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Abstract

Motivation: The accurate discovery and annotation of regulatory elements remains a challenging

problem. The growing number of sequenced genomes creates new opportunities for comparative

approaches to motif discovery. Putative binding sites are then considered to be functional if they

are conserved in orthologous promoter sequences of multiple related species. Existing methods

for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which

are difficult to obtain for more diverged species such as plants. As a consequence, misaligned

regulatory elements often remain undetected.

Results: We present a novel algorithm that supports both alignment-free and alignment-based

motif discovery in the promoter sequences of related species. Putative motifs are exhaustively

enumerated as words over the IUPAC alphabet and screened for conservation using the branch

length score. Additionally, a confidence score is established in a genome-wide fashion. In order

to take advantage of a cloud computing infrastructure, the MapReduce programming model

is adopted. The method is applied to four monocotyledon plant species and it is shown that high-

scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for tran-

scription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea

mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 bind-

ing sites in Z.mays.

Availability and implementation: BLSSpeller was written in Java. Source code and manual are

available at http://bioinformatics.intec.ugent.be/blsspeller

Contact: Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the major challenges in systems biology is gaining a full

understanding of gene transcriptional regulation. Transcription fac-

tors, for which the binding sites are usually hidden in the promoter

sequence of the gene, are in this respect of particular importance.

Computational approaches for de novo motif discovery can be clas-

sified in (i) methods to identify binding sites in promoter sequences

of co-regulated genes within a single genome and (ii) comparative
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approaches using homologous sequences from multiple related spe-

cies (Das and Dai, 2007).

The first category uses clusters of co-expressed genes, which are

assumed to be regulated by the same set of transcription factors. A

drawback of these methods is that the relationship between

co-expression and co-regulation relies on complex regulatory mech-

anisms, making it difficult to assemble reliable datasets since

co-expression does not necessarily imply that there is a common

binding site involved. Two different algorithmic approaches coexist:

the statistical (Bailey et al., 2009; Hughes et al., 2000; Liu et al.,

2001; Thijs et al., 2002; Wei and Yu, 2007) and the exhaustive,

word-based algorithms. The latter contain graph-based approaches

(Eskin and Pevzner, 2002; Liang et al., 2004; Satya and Mukherjee,

2004) and methods based on index structures (Marsan and Sagot,

2000; Marschall and Rahmann, 2009; Pavesi et al., 2001).

Due to the growing availability of genome sequences, a second

category of algorithms based on phylogenetic footprinting emerged

(Blanchette and Tompa, 2002): orthologous regulatory regions from

multiple species are compared with the underlying assumption that

functional elements evolve at a much slower pace, compared to the

non-functional part of the genome, due to selective pressure

(Berezikov et al., 2004). Most comparative motif discovery

approaches rely in some way on multiple sequence alignments, in

which regulatory signals are expected to be well-aligned. Pioneering

algorithms in this category are Conreal (Berezikov et al., 2004),

Phylonet (Wang, 2005) and Phyloscan (Carmack et al., 2007). More

recent algorithms relying on alignments are used to study

mosquitoes (Sieglaff et al., 2009), Fusarium (Kumar et al., 2010),

vertebrates (Ettwiller et al., 2005) and mammals (Xie et al., 2005).

It has, however, been shown that known regulatory elements are

not always correctly aligned (Siggia, 2005), an issue that is further

complicated by the different alignments produced by various align-

ment programs (Pollard et al., 2004). Transcription factor (TF)

binding sites are short, flexible against certain mutations and even

mobile which explains why they are sometimes misaligned.

Mechanisms have been observed that allow the modification of

regulatory sequences without altering their function: divergence

driving words and binding site turnover. Regulatory sequences can

diverge freely if the divergence driving words, which are specific

short words in the non-coding DNA, are not altered (Bradley et al.,

2010). Since a TF can often bind to multiple similar sites, mutations

turning one site into another should not affect regulation. Binding

site turnover, on the other hand, is the mechanism where the gain of

a redundant binding site allows the loss of a previously functional

site (Venkataram and Fay, 2010). The corresponding TF can then

bind to the new site, maintaining the regulatory interaction. This

allows binding sites to relocate within the regulatory sequence, mak-

ing it difficult for alignment algorithms to correctly align them.

Binding site discovery, especially in plants, has to deal with large

divergence times and complex diversification mechanisms such as

genome duplications. This makes approaches based on whole gen-

ome alignments, often used in de novo algorithms, impractical.

Some of these problems have been addressed in earlier studies. Stark

et al. (2007) used a mixed approach in a study with 12 Drosophila

species, starting from whole genome alignments but allowing for

limited motif movement within an alignment. Elemento and

Tavazoie (2005) designed an alignment-free algorithm to discover

overrepresented k-mers over the exact ACGT alphabet in pairs of

related genomes. Finally, MDOS (Wu et al., 2008) is a new version

of this algorithm with improved statistics.

In this article, four monocotyledonous plant species are studied

using a phylogenetic footprinting approach: Oryza sativa ssp. indica

(osa), Brachypodium distachyon (bdi), Sorghum bicolor (sbi) and

Zea mays (zma). We adopt a gene-centric approach, where the pro-

moter sequences of orthologous genes are grouped into gene fami-

lies. A word-based discovery algorithm was designed to exhaustively

report all genome-wide conserved motifs. The term conserved re-

lates to the occurrence of the motif in multiple promoter sequences

of a particular gene family. Genome-wide conservation relates to

the fact that this conservation occurs in more gene families than

what is expected by chance. Motifs are modeled as words (k-mers)

over an alphabet that contains the four bases (ACGT) and (option-

ally) additional degenerate characters from the IUPAC alphabet

(Cornish-Bowden, 1985). This degeneracy allows a motif to model a

collection of binding sites. The algorithm can be run in both align-

ment-free or alignment-based mode. In case of alignment-free dis-

covery, the conservation of a motif is scored irrespective of its

orientation or position within a promoter sequence. This relaxed

definition of conservation was previously used by Gordân et al.

(2010) and is especially relevant when studying more diverged spe-

cies for which accurate multiple sequence alignments are difficult to

generate. Alignment-based discovery adds the constraint that motifs

must be aligned, i.e. occur at the same position in the multiple se-

quence alignment.

Robust algorithms for comparative genomics are expected to

gain in power when more related species are added. Most studies so

far only consider motifs that are conserved within all organisms.

The branch length score (BLS) was developed to quantify motif con-

servation in a biologically meaningful manner and ranges from 0%

(not conserved) to 100% (conserved in all sequences). The BLS takes

the phylogenetic relationships between the species into account by

representing a relative evolutionary distance over which a candidate

binding site is conserved within a gene family. The BLS was first

used in a comparative study with 12 Drosophila genomes (Stark et

al., 2007) and allows studying motifs only conserved in subsets of

the organisms.

Whereas most current algorithms avoid exploring the full motif

space by using greedy algorithms, our method is unique in the sense

that it is exhaustive. MDOS (Wu et al., 2008) only processes prom-

ising k-mers and gradually adds degeneracy if this improves the con-

servation score. Kellis et al. (2003) and Stark et al. (2007) use the

mini-motifs approach (van Helden et al., 2000) only processing

promising trinucleotide duos before adding degeneracy. Here, every

word that occurs in one of the input sequences, including their de-

generate variants, is considered as a candidate motif. The only

imposed restrictions are a prespecified minimum and maximum

length and a maximum number of degenerate IUPAC characters.

The advantage of such exhaustive approach is that the method yields

globally optimal results. In order to strongly reduce the runtime and

avoid excessive memory requirements, the MapReduce program-

ming model (Dean and Ghemawat, 2004) was adopted as a means

to take advantage of a parallel, distributed-memory cloud comput-

ing environment. By enabling disk I/O to store intermediate results,

the current MapReduce implementation overcomes the memory

bottleneck in a prototype implementation of this software that relied

on the Message Passing Interface (MPI) for parallelization (De Witte

et al., 2013).

2 Methods

2.1 Generation of gene families
The orthology relationships between the genes of the four different

monocot plant species were inferred using the ‘integrative orthology
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viewer’ in the PLAZA 2.5 platform (Proost et al., 2009; Van Bel et

al., 2012). Homologous (i.e. orthologous and paralogous) genes

were grouped in gene families and their promoter sequences 2 kbp

upstream from the translation start site were extracted. In its most

simple form, a family consists of four orthologous genes: one from

each organism. In that case, the phylogenetic tree by Reineke et al.

(2011) is used. For gene families that comprise one or more paral-

ogs, gene family-specific phylogenetic trees can be constructed that

take into account the specific order in which the duplications and

speciation events occurred. For simplicity, we assume that all par-

alogous gene duplications occurred recently. This is modeled by

adding a bifurcation with a branch length of zero to the phylogen-

etic tree which means that only conservation between different spe-

cies contributes to the branch length score. Note that besides

promoter regions, additional homologous sequences of interest (e.g.

intronic regions) could be added to the input dataset.

2.2 Intrafamily step: conservation within a gene family
For all gene families individually, all words with a length between

kmin and kmax characters that occur in any of the sequences are ex-

haustively enumerated and their degree of conservation within that

family is quantified. Words are spelled in the IUPAC alphabet or a

subset thereof. Up to emax degenerate (i.e. non-ACGT) characters

are allowed per word. The intrafamily phase can operate in align-

ment-free or alignment-based mode.

In the alignment-free approach, a generalized suffix tree (GST) is

constructed (Giegerich et al., 1999) from the promoter sequences

and their reverse complements in the gene family. Using Sagot’s

Speller algorithm (Marsan and Sagot, 2000), the GST is used to effi-

ciently and exhaustively report all words in the IUPAC alphabet

along with the sequences in which they occur. Additional algorith-

mic details and runtime information are described in Supplementary

Methods 1.1.

The alignment-based mode requires a pregenerated multiple se-

quence alignment (MSA) of the orthologous promoters in a gene

family. Dialign-TX (Subramanian et al., 2008) was chosen to create

these MSAs in view of good results on a non-coding alignment

benchmark (Pollard et al., 2004). For every position in the align-

ment, a small GST is generated containing only the suffixes of the se-

quences that start at that position. The same Speller algorithm is run

to report all words and the sequences in which they occur at aligned

positions, again using the IUPAC alphabet.

For every word, the degree of conservation in each gene family is

quantified using the branch length score (BLS). Given the sequences

in which the word occurs, the BLS can be calculated by finding the

minimum spanning tree that connects these sequences in the phylo-

genetic tree. The sum of the weights of the horizontal branches in

the minimum spanning tree then represents the BLS (Stark et al.,

2007). In alignment-based mode, the same motif can occur at mul-

tiple aligned positions within a single family; in that case only the

highest BLS value is used. Only words for which the BLS exceeds a

prespecified threshold T are retained. Such words are said to be con-

served within the gene family.

2.3 Interfamily step: genome-wide conservation
The conserved words of all gene families are sorted according to

base content and partitioned into permutation groups whose elem-

ents are permutations of each other. All words in a permutation

group hence have the same length, base content and degeneracy. For

example, the words AWTC, WTAC and CAWT belong to the same

permutation group.

The number of occurrences for each distinct word within a per-

mutation group is counted. This number corresponds to the number

of gene families in which that word is conserved with a BLS�T and

is referred to as the conserved family count F(T). Genome-wide con-

served motifs are selected based on the fact that they have a con-

served family count F(T) that is (much) higher than the median

conserved family count of the member instances of their permuta-

tion group. This median value, denoted as FbgðTÞ (bg ¼ back-

ground) represents the expected conserved family count for a word

in that permutation group. FbgðTÞ is approximated by randomly

generating a large number (default¼1000) of instances of the per-

mutation group, i.e. random words with the same length and base

content and computing the median value for the conserved family

count. Note that some of those random instances can have a con-

served family count equal to zero.

A confidence score C, adopted from (Stark et al., 2007), is ob-

tained for each word in the permutation group by comparing F(T)

and FbgðTÞ as follows:

CðTÞ ¼ 1�
FbgðTÞ
FðTÞ

Words for which FðTÞ�Fthres and CðTÞ�Cthres are considered gen-

ome-wide conserved motifs and are retained by the method where

Fthres and Cthres denote user-defined thresholds. The output of the

method consists of an exhaustive list of motifs which satisfy these

thresholds, along with the F(T) and C(T) metrics. Similar to Stark et

al. (2007), rather than using a single threshold T, multiple BLS

thresholds Ti can be used in a single run. The confidence score CðTiÞ
is then computed for all thresholds Ti individually, i.e.

CðTiÞ ¼ 1� FbgðTiÞ
FðTiÞ . Here, FðTiÞ denotes the number of families in

which the motif is conserved with a BLS higher than the threshold

Ti. Similarly, FbgðTiÞ is the corresponding value for the background

model. Words for which FðTiÞ�Fthres and CðTiÞ�Cthres for any of

the BLS thresholds Ti are retained.

2.4 MapReduce implementation
The method was implemented using the MapReduce (Dean and

Ghemawat, 2004) programming model. The map phase corresponds

to the intrafamily phase in which the gene families are processed in

parallel by the different mappers. The reduce phase corresponds to

the interfamily phase in which the permutations groups are pro-

cessed in parallel by the different reducers. In between the map and

reduce step, the candidate motifs are sorted according to length and

base content in order to create the permutation groups.

3 Results and discussion

3.1 BLSSpeller algorithm
The workflow of BLSSpeller is illustrated in Figure 1. The input con-

sists of gene families containing homologous promoter sequences

from related species. The algorithm consists of an intrafamily and

an interfamily step with a sorting step in between.

3.1.1 Intrafamily step

In the intrafamily step, for each gene family individually, all words

with a length between kmin ¼ 6 and kmax ¼ 12 characters that occur

in the promoter sequences of that gene family are exhaustively

enumerated. Words are spelled in the restricted IUPAC alphabet

that consists of 11 characters: 4 base pairs (ACGT), 6 twofold-

degenerate characters (RYSWKM) and the ‘any’ character (N).

3760 D.De Witte et al.
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A maximum of emax ¼ 3 degenerate characters are allowed per can-

didate motif. The degree of conservation of a word within the gene

family is scored using the branch length score (BLS). The intrafamily

step can operate in either alignment-free (AF) or alignment-based

(AB) mode. In case of AF discovery, the BLS of a word is scored irre-

spective of its orientation or relative position within the promoter

sequences. AB discovery adds the constraint that the words must be

aligned in the multiple sequence alignment of the promoter se-

quences. Words for which the BLS exceeds threshold T are con-

sidered to be conserved within the gene family and retained for

further processing. Six BLS thresholds Ti (i.e. 15, 50, 60, 70, 90 and

95%) were used in this study. At the end of this phase an exhaustive

list of conserved words has been generated for each gene family

individually.

3.1.2 Interfamily step

Using the data from the intrafamily step, for each word, the con-

served family count FðTiÞ, i.e. the number of gene families in which

the word is conserved with a BLS �Ti, is counted for each

BLS threshold Ti. Next, a confidence score CðTiÞ, adopted from

Stark et al. (2007), is established for each candidate motif (see

Section 2). Two thresholds apply: motifs are only retained when Fð
TiÞ�Fthres and CðTiÞ�Cthres for any of the BLS thresholds Ti. Here,

Fthres represents a threshold on the conserved family count and is

used to eliminate words that are conserved in only few gene families

and hence typically do not correspond to TF binding sites.

Additionally, Cthres ensures that the candidate motif is conserved in

a much higher number of gene families than what is expected for

such a word (i.e. a word with the same length, base composition and

degeneracy) and can hence be considered a potentially functional

element. Motifs that satisfy both thresholds are considered to be

genome-wide conserved motifs.

Note that the branch length score thresholds Ti on the one hand

and conserved family count threshold Fthres and confidence score

threshold Cthres on the other hand are independent. The former pro-

vides information about the degree of conservation within a single

gene family whereas the latter are indicative of the degree of gen-

ome-wide conservation. Certain motifs only show up as being gen-

ome-wide conserved for high BLS thresholds. This is typically the

case for short and/or highly degenerate motifs, where also

Fig. 1. Overview of BLSSpeller. The input consists of homologous promoter sequences grouped into gene families. During the intrafamily phase, conserved

words are exhaustively enumerated for each gene family individually. A word is considered to be conserved in a gene family if its branch length score (BLS) ex-

ceeds threshold T. Multiple BLS thresholds Ti can be used in a single run. In the alignment-free mode, the BLS of a word is computed irrespective of its orienta-

tion or relative position within the promoter sequences. Alternatively, in the alignment-based mode, words must appear aligned in the multiple sequence

alignment. During the sorting phase, conserved words of all gene families are sorted according to permutation group, i.e. words with the same length and base

content are grouped together. In the interfamily phase, permutation groups are handled individually. First, for each word, the conserved family count FðTi Þ, i.e.

the number of gene families in which the word is conserved with BLS �Ti , is established for all BLS thresholds Ti. Next, a background model FbgðTi Þ is created by

selecting the median value of the conserved family count of a large number of randomly generated instances of the permutation group, again for each threshold

Ti. Finally, a confidence score CðTi Þ is computed for each Ti. Words for which FðTi Þ�Fthres and CðTi Þ�Cthres for any threshold Ti are considered to be genome-

wide conserved motifs and are retained

BLSSpeller 3761
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permutations of that motif are conserved with a moderate BLS in a

rather large number of families, resulting in a low confidence score

C. Conversely, a lower BLS threshold allows for the detection of

longer motifs with genome-wide conservation in only a subset of the

species. Using only a single BLS threshold would therefore limit the

sensitivity of the method.

3.2 Exhaustive motif discovery in four monocot species
BLSSpeller was applied to four monocot species: O.sativa ssp. indica

(osa), B.distachyon (bdi), S.bicolor (sbi) and Z.mays (zma). Based

on conserved gene content and genome organization, these grass

species are considered to be a single genetic system (Benntzin and

Freeling, 1993), making a comparative motif discovery approach

feasible. The dataset consists of 17 724 gene families each containing

four orthologous genes (one from each organism). Additionally,

10 636 paralogs are taken into account. Hence, a total of 163 064

regulatory sequences (forward and reverse strands) with a length of

2 kbp each, were analyzed.

BLSSpeller was run on this dataset using both the alignment-free

(AF) and the alignment-based (AB) discovery mode on the Amazon

Web Services (Elastic MapReduce) cloud infrastructure using 20

nodes of the type m1.xlarge. On every node, 7 map tasks and 2 re-

duce tasks were run in parallel. The computational requirements are

listed in Supplementary Results 2.1. Based on the Amazon pricing of

2014, the financial cost for performing these simulations amounted

to 1080$ and 278$ for the AF and AB cases, respectively.

After the intrafamily step and using the AF discovery mode, an

aggregated number of 537 billion words were found with a BLS �
15% (i.e. conservation in at least two species) over all 17 724 gene

families. Note that these words are not necessarily unique as the

same word can be conserved in multiple gene families. Using the AB

discovery mode, only 82 billion words were found with a BLS

�15%. This is because the AB discovery mode imposes the add-

itional constraint that words should appear aligned in the multiple

sequence alignment. After the interfamily step and using Fthres ¼ 1

and Cthres ¼ 0:5, the number of genome-wide conserved motifs

amounted to 6.62 and 6.26 billion unique motifs, for the AF and AB

discovery mode respectively.

The reason why the number of motifs is high is twofold. First,

very relaxed thresholds Fthres and Cthres were used. It is computation-

ally cheap to further filter this list using more stringent (and bio-

logically meaningful) thresholds (see below). A second reason is the

exhaustive, word-based nature of BLSSpeller. If a word is found to

be genome-wide conserved, a large number of redundant, highly

similar (e.g. slightly more degenerate) variants of that word may

also appear in the final output of the method.

3.3 Estimation of the false discovery rate
The output of BLSSpeller consists of a list of motifs, along with the

conserved family count FðTiÞ and conservation score CðTiÞ for the

six different BLS thresholds Ti. This list was filtered using more

stringent thresholds for Fthres (i.e. 1, 10 and 20) and Cthres (i.e. 0.5,

0.7 and 0.9). Additionally, the list can be filtered by considering

only a (stricter) subset of the BLS thresholds Ti (i.e. all six thresholds

T1; . . . ;T6, three thresholds T4; . . . ;T6 corresponding to conserva-

tion in at least three species, a single threshold T6 corresponding

to conservation in all four species). The number of genome-wide

conserved motifs for all 27 parameter combinations is shown in

Figure 2 for both AF and AB discovery. Clearly, each of the param-

eters has a strong influence on the final number of motifs in both the

AF and AB discovery.

In order to assess the specificity of the method for the different

parameter combinations, we estimate the false discovery rate (FDR)

in an empirical fashion by running BLSSpeller on a random dataset

generated using a zeroth-order Markov model (preservation of

mononucleotide frequencies) as provided by RSAT (Thomas-

Chollier et al., 2008). A more detailed version of Figure 2 is

available as Supplementary Figure S4. Additional discussion of the

limitations of the FDR analysis, higher-order Markov models and

FDR analysis as a function of motif length and degeneracy is pro-

vided in Supplementary Results 2.2.

A number of observations can be made. First, for comparable

parameter settings, AB discovery has a lower FDR compared to AF

discovery. The multiple sequence alignment method increases the

specificity for AB discovery as relatively few words will be aligned in

random data purely by chance. Second, low values of Fthres result in

a poor FDR. The reason for this is that in such case, the output con-

sists of a large number of words that are conserved in only a single

gene family. If these words are long and/or have low degeneracy,

most random permutations of that word will not be conserved in

any gene family, resulting in a confidence score CðTiÞ ¼ 1. We there-

fore recommend to impose a certain threshold Fthres on the con-

served family count. As functional transcription factors typically

target multiple genes, this appears to be a biologically reasonable

approach. Third, a reasonable threshold on the confidence score

should be applied. Applying this threshold filters words for which

their random permutations are conserved in a comparable number

of gene families. This comprises low-complexity motifs and/or

highly degenerate motifs. Finally, a more stringent definition of con-

servation results in an improved FDR. This can be obtained by

imposing higher BLS thresholds Ti.

Even though there is a clear correlation between each of the par-

ameters and the FDR, the exact FDR is hard to predict up front and

likely also depends on the dataset that is used. We therefore recom-

mend to run BLSSpeller with relaxed parameter settings on both real

and random data, and to filter this output using more stringent par-

ameters until a reasonable FDR is obtained.

For reasonably stringent parameter settings where the FDR

< 1%, the AF discovery mode reports 3.1–6.8 times more motifs

compared to the AB discovery. At first glance, this may seem to be a

trivial consequence of the relaxed definition of conservation in the

AF methodology. Indeed, a word that is found to be conserved in a

gene family with BLS �T using the AB discovery will also be con-

served in the AF method. Therefore, FAFðTÞ�FABðTÞ for each word.

However, in order to establish the confidence score C(T), the con-

served family count F(T) is compared to the corresponding median

value FbgðTÞ of the background distribution (see Section 2). As

FAF
bg ðTÞ is also computed using the relaxed, alignment-free definition

of conservation, it holds that FAF
bg ðTÞ�FAB

bg ðTÞ. Therefore, there is no

reason to assume a priori that the AF mode will pick up more motifs

than its AB counterpart, as can indeed be observed in Figure 2 for a

few parameter combinations, e.g. Fthres ¼ 1; Cthres ¼ 0:7 and BLS

thresholds T1 . . . T6. The reason that we do find more genome-wide

conserved motifs for most parameter combinations (including those

with good FDR) is because we found a significant number of known

motif instances to be misaligned in this relatively highly diverged

Monocot dataset. This is exemplified in Section 3.5.

3.4 Motif instance predictions correlate with

experimental cis-regulatory datasets
The genome-wide conserved motifs discovered by BLSSpeller are

highly redundant. High-scoring, motifs (AF discovery; BLS
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�15%; C�0:9; F�20; 38 462 976 motifs in total) were mapped

back to the promoter sequences and were found to cluster around

specific genomic regions (see Supplementary Figs. S8 and S9).

Certain loci are covered by thousands of highly similar motif vari-

ants. Nevertheless, the high-scoring motifs delineate distinct con-

served genomic intervals on the promoter sequences. For these

conserved regions, we investigated the accessibility for transcription

factor binding in the promoter sequences of rice genes. DNase I

hypersensitive sites are associated with regions of open chromatin

where the DNA is accessible and as such provide a global perspec-

tive on possible protein-binding to the genome. Such regions were

recently characterized by Zhang et al. (2012). We performed overlap

analysis between conserved genomic regions (as determined by

BLSSpeller) and open chromatin regions (see Supplementary

Methods 1.2). We found a significant enrichment (3.005 fold) of

conserved regions for open chromatin regions (P-value<0.001) (see

Table 1). For a stricter subset of motifs (AF discovery; BLS

�95 %; C�0:9; F�20; 1 769 963 motifs in total), the fold enrich-

ment increased to 3.796.

Additionally, we investigated the enrichment of TF binding sites

determined in vitro (Weirauch et al., 2014) towards conserved gen-

omic regions in rice and maize. Transcription factor DNA binding

specificities are the primary mechanism by which transcription fac-

tors recognize genomic features and regulate genes. Recently, a data-

set containing a large number of these binding specificities was

generated using protein-binding microarrays (PBM) (Weirauch et

al., 2014). From this database, PWMs were downloaded for 481

TFs in rice and for 615 TFs in maize. These were mapped onto the

respective rice and maize promoters and overlap analysis was per-

formed (see Supplementary Methods 1.2). In rice, of the 754 205

constrained genomic regions (BLS �15%), 159 542 contain a PBM-

based TF binding site, leading to 3.752 fold enrichment

(P-value<0.001). Again, for the stricter subset of conserved motifs

(BLS �95%), fold enrichment increased to 6.520. Maize showed a

fold enrichment of 2.358 and 3.320 (P-value<0.001) respectively.

Overall, these analyses revealed that a large part of the conserved

non-coding sequences can be accessed by DNA binding proteins and

as such can act as functional transcription factor binding sites, and

that these conserved non-coding sequences show enrichment for the

binding sites of a large number of TFs inferred using PBMs.

3.5 Conservation of the ga2ox1-like KN1 binding site
KNOTTED1 (KN1) transcription factors are involved in the estab-

lishment and maintenance of plant meristems and are thought to be

conserved among the family of grasses (Bolduc and Hake, 2009).

Bolduc et al. (2012) profiled KN1 binding sites in Z.mays using

ChIP-seq experiments. The overlapping loci in two samples of im-

mature ears were retained and assigned to the nearest gene within a

range of 10 kbp. The ChIP-Seq peaks were found to be mainly situ-

ated in the 50 en 30 regions extending from the gene but also occur in

introns and exons. Thus, a set of 5 118 candidate KN1-regulated

maize genes were identified. For approximately 7% of these genes, a

binding site reminiscent of the intronic KN1 binding site in ga2ox1,

was identified. For these so-called ga2ox1-like KN1 binding sites, a

Position Weight Matrix (PWM) was derived by Bolduc et al. (2012).

Translated to the IUPAC alphabet, this PWM corresponds to

TGAYNGAYDGAY.

We investigate whether BLSSpeller is able to discover the

ga2ox1-like KN1 motifs and binding sites through a comparative

study of the four monocot species. From the BLSSpeller output, all

genome-wide conserved motifs of length 12 that match the ga2ox1-

like KN1 PWM identified by Bolduc et al. (2012) were retained.

Using alignment-free discovery, and using Fthres ¼ 20 and Cthres

¼ 0:7 (FDR �1%, see Fig. 2), 51 genome-wide conserved motif vari-

ants are identified. In total, these motifs are conserved in 165 gene

families with a BLS �15% (i.e. conservation in at least two species).

From the 51 identified motif variants, only 19 are required to ex-

plain the conservation in all 165 gene families. These essential

motifs are listed in Table 2 along with their respective metrics. In

turn, these gene families contain 213 maize genes in total, 51 of

which were also identified in Bolduc et al. (2012). These results

were compared to those obtained by Fastcompare (Elemento and

Tavazoie, 2005; see Supplementary Results 2.3), a method that also

performs motif discovery in an alignment-free and exhaustive

Fig. 2. Number of genome-wide conserved motifs for both alignment-based and alignment-free discovery for different values of Cthres and Fthres and different sub-

sets of the six BLS thresholds Ti (T1 ¼ 15%;T2 ¼ 50%;T3 ¼ 60%;T4 ¼ 70%;T5 ¼ 90% and T6 ¼ 95%). Top number: real Monocot dataset; bottom number between

brackets: random dataset (zeroth-order Markov model). The colors represent the false discovery rate (see legend)
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manner. However, Fastcompare is limited to the exact ACGT alpha-

bet and pairwise species comparisons. Because of these limitations,

Fastcompare could identify only 36 maize gene targets, 10 of which

were also identified by Bolduc et al. (2012).

Similarly, using BLSSpeller’s alignment-based discovery mode,

conservation with a BLS �15% is observed in only 37 gene families,

even with very relaxed thresholds (Fthres ¼ 1 and Cthres ¼ 0:7) (FDR

�10%). The nine essential motif variants required to explain this

conservation are listed in Table 2. The 37 gene families contain 41

maize genes, 10 of which are also reported in Bolduc et al. (2012).

Inspection of the promoter sequence alignments of the gene families

reveals that the ga2ox1-like KN1 variants are often not aligned, ei-

ther because the motif instances in the different species are located at

entirely different positions in the promoter sequences or because they

appear on different strands (see Supplementary Table 3). Therefore,

alignment-based motif discovery approaches such as BLSSpeller in

Table 1. Overlap between conserved genomic regions as identified by BLSSpeller and experimentally profiled open chromatin regions in

rice and transcription factor binding sites inferred through protein-binding microarrays in rice and maize

Overlap with experimentally profiled open chromatin regions (OCR) in O.sativa

BLSSpeller No. of conserved No. of OCR regions No. of conserved regions No. of rand. conserved regions enrichment

thresholds regions within OCR regions within OCR regions fold

BLS � 15%, C� 0.9, F�20 754 205 77 247 121 026 40 277 3.005

BLS � 95%, C� 0.9, F�20 464 229 77 247 98 681 25 996 3.796

Overlap with experimentally profiled TF binding sites (TBS) in O.sativa

BLSSpeller No. of conserved No. of TBS regions No. of TBS regions within No. of TBS regions within enrichment

thresholds regions conserved regions rand. conserved regions fold

BLS � 15%, C� 0.9, F�20 754 205 442 506 159 542 42 522 3.752

BLS � 95%, C� 0.9, F�20 464 229 442 506 37 093 5 689 6.520

Overlap with experimentally profiled TF binding sites (TBS) in Z.mays

BLSSpeller No. of conserved No. of TBS regions No. of TBS regions within No. of TBS regions within enrichment

thresholds regions conserved regions rand. conserved regions fold

BLS � 15%, C� 0.9, F�20 828 400 482 317 156 929 66 564 2.358

BLS � 95%, C� 0.9, F�20 454 221 482 317 35 710 10 755 3.320

Regions are required to fully overlap in order to be scored.

Table 2. List of genome-wide conserved ga2ox1-like KN1 motif variants identified by BLSSpeller using both AF and AB discovery

Alignment-free discovery Alignment-based discovery

KN1 motif variant Fð15%Þ Cð15%Þ MBLS Minters KN1 motif variant Fð15%Þ Cð15%Þ MBLS Minters

TGATNGATKGAY 59 0.93 75 24 TGATNGAYGGAY 11 0.91 10 3

TGATNGAYKGAT 59 0.93 74 20 TGATNGATKGAY 11 0.82 11 3

TGAYNGATKGAT 54 0.93 68 21 TGAYNGACKGAC 10 0.90 11 3

TGATNGAYWGAT 40 0.88 50 11 TGAYGGAYGGAY 9 1.00 9 3

TGAYNGAYTGAT 36 0.89 48 11 TGATNGAYRGAT 9 0.89 10 3

TGAYTGAYTGAY 33 0.97 42 9 TGAYNGAYTGAC 8 0.88 9 2

TGATNGAYTGAY 32 0.88 40 7 TGACNGAYTGAY 8 0.88 10 3

TGAYNGATWGAT 31 0.84 42 12 TGACNGACWGAY 7 0.86 7 2

TGATNGATWGAY 30 0.83 36 9 TGACAGAYRGAY 3 1.00 4 0

TGATNGATRGAY 29 0.86 39 9

TGAYNGATRGAT 27 0.85 37 9

TGATNGAYRGAT 26 0.85 35 8

TGAYNGATTGAY 25 0.84 34 7

TGAYNGATGGAY 24 0.88 35 9

TGATNGAYGGAY 24 0.88 31 8

TGAYTGAYWGAT 22 0.91 27 6

TGAYNGACTGAY 22 0.91 28 9

TGAYNGAYTGAC 21 0.90 27 8

TGAYNGACKGAC 20 0.90 25 10

Union (all variants) 165 – 213 51 Union (all variants) 37 – 41 10

Fð15%Þ denotes the number of gene families in which the motif is conserved with BLS�15% while Cð15%Þ denotes the corresponding confidence score.MBLS

denotes the number of maize genes contained in the gene families whileMinters denotes the intersectionMBLS \MChIP with experimentally profiled maize genes.
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AB mode or the ‘mini motifs’ approach as used by Stark et al. (2007)

suffer from reduced sensitivity on diverged datasets.

4 Conclusion

A novel phylogenetic footprinting approach was developed for the

sensitive discovery of conserved cis-regulatory elements even in

diverged sequences. Using IUPAC strings as motif model and using

the MapReduce programming model to enable distributed comput-

ing, it was shown that it is feasible to compute all genome-wide con-

served words in a large dataset in an exhaustive manner. For a given

false discovery rate, it was demonstrated that an alignment-free ap-

proach detects more conserved words than an alignment-based ap-

proach. Even though millions of genome-wide conserved motifs were

identified by our method, mapping of these motifs to the promoter

sequences results in constrained conserved genomic regions. It was

shown that these conserved regions were significantly enriched for

experimentally profiled open chromatin regions in rice and for TF

binding sites inferred through protein-binding microarrays in rice

and maize. Finally, it was shown that the alignment-free approach

shows an improved recovery of the ga2ox1-like KN1 binding site,

compared to the alignment-based approach or competing methods.
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