
from T , T ′ to the bushes: d(T , B (V, R )) + d(T ′ , B (V, R )) . Often it is 
also more convenient to use similarity measures, so we define the 
normalised similarity between T , T ′ ∈ T V,R as: 
s (T , T ′ ) = 1 − d(T , T ′ ) 

d(T , B (V, R )) + d(T ′ , B (V, R )) ∈ [0 , 1] (1) 
3.5. An extension to trees with different label sets 

So far, we have assumed that the trees we compare are label- 
set consistent (meaning that the number of vertices and number 
of labels coincide). When T ∈ T V,R and T ∈ T V ′ ,R with V ̸ = V ′ , we 
generalise the tree edit distance metric d as follows: Add each 
vertex v ∈ V \ V ′ as a direct child of the root R in T , yielding 
T + ∈ T (V ∪ V ′ , R ) . Similarly, add each vertex v ∈ V ′ \ V as a direct 
child to the root R in T ′ , yielding T ′ + ∈ T (V ∪ V ′ , R ) . We then de- 
fine the distance d ( T , T ′ ) as d(T + , T ′ + ) . Placing ‘unseen’ vertices as 
children of the root is conducted as we have no prior information 
on any better position to place them. Note that if we consider this 
step to be preprocessing, the (un-normalised) distance maintains 
its metric property. An example of the optimal set of operations to 
convert a source tree into a target tree (as well as to the normal- 
ising bush) is shown in Fig. 3 , and is also available animated in- 
teractively online at http://www.interesting-patterns.net/ds4dems/ 
sumoted-demo/ . Python code to compute SuMoTED is available on- 
line 4 . 
4. An efficient algorithm to compute SuMoTED 

Computing SuMoTED amounts to finding the shortest path from 
the source tree to the target tree (T , T ′ ) ∈ E in the edit graph 
G (T , E, W ) . Effective algorithms (polynomial complexity in number 
of vertices and edges) for computing the shortest path between a 
given pair of vertices in a graph exist [10] . However, the graph in 
our case is far too large for such an approach to be feasible (re- 
call from earlier: |T V,r | = | V | | V |−2 ). Remarkably, we have discovered 
a fast algorithm for computing SuMoTED between any pair of trees 
that is polynomial (quadratic) in the size of the trees , rather than in 
the size of the edit graph. The current section outlines this algo- 
rithm, which is based on the following theorem: 
Theorem 1. Given trees T , T ′ ∈ T , the shortest path in the edit graph 
between T and T ′ is equally as long as the shortest path that consists 
of a sequence of local upward moves, followed by a sequence of local 
downward moves. 

The proof of the theorem rests on the following Lemma: 
Lemma 1. Let (T 0 , . . . , T n ) be a shortest path of trees between T 0 and 
T n . Assume that there exists 0 < i < n such that T i is reached from 
T i −1 by a downward move, and T i +1 is reached from T i by an upward 
move. Then it is always possible to replace the subpath (T i −1 , T i , T i +1 ) 

4 https://github.com/mattmcvicar/SuMoTED 

http://www.interesting-patterns.net/ds4dems/sumoted-demo/
https://github.com/mattmcvicar/SuMoTED
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Fig. 3. Example of our proposed edit distance d ( T , T ′ ). Intermediate trees are shown between blue arrows, together with the cost of edit. The severed edge for each tree in 
the bottom row are shown as dashed arrows. This (optimal) overall path has length 3 + 1 + 2 + 1 + 1 + 1 = 9 , normalised similarity 1 − (9 / (9 + 4)) ≈ 0 . 31 . The consensus 
DAG is shown in the top-right, from which we have generated the tree using solid arrows. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 
for another subpath between T i −1 and T i +1 of equal cost that consists 
of a sequence of upward moves followed by a sequence of downward 
moves. 
Proof. Let (Pa T i −1 (v ) , v ) be the edge involved in the downward 
move on T i −1 , and (Pa T i (w ) , w ) the edge involved in the upward 
move on T i . These moves can simply be swapped without alter- 
ing the resulting tree T i +1 and the total cost, as long as Pa T i −1 (v ) ̸ = 
P a T i (w ) . When P a T i −1 (v ) = Pa T i (w ) , on the other hand, the two 
moves can be replaced with two upward moves followed by one 
downward move. Referring to Pa T i −1 (v ) = Pa T i (w ) as u , and to the 
parent of u (in T i −1 , T i , as well as T i +1 ) as z , these moves should 
be: 
1. An upward move of edge (u, v ) , replacing (u, v ) with (z, v ) . 
2. An upward move of edge (u, w ) , replacing (u, w ) with (z, w ) . 
3. A downward move of edge (z, v ) , replacing (z, v ) with (w, v ) . 

It is easy to verify that these three moves have the same cost 
as the total cost of the original downward and upward moves. !

Proof of Theorem 1. Given any optimal path, iteratively apply 
Lemma 1 until no more downward moves can be found that are 
followed by an upward move. !

Theorem 1 implies that the edit distance d ( T , T ′ ) can be ex- 
pressed in terms of a consensus tree T c : 
Definition 6 (Consensus tree) . A consensus tree for two trees 
T , T ′ ∈ T is a tree T c ∈ T that can be reached from T as well as 
from T ′ using local upward moves only. 

By symmetry, Theorem 1 can be rephrased as saying: a shortest 
path from T to T ′ exists in the edit graph that consists of upward 
moves to T c , followed by downward moves to T ′ . Theorem 2 shows 
that the distance between T and T c which can be reached using 
upward moves only from T depends only on T , T c : 
Theorem 2. Define a partial order between all vertices in a given tree 
T as follows: 5 
P T = { (v , w ) | w is a descendant of v in T } , 

5 P T can equivalently be defined as the reflexive transitive closure of the edge set 
E for a tree T( V , E , R ) . 

where we consider v to be a trivial descendant of itself. The to- 
tal distance of any path (T 0 , . . . , T c ) in the edit graph for which T i 
is reached by a local upward move from T i −1 for all i , is given by 
d(T 0 , T c ) = | P T 0 | − | P T c | . 
Proof. When an upward move on vertex v is applied to T i to yield 
T i +1 , the number of pairs removed from P T i is equal to the size of 
the subtree rooted at v . Indeed, the only change is that all descen- 
dants of v (including v itself) no longer have Pa T i (v ) as an ances- 
tor. Thus, d( T i , T i +1 ) = | P T i | − | P T i +1 | . For a sequence of local upward 
moves (T 0 , T 1 , . . . , T c ) , this means that the total path length in the 
edit graph is ∑ c 

i =1 d( T i −1 , T i ) = ∑ c 
i =1 | P T i −1 | − | P T i | = | P T 0 | − | P T c | . !

The following is a direct consequence of the definition of 
SuMoTED and the previous theorem: 
Corollary 2. Given T , T ′ ∈ T : d(T , T ′ ) = min T c | P T | + | P T ′ | − 2 | P T c | , 
subject to T c being a consensus tree. 

Thus, to compute the d ( T , T ′ ), all that is needed is to compute 
the size of the largest partial order P T c over all consensus trees T c 
for T and T ′ . Clearly, P T c ⊆ P T ∩ P T ′ , and when the Hasse diagram 
[3] of P T ∩ P T ′ is a tree, the optimal P T c = P T ∩ P T ′ . However, in gen- 
eral, the Hasse diagram of P T ∩ P T ′ is a DAG. The task of maximizing 
| P T c | then amounts to finding a subtree of this DAG representing 
the largest possible partial order. This optimal consensus tree can 
be found via a layer-assignment algorithm known as the Longest 
Path Algorithm , which has linear time complexity [19] . Briefly, given 
P T ∩ P T ′ this algorithm proceeds as follows: 
• Initialise T c ( V c , E c , r ) with V c = { r} , E c = {} . 
• Iterate: For each vertex v for which all w with (w, v ) ∈ P T ∩ P T ′ 

are in T c , identify the deepest such vertex w in T c , and insert v 
into V c and (w, v ) into E c . 
This algorithm ensures that each vertex is maximally deep in 

the tree, such that the transitive closure of the tree is as large as 
possible. The detailed proof works by induction: It is true for the 
root, and given that it is true for a partial tree already built, it is 
also true for the new vertices and edges added in each iteration. It 
can be verified that the overall computational complexity of com- 
puting SuMoTED for T , T ′ ∈ T V,r is O (| V | 2 ). 
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Fig. 4. Edit cost (below diagonal) and normalised similarity (above diagonal) be- 
tween the ground truth Deezer taxonomy and annotators ( A 1–A 6) and for the 
Ground Truth. Right: for the ReverbNation dataset. 
5. Experiments 

In this section we conduct a case study, applying SuMoTED to 
three hierarchical datasets which describe popular music genres. 
The genre of a song is a high-level musical attribute frequently 
used for music organisation, playlisting, searching, and recommen- 
dation. Often, songs are tagged with a set of labels which are hier- 
archically arranged into a musical genre taxonomy. Unfortunately, 
different musical experts and professional music services use very 
different sets of genre labels in their categorisation schemes. Even 
when these label sets overlap, they are often structured differently 
which complicates their use for the applications listed above. To 
investigate how SuMoTED could be used to analyse these kinds of 
data, we experimented with three datasets: a small dataset where 
the “true” hierarchy is known (5.1) , a medium-size dataset with 
no existing ground truth (5.2) , and a large-scale dataset consisting 
of commercially-used music genre hierarchies where the label sets 
do not coincide (5.3) . Finally, we investigate the scalability of our 
method in 5.4 . 
5.1. Deezer dataset 

The music genre taxonomy used by the web-based music 
streaming service Deezer was used in these experiments, featur- 
ing n = 101 genres. We asked 6 annotators (referred to as A 1–A 6 
hereafter) to construct a taxonomy from these genres without con- 
sulting the reference annotation or each other. We then computed 
the SuMoTED (via corollary 2 ) and normalised similarity ( Eq. 1 ) be- 
tween each pair of annotations. Results can be seen on the left 
of Fig. 4 . From this Figure, we see that the normalised similarities 
are all equal to unity when the taxonomies are equal (diagonal en- 
tries), as expected. We see that annotator A 4 was the closest to 
the Deezer reference (normalised similarity 0.72), and that annota- 
tors A 2 and A 5 were the most similar to each other (0.75). Annota- 
tor A 5 has the highest mean similarity to other taxonomies (0.66), 
meaning A 5 could be considered the ‘centre of mass’ of the set of 
references. We were also interested in the overlap between anno- 
tations, so we computed the Hasse diagram of the intersection of 
all annotations in Fig. 5 . Interestingly, this Figure shows that there 
was no consensus as to placement of rock and its descendants in 
the taxonomy. For example, A 2 listed alternative as a child of rock , 
whereas in the Deezer reference this relationship was reversed. 
5.2. ReverbNation dataset 

From an existing project, we had 251 unique genre labels stored 
from a set of over 50, 0 0 0 independent UK music artists from 
ReverbNation.com . As before, A 1–A 6 were asked to make a taxon- 
omy from this larger dataset. The annotator similarities are shown 
in the right matrix of Fig. 4 . From this matrix, we see that simi- 

Fig. 5. Hasse diagram for the intersection of the Deezer taxonomies. Genres which 
were found to be a child of Music with no further children in common are omitted 
for brevity. 
Table 1 
Comparison of existing taxonomies used in industry. Above diagonal entries show 
normalised distance, below show Jaccard index. 

Normalised similarity 
A(allmusic) D(eezer) iT(unes) W(iki) 

Jaccard A – 0.01 0.05 0.07 
D 0.04 – 0.12 0.01 
iT 0.16 0.16 – 0.06 
W 0.15 0.03 0.10 –

larities are generally lower—we found that this was a result of the 
increased depth of some of the taxonomies specified in the Reverb- 
Nation dataset. For example, A 4 had one vertex of depth 6: Music 
→ electronic → edm → uk → dnb → breakbeat → breakcore —two 
levels deeper than any vertex in 5.1 . Interestingly, in both sets of 
experiments A 2 and A 5 had the highest similarity, followed by A 4 
and A 5. 
5.3. Commercial datasets 

We sourced four genre hierarchies for use in these experi- 
ments: the Deezer dataset used above ( n = 101 genres), Allmusic 
( n = 1062 ), iTunes (340), and Wikipedia (730). As the label sets of 
these taxonomies did not coincide, we computed the Jaccard sim- 
ilarity of the label sets to investigate how similar they were. See 
Table 1 for these results. We see from this Table that the similari- 
ties between taxonomies (below-diagonal) are low in magnitude. 
These values highlight and quantify the huge discrepancies be- 
tween the choice of genre labels companies use when constructing 
a taxonomy. Above-diagonal entries are also close to 0.0, indicat- 
ing that there is little similarity between industrially-used music 
genre hierarchies—something speculated about in previous work 
[2] but never quantified. Given that these similarities were close 
to zero, we wondered if they were significantly larger than ran- 
dom. To assess this, we conducted a permutation test : for each tree 
we generated a number of trees with identical topology but ran- 
domly permuted labels. For given similarity between ‘true’ trees S , 
an empirical p-value was then computed: 
ˆ p = | permuted trees with similarity ≥ S| + 1 

| permuted trees | + 1 
However, in all our experiments ( Subsection 5.1 –5.3 ), we never 
found a random tree pair with similarity greater than or equal to 

http://ReverbNation.com
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Fig. 6. Scalability of our algorithm in practice. 10 Random trees with n (horizon- 
tal axis) nodes were created and their average distance computation time (vertical 
axis) was measured. 
the true tree pairs, for 99 randomly-generated trees. Results were 
in fact generally around 3 orders of magnitude lower. This resulted 
in empirical p-values of 0.01 and indicates that all the similari- 
ties we computed were significantly more self-similar than random 
taxonomies at the 1% level. 
5.4. Scalability experiments 

We were interested in seeing how our algorithm scales with 
input size. To this end, we computed the time required to compute 
the distance between several random trees with a fixed number of 
nodes. Random trees with n nodes labelled { 1 , . . . , n } with fixed 
root 1 were created as follows: labels 2 , . . . , n were first randomly 
permuted, and then attached to one of the existing nodes in the 
tree until all labels were exhausted. 

We created 10 trees for each n using the above procedure, com- 
puted their pairwise distance, and recorded their average compu- 
tation time. Experiments were conducted in the Python program- 
ming language on a laptop with 2.6 GHz Intel Core i5 processor 
and 8GB 1600 MHz DDR3 memory running OSX El Capitan 10.11.2. 
Results can be seen in Fig. 6 . From this Figure, we see that our 
method scales reasonably well to large tree sizes. We can com- 
pute the distance between two trees with 10 0 0 nodes (consistent 
with industrial datasets) comfortably in under 1 min. The quadratic 
trend seen in the Figure is consistent with the theoretical result 
presented in Section 4 . The code was implemented in the most 
intuitive way possible, with no particular optimisation for data 
structures or subroutines—further improvements in time complex- 
ity may therefore improve the results seen in Fig. 6 . Recall that the 
implementation is available online. 
6. Conclusions and future work 

We have presented a novel distance between trees, called 
SuMoTED, defined as an edit distance via local moves . SuMoTED 

has several appealing properties: it is a metric distance in the un- 
normalised setting, is computable in quadratic time, and is appli- 
cable to trees with different label sets. As a case study, we used 
this distance metric to investigate the consistency between anno- 
tators and existing music genre taxonomies, finding high similarity 
between human-generated taxonomies in the case of small label 
sets. We were also able to construct consensus annotations using 
our method, which gave musical insight into agreed-upon hierar- 
chical genre relationships amongst annotators. Besides the study 
of commonalities and differences between various trees (such as 
taxonomies), SuMoTED is ideally suited for more advanced analy- 
ses such as clustering trees. Furthermore, it can be used to quan- 
tify the performance of methods designed for inferring taxonomies 
from data. 

We focussed on music genre taxonomies in the current paper, 
but are excited by the prospect of using our method to compute 
taxonomy similarities in some of the domains listed in the intro- 
duction of this paper. For example, we could use SuMoTED to in- 
vestigate the similarities between biological or textual trees. A fur- 
ther idea for future research is the investigation of information cas- 
cades [12] , where trees are formed by information flowing through 
a network. Also, we would like to investigate if our method can be 
used to construct and evaluate methods which infer a taxonomy 
from data, as this could be useful is assessing how reliable such a 
taxonomy is. Finally, it appeared that there are no results on the 
complexity of existing tree distance measures for the case when 
all node labels are unique. This would also be worth investigating. 
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