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a b s t r a c t

Quantifying the above ground biomass of tropical forests is critical for understanding the dynamics of
carbon fluxes between terrestrial ecosystems and the atmosphere, as well as monitoring ecosystem
responses to environmental change. Remote sensing remains an attractive tool for estimating tropical
forest biomass but relationships and methods used at one site have not always proved applicable to other
locations. This lack of a widely applicable general relationship limits the operational use of remote sens-
ing as a method for biomass estimation, particularly in high biomass ecosystems. Here, multispectral
Landsat TM and JERS-1 SAR data were used together to estimate tropical forest biomass at three separate
geographical locations: Brazil, Malaysia and Thailand. Texture measures were derived from the JERS-1
SAR data using both wavelet analysis and Grey Level Co-occurrence Matrix methods, and coupled with
multispectral data to provide inputs to artificial neural networks that were trained under four different
training scenarios and validated using biomass measured from 144 field plots. When trained and tested
with data collected from the same location, the addition of SAR texture to multispectral data showed
strong correlations with above ground biomass (r = 0.79, 0.79 and 0.84 for Thailand, Malaysia and Brazil
respectively). Also, when networks were trained and tested with data from all three sites, the strength of
correlation (r = 0.55) was stronger than previously reported results from the same sites that used multi-
spectral data only. Uncertainty in estimating AGB from different allometric equations was also tested but
found to have little effect on the strength of the relationships observed. The results suggest that the inclu-
sion of SAR texture with multispectral data can go someway towards providing relationships that are
transferable across time and space, but that further work is required if satellite remote sensing is to pro-
vide robust and reliable methodologies for initiatives such as Reducing Emissions from Deforestation and
Degradation (REDD+).
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

The amount of carbon stored and sequestered by tropical for-
ests represents one of the greatest uncertainties in understanding
their role in the global carbon cycle (Houghton et al., 2000; Malhi,
2010). Quantifying this uncertainty demands methods that can
accurately and precisely measure forest carbon dynamics (Brown,
2002), as well as map the geographic extent of forest cover and
change over time. Previous attempts at carbon accounting have
often been based upon estimating gross emissions, usually taking
the form of mapping forest loss with little regard to replacement
biomass and thus often overestimating the impact of avoided
deforestation on carbon emissions to the atmosphere (UN-REDD,

2008). A more realistic assessment of carbon emissions to the
atmosphere would be to estimate net emissions (i.e. carbon emis-
sion from deforestation and accumulation of carbon stocks from
subsequent vegetation growth). A key driver for this is the United
Nations Reducing Emissions from Deforestation and Degradation
(UN-REDD+) programme, which explicitly states the need for the
development of robust and replicable methods for net accounting
of carbon emissions across large areas. Typically, governments
and environmental scientists have relied upon official forest statis-
tics to produce global assessments of forests but these suffer from
poor temporal coverage, and variable definitions of forest degrada-
tion (Grainger, 2010). Estimating above ground forest biomass
directly from satellite remote sensing is an attractive tool for deriv-
ing net carbon emissions estimates in a systematic and timely
fashion, but its potential is yet to be realised operationally. One
major problem with the remote sensing of biomass is that of
generalizing or transferring knowledge and methods derived from
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remotely sensed data over time and space (Wilkinson, 1997;
Nagendra, 2001; Woodcock et al., 2001).

Numerous studies have made use of remotely sensed data to
study forested environments (Franklin et al., 2001; Boyd and
Danson, 2005), but such data have not always been able to provide
the specific environmental information required by the research
and user communities. This is especially so in tropical environ-
ments where many have investigated the use of remotely sensed
data to estimate tropical forest biomass but with varying degrees
of success (e.g. Steininger, 2000; Foody et al., 2001, 2003; Castro
et al., 2003; Wang and Qi, 2008; Hill et al., 2011). Even those at-
tempts that have been successful have used methods that may
not generalise accurately in time and space. For example, a rela-
tionship derived from the accurate prediction of biomass at one
site or time may not yield accurate predictions when applied to
images of another site and/or acquired at another time with either
the same or a different sensor. This is a manifestation of the ‘one
time one place’ approach identified by Woodcock (2002) as a com-
mon cause of uncertainty in the application of remotely sensed
data to estimate forest biophysical properties. The elements of this
problem are typically spatial (e.g. generalisation within an image
or between imagery of different locations) and temporal (e.g. gen-
eralisation between images of one location acquired over a period
of time) (Woodcock et al., 2001) and arise typically as a function of
concerns with the remote sensing (e.g. consistent radiometric cal-
ibration) or ground conditions (e.g. spatial variation in forest struc-
ture). Such factors have been shown to significantly affect methods
commonly used in previous studies, such as vegetation indices,
which are highly sensitive to variation in topography, view angle
and atmospheric conditions for example, and whose ability to
predict above-ground biomass (AGB) of different tropical forest
environments has been found wanting (Foody et al., 2001, 2003).
Clearly, if remote sensing is to be a repeatable and consistent
source of environmental information at regional scales then such
issues must be addressed.

To address the problem of transferring a relationship geograph-
ically and develop a more consistently applicable approach to esti-
mating tropical forest AGB with remotely sensed data, Foody et al.
(2001, 2003) used an artificial neural network (ANN). This was
trained with all six non-thermal Landsat TM wavebands and AGB
measured in the field at three different tropical forest locations
(one in S. America and two in S.E. Asia). The trained network was
then tested to determine if a single ANN model could accurately
estimate biomass at each site. When trained with data from a sin-
gle site, the network was unable to accurately estimate AGB at the
‘unseen’ sites and performed only marginally better than a number
of vegetation indices. More accurate predictions were obtained
when the network was trained with data from all three sites
(r = 0.38, significant at the 95% confidence level). The strongest cor-
relation (r = 0.49, significant at the 99% confidence level) was ob-
served when the network was trained with training data from all
three sites and an additional variable identifying from which site
the individual training samples were taken. Thus, a network
trained with pixel values from six Landsat TM wavebands, corre-
sponding AGB value and a label indicating the location of each
sample, yielded a moderately strong correlation between esti-
mated and observed AGB from all three sites.

Whilst such an approach appears promising, it is possible that an
additional independent source of data that is able to discriminate
between different forest locations by taking into account differing
forest structure and other biophysical differences, could further im-
prove the ability to estimate AGB at many sites concurrently and
enhance spatial transferability (i.e. the transferring of predictive
relationships between sites). Such independent data need to be
widely available and should provide information in addition to that
contained within multispectral data. This information could

potentially be derived from active remote sensing systems which
have been shown to be highly correlated with AGB in some environ-
ments (Brown, 2002; Lu, 2006; Mitchard et al., 2009).

LiDAR systems show particular promise in this respect (e.g.
Hyde et al., 2006), but the availability of systematically acquired
high-density LiDAR data for tropical regions remains very limited.
Perhaps more useful at the present time is synthetic aperture radar
(SAR). SAR data have been successfully used to estimate AGB in
many forested environments, both by using the data to classify dif-
ferent forest types or by direct estimation. When classification-
based methods have been used it has often been shown that tex-
ture information derived from SAR images can be especially useful
in discriminating between different forest classes (e.g. Podest and
Saatchi, 2002) as image texture contains information on the struc-
tural and geometric properties of forest canopies (DeGrandi et al.,
2009). Direct estimation of AGB has been largely based upon the
fact that SAR backscatter (r0) is sometimes strongly correlated
with forest biomass, particularly in low-medium biomass forests
and at lower frequencies (P- and L-band) (e.g. Le Toan et al.,
1992; Luckman et al., 1997; Castel et al., 2002; Lucas et al.,
2006a). Again, the addition of image texture measures has been
shown to improve the accuracy with which biomass can be esti-
mated in regenerating tropical forests (Kuplich et al., 2005). How-
ever, the use of SAR data to directly estimate forest AGB in tropical
regions has well-known limitations, especially the problem of
backscatter saturation at relatively low AGB. Previous studies have
reported saturation at AGB of around 20 tha�1 for C-band and
40 tha�1 for L-band (Imhoff, 1995), although these may be ex-
tended through the use of backscatter ratios (Foody et al., 1997).
The saturation effect is compounded by uncertainty in the relation-
ships between AGB and SAR data resulting largely from a reliance
on plot-based estimates of AGB that often fail to take into account
variability in radar parameters, topography and forest structure
(Luckman et al., 1997; Lucas et al., 2006a,b). It is likely that such
issues have restricted investigation into the use of SAR data to esti-
mate tropical biomass previously.

Several studies have investigated the integration of SAR and
multispectral remotely sensed data for the estimation of forest bio-
physical properties. These have tended to employ a combination of
optical and SAR data to aid discrimination of different vegetation
and forest classes, from which typical AGB values for each class
can be aggregated with respect to the entire classified area (e.g.
Amini and Sumantyo, 2009). Another form of integration is to
use SAR data as an extra variable (alongside multispectral wave-
bands and/or vegetation indices) in multivariate regression mod-
els. For example, Rauste (2005) used a combination of JERS-1
SAR backscatter and Landsat TM data to directly estimate stem vol-
ume of forests in Finland. This resulted in a slight increase in the
accuracy of stem volume estimation compared to when SAR data
alone were used (r increased from 0.85 to 0.89). As complementary
data to multispectral Landsat TM imagery, therefore, the synergis-
tic use of SAR and multispectral data for estimating AGB appears
promising and deserves further attention (Lu, 2006).

Testing the spatial transferability of predictive relationships be-
tween remotely sensed data and AGB has received little attention
to date. Mitchard et al. (2009) showed that a relationship derived
between AGB and L-band backscatter was successful in estimating
AGB in four different savannah and low biomass tropical forest
environments in Africa. In high biomass tropical forests Foody
et al. (2003) demonstrated that whilst AGB could be estimated at
single sites reasonably well, poor accuracies were observed when
relationships were used to estimate AGB at other sites. Whilst both
the above studies used single source remotely sensed data, the aim
of this paper is to investigate whether a combination of widely
available multispectral (Landsat TM) and L-band SAR (JERS-1)
backscatter and image texture measures can be used to improve
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the spatial transferability of predictive relationships at three high-
biomass tropical forest sites, as opposed to using multispectral
data on their own.

2. Test sites and data

To test whether a combination of SAR and multispectral data
could estimate AGB at different tropical forest locations empirical
relationships were derived between ground estimates of AGB and
the remotely sensed data. Forest plots were located at three differ-
ent test sites, located near Manaus in Brazil (2� 280 S, 59� 580 W, Da-
num Valley Field Centre in Borneo, Malaysia, (4� 500 N, 117� 450 E)
and part of the Khun Khong catchment in north-west Thailand (19�
310 N, 98� 480 E). All sites are located in the moist zone tropical for-
est region but differ in terms of tree species present, biophysical
properties and AGB. For each site, JERS-1 SAR, Landsat TM and field
survey data were acquired as close together as was practicable to
facilitate meaningful comparisons (Table 1).

Twenty-two forest plots were located to the north and north-
east of Manaus within the INPA and Smithsonian Institutes Biolog-
ical and Forest Fragments Project (BDFFP) study area, with a
further five established in the Ducke and Elger reserves (Lucas
et al., 2002). Tree biophysical data were collected in 1993 and
1995 from rectangular plots of 100 � 10 m (0.1 ha), except for
one plot that measured 20 � 15 m. For every tree within each plot
that had a diameter at breast height (dbh cm) >3 cm, the tree spe-
cies, dbh and height (m) (if possible) were recorded. The total
above ground biomass (t ha�1) of each tree was estimated using
observations of dbh, height and the specific density of the wood
(S, g cm�3), when known, using the appropriate moist life zone
allometric equation provided by Brown et al. (1989). Further
details regarding these data may be found in Lucas et al. (2002).

A different sampling scheme was adopted for locating and sam-
pling plots in both Thailand and Malaysia. Here, the dbh of all trees
with a dbh > 10 cm within a circular plot with a radius of 12.62 m
(0.05 ha) was measured (Pelz, 2000). Species and tree height
(where possible) were also recorded, with total AGB again deter-
mined using appropriate moist life zone allometric equations
(Brown, 1997) (Table 6).

A total of 52 plots were located within the lowland dipterocarp
forests surrounding the Danum Valley Field Centre in northeastern
Borneo, with observations made during field surveys in early 1997
(Foody et al., 2001). The region contains forest areas that have been
logged at different times and intensities, as well as reserves of un-
logged primary forest. A more complete description of the Borneo
forest characteristics may be found in Newbery et al. (1992). Forest
plots were located by segmenting the area into strata defined by
past land use, with the date of logging activity or preservation
status used as discriminating attributes. Five sample plots were
located randomly within each stratum, except for one region in
which two additional plots were also established.

The data from Thailand relate to forest plantations located
within the Khun Khong Watershed Management Unit, approxi-
mately 100 km northwest of Chiang Mai. The majority of the 65
plots were located in stands of Pinus kesiya of different ages (32,
28, 25 and 19 years at the time of sampling in 1997), with the

remainder in an area of tropical deciduous forest. A systematic
sampling scheme was used to determine the location of each plot
and positioned with the aid of a GPS. Further details relating to the
collection of the ground data at all sites may be found in Foody
et al. (2003), who used the same field data to estimate forest bio-
mass with Landsat TM only.

3. Data processing

All remotely sensed data for each site were processed in the
same way, before then being used to estimate AGB.

3.1. Remotely sensed data pre-processing

The Landsat TM data were radiometrically calibrated to top of
the atmosphere radiance using post-launch calibration coefficients
(Chavez, 1989) before then being atmospherically corrected using
a modified dark object subtraction technique (Chavez, 1996). All
images were then geometrically corrected using a first order poly-
nomial function and 11 ground control points (GCPs) for the
Malaysian image, 10 GCPs for the Thailand image and 20 for the
Brazil image. This resulted in RMS errors of 18 m, 28 m and 14 m
for the Malaysian, Thailand and Brazil images respectively. Finally,
the images relating to Malaysia and Thailand were then topograph-
ically corrected according to the method presented by Ekstrand
(1996) and using Digital Elevation Models (DEMs) for each site.
Both DEMs were derived by digitising contours from 1:50,000 scale
topographic maps and resampled to a spatial resolution of 30 m. As
the Brazil test site was essentially flat then no topographic correc-
tion was required. A full description of all the pre-processing steps
applied to the Landsat TM data can be found in Foody et al. (2003).

The JERS-1 SAR images were obtained from NASDA (level 2.1)
and with a pixel spacing of 12.5 m. Each image was radiometrically
calibrated to backscatter coefficients (r0) using the conversion
equation provided by Shimada (2002). Both the Malaysian and
Thailand sites showed some variation in backscatter due to terrain
effects, both sites being located in areas of moderate relief and
with some steep slopes. To account for this a terrain correction
was applied to these two images only, similar to the Landsat TM
data processing; as the site in Brazil is relatively flat no correction
for terrain effects was applied. The DEMs that were used to
topographically correct the Landsat TM images were used to derive
slope and aspect, which in turn was used to calculate the local inci-
dence angle for every pixel in the JERS-1 SAR images according to
the method detailed by Sun et al. (2002). Radiometric distortions
due to terrain effects were then corrected according to the equa-
tion outlined by Kellndorfer et al. (1998), which has previously
been used by Sun et al. (2002) to estimate biomass with SIR-C data.

All JERS-1 SAR images were supplied already geo-referenced,
although further correction was required for a more precise regis-
tration between the SAR and Landsat TM data. This was completed
by selecting GCPs in both the multispectral and SAR images of each
site and a 1st order polynomial transformation, with nearest neigh-
bour resampling applied, but retaining the 12.5 m pixel size. All
three sites were corrected to an estimated RMS error of less than
one Landsat TM pixel (30 m) and subsequent visual inspection

Table 1
Ground and remotely sensed data sets.

Site Field survey Landsat TM (all six non-thermal wavebands) JERS-1 (L-band) Number of plots measured
in the field

Brazil July/August 1993 & 95 Landsat 4 July 1992 December 1995 27

Thailand December 1997 Landsat 5 January 1997 March 1997 65

Malaysia November & December 1996 Landsat 5 March 1997 December 1996 52
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confirmed close agreement between the multispectral and SAR
datasets.

3.2. SAR image texture

Image texture can provide information relating to the structural
and geometric properties of forests (DeGrandi et al., 2009), which
in itself may be correlated with AGB or be useful in discriminating
between different forest types (Podest and Saatchi, 2002). Extract-
ing image texture is commonly done using statistical and/or signal-
processing methods (e.g. wavelet analysis). Here, both methods
were used to obtain measures of image texture as additional vari-
ables to be combined with multispectral data for training artificial
neural networks to estimate AGB on their own, and in combination
with the Landsat TM data.

The Grey Level Co-occurrence Matrix (GLCM) is a statistically-
based method of obtaining textural information from remotely
sensed imagery of all types. It has been widely used for a variety
of applications, including deriving estimates of biomass change
in regenerating tropical forests (Kuplich et al., 2005). The GLCM
is computed from a relative displacement vector (d, h), which is
based on the spatial distribution of grey level pairs of pixels sepa-
rated by a distance (d) in a particular direction (h). From this infor-
mation, a number of textural measurements can be derived
(Haralick, 1979). In this case the texture measures Entropy, Vari-
ance, Contrast, Dissimilarity, Homogeneity, Correlation, Second
Moment and Energy were used, all of which have been shown to
be useful in discriminating between tropical forest types (Podest
and Saatchi, 2002). A detailed description of each texture measure
can be found in Haralick (1979). Eight image texture measures
were extracted from the GLCM for each location in the image
where field data had been collected (Fig. 1). Selecting an appropri-
ate window size for texture analysis is critical, as small window
sizes often exaggerate differences, while large window sizes

cannot effectively extract texture due to smoothing (Lu and Bati-
stella, 2005). Rather than deciding upon a particular window size
to generate texture measures in advance, all eight texture mea-
sures were generated for a range of window sizes from 3 � 3 pixels
to 13 � 13 pixels. Texture was then derived for four commonly
used directions within the window (45�, 90�, 135� and 0�), with
the central pixel value derived from integrating all four values.
To reduce computational effort the GLCM matrix was constructed
using a 64 grey level quantisation, since high image quantization
levels can generate sparse GLCMs, which may compromise the
accuracy of the probability estimates for GLCM and, thus, any de-
rived texture measures (Bijlsma, 1993).

Wavelet analysis is becoming more frequently used to derive
texture information from SAR data. A discrete wavelet transform
(DWT) decomposes images into different frequency components
by applying a scaling function (low pass filter) and wavelet func-
tion (high pass filter). The original image can be decomposed into
four frequency component images: approximation (low frequency
information), and details (high frequency information) in three
different directions (horizontal, vertical and diagonal). Further
information and a mathematical basis for wavelet transformation
is described by Daubechies (1991), whilst examples of their appli-
cation to SAR image texture analysis are given in DeGrandi et al.
(2009) and Simard et al., 1998 (2000). Commonly in a DWT filter
bank design there is a decimation function after the data have
been filtered, however in this case, to preserve the image size at
every processing stage, a discrete wavelet frame transform
(DWFT) was used which omits the decimation function. This
decomposition process can be repeated to generate further levels
of decomposition in which the approximation component is fur-
ther decomposed into many frequency components. Three levels
of Coiflet family wavelet decomposition were analysed and their
corresponding scaling and wavelet coefficients are given in
Table 2.

Fig. 1. Example JERS-1 SAR backscatter and GLCM-derived texture images (7 � 7 window) for the Malaysian site: (A) raw backscatter, (B) energy, (C) homogeneity, (D)
contrast, (E) second moment, and (F) contrast.
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3.3. Biomass estimation

At each location, the pixel containing a sample plot was identi-
fied and the SAR texture and backscatter information, along with
reflectance in all 6 non-thermal Landsat TM wavebands extracted
for the analyses. In total, 144 plots were surveyed in the field,
but radar shadow precluded the use of 2 plots, leaving 142 for
the analysis of SAR data only. Cloud contamination degraded the
Landsat TM data by a further 48 plots, leaving 94 suitable for the
combined SAR and Landsat TM analyses.

The most common method for estimating biophysical properties
with remotely sensed data has been the use of vegetation indices.
Typically, these have been used to generate some form of statistical
relationship between the index and the biophysical variable of
interest, before then deriving a predictive model based upon regres-
sion analyses. However, previous work has determined that this
approach yielded inaccurate estimates at the three tropical forest
sites used here and that the relationships were not transferable
between sites (Foody et al., 2001, 2003). This is partly due to well
known limitations of vegetation indices in high LAI environments
(such as saturation) and partly to the problems of satisfying under-
lying assumptions of standard statistical regression analyses, such
as data independence, distribution, absence of noise etc. Artificial
neural networks, however, make no assumptions regarding the dis-
tribution and independence of input data and can still generalise
effectively even when training data contain noise (Bishop, 1995).
As such they may be used as an alternative to multivariate regres-
sion analysis, with an added benefit of making use of all spectral
information present within multispectral data, as opposed to a lim-
ited number of wavebands when computing a vegetation index.

Promising results have already been reported for the tropical forest
sites used in this study using two feed forward neural network
types: Multi-layer Perceptron (MLP) and Radial Basis Function
(RBF) (Foody et al., 2001, 2003). Here, both types of ANN were used
with various combinations of architectures and inputs evaluated. A
software package that allows the testing of many networks with
varying numbers of hidden units and layers which removes the of-
ten subjective process of the user deciding upon network architec-
ture. For all networks the learning and momentum rates were set to
the default values (0.3 and 0.1 respectively). The effects of varying
these parameters was not investigated here, but clearly defining
the optimum set of ANN parameters would be of significant value
for wider application of this work. In all cases, the results reported
here are for the network that showed the strongest correlation be-
tween the input training and testing datasets.

Above ground biomass was estimated using neural networks
under four separate estimation scenarios. The first three scenarios
used only the SAR texture and backscatter data to directly estimate
AGB, whilst the fourth scenario investigated the use of combined
SAR (texture) and Landsat TM data. The use of Landsat TM data
on their own to estimate AGB has been reported previously (Foody
et al., 2001, 2003) and whilst the raw field and Landat TM data are
the same, it is important to note that the training and testing sam-
ples described below were generated randomly from the available
SAR and multispectral data, and so will differ from the previous re-
search. The results from each scenario were compared based upon
the strength of the correlations between the observed and pre-
dicted AGB. The significance (95% confidence level) of any increase
in strength of correlation between these and previously published
results were tested using Fishers r to z transformation.

Table 2
Scaling and wavelet coefficients for the three levels of Coiflet wavelet decomposition.

Coif1 Coif2 Coif3

Scaling coefficient Wavelet coefficient Scaling coefficient Wavelet coefficient Scaling coefficient Wavelet coefficient

�0.01565 �0.07273 �0.00072 0.01638 �0.000034 �0.003793
�0.07273 �0.33789 �0.00182 0.04146 �0.000070 �0.007782

0.38486 0.85257 0.00561 �0.06737 0.000467 0.023452
0.85255 �0.38486 0.02368 �0.38611 0.001117 0.065771
0.33789 �0.07273 �0.05943 0.81272 �0.002574 �0.061123
�0.07273 0.01565 �0.07648 �0.41700 �0.009007 �0.405176

0.41700 �0.07648 0.015880 0.793777
0.81272 0.05943 0.034555 �0.428483
0.38611 0.02368 �0.082301 �0.071799
�0.06737 �0.00561 �0.071799 0.082301
�0.04146 �0.00182 0.428483 0.034555

0.01638 0.00072 0.793777 �0.015880
0.405176 �0.009007
�0.061123 0.002574
�0.065771 0.001117

0.023452 �0.000467
0.007782 �0.000070
�0.003794 0.000034

Table 3
Summary of the data used for training and testing ANNs in each of the different AGB estimation scenarios.

Scenario Remotely sensed input data No. of samples used
in training

Trained with data from No. of samples
used in testing

Tested with data from

1 SAR backscatter and texture 18 Brazil 9 Brazil
42 Thailand 21 Thailand
34 Malaysia 18 Malaysia

2 SAR backscatter and texture 18 Brazil 39 Malaysia & Thailand
42 Malaysia 30 Brazil & Thailand
34 Thailand 27 Malaysia and Brazil

3 SAR backscatter and texture 94 Malaysia, Thailand & Brazil 48 Malaysia, Thailand & Brazil

4 SAR texture and Landsat TM 60 Malaysia, Thailand & Brazil 34 Malaysia, Thailand & Brazil
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In the first scenario, neural networks were trained with samples
obtained at one site (e.g. Thailand) and then tested with different
samples from that same site to test whether there was a relation-
ship between AGB and SAR backscatter and image texture at each
site individually (analogous to the ‘one time one place’ approach).
In each case, the data were divided randomly into two independent
samples. One comprised data used to train the neural networks to
develop an invertible relationship between forest biomass and the
remotely sensed response, whilst the other contained the remain-
ing data for that site which were used to evaluate the accuracy of
the AGB estimates derived from the neural networks. For Brazil 18
samples were used for training and 9 for testing, for Thailand 42
were used for training and 21 for testing, and for Malaysia the
training dataset comprised 34 samples, with 18 in the testing
dataset.

In the second estimation scenario neural networks were again
trained with data from a single site. However, in this case the neu-
ral networks that showed the strongest correlation with AGB in
scenario 1 were now tested with data from sites other than which
they were trained to evaluate the accuracy with which AGB at
other sites could be estimated. For example, a network trained
with data from Brazil was then tested with respect to its ability
to estimate AGB in Malaysia and Thailand. Again, the data were di-
vided into training data from a single site (n = 18, 42 and 34 for
Brazil, Thailand and Malaysia respectively) whilst the testing data
comprised the remaining samples from each site individually.

A third training scenario trained and tested the neural networks
with data from all three sites. Here the training dataset comprised
a total of 94 samples, randomly drawn from all three areas, with
the remaining 48 samples making up the testing dataset.

In all three scenarios described above AGB was estimated firstly
with backscatter values only, followed by all combinations of the
eight GLCM-derived texture measures, and finally using the wave-
let texture measures, again in combinations of all three levels of
decomposition. It is important to note that there is likely to be a
high degree of co-correlation between some of the GLCM and
wavelet texture measures. By presenting different combinations
of these inputs to the networks (i.e. not all measures were pre-
sented to every network) then the potentially negative effects of
possible co-correlation is reduced, although this does increase

processing time. The optimum selection of texture measures is
clearly an important aspect of the wider application of this method
and is the subject of further research.

The final estimation scenario involved training and testing
ANNs with a combination of Landsat TM and SAR texture (GLCM)
data drawn from all three sites. Corresponding pixel values from
the texture and multispectral data were extracted for the 94 plots
unaffected by cloud and radar shadow, before being randomly split
into a training dataset of 60 and a testing dataset of 34 indepen-
dent samples.

4. Results

Multiple individual ANNs were created in each of the four train-
ing scenarios, with each individual network varying in their net-
work architecture, type and data used as inputs (although
learning and momentum rates were kept constant throughout).
Results are reported in all cases from the network that showed
the strongest correlation with the testing data.

4.1. Scenario 1: training and testing ANNs with SAR texture data from
the same site only

The JERS-1 SAR backscatter data on their own were weakly cor-
related with AGB, with correlation coefficients of r = 0.23 (Malay-
sia), r = 0.05 (Thailand) and r = 0.16 (Brazil), all insignificant at
the 95% confidence level. Such weak relationships were not unex-
pected given the widely documented saturation of SAR backscatter
data at high AGB, particularly in high biomass tropical forests
(Imhoff, 1995; Lucas et al., 2006b).

There were strong correlations between the GLCM-derived im-
age texture values and AGB when the neural networks were
trained and tested with data from the same site, although there
was considerable variability depending upon the window sizes
used (Table 4). Networks trained with window sizes of 7 � 7 pixels
all produced the strongest correlations between AGB values in the
testing data and that predicted by the neural networks for all three
sites (r = 0.82, 0.79 and 0.83 for Brazil, Malaysia and Thailand
respectively). However, in each case the networks with the

Table 4
Correlation coefficients observed for the relationships between AGB of the testing set and that predicted by neural networks trained with varying sets of GLCM-derived
SAR texture. Only those networks that showed the strongest correlation between training and testing data from the same site are presented (shown in bold type), along
with the correlation coefficient when the same networks were used to predict AGB at different sites. The architecture of each neural network is indicated in the form of
input: hidden: output units. The GLCM-derived texture measures are 1 energy, 2 variance, 3 homogeneity, 4 contrast, 5 dissimilarity, 6 entropy, 7 second moment, 8
correlation.

ANN type and
architecture

Window
size

Training
site

Correlation coefficients for each testing site GLCM texture variables
used as inputs to ANN

Brazil Malaysia Thailand

MLP 7:4:1 3 Brazil 0.48 0.21 �0.13 1–7
MLP 3:4:1 5 0.60 0.32 �0.22 2,4,6
RBF 2:5:1 7 0.82 0.74 0.43 3,4
RBF 3:2:1 9 0.81 �0.38 �0.80 3,4,6
MLP 4:7:1 11 0.83 �0.44 �0.59 1,2,3,5
MLP 6:8:1 13 0.84 0.19 0.03 2,3,4,5,6,8

RBF 7:1:1 3 Malaysia 0.01 0.40 �0.27 2–8
MLP 5:8:1 5 -0.03 0.43 �0.23 1,2,3,4,6
RBF 7:3:1 7 0.76 0.79 0.23 1–4,6,7,8
MLP 4:7:1 9 0.20 0.74 �0.04 1,2,5,7
MLP 3:5:1 11 0.31 0.48 �0.51 1,3,7
RBF 8:10:1 13 0.09 0.41 0.17 1–8

MLP 8:6:1 3 Thailand �0.41 0.15 0.49 1–8
MLP 3:3:1 5 0.03 0.37 0.81 1,2,3
MLP 5:9:1 7 0.13 �0.47 0.83 1,2,3,4,8
MLP 5:7:1 9 0.37 0.51 0.78 1,3,4,7,8
MLP 3:5:1 11 �0.51 0.01 0.57 2,3,4
RBF 5:6:1 13 0.34 0.22 0.70 3,4,5,7,8
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strongest relationship between the remotely sensed data and AGB
varied with respect to type, architecture and combination of tex-
ture measures used to train them. Similar results were also ob-
served when networks were trained with Coiflet wavelet
coefficients (Table 5). In general, Coiflet 3 produced the most con-
sistent results in terms of strength of correlation at all sites individ-
ually (r = 0.76, 0.78 and 0.64 for Brazil, Malaysia and Thailand
respectively), although this varied markedly with the degree of
decomposition between sites, illustrating that it is difficult to de-
fine a single wavelet-derived texture measure that would be un-
iquely applicable at all three sites. This was tested further in
scenario 2.

4.2. Scenario 2: training ANNs with SAR texture data from one site and
applying that to other sites

The neural networks that exhibited the strongest relationship
between the input data and AGB when trained and tested with
data from the same site, were then evaluated with respect to their
ability to estimate AGB at the two other sites (i.e. sites not used in
training) (Tables 4 and 5). As in scenario 1, networks trained with
backscatter data only from one site showed weak correlations
when applied to other sites. More encouragingly, networks trained
with GLCM-derived texture measures showed some degree of
transferability, particularly when a 7 � 7 pixel window was used.
Here, networks trained with samples from Brazil also showed a
strong correlation when tested with data from Malaysia (e.g.
r = 0.74 for MLP with 2 input units: 5 hidden: 1 output) and vice
versa. However, weaker relationships were noted when applied
to data from Thailand (r = 0.43) (Table 4). It should also be noted
that there was little consistency in the architecture of the best per-
forming networks and combinations of texture measures as inputs.

Similar results were observed when networks were trained with
Coiflet wavelet inputs from one site and tested against samples
from other sites (Table 5). Here though, the consistency of the rela-
tionships observed between the Brazilian and Malaysian data were
less pronounced than the GLCM texture measures. For example,
when trained and tested with data from Brazil (r = 0.78), the same
network applied to Malaysia data produced only a moderate corre-
lation (r = 0.61) (MLP with 4:8:1 units, Coiflet 1). It is interesting to
note, however, that the horizontal component of the Coiflet wavelet
was more often included as an input variable in the networks with
the strongest correlation with AGB than any other wavelet texture
measures. Whilst no further statistical analysis of the sensitivity of
networks to the various input variables is presented here, deter-
mining why this component was most frequently associated with
strongly performing networks and defining the most suitable tex-
ture measures for estimating AGB warrants further investigation.

4.3. Scenario 3: training and testing ANNs with SAR texture data
drawn from all 3 sites

Previous work has suggested that a neural network trained with
remotely sensed data from a single site is unlikely to be able to
estimate AGB with any great accuracy when tested with data from
a different site (Foody et al., 2003). Whilst the results from scenario
2 show that networks were sometimes able to predict biomass at
other sites, the lack of consistency in estimating AGB across all
sites suggests that further investigation is required. Therefore, a
further set of neural networks were trained with GLCM-derived
SAR texture measures, with samples randomly selected from all
three sites (Malaysia, Thailand and Brail) and subsequently tested
with independent (unseen) cases, again drawn from all three forest

Table 5
Correlation coefficients observed for the relationships between AGB of the testing set and that predicted by neural networks trained with Coiflet wavelet
coefficients at varying degrees of decomposition and input variables. Only those networks that showed the strongest correlation between training and testing data
from the same site are presented (shown in bold type), along with the correlation coefficient when the same networks were used to predict AGB at different sites.
The architecture of each neural network is indicated in the form of input: hidden: output units. The input Coiflet texture variables were 1 approximation, 2
horizontal, 3 vertical and 4 detail.

ANN type and
architecture

Wavelet
family

Level of
de-composition

Training site Correlation coefficients for each testing site Coiflet texture variables
used as inputs to ANN

Brazil Malaysia Thailand

MLP 4:8:1 Coif1 1 Brazil 0.78 0.61 �0.19 1,2,3,4
RBF 2:5:1 Coif1 2 0.46 0.25 �0.43 1,2
MLP 2:5:1 Coif1 3 0.63 0.59 0.34 2,3
MLP 4:7:1 Coif2 1 0.71 0.40 0.20 1,2,3,4
MLP 3:5:1 Coif2 2 0.51 0.54 0.17 2,3,4
RBF 2:2:1 Coif2 3 0.64 �0.21 0.07 2,3
MLP 4:7:1 Coif3 1 0.65 0.23 0.64 1,2,3,4
MLP 3:3:1 Coif3 2 0.71 0.14 0.17 2,3,4
MLP 2:4:1 Coif3 3 0.76 �0.61 �0.47 2,3

MLP 2:3:1 Coif1 1 Malaysia �0.49 0.54 0.42 2,3
MLP 2:3:1 Coif1 2 0.20 0.60 �0.33 1,2
MLP 2:3:1 Coif1 3 0.47 0.67 0.28 2,3
MLP 4:7:1 Coif2 1 0.26 0.44 �0.59 1,2,3,4
MLP 2:3:1 Coif 2 2 �0.38 0.34 �0.49 2,3
MLP 2:7:1 Coif2 3 �0.59 0.35 �0.01 2,3
MLP 4:7:1 Coif3 1 0.62 0.70 0.51 1,2,3,4
MLP 2:3:1 Coif3 2 �0.38 0.74 �0.49 2,3
MLP 2:5:1 Coif3 3 �0.50 0.78 �0.14 2,3

MLP 2:7:1 Coif1 1 Thailand 0.50 0.45 0.62 2,3
MLP 2:3:1 Coif1 2 �0.67 �0.20 0.23 2,3
MLP 2:3:1 Coif1 3 0.01 �0.48 0.60 2,3
MLP 3:5:1 Coif2 1 0.22 0.08 0.51 1,3,4
MLP 2:3:1 Coif2 2 �0.39 0.01 0.47 1,2
MLP 2:3:1 Coif2 3 0.08 �0.29 0.42 2,3
MLP 3:3:1 Coif3 1 0.55 0.42 0.64 1,3,4
MLP 2:3:1 Coif3 2 �0.29 0.11 0.50 1,2
MLP 2:5:1 Coif3 3 0.03 �0.39 0.44 2,3
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sites. Informed by previous results, GLCM-textures were derived
for a 7 � 7 pixel window only to minimise training time.

The ANN that showed the strongest relationship between actual
and predicted AGB (r = 0.53, significant at the 95% confidence level)
(Table 6, Fig. 2) was a MLP (4:5:1 units). The strength of the rela-
tionship compares well with relationships previously reported
when a neural network was trained and tested with only Landsat
TM data from the same three sites (r = 0.38) (Foody et al., 2003).
However, it is clear from Fig. 2 that AGB is consistently underesti-
mated, particularly for high-biomass plots.

4.4. Scenario 4: training and testing with SAR texture and Landsat TM
data from all 3 sites

There was a strong positive relationship between the observed
and predicted AGB when neural networks were trained and tested
with Landsat TM and JERS-1 SAR GLCM-derived texture informa-
tion from all sites (r = 0.77 significant at the 99% confidence level)
(Fig. 3; Table 6). In particular, the underestimation of biomass
noted in Fig. 2 when only SAR GLCM data were used is not so
apparent here when Landsat TM data were included. This was also
a stronger correlation coefficient than that observed when a net-
work was previously trained and tested with Landsat TM data only
(r = 0.38) and a combination of Landsat TM data plus a geographic
label denoting which site training data came from (r = 0.49) (Foody
et al., 2003). The difference in strength of correlations was assessed
using Fishers r-to-z transformation. For the correlations using just
the Landsat TM data only and the SAR texture measures only to
estimate AGB there was a significant difference (r = 0.38 and 0.77
respectively, z = 2.38, p < 0.05). However, when the combined
Landsat TM and SAR texture relationship (r = 0.77) was compared
with those derived previously for the Landsat TM data plus a

geographic label (r = 0.49), there were no significant differences
(z = 0.1.878, p = 0.0604 and z = 0.73, p = 0.4633 respectively). It
should be noted, however, that in both cases the sample size used
in the testing datasets were relatively small (n = 34 and 31
respectively).

5. Discussion

5.1. SAR texture

The two independently derived measures of SAR image texture
(wavelet and GLCM-based) were both highly correlated with AGB
when neural networks were trained and tested with texture sam-
ples from the same sites only. In fact, the strength of the correla-
tions observed are comparable to those reported previously
(Foody et al., 2001, 2003), when neural networks were trained
and tested with Landsat TM data only from the same sites
(r = 0.82, 0.71 and 0.84 for Malaysia, Thailand and Brazil respec-
tively). This demonstrates the considerable potential of using SAR
image texture to estimate AGB at individual tropical forest sites.
This potential has been highlighted before, with the addition of
texture measures shown to increase the strength of relationships
between SAR backscatter and AGB (e.g. Kuplich et al., 2005). How-
ever, a key difference between this work and previous studies is
the fact that a number of texture measures are used in combina-
tion to train and test multiple neural networks, rather than select-
ing either a single measure of texture or using techniques such as
stepwise multiple regression. The use of multiple neural networks,
trained with combinations of image texture measures and window
sizes, allows the user to make fewer decisions regarding these key
inputs to the model, but rather select the ‘best’ performing net-
work. The trade-off, however, is in processing time and the fact
that this approach demands available data to be split into training
and testing data. With ground data in tropical forests often difficult
to obtain, this can lead to very small testing datasets from which
firm statistical conclusions may be difficult to draw. However,
the results suggest that given the often extensive cloud cover in
tropical areas and the problematic effects of the atmosphere upon
multispectral data, SAR texture may provide a means of obtaining
information relating to AGB and carbon stocks on a more frequent
basis than possible with optical sensors.

5.2. Spatial transferability of relationships

Whilst in general ANNs trained with data from one site showed
a poor ability to estimate AGB at other sites, there was a discernible

Table 6
Summary of correlation coefficients observed for the relationships between different
combinations of input data and AGB, predicted by neural networks trained and tested
with data drawn from all three sites (Malaysia, Brazil and Thailand).

Data combination Correlation coefficient (r)

Landsat TM 0.38a

Landsat TM + country label 0.49a (0.68 when two outliers removed)
SAR image textureb 0.55
Landsat TM, SAR image texturec 0.77

a From Foody et al. (2003).
b MLP 3:5:1, trained using GLCM-derived texture measures homogeneity, con-

trast and dissimilarity.
c MLP 11:7:1, trained using all Landsat TM wavebands (except band 6) and GLCM

texture measures energy, variance, homogeneity, contrast and dissimilarity.

Fig. 2. Observed and predicted biomass from a network trained and tested with
SAR GLCM texture from all sites (r = 0.53, statistically significant at the 99%
confidence level, n = 51).
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Fig. 3. Observed and predicted biomass from a network trained and tested with
Landsat TM and JERS-1 SAR texture data from all sites (r = 0.77, statistically
significant at the 99% confidence level, n = 34).
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pattern in that networks trained with samples from Brazil also
showed a strong correlation when tested with data from Malaysia,
and vice versa (Tables 4 and 5). This is largely attributable to the
forest characteristics and properties at each of these two sites
being more similar than the forest in Thailand. Both the Malaysian
and Brazil sites are located in lowland tropical forest areas, both
subjected to logging and with broadly similar canopy structures
(but very different species assemblages). The site in Thailand, how-
ever, has forest more akin to the characteristics of montane tropi-
cal forest, with planted stands of P. kesiya. These functional
similarities (between Brazil and Malaysia) and differences (with
Thailand) help to explain why the relationships derived for Brazil
and Malaysia are more applicable to each other than the Thailand
forests. Whilst not providing a truly globally applicable relation-
ship for all tropical forest regions, the use of SAR texture produced
relationships with stronger correlations than when Landsat TM
data only were analysed in a similar fashion (Foody et al., 2003)
and suggest that generally applicable relationships may be possible
for forests of similar functional types, although clearly more testing
is required.

A further solution to increase the transferability of predictive
relations between sites may be the incorporation of a geographic
label, as demonstrated by Foody et al. (2003). However, an ANN
trained with data that incorporates a geographical label is probably
deriving a series of internal local, rather than global relationships
although this is difficult to verify, i.e. the label divides the data into
different geographical groups and separate relationships between
the remotely sensed data and AGB derived, but within a single
ANN. When such a network is used to estimate AGB from observa-
tions made outside of the area from which it has been trained, it is
likely to perform poorly unless the new site observations fall with-
in the bounds of these local relationships. Whether replacing a geo-
graphic label with forest information derived from an independent
data source (e.g. SAR) provides a more representative global rela-
tionship (given that information relating to forest structure etc. is
present) is quite likely, but requires further analysis.

The results presented here once again highlight the problem of
transferring a predictive relationship between different locations.
This is perhaps not a surprise given the numerous sources of uncer-
tainty and error that could be included within the analysis. These
sources may be categorised into uncertainty introduced through
ground data collection, biomass estimation methods and image
processing procedures.

5.3. Uncertainty in AGB estimation from field measurements

A major source of uncertainty in the estimation of tropical for-
est AGB is the lack of standard models for deriving AGB from direct
tree measurements (Chave et al., 2005). The use of allometric
regression models is common but many remain largely untested
beyond their initial development (Brown et al., 1989). Previous
studies have illustrated that large variation in stand level AGB esti-
mates have been observed when different allometric equations are
applied (e.g. Chave et al., 2005) although this does not appear to
significantly affect estimates of the magnitude of tropical AGB
change (Baker et al., 2004). However, to test whether variation in
AGB estimation from field data had an impact upon remotely
sensed estimates of AGB the field data were re-analysed and neural
networks trained and tested using a ‘new’ set of biomass estimates
and a combination of SAR texture and Landsat TM data.

As described in Section 2, the analysis presented thus far has
been based upon AGB estimation using allometric equations given
by Brown (1997) (Table 7). These were developed from tree mea-
surements made across several tropical regions and from mixed
species (so called ‘pan-tropic’ models). However, such models nat-
urally generalise variation in AGB response to stem diameter,
meaning that forest-type, regional or even species dependent mod-
els may well yield more accurate estimates of AGB (Chave et al.,
2005; Basuki et al., 2009). Here, the tree biophysical data were
used to estimate AGB a second time but using allometric equations
that were either developed for specific species (e.g. Dipterocarp) or
regions (e.g. Amazonia) (Table 7).

In Malaysia, AGB varied between allometric equations by up to
260 t ha�1, representing a percentage difference of 50%, varying
markedly in plots where biomass was high (Conservation Area
and Water Catchment regions). In all cases, the pan-tropic equation
of Brown (1997) produced much higher estimates of AGB than the
Dipterocarp specific equation of Basuki et al. (2009), with those
plots containing large trees (dbh > 30 cm) being particularly differ-
ent. A similar pattern was observed in Brazil, with the pan-tropic
equation again consistently producing higher estimates of AGB
than the region specific allometric equations of Uhl et al. (1988).
AGB estimates ranged between 13 and 239 t ha�1, representing
percentage differences of 8–60% respectively. The differences be-
tween AGB estimates in Thailand, however, were not uniformly
distributed between the two sets of equations. For those plots
dominated by P. kesiya the pan-tropic equations produced much

Table 7
Allometric equations used to estimate total above ground biomass and the regions to which they were applied.

Author and model Applied to

Malaysia Thailand Brazil

Pinus Other species

Brown et al. (1989), Brown (1997)
Y ¼ expð�2:134þ 2:53 lnðDÞÞ � � �
Brown et al. (1989), Brown (1997)
lnY ¼ �1:201þ 2:196 lnðDÞÞ �
Basuki et al. (2009)
lnY ¼ �1:201þ 2:196 lnðDÞ �
Baishya and Barik (2011)

Y ¼ 1:3503� 3:4145ðDÞ þ 4:8678ðDÞ2 � 1:352ðDÞ3 �
Chambers et al. (2001)

lnðY1Þ ¼ �0:37þ 0:333 lnðDÞ þ 0:933ðlnðDÞÞ2 � 0:122ðlnðDÞÞ3 �
Uhl et al. (1988)
ln Y ¼ �2:17þ 1:02 lnðDÞ þ 0:39 lnðHÞ �

Where Y is Total Above Ground Biomass, D is Diameter at breast height and H is height.
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higher estimates of AGB than when the plots were dominated by
mixed species, where estimates of AGB were similar (0.5–74 t ha�1,
representing percentage differences of 0.5–27% respectively).

Using the same procedure described in training scenario 2, neu-
ral networks were initially trained with AGB and SAR GLCM-tex-
ture from each site individually, and then tested against data
drawn from all three sites. The results (Table 8) indicated that
the strength of the relationships between AGB and SAR GLCM were
similar to those presented in Section 4.2. Strong correlations were
observed when networks were trained and tested with data from
the same site (r = 0.85, 0.81 and 0.86 for Brazil, Malaysia and Thai-
land respectively). Again similar to previous results, when net-
works trained with data from one site were presented with data
from a different site weaker correlations were observed, although
it is interesting to note that once again networks trained with data
from Brazil were able to estimate AGB in Malaysia fairly well
(r = 0.70) and vice versa (r = 0.74).

Subsequently, a neural network (MLP 11:11:1) was trained and
tested using all SAR GLCM texture measures and all 6 Landsat TM
wavebands (as per scenario 4). A strong correlation was observed
(r = 0.72, significant at the 99% confidence level, n = 34), which
again corresponds well with the output from Section 4.4 (r = 0.77).

The similarity between the strength of the relationships ob-
served between the remotely sensed data and the two different
estimates of AGB is largely unsurprising, with the relative differ-
ences in AGB between plots and locations largely maintained.
What is interesting is that the region/species-specific allometric
equations appear to produce AGB estimates that are more uniform,
especially when plots include large trees. The use of an ANN to
estimate AGB in this analysis may also ameliorate uncertainty in
AGB estimation, as noise within the training and testing datasets
is likely to be more tolerated than using a vegetation index or stan-
dard regression approach.

5.4. Other factors limiting transferability

Determining AGB in the field can introduce bias and error
through variable sampling strategies, whilst data processing also
represents a source of uncertainty. Foody et al. (2003) discuss these
sources of error, particularly highlighting the pre-processing of
Landsat TM data as a possible source. In addition, the extra image
processing required to process and co-register the SAR data repre-
sents further opportunities for errors to be introduced, particularly
with respect to the terrain correction of the JERS-1 SAR data. Ide-
ally, different backscattering models are required for forests of dif-
ferent structure and terrain (Sun et al., 2002), but in this case they
were assumed to be uniform. There was also a difference in time
between the collection of the ground, Landsat TM and JERS-1 SAR
data (Table 1), particularly with respect to Brazil. Whilst every ef-
fort was made to find suitable coincident data, a pragmatic rather
than ideal approach was required, particularly given the problems
of obtaining cloud free multispectral data of the tropics. The effects

of this inconsistency on our results is uncertain, and whilst this
could conceivably be addressed through the use of ecosystem sim-
ulation models of forest productivity, this would require further
field validation and is beyond the scope of this paper.

Also, whilst measures of SAR texture show real promise in being
used as inputs to estimate AGB at sites both individually and wider,
in practice it remains difficult to identify the appropriate texture
measures that will yield the strongest results for each site, with
different combinations of texture measures, window sizes and lev-
els of wavelet decomposition being included here in the strongest
performing models, something which has also been highlighted by
others (e.g. Lu and Batistella, 2005; Lu, 2006). Selecting the most
appropriate texture measure and parameters may require analysis
of the geostatistical properties (spatial dependence) of the image,
for example, but requires further attention if generally applicable
methods (both spatially and temporally) are to be proposed (Lu,
2006).

With respect to AGB estimation then the use of standard
regression analysis makes certain assumptions regarding the dis-
tribution, independence and quality of the data being analysed. In
many environmental datasets these assumptions are violated and
point toward the use of non-parametric methods such as ANNs.
However, a commonly cited limitation of the use of ANNs is that
they are a so called ‘grey box’ method, which usually refers to the
fact that there is limited information as to how the network ar-
rived at a particular result. This means that, unlike more com-
monly used parametric methods (e.g. regression between
vegetation indices and vegetation variables) the nature and form
of the relationship between the input and output variables is
not known. It is possible to analyse the weights within a trained
network to provide some measure of the importance of input vari-
ables. For example, Foody et al. (2001) determined that Landsat
TM waveband 1 was the most significant for estimating the bio-
mass of tropical forests in Malaysia using an ANN. However, the
interpretation of these data is often open to question with no
explanation as to why a particular variable has a perceived in-
creased importance within the ANN model over another. Clearly,
further understanding of the spectral response of forest canopies
at optical and microwave wavelengths is required and will be vi-
tal for understanding relationships observed and developing gen-
erally applicable methods for estimating tropical forest AGB at
multiple sites concurrently. To this end, the application of new
SAR sensor systems to this problem may well yield promising re-
sults. Of particular interest is the L-band radar sensor Advanced
Land Observing Satellite (ALOS) Phased Array L-band Synthetic
Aperture Radar (PALSAR) which has already been shown to pro-
vide widely applicable relationships between SAR backscatter
and lower biomass woody vegetation at regional scales (Mitchard
et al., 2009). The provision of cross-polarized data, in particular,
may provide additional discriminatory variables and information
for input to models of biomass estimation across different forest
types.

Table 8
Correlation coefficients observed for the relationships between region-specific AGB and that predicted by neural networks trained with varying sets of GLCM-
derived SAR texture. Only those networks that showed the strongest correlation between training and testing data from the same site are presented (shown in
bold type), along with the correlation coefficient when the same networks were used to predict AGB at different sites. The architecture of each neural network and
the GLCM-derived texture measures are as in Table 3.

ANN type and
architecture

Training site Correlation coefficients for each testing site GLCM texture variables
used as inputs to ANN

Brazil Malaysia Thailand

MLP 2:6:1 Brazil 0.85 0.70 0.57 3,4
RBF 2:4:1 Brazil 0.78 0.76 0.44 3,4
RBF 2:4:1 Malaysia 0.74 0.81 0.42 1,3,4,8
MLP 1:2:1 Thailand 0.49 0.45 0.79 3,
MLP 5:7:1 Thailand 0.53 0.49 0.86 1,3,4,7,8
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6. Summary and conclusions

A key requirement in the construction of global knowledge in
relation to tropical forests is that methods and relationships should
be repeatable and applicable across different tropical forest types
and locations. A common argument for the use of remote sensing
to generate this knowledge is that it should be able to provide esti-
mates of forest properties in a consistent manner, given the sys-
tematic way in which data are collected and potential for
standard processing routines to be used. This suggests an ability
to generalise in space and time, implying that it should be possible
to successfully apply a predictive relation at times and locations
other than for which it was developed. The results presented here
show that combining independent observation data from SAR and
multispectral sources may provide some degree of transferability,
but also highlight problems in transferring predictive relations
across space. The main results were:

� There was a number of strong relationships observed between
SAR texture and AGB, whether that was texture derived using
GLCM-based texture measures or wavelet analysis. The strength
of these relationships when networks were trained and tested
with data from the same site suggest that the use of SAR texture
to estimate AGB in high biomass tropical forests is promising
and warrants further investigation, especially given the advan-
tages of SAR data collection in cloudy locations compared to
multispectral systems.
� The accuracy of predictive relations, as described by their corre-

lation with ground data, declined when applied to different
regions, similar to the results observed when Landsat TM data
only were investigated in the same three regions previously
(Foody et al., 2003). However, there was some evidence for a
degree of transferability when networks trained with data from
Brazil were applied to sites in Malaysia, and vice versa. This sug-
gests that for forests of similar functional types then the use of
SAR texture information may again hold promise for providing
generally applicable relationships.
� A neural network trained and tested on a combination of JERS-1

SAR texture and Landsat TM data drawn from all three regions
provided the strongest correlation with AGB at all sites.
� Uncertainty in AGB estimation from field data was assessed by

repeating some of the analyses with AGB derived from region-
specific allometric equations. Whilst field-AGB varied by up to
60% between equations, the impact upon the strength of rela-
tionships between AGB and the remotely sensed data was
minimal.

It is evident that further investigation is required if remote
sensing is to reach its full potential as a source of information for
developing robust, transparent, replicable and long-term monitor-
ing systems that are demanded by programmes such as REDD.
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