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Abstract

The severe erosion of upland peat bog in the southern Pennines is a major environmental problem that requires mapping

and monitoring at regular intervals. This paper presents preliminary results from an investigation of the use of hyperspectral

remotely sensed data to provide quick and accurate information on peat extent and type. Both image classification and

correlation analysis between reflectance and peat characteristics were investigated; promising images of both peat type

and degree of humification were produced. The results from this ongoing study suggest that hyperspectral remote sensing

offers an efficient and valuable tool in mapping and monitoring upland habitats.
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Introduction

Upland areas of the United Kingdom (UK) are coming
under increasing pressure from a wide range of activities
and influences. Of particular concern is the loss and
accelerated erosion of blanket peat in areas such as the
Southern Pennines. Blanket peat covers almost 9% of the
land surface of the UK, a significant proportion of the scarce
total world resource and the bulk of the British soil carbon
(Latter et al, 1998).

While an important resource, peatlands are also
important for carbon storage (Garnett et al, 2000).
Undisturbed accumulating peatlands in Britain sequester
some0.4-0.7tCha™ year'1 (Gorham, 1991), while eroding
bogs are a carbon source. The spatial extent of exposed peat,
intact, vegetated bog surface and pools are thus an
important component in modelling the carbon budget of
peatlands and global climate change.

Upland blanket peat forms in response to excess
rainfall and water logging (ombotrophic mire) (Moore,
1995). Peat formation in the English uplands began about
8000 years ago, and dates for peat initiation in the southern
Pennines cluster around 5-6000 ka BP. Peat built upward
during a series of wet phases, with humification and erosion
occurring as a result of natural and/or anthro-pogenic
drying of the bog surface (Tallis, 1985b). Much of the upland
peat in the UK is heavily eroded, and in the southern

Pennines the main erosion began between 400 and 1000
years ago (Tallis, 1985b).

Eroding environments, such as those in the southern
Pennines, are of major geomorphological influence and
have value both ecologically, supporting a wide range of
plantand animal communities, and archaeologically in the
preservation of records. Much of this ombotrophic peat is
actively eroding or under threat of erosion but the causes
of the erosional processes and resulting patterns are
unclear. Theories include fluvial (headwater extension),
biotic (burning, grazing, air pollution), karstic (subterra-
nean drainage) and catastrophic (bog bursting, drought)
processes (Tallis 1973, 1985b and 1994; Mackay and Tallis,
1996; Anderson et al, 1997). Of particular concern is the
speed at which erosion is taking place with peat exposure
and erosion occurring at a much faster rate than the slow
rate of natural accumulation (Bower 1961; Tallis 1973).
There is, therefore, an urgent need to improve our
understanding of patterns and processes of blanket peat
degradation. In addition, the severity of erosion and
distribution of degradation is non-uniform across the
southern Pennine region. Reasons for such spatial
variations are not clear, although topographic and drainage
characteristics, land management practices, climatic
differences and land cover have all been suggested (Tallis
1985a).
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Methods for monitoring and mapping the extent and
pattern of existing upland habitats (including exposed and
eroding peat) range from ground survey to the inter-
pretation of aerial photography. However, these are often
expensive, time consuming and only moderately accurate
(Mehner et al, 2001). For example, an exercise to map
habitats in Northumberland National Park according to the
Nature Conservancy Council’s (NCC) Phase I habitat
classification took 717 workdays to complete (Walton, 1993),
with only moderately accurate results at the end. New
methods for mapping and monitoring these diminishing
but important areas are thus required.

Remote sensing techniques have often been seen as
potentially less subjective and cheaper alternatives. Until
recently though, the coarse spatial resolution of sensors,
such as the Landsat Thematic Mapper (TM) with a spatial
resolution of 30m, have proved inadequate for providing
high quality habitat maps at appropriate scales (McMorrow
and Hume, 1986). Recent advances in sensor design,
however, mean that satellite sensors such as IKONOS can
provide multispectral data at a spatial resolution of 4m,
which should prove more useful in monitoring both
vegetation and exposed peat dynamics.

While the spatial resolution of satellite borne
instruments has improved, such sensors still have relatively
poor spectral coverage, with typically four broad wave-
bands in the visible and near infrared (NIR) parts of the
electromagnetic spectrum. This coarse spectral coverage
limits the use of such data when trying to discriminate
between spectrally similar land cover types, such as
different peat types. This is compounded by the lack of
spectral coverage in the short-wave infrared (SWIR), which

Plate 1: Exposed bare peat at Sykes Moor.

has been shown to be useful in monitoring the decom-
position process of organic material (BenDor et al, 1997) and
relative degree of humification (Stoner and Baumgardner,
1980). The limited spectral sampling also prohibits the
detection of subtle absorption features associated with other
biochemical and biophysical properties of both vegetation
and peat.

Developments in sensor technology, however, have
led to the development of hyperspectral resolution sensors,
such as AVIRIS (Airborne Visible and Infrared Imaging
Spectrometer) and HyMap ™. The new sensors collect data
in many narrow discrete bands, often across extended
wavelength ranges (including the SWIR), allowing subtle
absorption features to be resolved. Such sensors provide a
new tool for environmental monitoring and have been used
to estimate a number of critical ecosystem variables, such
as foliar biochemistry (Wessman, 1994; Wiilder, 1998) and
vegetation stress (Jago et al, 1998). In addition, these systems
are test-bed sensors for next-generation satellite based
hyperspectral missions such as ENVISAT (Curran, 2001).
This paper reports preliminary results from an investigation
into the use of hyperspectral remote sensing as a potential

means to monitor peat erosion, type and patterns.

Data Acquisition and Study Area

Hyperspectral data for this study were provided as part of
the SAR and Hyperspectral Airborne Campaign (SHAC), a
campaign supported by the Natural Environment Research
Council (NERC) and the British National Space Centre
(BNSC) (BNSC online). The campaign lasted for several
weeks during the summer of 2000 and included the
collection of hyperspectral data from the HyMap
instrument for a 12km transect across the southern
Pennines. The transect approximately followed the line of
the Pennine Way from Doctor’s Gate at the top of Snake
Pass, near Glossop, through to the Longdendale Valley
(Figure 1). The area includes large expanses of severely
eroding blanket peat moorland around Bleaklow Head,
with a number of peat erosion types present, from Bower’s
(1961) anastomising type 1 to linear type 2 gullies.

Two HyMap images were acquired on 18™ June 2000.
HyMap is an airborne hyperspectral scanner that acquires
data in 128 contiguous narrow bands, each of 13-17nm,
over a wavelength range from visible to short wave infrared
(450 to 2480nm). The images were acquired at two different
spatial resolutions (3.2m and 4.5m). For the sake of brevity,
only the processing and results from analysis of the 3m
image will be discussed in this paper (Figure 2).
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Figure 1. Location of study area HyMap and transect.
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Figure 2. SHAC HyMap 3m transect, flown 18 June 2000; false colour composite of bands 18, 10, 4 (NIR, red, green

light) to red, green and blue colour guns, respectively.
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The geometric correction of the image was based
upon the aircraft’s GPS ephemeris data and had a random
alongtrack displacement of up to two pixels. This in itself
was less than adequate for the purposes of this study as
many patches of peat and vegetation were less than 8m in
size and the image required further correction. Initial errors
in locating sites were minimised with the aid of enlarged
aerial photographs, which are now being used to provide
a fully orthorectified product.

The radiometric properties of the data were assessed,
with 12 bands excluded from the analysis due to excessively
poor signal to noise ratio values, leaving 114 non-noise’
bands. The data were also corrected for the effects of
atmospheric absorption and scattering using the ATREM
atmospheric correction procedure (Goetz et al, 1997; CIRES,
online).

Concurrent with the acquisition of airborne remotely
sensed data, ground-based data were collected using an
Analytical Spectral Devices (ASD) portable field spectro-
radiometer, FieldSpec Pro. Over 300 ASD spectra were
collected on the day of the flight, with further spectra
acquired at other times from a number of sites representing
different peat and vegetation types. There were three
reasons for collecting these data: first, as ‘pure’ spectra for
inputs into linear unmixing models to obtain fractional peat
and mineral soil images, second to develop regression
models between spectra and peat composition, and third,
to calibrate ground to airborne spectra for the day of the
flight. Sites were chosen for their within-site homogeneity
and between site variability in peat and vegetation type.

In addition to the collection of remotely sensed data,
peat samples were also collected from 22 sites where ASD

Plate 2: Collecting peat spectra with an ASD

Fieldspec Pro spectroradiometer.

spectra were recorded. A 14cm sampling ring was used to

sample peat to a depth of 2cm in an attempt to maintain a

constant volume. The samples were subsequently analysed

with four measures adopted:

(i)  Moisture content was measured because of the well-
known absorbance with water content (e.g. Nagler
et al, 2000). It was assessed gravimetrically on the 2cm
depth disc of peat removed from the peat surface.

(ii) Transmission: the degree of peat humification was
assessed colorimetrically after a wash in 5% NaOH
following the method of Blackford and Chambers
(1993). Values are of relative humification, expressed
as percentage transmission, where high transmission
relates to low humification.

(iii) Particle size distribution was measured as a possible
proxy for woodiness of the peat, and perhaps lignin
content, and because particle size affects soil
reflectance (Bowers and Hanks, 1965). Particle size
distributions were measured by wet sieving of the
material at one Phi intervals from 2mm to 63mm.
Samples were dispersed in sodium hexameta-
phosphate and then wet sieved with a large quantity
of water. Sieved fractions were recovered by settling
and decantation.

(iv) Organic content was determined by loss on ignition at
550°C for one hour. Values ranged from 82 to 98%.

Data Processing and Results

The physical measures of peat, described above, were used
to identify peat classes while both the HyMap and ASD
spectra were used to determine whether these peat classes
could be discriminated. Two approaches were adopted,
including image classification and correlation analysis
between reflectance and peat classes.

Peat Types

Fieldwork identified four broad peat types; well humified,
poorly humified, burned and washed peat. Washed peat
refers to re-deposited peat derived from hags by creep and
surface wash. As an alternative to fieldwork, five empirical
peat types, referred to here as peat lab classes, were defined
from hierarchical cluster analysis of physical properties
measured in the laboratory for the 35 sites (transmission,
percent organic and four particle size variables) (Table 1).
Moisture content was excluded because it was not valid to
compare samples collected on different dates. The
relationship between the two sets of classes is discussed
below.
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Table 1: Results of hierarchical clustering on laboratory
variables (humification is expressed as % transmission,
where high transmission indicates low humification.

Particle size expressed as % material under 125mm and

over 250 um)
Lab Class Description
1 Well humified (23%). Very fine, (90, 5%).
Lowest organic content (89%).
2 Poorly humified (61%). Quite coarse (38, 48%).

High organic content (96%)

3 Intermediate humification (32%).
The most coarse and woody (23, 65%).
Highest organic content (96%)

4 Well humified (22%). Quite fine (68,18%).
Relatively low organic content (90%)
5 Well humified (24%). Quite coarse (36, 46%).

Intermediate organic content (93%)

Variation in peat physical properties between sites
can be explained by their stage of erosion and fire history.
For instance, the site known as ‘Bleaklow’ (Figure 1) is the
highest elevated and most eroded site. Rounded hags of
peat and re-vegetated patches are surrounded by the
mineral soil of ‘Bleaklow beach” where the peat has been
stripped away. The topmost layer is absent, exposing well
humified fine to quite coarse peats (peat lab classes 1, 4 and
5). Poorly humified peats at the ‘Hern Stones’ site (class 2)
occur in a pool and hummock topography, possibly
representing less advanced erosion.

The dominant cover at the ‘Gully” site is burned peat
with dead bilberry roots, giving intermediate transmission
values (peat lab class 3). Fire history appears to be at least
as important as stratigraphic or topographic position in
determining peat characteristics.

Washed peats all have a smooth surface but very
mixed physical characteristics (peat lab classes 1, 2, 5),
related to those of the adjacent hags from which they are
derived. Spectral uniformity should not be expected for
washed peats unless surface texture proves to be the
dominant control, a variable that will be investigated in
forthcoming fieldwork.

Both HyMap image data and ASD spectra were used
to determine whether peat classes, determined from their
physical properties, could be discriminated spectrally.
Several approaches were adopted, including traditional
image classification techniques, canonical analysis and
correlation of spectral features with peat physical

properties.

Image classification

After geometric correction the image was classified into
peat, non-peat, and mineral soil classes using a supervised
maximum likelihood approach (Mather, 1999). Both peat
and mineral soil were distinctly separable from the
surrounding vegetation and visual comparison with aerial
photography suggested the classification to be realistic,
although no formal accuracy assessment has yet been
produced. The classified image was then used to mask non-
peat classes from the image to reduce the size of data set
and avoid further mis-classification errors.

An unsupervised, five class classification was applied
to the masked image as an initial investigation as to whether
the five peat lab classes could be discriminated. Sites of
known peat lab class were then compared to the
unsupervised classification. Both poorly humified (peat lab
class 2) and well-humified peat (classes 1 and 4) appeared
to occur in exclusive clusters within the image, although
there was significant confusion for classes where the peat
was coarse in texture.

Training sites, for a supervised classification, were
located within the image at sites where peat characteristics
had been determined in the laboratory. Due to the small
number of training sites and high-dimensionality of the
data, a supervised maximum likelihood classification was
unsuitable and an artificial neural network approach
adopted (Benediktsson, et al, 1993). Neural networks have
been widely applied to the fuzzy classification of remotely
sensed data at a wide variety of spatial scales (e.g., Atkinson
et al, 1997; Benediktsson, et al, 1990). They are attractive in
that they make no assumptions regarding the data in terms
of statistical distribution and independence, but do,
however, require a significant amount of training data.

By far the most widely used neural networks are
multi-layered feed forward networks. In particular, the
multi-layer perceptron (MLP) has been shown to perform
significantly better than other unmixing techniques, such
as linear mixture modelling and fuzzy c-means (Atkinson
et al, 1997). A number of MLP networks were tested with
varying architectures. The networks were trained using all
114 'non-noise’ spectral bands (coded as continuous valued
representations, suitable for high-dimensional data sets
(Benediktson, et al, 1993)) and ‘hard’ class inputs from each
of the 35 sites. Half of the data were used to train the
network while the other half used as a testing data set. It
was not possible to adopt a fully fuzzy approach (Foody,
1996) as information on mixing within pixels was
unavailable and the accuracy of geometric correction of the

image uncertain.
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Figure 3: Unsupervised classification of HyMap ‘non-noise” bands.
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A fuzzy classification output was produced and
initial results suggest that realistic peat classes can be
determined from the HyMap image. However, there is
evidence that a stratified approach is required, with some
networks being able to generalise between levels of
humification but performing poorly when discriminating
sites of different particle sizes (and surface texture), while
other networks separated particle size with only limited
discrimination of humification. The reasons for this are
unclear, but as this work is at a very early stage this pattern
will be investigated further. Rigorous testing of the outputs
from the fuzzy classification will be conducted in the spring/
summer of 2002.

Although at an initial stage, the image analysis results
as a whole appear promising and future work will include
modification and development of the classification process,
as well as applying a topographic correction to the image
to account for anisotropic reflectance effects of the peat and
surrounding vegetation (Mather, 1999).

Reflectance spectra
HyMap reflectance spectra were extracted for the 35 sample
sites and imported into a statistical software package (Figure
4). They were compared visually and statistically with
laboratory variables defining peat physical characteristics.
Despite having an organic content of over 80%, the
peat spectra were not concave between 500 and 1300 nm
(bands 5 and 60), as expected for organic rich soils (Huerte
and Escadafal, 1991). They were sigmoidal with a steep red

a5 -
an
26

20 -

15 4

e rellsctancs (5]

10 -

edge from band 17 to 25 (677-799nm) and a linear near-
infrared (NIR) slope to band 46 (1108nm) and were much
more similar to plant litter curves in Nagler et al, (2000).
Peats were much better separated at longer wavelengths.
The SWIR is critical for peat differentiation. Most separation
is seen on the right shoulders of water absorption features
at bands 63 and 95 (1406 and 1952 nm) (Figure 4).

HyMap washed peat spectra were more variable
than those initially collected with the ASD, covering a wider
variety of sites and parent peat types. They show reduced
reflectance across wavelengths, probably due to the
presence of water, but retain the same shape as those for
adjacent hags, from which they derived. This suggests that
their signature is a spectral mixture of peat parent material
and water (Clark, 1999), and that composition may be a
more important control than surface texture, but further
sampling is required. For smaller patches of washed peat,
signatures may also be a linear mixture of peat hag and
pool so that linear mixture modelling may be an
appropriate technique to map them.

Canonical discriminant function analysis

Canonical discriminant function analysis of the extracted
HyMap spectra confirmed the importance of the SWIR in
discriminating between peat lab classes. There was a
statistically significant difference among the means of the
five peat classes for visible band 3 (461nm) and SWIR bands
61 to 119 (1324-2376nm), with p 0.01 and Wilk’s lambda

values of below 0.655. Two samples not included in the

Washed peat
Burfned paal
Well humified peat

Paarly humified peal

B0 B 100 120

HyMag band

Figure 4. HyMap 3m spectra for washed, burned, well and poorly humified peats.
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analysis were correctly allocated to their lab class. The
stepwise process selected bands 97, 87 and 71 (1990, 1747
and 1517 nm, respectively) as the discriminating variables
for the three discriminant functions. Band 97 is near a major
water, cellulose and lignin absorption at 1940 nm, which
was also selected first in single band stepwise regression.

Bivariate correlation of reflectance and laboratory
variables

Moisture content showed a negative but not statistically
significant correlation with reflectance at major water
absorption features; for instance, band 65 (r -0.41), band 94
(r -0.32) and band 119 (r —0.42) (1434, 1806 and 2376 nm,
respectively). The relationship for visible bands was not
consistently negative or significant as expected (Nagler et
al, 2000). For instance, r values for bands 3, 8, 17 (461, 539
and 677 nm, respectively) were —0.18, 0.08 and 0.32. The
small sample size probably explains the lack of significant
relationships, as only moisture data concurrent with the
flight were used.

Particle size and percentage organic matter were not
significantly correlated with reflectance. Transmission,
however, showed many significant correlations in the
SWIR. For instance, band 96 (1971nm) had an r of -0.75 (p
<0.01). All further statistical analysis was conducted using
this variable. Relationships with transmission were not
significant for visible and NIR bands, partly due to fewer
samples at high transmission and very few in the middle
range, which is a common problem for peats recognised by
McTiernan et al, (1998).

Figure 4 suggests that well humified peat (low
transmission) has a lower albedo, but negative correlations
were found between visible reflectance and transmission.
In the NIR, well-humified peats were darker than less
decomposed ones (r positive with transmission) and
brighter in the SWIR (r negative). This agrees with the
findings of McTiernan et al. (1998) for amorphous well
humified peat at the base of a core, but is contrary to those
for decomposting plant and animal waste (BenDor ef al,
1997) and soils (Krishnan ef al, 1980; Nagler et al, 2000). The
former showed that the relationship in the NIR varies with
broad peat type. Less decomposed Sphagnum peats at the
top of their core absorbed less NIR as they became more
humified (r negative with transmission). This suggests that
separate transmission regression models should be
developed for broad peat classes such as Sphagnum peat and
amorphous peat. However, samples for all peat types were
aggregated in McTiernan’s regression models, and the same

approach has been adopted here due to the small sample
size for poorly humified peats.

The strong relationship between the remotely sensed
data and peat transmission provides a basis for estimating
peat humification across extended areas. Further work is
required to investigate this relationship further, including
regression modelling using artificial neural networks, to
account for noise within both the laboratory and remotely
sensed data (Foody et al, 2001). This is currently being tested
and the results will be presented at a later date.

Conclusions

This paper has outlined the results from a study to assess
the potential of hyperspectral remotely sensed data to map
the extent of different peat types across an area of the
southern Pennines. In general, the results appear promising
with realistic maps of peat extent and type being produced
from statistical and fuzzy classification approaches. The
data were also significantly correlated with peat trans-
mission, an indicator of humification, which suggest that
estimates of peat humification may be made across
extended areas with the use of hyperspectral remotely
sensed data.

Current work is focusing on the analysis of absorption
spectra for peat (derived from the HyMap and ASD spectra)
to determine if there are any relationships with
humification, lignin and other biochemical content. Work
also continues on validating images of predicted
transmission.

Future work will assess the pattern of peat erosion
and vegetation types across the area using landscape
ecology metrics to aid in the interpretation and under-
standing of this highly dynamic and threatened landscape.
Eventually we hope to combine remotely sensed peat
composition data with topographic variables in an attempt
to identify controls on peat erosion pattern.
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