
Allocating Resources for Customizable Multi-Tenant
Applications in Clouds Using Dynamic Feature

Placement

Hendrik Moens, Bart Dhoedt and Filip De Turck

Ghent University – iMinds, Department of Information Technology
Gaston Crommenlaan 8/201, B-9050 Gent, Belgium

Abstract

Multi-tenancy, where multiple end users make use of the same application
instance, is often used in clouds to reduce hosting costs. A disadvantage of
multi-tenancy is however that it makes it difficult to create customizable appli-
cations, as all end users use the same application instance. In this article, we
describe an approach for the development and management of highly customiz-
able multi-tenant cloud applications. We apply software product line engineer-
ing techniques to cloud applications, and use an approach where applications
are composed of multiple interacting components, referred to as application
features. Using this approach, multiple features can be shared between differ-
ent applications. Allocating resources for these feature-based applications is
complex, as relations between components must be taken into account, and is
referred to as the feature placement problem.

In this article, we describe dynamic feature placement algorithms that mini-
mize migrations between subsequent invocations, and evaluate them in dynamic
scenarios where applications are added and removed throughout the evaluation
scenario. We find that the developed algorithm achieves a low cost, while re-
sulting in few resource migrations. In our evaluations, we observe that adding
migration-awareness to the management algorithms reduces the number of in-
stance migrations by more than 77% and reduces the load moved between in-
stances by more than 96% when compared to a static management approach.
Despite this reduction in number of migrations, a cost that is on average less
than 3% more than the optimal cost is achieved.

Keywords: Cloud Resource Management, Software Product Line Engineering,
Dynamic Application Placement, Feature Placement

1. Introduction

In recent years there has been a growing interest in using cloud computing
as a means of offloading applications and reducing costs. An efficient way in
which costs of cloud deployments may be reduced is through multi-tenancy. In a

Preprint submitted to Elsevier April 24, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55895977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

traditional model, every client is provided with a separate application instance.
In multi-tenant environments, however, a single instance can be used by mul-
tiple clients. Every client of the application is referred to as a tenant and is
considered to be an organization with its own end users. The major advantage
of this approach is that it makes it possible to use less application instances
to provision the service to each of these tenants, reducing the cost of offering
the service. Additionally, this approach makes it easier to scale applications, as
sudden increases in numbers of users result in smaller increases of the number
of required instances. Spikes in the numbers of end users of one tenant can also
be compensated by decreasing numbers of end users of other tenants.

Building customizable multi-tenant applications is however difficult, and it
is often hard to make changes that are not just cosmetic configuration changes.
Therefore, multi-tenant applications are often offered as a take it or leave it
package, with only limited customizability. This approach works well for many
application types, especially when tenant needs are very similar, but there are
use cases where a very high degree of customizability is required. This is the
case in various domains, such as for example document processing, medical
communications and medical information management. These application cases
are all characterized by the fact that the offered platform is used by a relatively
small number of large tenants that each have a large number of end users. Each
of these tenants may request its own customizations to the application platform,
and as many tenants are large, it is difficult to deny these requests. Currently
such customizations are often developed on an ad-hoc basis. This however poses
difficulties concerning the management of these customizations and as separate
tenants have custom tailored codebases, it becomes impossible to share resources
between end users. This problem becomes even more complex when clients are
also split up into multiple departments that each require specific customizations
and when the application platform is offered to other clients using resellers. An
illustration of the various tenant types is shown in Figure 1.

Using feature modeling [1], this issue can be addressed. Feature modeling
is an approach where the variability of an application is modeled using a fea-
ture model. The customizability of the application is represented by a collection
of features, a representation of specific functionality that may or may not be
added to the application, and their relations. Features can be implemented
using aspect oriented programming [2], as configuration changes, or as custom
code modules. While feature modeling is an interesting approach for manag-
ing the codebase of customizable applications, this still results in customized
application binaries, making it impossible to use multi-tenancy in the resulting
applications. We previously proposed an approach where applications are sepa-
rated into multiple interacting components, effectively making sure every feature
is implemented in its own service [3]. The entire application is then composed
from the various components, thus forming a service oriented architecture. As
every code module is itself multi-tenant, the advantages of multi-tenancy can
be attained.

Splitting applications into multiple components however impacts the perfor-
mance of the applications, complicating cloud management. Additionally, the

2

Application

Reseller

Client

Client

Department

Client

...

Department

Client
Department

Department

Client

...

End users

Figure 1: An illustration of a scenario where the application is offered to end users by a
hierarchy of the three types of tenants: resellers, clients, and client departments. Resellers
can also sell the application to other resellers, and departments may also be further divided
into smaller departments. At every level, different application customizations may be required.

chosen features should be taken into account by the management system. It
may e.g. be cheaper to use an existing high-performance instance for a tenant
that does not pay for such an instance rather than to allocate a low-performance
instance specifically for this tenant. We previously addressed resource alloca-
tion taking this information into account, referred to as feature placement, in [4]
and [5], but the approach however resulted in a static resource allocation, that
has to be recomputed periodically. In doing so, the number of migrations is
not taken into account, which adversely impacts the performance of the system
when services are migrated. Additionally, adding applications is relatively ex-
pensive and slow as they can only be added whenever the algorithm is invoked
rather than immediately when they are added.

In this article, we focus on dynamic feature placement algorithms that relo-
cate and reconfigure features when changes occur. In computing these changes,
the previous state of the system is taken into account, minimizing the number
of application changes and instance migrations. We present both ILP-based
algorithms and a heuristic algorithm, the Dynamic Feature Placement Algo-
rithm (DFPA). Figure 2 shows the algorithm inputs and how it functions within
a cloud management system.

The remainder of this article is structured as follows. In the next section
we discuss related work. Afterwards, in Section 3 we describe how the system
in which the feature placement algorithm is executed is structured, and how
feature modeling is used within the approach. A formal problem representation
is presented in Section 4. In Section 5, we present the DFPA. The evalua-
tion setup is presented in Section 6, and the algorithms are then evaluated in
Section 7. Finally, we state our conclusions in Section 8.

3

Application
Instantiation

Requests

Application
Change

Requests

Current
Resource
Allocation

Dynamic
Feature

Placement
Algorithm

Resource
Allocation
Changes

Apply
Allocation
Changes

Feature Model Servers

Figure 2: The dynamic feature placement, its inputs and its function within a management
system.

2. Related Work

To manage variability when building applications, Software Product Line
Engineering (SPLE) [6] techniques are used. Instead of managing multiple code-
bases for different application variants, a single codebase is used, and different
variants are generated using SPLE tools. In traditional SPLE applications, the
application configuration is however generally decided at compile-time, making
it ill-suited for cloud environments. Dynamic SPLE [7] can be used to con-
figure and reconfigure software variants at runtime, making it more suited for
cloud environments. This makes it possible to characterize runtime variability
and reconfigure applications at runtime. SPLE has been used in cloud envi-
ronments [8, 9, 10], but the approaches tend to focus mostly on development,
deployment and configuration. We however focus specifically on runtime re-
source allocation for customizable SPLE applications by adding awareness of
application variability to the cloud management algorithms. Similarly, other
work [11, 12, 13, 14] focuses on the design-time variability of the applications
rather than on their runtime management, the latter being the focus of this
article.

In this article, we focus on cloud resource allocation [15] and design dy-
namic management algorithms that are aware of application customizability.
In particular, we focus on extending the generic application placement prob-
lem [16] and cloud application placement problem [17, 18, 19] to incorporate
both multi-tenancy and software variability. The approach we use for multi-
tenancy uses component-based applications composed using a Service-Oriented

4

Architecture (SOA), making the relations between components another impor-
tant consideration.

Our approach is similar to application component placement approaches [20,
21, 22, 23], where applications consisting of multiple components, represented
as a set of Virtual Machines (VMs), are placed within a datacenter taking the
relation between components into account. These approaches typically focus
on colocation, anti-colocation and other placement constraints used to impact
application security, performance, and reliability. These approaches however do
not take multi-tenancy on a VM-level into account, meaning the approaches
do not support sharing components between different multi-component applica-
tions. Our approach further differs by the inclusion of SPLE principles within
the management system, making it possible to take application variability into
account during resource allocation.

[24] both focuses on VM placement taking energy efficiency into account.
Our approach also incorporates server use costs, but differs in that we focus on
managing multi-tenant applications where multiple applications can make use
of a single instance. Additionally, our algorithm also adds support for software
variability within the management algorithm itself. Energy efficiency and server
usage costs are incorporated in an application placement system in [25]. The
authors however focus on the placement at a VM level, while our approach
focuses on managing multi-tenant applications where multiple applications can
make use of a single instance, meaning more fine-grained control is needed.
Furthermore, our algorithm also adds explicit support for software variability.
This enables the management system to dynamically fill in undecided variability,
referred to as open variation points [10], at runtime.

Application placement algorithms typically focus on server CPU and mem-
ory resources [19, 26, 27, 28] or bandwidth limitations [29]. In this article
we make use of a generalized approach where arbitrary resources of different
types can be used. Such an approach was previously used in [30], but our
approach goes further as it allows the definition of multiple resources rather
than just supporting two arbitrary resource types, enabling the management of
high-variability applications with heterogeneous resource demands.

This article extends our previous work related to feature placement [4, 5],
which focused on the static feature placement problem, and describes and evalu-
ations new dynamic feature placement algorithms that can be used in a context
where applications are added and removed through time. The modeling ap-
proach we use is further based on our work on feature model conversion [3],
which focuses more on how the code modules themselves are defined and how
customizable applications within our approach can be designed rather than on
how these modules are managed at runtime, which is the focus of this article.

An overview of how the DFPA, which is introduced in this article, compares
to the most relevant previous work is shown in Table 1. In the table, we focus
specifically on approaches using and supporting multi-component cloud appli-
cations. We compare multiple properties for the various publications. These
properties are the following:

5

Table 1: An overview of the relation between the DFPA introduced in this article and previous
work.

[10], [14] [17] [20] [21] [22] [23] [4], [5] DFPA

Multi-component applications + + + + + + + +
Application variability + - - - - - + +
Resource management -1 + + + + + + +
Dynamic cloud management N/A -2 + + - - - +
Service Management N/A - - - - - + +
Service and VM migrations N/A - - - - - - +
Generalized resources N/A - + + + + + +
Server use minimization N/A - - - - - + +

1. Multi-component applications: Whether the approaches support the man-
agement of applications consisting out of multiple components.

2. Application variability: Whether application variability and customizabil-
ity is considered in the work.

3. Resource management: Whether the work addresses the runtime manage-
ment and resource allocation of these applications.

4. Dynamic cloud management: Whether the management of applications
is dynamic (i.e. resource demand can vary over time and application
components can be migrated).

5. Service management: Whether the management focuses on services in-
stead of VMs. This makes it possible to consider how application re-
sources are allocated within VMs in addition to how the VMs themselves
are allocated.

6. Service and VM migrations: Whether both service and VM migration is
supported (i.e. VMs can be moved between nodes and application load
can be shifted between VMs without moving the VMs themselves).

7. Generalized resources: Whether the approach supports generalized arbi-
trary resources, and not just CPU and memory capacity.

8. Server use minimization: Whether the approach takes server utilization
into account, enabling energy-efficient resource management.

3. Feature Placement

SPLE [6] techniques can be used to model an application as a collection of
features and relations between features. Both the features themselves, which
encapsulate specific functionality that may or may not be included in an ap-
plication, and their relations are important. It may for example be the case
that the inclusion of a feature implies that other features must be included or
conversely that the inclusion of a feature prevents another feature from being

1Focuses on modeling of applications, not on managing them at runtime.
2On-line algorithm, but does not migrate instances over time.

6

a

b

c

d

e

f
Alternative
Or
Optional
Mandatory

Figure 3: An illustrative example of a small feature model using the Pure::Variants notation.

selected. To make it easier to reason using these relations, feature models are
often defined hierarchically. The relation between child nodes can be chosen as
one out of four types:

• Mandatory(a, b): If a feature a is included, the feature b must be
included as well.

• Optional(a, b): If a feature a is included, the feature b may be included.
Conversely, the feature b must not be included if a is not included.

• Alternative(a, S): If a feature a is included exactly one of the features
contained in the set S must be included. If a is not included, none of the
features in S may be included.

• Or(a, S): If a feature a is included, at least one of the features contained
in the set S must be included. If a is not included, none of the features
in S may be included.

In our feature placement approach, applications are constructed using a
service oriented architecture and are composed out of various feature instances.
Only features that refer to actual code modules are used, while other features
such as smaller configuration changes are handled at runtime. The code module
of a feature can then be instantiated as a VM in a cloud. We assume that
feature instances are multi-tenant, meaning they can be used to serve multiple
applications for different clients. For more information as to how features are
represented and how feature models containing non-code changes can be mapped
to feature models containing feature models we refer to [3]. To support this
transformation, and add versatility to the feature model representation, two
additional non-hierarchical relation types are used:

• Excludes(a, b): If a feature a is included, the feature b must not be
included and vice versa.

• Requires(a, b): A feature a may only be included if the feature b is
included as well.

Figure 3 shows an illustrative example a simple feature model consisting of
six features. The relations between the various features are expressed using
the Pure::Variants notation [31] which we also used in our previous work [3, 5].
This model corresponds to three relations: Optional(a, b), Or(a, {c, d}),
and Alternative(c, {e, f}). Based on this model, a specific configuration of
features can be selected to be used in an application. A feature can either be

7

Incoming
Requests

Application
Request

Filter

Feature
Placement

Accepted
Requests

Physical Infrastructure

Service
AllocationLoad

Information

Figure 4: An overview of the relevant components within the cloud management system and
the communication flow between the components.

selected, excluded or undecided. A selected feature must always be included
for the feature placement of the application to be successful. An excluded
feature may not be included in the application under any circumstance. Finally,
undecided features may either be included or excluded at runtime, based on
what results in the lowest placement cost. It may, e.g. be cheaper to add
encryption for a client, even if he has not selected the feature, if only instances
with encryption exist than to create a new instance specifically for this client.
These undecided features are referred to as open variation points [10]. If, for the
model in Figure 3, {a, c, d} are selected and {b} is excluded, e and f remain as
open variation points. Only when the application is deployed will it be decided
whether e or f are included.

An overview of the workflow when new requests are added to the system
is shown in Figure 4. As application placement requests enter the system, the
viability of adding them is first evaluated by an application request filter. This
filter can make decisions based on multiple factors:

• The amount of system resources required for the request can be determined
and compared to the remaining resources available within the datacenter.
If there are not sufficient remaining resources, the application request
should be rejected.

• Another factor that is important when application allocations are initiated
is the consideration of network capacity. This is especially important if
some features are allocated in different networks and part of the communi-
cation must pass over the Internet. Filters such as this can be created by
determining the impact on the underlying network of instantiating these
services, which we previously discussed in [32].

This filter is invoked whenever a new application configuration is instanti-
ated, which is when a seller enters the feature configuration for a client within
the system. Accepted requests are sent to the feature placement system, which
runs algorithms responsible for determining where the services out of which the
application consists should be allocated on the physical infrastructure. These
allocation changes are then enforced by the feature placement system result-
ing in a change of the physical allocation. System load information is then

8

sent back to the application request filter and feature placement components,
which can be used to update allocations and to allow or reject future application
instantiation requests.

4. Feature Placement Model

We previously presented a formal problem formulation for the static feature
placement problem in [5]. In this section we briefly describe the problem model,
focusing on the variables that are needed to add migration-awareness the model.
For a more detailed discussion of the model parameters and formulation we
refer to [5]. We will end this section by discussing how migration-awareness
can be added to the model to make it useful for dynamic application placement
scenarios.

Figure 5 shows the inputs and outputs of feature placement. As an input,
the model defines servers, with associated CPU, memory and usage cost infor-
mation. Additionally, a feature model is defined containing all of the application
features and their relations. Individual features, comparable to VMs in tradi-
tional application placement scenarios, can be instantiated on a server. Thus,
every instance has specific memory requirements. Additionally, we limit the
amount of processing that a single instance can do by limiting the amount of
CPU resources that can be processed by a single instance. These instance limits
are used as it is unrealistic for a VM with limited memory to be able to be able to
process an infinite amount of requests (represented by their CPU use). Finally,
applications are composed out of multiple features. They are represented by a
set of selected features, and a set of excluded features. Some features may be

Feature Model

Application 1 Application 2 Application n

Servers Feature
Placement
Algorithm

Placement Matrix

In
st

a
n

ti
a
te

CPU, memory
usage cost

...

Servers

A
p

p
lic

a
ti

o
n
 F

e
a
tu

re
s

21

1

1

1 1 1

1

1

1

1

1

22

2

2

4

2

2

2 2

2

2

Application Feature
Selections

Figure 5: The input and output of the feature placement.

9

neither selected nor excluded for an application, leaving these features as open
variation points. During the execution of the feature placement algorithm, these
open variation points are filled in by either selecting or excluding them based on
the feature model. The above results in three sets of input variables: servers, fea-
tures and applications. These are respectively contained in the sets S, F and A.

The model has two outputs: a placement matrix that defines where features
are instantiated and for which applications they are used, and the application
feature selection which indicates which features are used for which applications,
filling in open variation points. The placement matrix itself consists of two
separate parts. First, it describes on which servers features are instantiated. As
the amount of CPU resources that can be used by a single feature instance is
limited, it is possible for there to be multiple instances of a feature on a server.
Secondly, the placement matrix also describes which applications make use of
which feature instances and how much CPU capacity of a feature instance is
used for every application. The above results in three output variables:

• The instance count, ICs,f , represents the number of instances of a feature
f ∈ F that are instantiated on a server s ∈ S in the solution.

• The placement matrix, MCPU
s,f,a , shows how much CPU resources are al-

located on a given server s ∈ S for a feature f ∈ F of an application
a ∈ A.

• The binary variables Φf,a are used to represent the feature selections:
Φf,a = 1 if the feature f ∈ F is included for application a ∈ A. Conversely,
feature is excluded if Φf,a = 0.

The objective of the feature placement optimization is to minimize the cost
of the placement. This cost consists of two separate components: the cost of
using servers and the cost of failing to place applications or their components.
The cost of using a server represents an operational cost that can either be
an energy cost or the cost of renting a server. The failure cost represents a
Service Level Agreement (SLA) cost of failing to place an application correctly.
Two separate failure costs are taken into account: an application failure cost
is incurred whenever any feature of an application fails to be placed correctly,
while the feature failure cost is incurred when a single feature of an application
is not placed correctly. These separate costs make it possible to define an
additional cost for failing to provide specific essential features of the applications.
These costs may be represented as a monetary cost, but also as a virtual cost
determined by the management system that varies during the execution of the
management system. E.g. failing to place an application may in reality result
in a cost of 0 if the service interruption is short but should still have an assigned
cost within the management system to prevent it from happening at all.

In the previous discussion, we focused specifically on memory and CPU
resources for simplicity. In practice, it is however possible for there to be ad-
ditional relevant resource types, such as disk space and bandwidth. The model
supports this by making an abstraction of the concept of resource, and making
a distinction between two resource types:

10

• Strict resource types are resources that are required to create an instance
of the feature. The typical example of this resource type when studying
resource allocation problems is application memory. Another possible ex-
ample is disk space. To create a VM, this memory and disk demand must
be satisfied; otherwise it is impossible to create an instance of the feature.
Every server has a specified amount of available strict resources, and every
feature instance has a specific strict resource demand.

• Non-strict resource types behave differently. The goal of the optimization
is to ensure that all of the requested resources of this type are allocated for
applications. To achieve this, instances are created and that are respon-
sible for providing (part of) the resource demand of an application. The
common example here is CPU capacity: a certain amount of CPU capacity
must be allocated to an application to ensure all requests for the applica-
tion can be handled, but not all of the calls must always be handled on the
same instance, especially for larger tenants for whom the application must
be distributed over multiple nodes anyway because of their scale. While
every server has a specified available non-strict resource demand, feature
instances do not have a non-strict resource demand. Instead, applications
have a specific non-strict resource demand that must be handled by one
or more feature instances. As stated previously, it is possible for feature
instances to be limited in the amount of non-strict resources that they can
process, which is represented using instance non-strict resource limits.

All of the resources are contained within the set Γ, strict resources are con-
tained in the set Γs, while non-strict resources are contained in the set Γs.
Generalizing the output variables, we obtain a placement matrix Mγ

s,f,a, where
γ is any of the non-strict variables in Γs.

4.1. Dynamic feature placement: resource migrations

The static problem model as summarized above can be used to minimize the
cost of a placement, in terms of both failed placements and server use, but it
does not take the current application allocation into account. By adding the
current resource allocation as an input, the number of resource migrations that
are required to apply the placement can be determined. Based on how the model
is defined, there are two types of resource migrations that should be considered.
On one hand, the number of instance count changes can be determined. This
represents the number of virtual machines that must be started and stopped. We
refer to this migration type as an instance count change. Due to the multi-tenant
nature of the instances, a second measure for migrations can be considered as
well: the amount of resources used for applications that are allocated using
other instances. This type of migration, which we refer to as resource shift, can
also cause network traffic as application data present in one instance may have
to be transferred to another instance. An illustration of instance count change
and resource shift is shown in Figure 6.

11

Feature instance

a1 a2 a3 a4

a5 a6 a7 a8

Feature instance
...
...

Server s1 Server s2

Feature instance

Feature instance

a1 a2 a3

a5 a6 a7 a8

Feature instance
...
...

Server s1

a4

Server s2

Feature instance

(a) An example of a resource shift mi-
gration. No new instances are created,
but resources that were allocated for an
application a4 within a feature instance on
server s1 are moved to another feature in-
stance on server s2.

Feature instance

a1 a2 a3 a4

a5 a6 a7 a8

Feature instance
...
...

Server s1

Feature instance
...

...

Server s1

Feature instance

a1 a2 a3 a4

a5 a6 a7 a8

Server s2

Server s2

(b) An example of an instance count
change migration. An instance is removed
on server s1 and a new instance is created
on server s2. (Note that in this example
the resources allocated for the applications
a1 to a8 are shifted as well.)

Figure 6: An illustration of the difference between resource shift migrations and instance
count change migrations.

12

To model the migrations caused by a placement, the current allocation must
be added as an input to the model. This current allocation can be represented
using two additional inputs:

1. The previous instance count IC ′s,f , which indicates the number of in-
stances of a feature f that are currently allocated on a server s. This
input is required to determine the change in instance count on every in-
stance, which can in turn be used to measure the number of instance count
change migrations.

2. The previous resource allocation, represented as M ′γs,f,a must be included
as an input variable as well. By determining changes between M ′ and the
currently computing allocation M , the number of resource shift migrations
can be modeled.

The number of instance count increases IC+ can be determined as shown in
Equation (1). The increase can be determined by, for every server and feature
type, calculating the difference in the number of feature instances between both
allocations. We are only interested in feature instance count increases, as only
creating a new feature instance incurs a cost, in the form of network load and
delays. Therefore decreasing values (when ICs,f − IC ′s,f < 0) are ignored and
replaced by 0 within the sum.

IC+ =
∑
s∈S

∑
f∈F

max(ICs,f − IC ′s,f , 0) (1)

To characterize resource shift migrations, we make use of a similar formula-
tion. The difference in resource use between the current placement matrix M
and the previous placement matrix M ′ are determined. Like in the definition of
IC+ negative values are removed, and only positive changes are counted. Equa-
tion (2) shows how this resource shift can be computed for non-strict resource
types. As there may be migrations of resources of different types, this results
in a value for every resource type. By normalizing the Mγ

+ values based on the
total resource load these different resource types can be combined into a single
measure M+. This is shown in Equation (3). In this equation, T γ is the total
load for non strict resource γ in the previous iteration, which is used for the
normalization.

Mγ
+ =

∑
s∈S

∑
f∈F

∑
a∈A

max(Mγ
s,f,a −M

′γ
s,f,a, 0) (2)

M+ =
1

|Γs|
×
∑
γ∈Γs

(
1

1 + T γ
×Mγ

+

)
(3)

These model extensions add IC+, which is a measure of instance count
change migrations, and M+, which is a measure of resource shift migrations.

4.2. Iterative migration minimizing model

The migration minimizing model makes use of an iterative approach for
minimizing the cost, instance count increase IC+ and resource shift M+. Within

13

Minimize
total
cost

Add constraint:
cost within margin
of optimum

Minimize
IC

increase

Minimize
resource

shift

Problem
Input

Partial
Solution 1

Optimal
Cost

Partial
Solution 2

Minimal IC
Increase Placement

Result

Add constraint:
maximum IC within
margin of optimum

Figure 7: The different optimization steps of the migration minimizing model.

the optimization, we define use of nearness parameter α ≥ 1, and ensure the
cost of the solution will always be within a factor α of its optimal value. The
migration minimizing model is illustrated in Figure 7 and consists of three steps:

1. First, the base model is optimized, minimizing the total cost. This results
in an optimal cost C∗.

2. Subsequently, the instance count increase IC+ is minimized. During this
minimization, an additional constraint on the cost is added: C ≤ α×C∗.
This results in an optimal instance count increase value IC∗+.

3. Finally, the resource shift migrations M+ are minimized. During this op-
timization, two constraints are added, limiting both the cost and instance
count increase migrations: C ≤ α × C∗ and IC+ ≤ α × IC∗+. This last
optimization returns a placement result where the total cost C the num-
ber of instance count migrations IC+ and the amount of resource shift
migrations M+ are all taken into account.

5. The Dynamic Feature Placement Algorithm (DFPA)

We designed the Dynamic Feature Placement Algorithm (DFPA) heuristic
to solve the problem discussed in the previous section. To create a dynamic algo-
rithm that minimizes the number of migrations between iterations, we design an
algorithm that, using the current placement state and a specific change, results
in a new application placement. These changes can either be the addition of an
application, the removal of an application, or a change to the resource require-
ment of an application. The latter can be achieved by sequentially removing and
re-adding the application with different resource requirements, which is why we
focus specifically on application start and stop events. The management algo-
rithm dynamically generates a new solution whenever applications are added or
removed, and bases itself on the previous allocation to achieve good placement
results with limited resource migrations.

The algorithm is invoked whenever an application is instantiated or halted.
A high level overview of the algorithm steps is shown in Figure 8. The algorithm
maintains a solution to the placement problem in-memory, which it updates dur-
ing each of the steps. The initial state of the algorithm is the current placement,
before the changes are taken into account. The main steps of the algorithm are
as follows:

14

Remove
Application

(if applicable)

Determine
Unplaced

Allocate
Unplaced

placeAll

Improve
Placement

refine

Current
Placement

Change

Placement
Result

Figure 8: A high level overview of the Dynamic Feature Placement Algorithm (DFPA) steps.
The functions placeAll and refine are discussed in Sections 5.1 and 5.2 respectively.

1. Two inputs are used by the DFPA: the current placement and a change to
the current state. The current placement is represented using a placement
matrix M and is used as the initial algorithm state. The provided change
is either a start or a stop event for an application.

2. If the change is the removal of an application, the application is removed
from the current solution, possibly reducing the number of feature in-
stances for some of the application features if this causes feature instances
to become unused.

3. Subsequently, the applications that must be placed are determined. This
may be an application that must be instantiated now if the change is the
addition of an application, but this list may also be larger if an application
was not successfully placed in a previous algorithm iteration.

4. In a next step, the applications are placed iteratively. This is done using
a placeAll function that is described in detail in Section 5.1.

5. Then, an improve operation is used to refine the placement and improve its
quality. This is done by selectively removing and re-adding applications,
reducing the number of servers used and making it possible to place some
applications that would otherwise have failed. This solution refinement
process, executed using a refine function, is discussed in Section 5.2.

6. Finally, the placement result that has been determined during the previous
steps is returned as the placement result.

5.1. Placing applications

The placeAll function, illustrated in Figure 9 and shown in Algorithm 1 is
responsible for allocating resources for a collection of applications. This function
iterates over all of the applications, and allocates resources one by one. The
order by which applications are selected is defined by the total cost of failing
to place the application, and can be computed by adding the cost of failing the
application to the cost of failing of its individual features. Applications with a
higher cost are placed first, which is done using a place function which will be
explained later on. If it is impossible to place the application due to insufficient
resources, a reduced version of the application is created: for this version of
the application the cost of failing the application itself is 0 (as at this point it
has already failed) and only the features that incur a separate failure cost are
included. Alternatively, if the application failure cost is already 0, the reduced
application is created by removing the feature with the lowest cost of failure.
The reduced application is then re-added to the collection of applications that

15

[Unplaced Applications Remain]

Pick lowest cost
unplaced

application

Unplaced
Applications

[Else]

place

[Placement successful]

[Placement failed]
Create reduced applicationAdd reduced application

Figure 9: A high level overview of the placeAll function which is responsible for allocating
all unplaced applications. To achieve this, the function iterates over all unplaced applications
and allocates resources for them using the place function. If this succeeds, the next unplaced
application is allocated. Otherwise, a reduced version of the application is created and added
to the collection of unplaced applications. This application will then be placed in a later
iteration of the algorithm.

Data: The current allocation matrix M
Data: A collection of applications toP lace for which resources must be

allocated
while toP lace not empty do

a← application with highest cost ;
toP lace← toP lace \ {a};
M ′ ← place(a,M);
if placement of a unsuccessful then

a′ ← create a reduced version of application a;
if a′ still contains features with failure cost then

toP lace← toP lace ∪ {a′}
end

end

end
return M ;

Algorithm 1: The placeAll function.

16

must be placed, ensuring critical application components will be allocated in a
later iteration.

Using this approach, applications are either placed in their entirety, or if this
is impossible, an effort is made to place a reduced version of the application. This
ensures that important features, for which the cost of failure is high, will still be
included even if not all other features can be made available. This approach for
allocating collections of applications is based on the application-based feature
placement algorithm which we previously presented in [5].

5.1.1. The place function

The place function is illustrated in Figure 10 and shown in detail in Al-
gorithm 2. First, the function determines the different possible feature con-
figurations where the open variation points are filled in. Then, the algorithm
evaluates the possible configurations, using a chooseBestFeatureSelection

function to select the best configuration. While doing so, it takes into account
the current allocation, minimizing the number of new instances needed and max-
imizing the use of currently existing instances. Once the features that are chosen
have been determined, the resources that must be allocated can be determined.
This resource demand is then allocated on the existing feature instances using
a placeResidualCapacity function. If, after allocating resources on existing
instances, not all of the resource demand is handled, new feature instances are
created using a doCreateInstance function. These last two steps are repeated
until all demand has been allocated.

In the first step of the place function, it determines all of the different
possible alternative feature allocations. This is done by at first selecting all of
the features that are logically implied by the current feature selection (e.g. by
adding parent features of selected features to the collection of parent features)
and pruning optional features that are not implied as being included by adding
them to the set of excluded features. If at this point there are still features that

chooseBestFeatureSelection

Intermediate
Placement Result

Servers

A
p
p
lic

a
ti

o
n
 F

e
a
tu

re
s

21

1

1

1 1 1

1

1

1

1

1

22

2

2

4

2

2

2 2

2

2

Allocate resources
on existing instances

placeResidualCapacity

[All resources allocated]

[Else]

Allocate a new feature
instance

doCreateInstance

Unallocated
Feature

Resources

CPU
Memory
Disk space

Figure 10: A high level overview of the place function which is responsible for allocating a
single application. The function first determines a feature selection for the application, result-
ing in a collection of application features for which resources must be allocated. Resources
are then allocated using existing feature instances. When there is no capacity left on existing
feature instances, new instances are created.

17

Data: The current allocation matrix M
Data: An application a for which resources must be allocated
Determine alternative feasible feature configurations φ(a);
F ← chooseBestFeatureSelection(M,φ(a));
d← resources required for features F ;
while d not empty do

(M,d)← placeResidualCapacity(M,d);
if d not empty then

(M,d)← doCreateInstance(M,d);
end

end
return M ;

Algorithm 2: The place function.

are neither included nor excluded, new configurations are generated where, in
every new configuration, one of the undecided features is added to the selected
set. This process is repeated until only feature selections where every feature is
either selected or excluded are left3. This results in a collection φ(a) containing
the possible feature configurations of a.

5.1.2. Choosing the best feature selection

Next, the chooseBestFeatureSelection function is used to determine the
best selection of features given the selected application features and the current
allocation. In this function, the alternative allocations in φ(a) are compared
using two criteria: the strict resource increase (SRI), and the total resource
requirement (TR). The SRI represents the amount additional strict resources
that are needed to instantiate this application, thus not counting already exist-
ing application instances. The TR measure computes the total resource demand
of a configuration, showing its general resource requirement.

A low SRI implies that the cost of allocating the specific feature selection
is low, taking into account the current placement, as few additional instances
are needed. If the feature selection can be instantiated entirely on existing
instances, the SRI value will be zero. A low TR on the other hand implies that
the cost of the selection is low in general. When instantiating new applications,
we prioritize a low SRI value, and TR values are only minimized when SRI
values of two configurations are equal.

The SRI of a feature selection represents the amount of strict resources that
must be added to instantiate a specific feature selection taking into account the
current placement state. This value is determined in three steps:

1. First, determine how many of the non-strict resources required for this

3Note that this process is only dependent on the application and feature model. Thus,
these alternatives can be computed once when the application is added and do not have to be
computed every iteration.

18

Feature Instance F

Maximum
instance CPU

CPU use of aApplication a

Remaining
instance
CPU capacity

Application b

Application c

...

TRC P U
s = CPU(a)

TRMem
s =

CPU(a)

CPU(F)
×Memory(F)CPU(F)

CPU(a)

Figure 11: An illustration of how TR values can be determined for an application a using
CPU and memory resources. TRCPU

s can be calculated directly based on the application
demand. The memory requirement, TRMem

s is calculated indirectly as the feature instance’s
memory demand is shared between the different applications using the instance. The ratio of
CPU resources used compared to the total available resources is used to determine the share
of the total memory that is dedicated to the application.

allocation can be allocated on existing instances.

2. Based on this, determine the number of new feature instances that can be
allocated to place the application.

3. Finally, the amount of strict resources needed to create these instances can
be calculated. The resulting value is the SRI for the analyzed application
feature configuration.

Equation (4) shows how the TR value for an application is computed. This
value is composed out both non-strict resource demands TRs and strict resource
demands TRs. As strict resource demands are more constraining than non-strict
demands, the impact of TRs is divided by 2, making it impact the total TR
value less than the TRs value. Non-strict resource demand is calculated by
directly measuring the resource demand of an application feature configuration.
Strict resource demand is calculated by determining the number of instances
required for the configuration. Both TRs and TRs values are normalized by
dividing them by the maximum value for any application.

TR =
∑
γ∈Γs

TRs(γ)

maxγ
+ 0.5×

∑
γ∈Γs

TRs(γ)

maxγ
(4)

In Figure 11 an illustrative example is shown of how the TRs and TRs
values can be computed for CPU and memory resources. More formally, TRs,
as defined in Equation (5), can be computed in a straightforward way: the
total resource demand is the sum of the demand for the individual selected
features (represented by the variable required(f, γ)). The TRs value of a feature
selection is computed, as shown in Equation (6), by taking into account both the
amount of resources needed for its instances and the share of the instance that is
used for this specific configuration. This share, for a given feature f , is computed
by determining the total amount of non-strict resources that are required for
the feature, and comparing this value to the amount of these resources that can

19

be provided by a single feature instance. This is expressed in Equation (7).

TRs(γ) =
∑

f∈selected

required(f, γ) (5)

TRs(γ) =
∑

f∈selected

share(f)× IRγf (6)

share(f) = max
γ∈Γs

required(f, γ)

Lγf
(7)

As mentioned previously, the feature configuration with the lowest SRI value
is chosen. If, for two configurations the SRI metrics are equal, the alternative
with the lowest TR value is preferred.

5.1.3. Allocating resources

Once a feature configuration has been selected, the placeResidualCapacity
function, shown in Algorithm 3, is used to allocate as much of the demand as
possible on existing feature instances. This is done by iterating over every
feature that must still be allocated and every feature instance with remaining
capacity that is currently allocated.

Data: The current allocation matrix M
Data: The demand d that is not yet allocated
Data: The application a for which the demand must be allocated
for every feature f in d do

for every feature instance of i in M do
s← the server on which i is running;
fCap← remaining resource capacity of feature f ;
sCap← remaining resource capacity of server s;
for r ∈ Γs do

toAssign← min(fCap(r), sCap(r), d(f, r));
allocate(a, f, s, r, toAllocate);
Update the remaining unallocated demand d;

end

end

end
return (M,d);

Algorithm 3: The placeResidualCapacity function allocates the remaining
demand d on currently existing feature instances.

If not all of the demand is provided after allocating resources on existing
instances, additional feature instances must be instantiated. To achieve this,
the doCreateInstance function, shown in Algorithm 4, is used. This function
first determines the features with unassigned capacity, for which new feature
instances must be instantiated. The algorithm then iterates over these features,
allocating resources for them sequentially. For every feature f that must be

20

Data: The current allocation matrix M
Data: The demand d that is not yet allocated
Data: The application a for which the demand must be allocated
Funassigned ← features with remaining unassigned capacity;

for every feature f ∈ Funassigned do
N ← determine number of features needed;
S′ ← {s|s ∈ S ∧ s has sufficient free resources};
while N > 0 and S′ 6= {} do

s← selectBestServer(S′, f);
Ns ← determine maximum possible number of instances of f on s;
createInstance(M,f, s,min(N,Ns));
N ← min(N,Ns);

end
if N > 0 then

Abort: Insufficient resources, allocation is impossible;
end

end
return M ;

Algorithm 4: The doCreateInstance function creates additional feature in-
stances for the demand d that is not yet allocated and allocates these resources.

instantiated, the number of times the feature must be instantiated, N , is de-
termined using the remaining resource demand d. The servers within the data-
center that are capable of running the service and have sufficient free resources
are then filtered and put in the set S′. The best server in S′ for instantiating
the feature is then selected, and as many instances as needed and possible are
instantiated on the server. This process is repeated until either N new instances
have been created, or until no servers are left to allocate instances on. If not all
required instances can be created, it is impossible to fully allocate the desired
applications. If this happens, the current place operation is aborted, and a new
feature selection is determined as previously discussed in the description of the
placeAll function.

5.1.4. Server selection

The doCreateInstance function compares different servers and makes use
of the selectBestServer(S′, f) function to determine the best server in S′ to
create instances of f on. This function selects the server s with the highest
quality Q(s). To ensure that the algorithm avoids using additional servers, the
quality of an unused server is defined as 0. For other servers, this quality is com-
posed of three factors: 1) the quality of remaining resources QR(s) characterizes
the desirability of using a server based on the remaining resources on the server;
2) the quality of the fit QF (s) determines whether it is desirable to instantiate
the feature on the server by determining the amount of resources that would be
remaining on the server afterwards; finally 3) a bonus is added through a binary
server use variable SU(s) if an instance already physically exists. Equation (8)

21

minIR medIR maxIR

0.2

0.8

1.0

0.0
0.0 minIR/10

Q
u
a
lit

y

Remaining resources

Figure 12: The piecewise linear function used to determine the quality of a fit. minIR is the
minimum resource requirement of an instance, medIR is the median resource requirement and
maxIR is the maximum resource requirement. If there are more remaining resources than
maxIR, any other feature can be instantiated on the server, indicating the fit is good. When
there are nearly no remaining resources (less than minIR

10
), the fit is good as well, as in this

scenario few resources are wasted.

shows how this server quality can be computed by combining these three factors
with different weights.

Q(s) =

{
0.3×QR(s) + 0.5×QF (s) + 0.2× SU(s) if s used

0 otherwise
(8)

It is preferred to use servers with little remaining resources if possible, as
this ensures other servers, with more remaining resources may be used for later,
more complicated tasks. This is expressed, for a server, using the quality of
remaining resources QR(s) metric. This metric is shown in Equation (9), and
represents the desirability of using a server regardless of the instance type that
is to be instantiated on it. Within this equation, remaining(r, s) refers to the
amount of resources r of s that are currently remaining on the server, while Raγs
shows the amount of available resources on the server s.

QR(s) = 1− min
r∈Γs

remaining(r, s)

Raγs
(9)

QF (s) characterizes the quality of the fit of the chosen instance on the server,
and represents the quality of remaining resources after an instance is allocated.
This remaining capacity should either be enough to support new instances or
alternatively, it should be very low ensuring few resources are wasted. This
value is determined by, for every strict resource type, determining a separate
QF r(s) value which in turn is determined by the amount of resources left after
allocating the feature on the server. To these remaining resources, a piecewise
linear function, shown in Figure 12, is applied. If after the allocation any other
application instance may be instantiated, a high QF r(s) will be achieved. If
after the allocation none of the other application instances may be instantiated,
the remaining server capacity will be wasted, so a low QF r(s) value is achieved,
unless the amount of residual resources becomes very low which again indicates

22

a good fit. The final QF (s) value, defined in Equation (10), is the minimum of
all QF r(s) values.

QF (s) = min
γ∈Γs

QF r(s) (10)

The SU(s) variable is added to prevent instance migrations. During the
execution of the DFPA algorithm multiple feature instances may be removed
and added. SU(s) = 1 if in the original problem model there was already an
instance of the feature on the server, otherwise SU(s) = 0. This makes it more
likely to select a server on which an instance of the feature already exists, even
though this instance may have already been removed previously by the remove
application step of the algorithm.

5.2. Refining placements

After a change to the placement has been made, there are multiple ways in
which the placement may be improved. First, it is possible to remove some ap-
plications to free resources on a server with low utilization, making it possible
to turn it off, and to reallocate the removed applications elsewhere. A sec-
ond possible improvement can be determined by reconsidering the placement of
applications that have a relatively expensive feature configuration. These ex-
pensive configurations can occur as the placement algorithm chooses a feature
configuration that requires the least new feature instances, even if it requires
slightly more resources. After adding and removing other applications, this con-
figuration may however no longer be ideal, so it may be beneficial to re-place
this application at a lower cost.

The placement refinement operation starts with an allocation M , and gen-
erates a new allocation M ′ by removing and re-adding a collection of applica-
tions Â. Subsequently, the quality of M ′ is compared to the quality of M . If the
quality of M ′ is better than that of M (i.e. the placement has a lower cost), this
refined placement is returned. Otherwise, the original placement M is returned.
The refine function is designed to reconsider the placement of a limited col-
lection of applications by ensuring it only moves about as many applications as
one server can handle. The number of migrations is further limited by ensuring
the refined placement is only enforced if it improves the resulting allocation.

The refine function is entirely defined by how the collection of applica-
tions Â is determined. Applications within this set are chosen in two ways:
by determining applications that are running on underutilized servers and by
determining applications of which the current allocation requires a high amount
of resources compared to its minimum resource use. The final application set is
determined in three steps:

1. The collection of underutilized servers Ŝ is determined. This is a subset
of all servers in S with a utilization higher than 0% and lower than 70%
for all resource types. The collection of applications of which features are
allocated on a server s ∈ Ŝ is represented by appon(S).

23

2. The currently allocated applications are evaluated based on the cost fea-
ture configuration used to allocate them. For every application a ∈ A,
the relative cost of their resource configuration can be computed by com-
paring their minimum and maximum resource demand. This results in
a scalar value where 0 represents an application allocated using minimal
resources, and 1 represents the maximum possible resource demand, mak-
ing the application use more resources than needed. A set of applications
AmaxCost containing the two highest cost applications is then created.

3. Using the AmaxCost and Ŝ collections the final application set Â is de-
termined. This is done by, for every server s ∈ Ŝ, building a collection
of applications appon(s) ∪ AmaxCost. Out of all of these collections, the
collection containing the fewest applications that results in the highest
number of freed servers is chosen as Â.

6. Evaluation Setup

6.1. Evaluated algorithms

Based on the formal model discussed in Section 4, two algorithms can be
designed using Integer Linear Programming (ILP). These algorithms were im-
plemented using the CPLEX [33] solver, which is capable of optimally solving
ILP problem formulations. The following algorithms were implemented:

• The ILP-based Feature Placement Algorithm (FPILP) is based on the
formal model presented in the previous section without any considerations
for the number of migrations. This algorithm yields an interesting baseline
for the lowest possible cost. The results achieved by this algorithm may
however not be practical as it does not take migration counts into account.

• The ILP-based Dynamic Feature Placement Algorithm (DFPILP) makes
use of the iterative approach discussed in the previous section to determine
a solution for the feature placement problem. As discussed, it first mini-
mizes the cost, then the instance count increase, and finally the resource
shift migrations.

We compare these ILP-based algorithms to the DFPA presented in the pre-
vious section.

6.2. Simulation parameters

For our evaluations we base ourselves on an application use case contain-
ing three applications. We evaluate the algorithms for two scenarios with a
varying datacenter load. Within the scenario, we use applications defined by
the feature model presented in [5], containing the features of three applications:
document processing, medical communications and a medical information man-
agement application. In total, this model defines 49 different features. Within
the evaluations, we make use of a uniform server configuration with a 3GHz
CPU and 4GB of memory. Every server is assigned an energy cost of 1. As

24

previously mentioned in Section 4, this energy cost is not necessarily a direct
cost but rather a cost defined by the management system.

Application feature configurations are generated at random by randomly se-
lecting features to include and exclude. For every application, a random cost of
failure is chosen within the set {2, 4, 8, 16, 32}, representing the idea that some
applications may have a much higher cost of failure than other. The applica-
tion demand determined based on the application features and configuration is
multiplied with a variable that is randomly chosen using a uniform distribu-
tion in the interval [0.1, 10], ensuring there is a variation in application load.
Feature failure costs are determined by defining essential features associated
with services that must continue functioning, even if the rest of the application
fails. If the essential feature is included and correctly provisioned a minimal
service is delivered to the end users. If not all of the features can be placed
correctly, and placement of an application fails, this minimal service should still
be provided. A failure cost out of the set {2, 4, 8, 16, 32, 64} is assigned for all
essential features. Like for the application fail costs, this value indicates that
the costs of feature failure may vary greatly depending on client demands. The
maximum feature failure cost is higher than the maximum application failure
cost as failing this feature causes a the interruption of critical services, while
merely failing the application causes a service degradation.

A schedule is generated to determine when applications are started and
stopped. To achieve this, a very large number of applications is generated and
shuffled randomly. This ordered list of applications represents the order in
which the applications are added. To ensure the datacenter does not become
overloaded, as the total resource load of all of the generated applications greatly
exceeds the total capacity of the cloud, we define a maximum datacenter resource
load. If instantiating an application would result in exceeding the maximum
datacenter load, an other application is first chosen to be removed. The resulting
schedule will ensure that the datacenter is not overloaded, and will ensure that
the application start events would always be accepted by an application request
filter as described in Section 3. To choose the application to instantiate, first, the
applications are stored as a list ai where the order of applications is determined
by the order in which they were instantiated. The index of the application
to be removed is then determined using a Gaussian probability with µ = n
and σ2 = n/2, with n the number of applications that are instantiated. This
ensures that very long running applications and very new applications have a
smaller probability of being removed, which corresponds to client behavior: if
an application has been running for a tenant for a very long time, it is a reliable
client and there is a lower probability of him leaving, and if a tenant is very
new, the application is often used for a period of time while its usefulness is
determined and it is thus not stopped very quickly.

The first scenario represents an underloaded datacenter, with a maximum
load of 90% for all datacenter resources. This results in an “easy” placement
with a low probability of failed placements occurring, which ensures the cost
should be almost entirely caused by server use costs. To ensure the ILP-based
algorithms can function, the number of server remains limited to 50 In a second

25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200

T
ot

al
 C

os
t

Iteration number

DFPA
FPILP

DFPILP

Figure 13: Total placement cost in an underloaded datacenter. Every iteration represents an
application start or stop event. The quality achieved by the DFPA heuristic is the same as
that achieved by the optimal FPILP algorithm.

scenario, a maximum load of 110% is chosen. In this overloaded datacenter
scenario, placement becomes more complex, as more applications will fail to be
placed. As this higher maximum load causes the number of applications that
are active at any time to increase, the number of servers was reduced to 40 to
ensure the ILP-based algorithms could compute solutions acceptably fast. For
both scenarios 10 simulations were executed and the results were averaged.

7. Evaluation Results

7.1. Underloaded datacenter

Figure 13 shows the total cost throughout the simulation for the three solvers
for the underloaded datacenter. In this scenario, there is no significant difference
between the performance of the DFPA heuristic and the FPILP algorithm, which
always results in the optimal total costs. The DFPILP algorithm, which is based
on multiple ILP optimizations performs worst, as it tolerates a slight decrease
in solution optimality to reduce the number of migrations. Averaging the cost
between iterations 50 and 200 (after the start up period of the evaluation), we
observe that the DFPA heuristic on average only results in a cost that is 0.4%
higher than the optimal cost.

Comparing the number of instance migrations, shown in Figure 14, we ob-
serve that the FPILP which does not take migrations into account results in very
high numbers of migrations, making it unusable in dynamic scenarios where ap-
plications are started and halted at runtime. Both the DFPA heuristic and
the DFILP algorithms result in fewer instance migrations. Due to the higher

26

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

In
st

an
ce

 C
ou

nt
 M

ig
ra

tio
ns

Iteration number

DFPA
FPILP

DFPILP

Figure 14: The number of instance migrations for every iteration of the dynamic placement
algorithms in an underloaded datacenter. The number of IC migrations of DFPA is much
lower than that of the FPILP algorithm which is unaware of migrations and slightly higher
than that achieved by the DFPILP algorithm.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

M
ig

ra
te

d
C

P
U

 L
oa

d

Iteration number

DFPA
FPILP

DFPILP

Figure 15: The amount of CPU resources that are moved between instances in subsequent
algorithm invocations in an underloaded datacenter. The DFPA places applications while
resulting in very few CPU load migrations, even when compared to the DFPILP algorithm.

27

Table 2: An analysis of the distribution of the total cost of the algorithms. The percentiles
were determined using all of the entries between the 50th and 200th iteration.

Algorithm 50th pct 95th pct 98th pct 99th pct

DFPA 39 48 52 58
FPILP 39 42 42 43
DFPILP 40 44 44 45

cost observed previously, the DFPILP algorithm is capable of achieving fewer
instance migrations than the DFPA heuristic. When the load shift is com-
pared, shown in Figure 15, the FPILP algorithm again performs worst. Here,
the DFPA heuristic outperforms the DFPILP algorithm, migrating noticeably
less resources between servers in consecutive algorithm invocations. Compared
to the non-dynamic FPILP algorithm, the DFPA algorithm results in a 77.5%
reduction in IC migrations and a 96.5% reduction in resource shift migrations.

From this, we conclude that the DFPA performs well in an underloaded
datacenter scenario: it achieves a similar cost to the optimal FPILP, but results
in much less load shift and instance count migrations. Compared to the iterative
ILP-based DFPILP algorithm it results in a lower total cost, and less resource
shift at the cost of a slightly higher number of instance migrations.

7.2. Overloaded datacenter

The total cost of the algorithms in the overloaded datacenter scenario is
shown in Figure 16. Generally, the performance of the DFPA heuristic remains
similar to that of both the FPILP and DFPILP algorithms, but there are mul-
tiple outliers where performance decreases and a higher cost occurs. Usually,
these peaks are temporary and they decrease in the next iterations. Table 2
shows variation of the total cost throughout the evaluation data points (using
all entries between iterations 50 and 200, thus taking only the data points into
account where the datacenter is fully utilized). Based on this information we
observe that in 95% of the algorithm invocations a cost similar to that of the
ILP-based algorithms is achieved. In the remaining cases, a performance no-
tably worse than the ILP-based algorithms is observed. On average, the DFPA
heuristic on average only results in a cost that is 2.8% higher than the optimal
cost. The results for instance count migrations and load shift are comparable to
those shown for the underloaded datacenter as can be observed in Figures 17,
and 18. Comparing the non-dynamic FPILP algorithm to the DFPA heuris-
tic, we observe a 92.7% reduction in IC migrations and a 96.1% reduction in
resource shift migrations.

Based on our evaluation, we observe that the DFPA algorithm achieves good
results in an underloaded datacenter scenario, but performs less consistently in
an overloaded datacenter scenario. In practice, it is however best to use an access
filter that does not permit datacenter overload, as otherwise some application
components are bound to fail, making the DFPA an interesting approach as it

28

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 50 100 150 200

T
ot

al
 C

os
t

Iteration number

DFPA
FPILP

DFPILP

Figure 16: Total placement cost in an overloaded datacenter. The cost of the DFPA is less
consistent than that of the ILP-based algorithms: at times the same quality of the FPILP
algorithm is achieved, but often spikes in cost occur that are only solved in subsequent itera-
tions.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

In
st

an
ce

 C
ou

nt
 M

ig
ra

tio
ns

Iteration number

DFPA
FPILP

DFPILP

Figure 17: The number of instance migrations for every iteration of the dynamic placement
algorithms in an overloaded datacenter. The DFPA results in slightly more IC migrations
than the DFPILP algorithm, and significantly less migrations than the FPILP algorithm.

29

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

M
ig

ra
te

d
C

P
U

 L
oa

d

Iteration number

DFPA
FPILP

DFPILP

Figure 18: The amount of CPU resources that are moved between instances in subsequent al-
gorithm invocations in an overloaded datacenter. Like in the underloaded datacenter scenario,
the DFPA algorithm results in very few CPU load migrations.

does not make use of ILP formulations, making it scale much better than the
FPILP and DFPILP algorithms.

8. Conclusions

A challenge in contemporary cloud platforms is that it is difficult to create
and manage highly customizable applications while still achieving resource shar-
ing through multi-tenancy. In this article we presented the concept of dynamic
feature placement, an approach where customizable applications are composed
using multiple interacting components and where individual application compo-
nents can be shared between multiple applications and end users. The presented
models and algorithms were designed to take into account dynamic scenarios
where applications are started and stopped through time, taking migrations
between the various steps into account.

We presented two new algorithms: the DFILP algorithm, an iterative ILP-
based algorithm, and the DFPA heuristic. We analyzed the performance of the
algorithms comparing them to a static optimal algorithm that is unaware service
migrations. In our evaluations, we found that adding migration-awareness to
the management algorithms reduces the amount of instance migrations by more
than 77% and reduces the load moved between instances by more than 96%.
Despite this, the heuristic DFPA algorithm results in a cost that is on average
less than 3% more than the optimal cost.

30

Acknowledgment

Hendrik Moens is funded by the Institute for the Promotion of Innovation
by Science and Technology in Flanders (IWT).

[1] K. C. Kang, J. Lee, P. Donohoe, Feature-oriented product line engineering,
IEEE Software 19 (4) (2002) 58–65. doi:10.1109/MS.2002.1020288.

[2] R. E. Filman, T. Elrad, S. Clarke, P. M. Aksit, Aspect Oriented Software
Development, Addison-Wesley Professional, 2004.

[3] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, F. De Turck,
Developing and Managing Customizable Software as a Service Using Fea-
ture Model Conversion, in: Proceedings of the 3rd IEEE/IFIP Workshop
on Cloud Management (CloudMan 2012), IEEE, 2012, pp. 1295–1302.
doi:10.1109/NOMS.2012.6212066.

[4] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, F. D.
Turck, Feature Placement Algorithms for High-Variability Applications
in Cloud Environments, in: Proceedings of the 13th Network Opera-
tions and Management Symposium (NOMS 2012), IEEE, 2012, pp. 17–24.
doi:10.1109/NOMS.2012.6211878.

[5] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, F. De Turck,
Cost-Effective Feature Placement of Customizable Multi-Tenant Applica-
tions in the Cloud, Journal of Network and Systems Managemement 22 (4)
(2014) 517–558. doi:10.1007/s10922-013-9265-5.

[6] K. Pohl, G. Böckle, F. Van Der Linden, Software product line engineering:
foundations, principles, and techniques, Springer-Verlag New York, Inc.,
2005.

[7] M. Hinchey, S. Park, K. Schmid, Building Dynamic Software Product Lines,
Computer 45 (10) (2012) 22–26. doi:10.1109/MC.2012.332.

[8] K. Zhang, X. Zhang, W. Sun, H. Liang, Y. Huang, L. Zeng, X. Liu, A
Policy-Driven Approach for Software-as-Services Customization, in: Pro-
ceedings of the 9th IEEE International Conference on E-Commerce and
the 4th IEEE International Conference on Enterprise Computing, E-
Commerce, and E-Services, (CEC/EEE 2007), IEEE, 2007, pp. 123–130.
doi:10.1109/CEC-EEE.2007.9.

[9] W. Sun, X. Zhang, C. J. Guo, P. Sun, H. Su, Software as a Service: Configu-
ration and Customization Perspectives, in: IEEE Congress on Services Part
II (services-2), IEEE, 2008, pp. 18–24. doi:10.1109/SERVICES-2.2008.29.

[10] R. Mietzner, A. Metzger, F. Leymann, K. Pohl, Variability modeling to
support customization and deployment of multi-tenant-aware Software as
a Service applications, in: Proceedings of the ICSE Workshop on Principles
of Engineering Service Oriented Systems (PESOS 2009), IEEE, 2009, pp.
18–25. doi:10.1109/PESOS.2009.5068815.

31

[11] M. Abu-Matar, H. Gomaa, Feature Based Variability for Service Oriented
Architectures, in: Proceedings of the 9th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2011), IEEE, 2011, pp. 302–309.
doi:10.1109/WICSA.2011.47.

[12] M. Abu-Matar, H. Gomaa, Variability Modeling for Service Oriented Prod-
uct Line Architectures, in: Proceedings of the 15th International Soft-
ware Product Line Conference (SPLC 2011), ACM, 2011, pp. 110–119.
doi:10.1109/SPLC.2011.26.

[13] S. T. Ruehl, U. Andelfinger, Applying Software Product Lines to create
Customizable Software-as-a-Service Applications, in: Proceedings of the
15th International Software Product Line Conference (SPLC 2011), ACM,
2011, pp. 16:1–16:4. doi:10.1145/2019136.2019154.

[14] G. H. Alférez, V. Pelechano, Context-Aware Autonomous Web Services in
Software Product Lines, in: Proceedings of the 15th International Soft-
ware Product Line Conference (SPLC 2011), ACM, 2011, pp. 100–109.
doi:10.1109/SPLC.2011.21.

[15] B. Jennings, R. Stadler, Resource Management in Clouds: Survey and
Research Challenges, Journal of Network and Systems Management (2014)
1–53doi:10.1007/s10922-014-9307-7.

[16] J. Rolia, A. Andrzejak, M. Arlitt, Automating Enterprise Application
Placement in Resource Utilities, in: M. Brunner, A. Keller (Eds.), Self-
Managing Distributed Systems, Vol. 2867 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2003, pp. 118–129. doi:10.1007/978-3-
540-39671-0 11.

[17] B. Urgaonkar, A. L. Rosenberg, P. Shenoy, Application Placement on a
Cluster of Servers, International Journal of Foundations of Computer Sci-
ence 18 (05) (2007) 1023–1041. doi:10.1142/S012905410700511X.

[18] C. Adam, R. Stadler, Service Middleware for Self-Managing Large-Scale
Systems, IEEE Transactions on Network and Service Management 4 (3)
(2007) 50–64. doi:10.1109/TNSM.2007.021103.

[19] C. Tang, M. Steinder, M. Spreitzer, G. Pacifici, A scalable application
placement controller for enterprise data centers, in: Proceedings of the
16th International Conference on World Wide Web (WWW 2007), ACM,
2007, pp. 331–340. doi:10.1145/1242572.1242618.

[20] X. Zhu, C. Santos, D. Beyer, J. Ward, S. Singhal, Automated applica-
tion component placement in data centers using mathematical program-
ming, International Journal of Network Management 18 (6) (2008) 467–483.
doi:10.1002/nem.707.

32

[21] D. Breitgand, A. Epstein, SLA-aware Placement of Multi-Virtual Machine
Elastic Services in Compute Clouds, in: Proceedings of the 12th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2011),
IEEE, 2011, pp. 161–168. doi:10.1109/INM.2011.5990687.

[22] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, E. Snible, Improv-
ing Performance and Availability of Services Hosted on IaaS Clouds with
Structural Constraint-Aware Virtual Machine Placement, in: Proceedings
of the 2011 IEEE International Conference on Services Computing, IEEE,
2011, pp. 72–79. doi:10.1109/SCC.2011.28.

[23] L. Shi, B. Butler, D. Botvich, B. Jennings, Provisioning of requests for
virtual machine sets with placement constraints in IaaS clouds, in: Pro-
ceedings of the 13th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013), IEEE, 2013, pp. 499–505.

[24] G. Foster, G. Keller, M. Tighe, H. Lutfiyya, M. Bauer, The right tool
for the job: Switching data centre management strategies at runtime, in:
Proceedings of the 13th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013), IEEE, 2013, pp. 151–159.

[25] J. Xu, J. a. B. Fortes, Multi-Objective Virtual Machine Placement in Virtu-
alized Data Center Environments, in: Proceedings of the 2010 IEEE/ACM
International Conference on Green Computing and Communications & In-
ternational Conference on Cyber, Physical and Social Computing, IEEE,
2010, pp. 179–188. doi:10.1109/GreenCom-CPSCom.2010.137.

[26] D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguadé, Utility-based
placement of dynamic web applications with fairness goals, in: Proceed-
ings of the 11th Network Operations and Management Symposium (NOMS
2008), IEEE, 2008, pp. 9–16. doi:10.1109/NOMS.2008.4575111.

[27] F. Wuhib, R. Stadler, M. Spreitzer, Gossip-based Resource Management for
Cloud Environments, in: Proceedings of the 6th International Conference
on Network and Service Management (CNSM 2010), IEEE, 2010, pp. 1–8.
doi:10.1109/CNSM.2010.5691347.

[28] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko,
A. Tantawi, Dynamic placement for clustered web applications, in: Pro-
ceedings of the 15th International Conference on World Wide Web (WWW
2006), ACM, 2006, pp. 595–604. doi:10.1145/1135777.1135865.

[29] C. Low, Decentralised Application Placement, Future Generation Com-
puter Systems 21 (2) (2005) 281–290. doi:10.1016/j.future.2003.10.003.

[30] T. Kimbrel, M. Steinder, M. Sviridenko, A. Tantawi, Dynamic Applica-
tion Placement Under Service and Memory Constraints, in: S. Nikolet-
seas (Ed.), Experimental and Efficient Algorithms, Vol. 3503 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2005, pp. 391–402.
doi:10.1007/11427186 34.

33

[31] pure-systems GmbH, pure::variants User’s Guide, last accessed: December
2012 (2012).
URL http://www.pure-systems.com/Documentation.116.0.html

[32] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, F. De Turck,
Network-Aware Impact Determination Algorithms for Service Workflow
Deployment in Hybrid Clouds, in: Proceedings of the 8th International
Conference on Network and Service Management (CNSM 2012), IEEE,
2012, pp. 28–36.

[33] IBM ILOG CPLEX 12.4 (2013).
URL http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer

34

Hendrik Moens received a Masters degree in computer sci-
ence from Ghent University in 2010. He is a Ph.D. student in
the Department of Information Techology of the Ghent Univer-
sity, and a member of the network and service management re-
search group. His research interests include the management of
large scale cloud computing environments and autonomic man-
agement systems.

Bart Dhoedt received a Masters degree in Electro-technical
Engineering (1990) from Ghent University. His research, ad-
dressing the use of micro-optics to realize parallel free space
optical interconnects, resulted in a Ph.D. degree in 1995. After
a 2-year post-doc in opto-electronics, he became Professor at the
Department of Information Technology. His research interests
include software engineering, distributed systems, mobile and
ubiquitous computing, smart clients, middleware, cloud com-

puting and autonomic systems.

Filip De Turck leads the network and service management
research group at the Department of Information Technology
of the Ghent University, Belgium and iMinds. He received his
Ph.D. degree from the Ghent University in 2002. He is a full-
time professor since October 2006 in the area of telecommuni-
cation and software engineering. His main research interests in-
clude scalable software architectures for telecommunication net-
work and service management, performance evaluation and de-

sign of Cloud management systems.

35

