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Abstract. We make use of a symmetry reduction technique called Routh reduction to
show that the solutions of the Euler-Lagrange equations of a strongly convex autonomous
Lagrangian which lie on a specific energy level can be thought of as geodesics of an associated
Finsler function.
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1 Introduction

In this paper we generalize a theorem from Lagrangian mechanics that is sometimes attributed
to Jacobi or referred to as ‘Maupertuis’ Principle’. It may be found in one version or another in
a number of standard text books. Assume that V (x) is a function which is bounded from above,
and assume that gij(x) is a Riemannian metric. Lagrangians of the type L = 1

2gij ẋ
iẋj − V are

often referred to as ‘simple’ Lagrangians. Their energy is a conserved quantity given by the
function EL = 1

2gij ẋ
iẋj + V .

Theorem 1 (see e.g. [1, 2]). Assume e > V (x) for all x. The solutions of the Euler-Lagrange
equations of the Lagrangian L = 1

2gij ẋ
iẋj − V which have constant energy EL = e are geodesics

of the ’Jacobi metric’
g̃ij = 2(e − V )gij ,

after a reparametrization.

The above theorem has turned out to be extremely useful in a number of applications, for
example in the proof of certain properties about the existence of closed orbits on specific energy
levels [2], or in questions about stability of solutions [12]. According to [14] the Jacobi metric is
also an useful tool for studying mechanical systems with nonholonomic constraints.

Below (in Theorem 2) we discuss a new technique to obtain a generalization of Theorem 1 in
the context of arbitrary Lagrangians, not necessarily of simple type. The main goal of the paper
is to show that one may apply a Lagrangian symmetry reduction method, known as Routh’s
procedure, for that purpose, together with a homogenization trick.

Routh reduction is a method that takes full advantage of the close relation between symmetries
and conserved quantities. Since Routh’s original contribution for cyclic coordinates (see e.g.
[18]) it has been generalized to include Lagrangians that are invariant under a possibly non-
Abelian Lie symmetry group in e.g. the papers [7, 15, 16]. To keep the paper self-contained we
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develop in Section 2 a level of generalization that is appropriate for understanding the rest of
the paper. The approach we will follow is somewhat different from the one that one may usually
find in the literature, in that we focus on the case of a singular Lagrangian, and on the vector
fields that define the dynamics (see e.g. Proposition 1). In Section 3 we discuss some aspects
of Routh reduction for 1-homogeneous Lagrangians. We show, among other, in Proposition 3
that the Routhian of a 1-homogeneous Lagrangian is again 1-homogeneous, but that the same
conclusion does not hold for k-homogeneous Lagrangians with k ≥ 2.

The homogenization method (discussed in e.g. [6], and in Section 4) we had mentioned before
enables one, roughly speaking, to go back and forth between a time-dependent Lagrangian
framework and a Finslerian one. We will show in Theorem 2 that the role of the Jacobi metric
for a non-simple autonomous Lagrangian is played by a Routh-reduced 1-homogeneous function
on the tangent bundle which, under appropriate conditions, will be a Finsler function. In
Section 5 and Section 6 we discuss some examples and we indicate a few directions for future
work.

In the literature, one may find a huge number of generalizations of different aspects of Theorem 1.
Here we mention only a few papers which seem related to ours. For example, the paper [20]
deals with the case of so-called ‘magnetic Lagrangian systems’. We will treat this case as an
example in Section 5. Some other works on a Finslerian generalization are the papers [5, 10, 13].
However, their approach to the issue is clearly different from ours. They use a rather Hamiltonian
framework on a cotangent bundle, and they make use of the inverse Legendre transformation
of a 2-homogeneous Hamiltonian. Our approach, in contrast, remains throughout distinctly
Lagrangian. We use a 1-homogeneous function on a tangent bundle and the Finsler functions
we find are explicit. No reference needs to be made to an inverse Legendre transformation.

2 Routh reduction

Let M be a differentiable manifold, with natural local coordinates (xα, yα) on its tangent bundle
τM : TM → M . In what follows, we will interpret a dynamical system on M as a vector field.
The solutions of the system are then identified with the integral curves of the vector field. For
example, a system of autonomous ordinary second-order differential equations, in normal form
given by ẍα = fα(ẋ, x), can be represented by a second-order vector field, i.e. by a vector field
Γ on TM such that TτM ◦ Γ = id. A second-order vector field is of the form

Γ = yα
∂

∂xα
+ fα(x, y)

∂

∂yα
. (1)

We will often need to distinguish between regular and singular Lagrangian systems.

Definition 1. A Lagrangian L ∈ C∞(TM) is regular if its Hessian by fibre coordinates (gαβ) =
(∂2L/∂yα∂yβ) defines a non-singular matrix everywhere. A Lagrangian L is strongly convex if
(gαβ) is positive-definite everywhere.

If the Lagrangian is not regular, we will call it singular. A vector field ΓL will be said to be a
Lagrangian vector field for a Lagrangian L if it is second-order, and if it satisfies

ΓL

(

∂L

∂yα

)

− ∂L

∂xα
= 0, ∀(x, y) ∈ TM. (2)
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The base integral curves of ΓL are therefore solutions of the Euler-Lagrange equations for L.
When L is regular the vector field ΓL is uniquely determined by these conditions; when L is
singular, there may exist several Lagrangian vector fields ΓL. We will often simply refer to the
expressions (2) as Euler-Lagrange equations.

A base coordinate is said to be cyclic if the Lagrangian does not depend on it. We explain
below how, through so-called Routh reduction, one may eliminate both the coordinates and the
velocities corresponding to cyclic coordinates.

Let L be a (possibly singular) Lagrangian function on (the tangent manifold of) a manifold of
the type M = R

n×Q, with coordinates (xα) = (xa, xi). Suppose that the Lagrangian L does not
explicitly depend on the coordinates xa of Rn or, in other words, that it is invariant under the
standard action of Rn on the first factor of T (Rn ×Q) = R

n×R
n ×TQ. The invariant function

L can then also be interpreted as a function on the quotient T (Rn×Q)/Rn = R
n×TQ. We will

not use a different notation for the interpretation of L as an invariant function on T (Rn ×Q),
or as a function on R

n × TQ. Likewise, the Lagrangian vector fields ΓL are invariant under the
action of Rn, and they reduce to vector fields on R

n×TQ. We will also keep the same notation,
and we write

ΓL = yi
∂

∂xi
+ fa ∂

∂ya
+ f i ∂

∂yi
,

where the functions fa, f i do not depend on the coordinates xa.

From the Euler-Lagrange equations for the coordinates xa,

ΓL

(

∂L

∂ya

)

− ∂L

∂xa
= 0,

we see that the functions ∂L/∂ya (interpreted as functions on R
n × TQ) are first integrals for

each of the vector fields ΓL. That is to say, we have conservation laws of the type

∂L

∂ya
= µa (3)

(with µa constants) along the solutions of the Euler-Lagrange equations of L. The relation (3)
expresses conservation of momentum, in a generalized sense. We will always assume that we
can solve relations (3) for the variables ya, say as ya = ιaµ(x

i, yi). The condition for this locally
to happen is that the Lagrangian is Rn-regular.

Definition 2. A Lagrangian L on R
n×Q is Rn-regular if the matrix of functions (∂2L/∂ya∂yb)

is everywhere non-singular.

Remark that a strongly convex Lagrangian is always Rn-regular.

Under the assumption of Rn-regularity, we may identify the level set of momentum (3) with the
tangent manifold TQ (or a suitable open part of it) in the quotient manifold R

n × TQ. We
will assume, from now on, that there exists an injection ιµ : TQ → R

n × TQ, (xi, yi) 7→ (ya =
ιaµ(x

i, yi), xi, yi) which satisfies the identity,

∂L

∂ya
◦ ιµ = µa. (4)

We can now re-write the remaining Euler-Lagrange equations by making use of the so-called
modified Lagrangian function Lµ, also often called the Routhian. This is the restriction of
the function L − (∂L/∂ya)ya to the level set (3) where the momentum is µa. Given that the
Lagrangian L does not depend on xa, it defines a function on the tangent manifold of Q.
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Definition 3. The Routhian of an R
n-regular Lagrangian L at the level set where the momentum

is µa is the function on TQ given by

Lµ = (L ◦ ιµ)− ιaµµa.

Let us fix a Lagrangian vector field ΓL for L. Given that ΓL is tangent to the level set, its
restriction to it defines a vector field Γµ

L on TQ, satisfying ΓL ◦ ιµ = T ιµ ◦ Γµ
L. We will often

refer to the vector field Γµ
L on TQ as the Routhian vector field of ΓL.

Proposition 1. The Routhian vector field Γµ
L of a Lagrangian vector field ΓL on R

n × TQ at
the momentum level µa is a Lagrangian vector field ΓLµ on TQ, for the Routhian Lµ.

Proof. We need to show that Γµ
L is a second-order field on TQ and that it satisfies the Euler-

Lagrange equations of Lµ. For the first condition, remark that the second-order property of
ΓL, when thought of as its reduced vector field on the quotient R

n × TQ can be translated as
Tp1 ◦ΓL = p2, where p1 and p2 are the natural projections p1 : R

n×TQ → Q, (ya, xi, yi) 7→ (xi)
and p2 : R

n × TQ → TQ, (ya, xi, yi) 7→ (xi, yi), respectively. Then,

TτQ ◦ Γµ
L = T (p1 ◦ ιµ) ◦ Γµ

L = Tp1 ◦ ΓL ◦ ιµ = p2 ◦ ιµ = id.

For the second property, we know that, since ΓL and Γµ
L are ιµ-related, we have that Γ

µ
L(h◦ιµ) =

ΓL(h) ◦ ιµ, for all functions h on R
n × TQ. Therefore,

Γµ
L

(

∂L

∂yi
◦ ιµ

)

= ΓL

(

∂L

∂yi

)

◦ ιµ =
∂L

∂xi
◦ ιµ.

The result then follows from the observation that

∂Lµ

∂xi
=

∂L

∂xi
◦ ιµ, and

∂Lµ

∂yi
=

∂L

∂yi
◦ ιµ +

(

∂L

∂ya
◦ ιµ

)

∂ιaµ
∂yi

− µa

∂ιaµ
∂yi

=
∂L

∂yi
◦ ιµ,

in view of the identity (4).

We can conclude that the solutions (xa(t), xi(t)) of the Euler-Lagrange equations of L project
on those (xi(t)) of Lµ. If we are able to calculate such a solution (xi(t)), we can reconstruct a
complete solution (xa(t), xi(t)) by solving the momentum equations ẋa = ιaµ(x

i, ẋi) for xa(t).

Remark that we have nowhere assumed that the Lagrangian is regular as a whole, so that this
procedure also holds for singular Lagrangians. The only condition we have used so far is that
the Lagrangian is Rn-regular.

3 Homogeneous Lagrangians and Finsler functions

Let τ : T ◦M → M be the slit tangent bundle (tangent bundle with the zero section removed),
with coordinates (xα, yα). A function F is (positively) 1-homogeneous if ∆M(F ) = F , where
∆M = yα∂/∂yα stands for the Liouville vector field on M . A spray is a second-order vector
field on T ◦M for which [∆M ,Γ] = Γ. A spray is therefore a vector field of the form (1) with
∆M (fα) = 2fα.

4



Two sprays are said to be projectively equivalent if they have the same base integral curves with
given initial point and direction, up to an orientation-preserving reparametrization. A set of
sprays with this property is called a projective class of sprays. It is easy to see (see e.g. [19])
that this condition can be infinitesimally be characterized by the property that, if Γ is a member
of the class, then so is also the spray Γ + P∆M for any function P for which ∆M (P ) = P .

Let F be a 1-homogeneous Lagrangian. We will denote its Hessian with respect to fibre coordi-
nates by hαβ = ∂2F/∂yα∂yβ . Then, F is singular as a Lagrangian, since hαβy

β = 0. We recall
a few definitions from e.g. [9].

Definition 4. If the kernel of the Hessian hαβ is exactly span〈y〉, we say that hαβ is quasi-
regular. The Hessian hαβ is positive quasi-definite if hαβw

αwβ ≥ 0, with equality only when
wα = λyβ.

Assume that ΓF is a Lagrangian vector field for F . Any other Lagrangian field ΓF + V α∂/∂yα

satisfies
V αhαβ = 0. (5)

In particular, if ΓF was a spray, then any other member of its projective class will also be a
Lagrangian vector field for F . When the Hessian of F is quasi-regular, we know that hαβw

β = 0
if and only if wβ = λyβ for some constant λ. In that case, we can conclude from relation (5)
that any other Lagrangian vector field is of the type ΓF + P (x, y)∆, for some function P . If, in
addition to being quasi-regular, F is positive everywhere we can conclude from Proposition 9.1.30
of [19] that the Hessian of E = 1

2F
2 is non-degenerate, and that E can therefore be though of

as a regular Lagrangian. In that case, there exists a unique (canonical) spray ΓE that satisfies,

ΓE

(

∂E

∂yα

)

− ∂E

∂xα
= 0,

the Euler-Lagrange equation for E = 1
2F

2. Since 0 = ΓE(E) = FΓE(F ) (which expresses
conservation of energy, valid for any autonomous Lagrangian) it is easy to see that ΓE also
satisfies the Euler-Lagrange equations for F . The projective equivalence class of Lagrangians
sprays of F coincides, in that case, with the one of ΓE. The spray ΓE represents within that
class the one for which the geodesics are parametrized by constant arc-length F .

Definition 5. A Finsler function is a smooth function F on T ◦M which is positive, 1-homogeneous,
and which is such that the matrix (gαβ) =

(

1
2∂

2F 2/∂yα∂yβ
)

is everywhere positive-definite (i.e.
E = 1

2F
2 is strongly convex).

We refer to e.g. [3, 19] for more generalities on Finsler and spray geometry. The following result
can be found in [9].

Proposition 2. Let F be a 1-homogeneous function such that its Hessian hαβ is positive quasi-
definite. Then for any x0 ∈ M there is a neighbourhood U of x0 in M and a function F̃ defined
on TU such that F̃ is a Finsler function which differs from F by a total derivative.

Obviously, the geodesics of F and F̃ remain the same after a change by a total time derivative.

Let us consider now the case whereM = R
n×Q as before, but with a 1-homogeneous Lagrangian

L = F .
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Proposition 3. The Routhian Fµ of a 1-homogeneous R
n-regular Lagrangian F on R

n×TQ is
a 1-homogeneous function on TQ.

Proof. The Routhian Fµ = (F ◦ ιµ) − µaι
a
µ on TQ will be 1-homogeneous if F is, and if the

functions ιaµ are. Since F is 1-homogeneous, we have, among other, that

yihai = −ybhab. (6)

Let ∆Q = yi
∂

∂yi
. By taking a ∆Q-derivative of the identity (4) we get

0 = yi (hai ◦ ιµ) + (hab ◦ ιµ)
∂ιbµ
∂yi

yi = (hab ◦ ιµ)
(

−ιbµ +∆Q(ι
b
µ)
)

.

Due to the assumed R
n-regularity, we can conclude that ∆Q(ι

b
µ) = ιbµ.

Remark that the same conclusion does not hold for a k-homogeneous lagrangian with k ≥ 2
(such as, for example, F = 1

2gαβy
αyβ), because of the appearance of extra terms in expression

(6).

Proposition 4. Assume that F is 1-homogeneous and R
n-regular. If the Hessian of F is positive

quasi-definite, then so is the Hessian of Fµ.

Proof. We have
∂2Fµ

∂yi∂yj
wiwj = (hij ◦ ιµ)wiwj + (hia ◦ ιµ)

∂ιaµ
∂yj

wiwj

After taking a ∂/∂yi-derivative of the identity (4), we get that ∂ιaµ/∂y
j = −habhbj . With this,

we can write the above as

∂2Fµ

∂yi∂yj
wiwj = (hij ◦ ιµ)wiwj − 2(hia ◦ ιµ)wi(hab ◦ ιµ)(hbj ◦ ιµ)wj

+(hia ◦ ιµ)(hab ◦ ιµ)(hbj ◦ ιµ)wiwj

= (hαβ ◦ ιµ)WαW β

with W i = wi and W a = −(hab ◦ ιµ)(hbj ◦ ιµ)wj . Since the right-hand side is always positive or
zero, so is the left-handside. The right hand side can only be equal to zero if the Wα = λyα,
but then wi = λyi and and this is not in conflict with W a = λya, in view of relation (6).

In view of Proposition 2, we can conclude from Proposition 3 and 4 that, in case the Hessian of
F is positive quasi-definite, we may add a suitable total time derivative to Fµ to obtain a local
Finsler function.

Proposition 5. The Routhian vector field of a Lagrangian spray ΓF of a 1-homogeneous and
R
n-regular Lagrangian F is again a spray.

Proof. The vector field ΓF , now thought of as a vector field on T (Rn ×Q), and the vector field
∆M = yα∂/∂yα satisfy the bracket relation [ΓF ,∆M ] = ΓF . If we set p3 : Rn × Q → Q, then
ΓF and ∆M are p3-related to, respectively, the Routhian vector field ΓFµ and the vector field
∆Q = yi∂/∂yi, and therefore so are their brackets.
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Remark that, for example in the case where the Hessian of F is positive quasi-definite, the
canonical spray of Fµ (with Eµ = 1

2F
2
µ) is not the Routhian vector field Γµ

E of the canonical
spray ΓE of F , but its projective equivalent Γµ

E + P∆Q, where the projective factor is P =
−(µaΓ

µ
E(ι

a
e))/Fµ. This is in agreement with the fact that the Routhian of E is no longer a

2-homogeneous function.

4 Time-dependent Lagrangians and autonomous Lagrangians

We now say a few words about time-dependent Lagrangian systems (see e.g. [11] for more
details).

Let L ∈ C∞(R × TQ) be a time-dependent regular Lagrangian. If we use coordinates (t, xi, vi)
on R × TQ, then regularity means here ‘TQ-regularity’, in the sense that the Hessian matrix
(∂2L/∂vi∂vj) is non-singular everywhere. The Euler-Lagrange equations of L can be thought
of as being given by the integral curves the unique time-dependent second-order vector field

ΓL =
∂

∂t
+ vi

∂

∂xi
+ f i(t, x, v)

∂

∂vi

that is determined by

ΓL

(

∂L
∂vi

)

− ∂L
∂xi

= 0.

We recall from e.g. [6] that there exists a certain equivalence between time-dependent La-
grangians and 1-homogeneous Lagrangian functions. The ‘homogenization trick’ relies on aug-
menting the dimension of the configuration space by one, by adding an extra ‘time-velocity’ to
the picture. With each time-dependent Lagrangian we may define a 1-homogeneous function F
by setting

F (x0, xi, y0, yi) = y0L(x0, xi, yi/y0). (7)

This function is only well-defined for y0 6= 0. For most of what we say below, we will restrict
our attention to vectors with y0 > 0. We will use the notation T ◦(R ×Q) for this set.

The manifold R × TQ may be identified with the submanifold y0 = 1 in T ◦(R × Q). If we
restrict F to it, we get back the time-dependent Lagrangian L. In what follows, we will use the
notations π : T ◦(R × Q) → R × TQ for the map (x0, xi, y0, yi) 7→ (t = x0, xi = xi, vi = yi/y0)
and j : R × TQ → T ◦(R ×Q) for (t, xi, vi) 7→ (x0 = t, xi = xi, y0 = 1, yi = vi). Then π ◦ j = id
(but not the other way round), L = F ◦ j and F = L ◦ π. The following relations hold between
their derivatives:

∂F

∂xα
=

∂L
∂xα

◦ π, ∂F

∂yi
=

∂L
∂vi

◦ π,

∂F

∂y0
= (L ◦ π)− yi

y0

(

∂L
∂vi

◦ π
)

.

Since F is singular as a Lagrangian, there exists many second-order vector fields on T ◦(R ×Q)
which satisfy its Euler-Lagrange expressions. Let us assume for now that E = 1

2F
2 defines a

regular Lagrangian (we show in Proposition 7 that this is a quite natural assumption). Let us
choose the unique spray in the projective class of ΓE that is tangent to the submanifold y0 = 1,
i.e. ΓF,y0 = ΓE+P∆ with P = −ΓE(y

0)/y0. A version of the next proposition can also be found
in [6]. Let us denote by Γt the restriction of ΓF to y0 = 1. Γt is the vector field on R× TQ that
is j-related to ΓF .
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Proposition 6. If ΓF,y0 is the spray that is tangent to the submanifold y0 = 1, its restriction Γt

to y0 = 1 can be identified with the time-dependent Lagrangian vector field ΓL of L on R× TQ.

Proof. Since we know that Γt(h ◦ j) = ΓF (h) ◦ j, for all functions h on T (R×Q). Therefore

Γt

(

∂L
∂vi

)

= Γt

(

∂F

∂yi
◦ j

)

= ΓF

(

∂F

∂yi

)

◦ j = ∂L
∂xi

◦ (π ◦ j) = ∂L
∂xi

.

Moreover, 〈Γt, dt〉 = j∗〈ΓF , dx
0〉 = j∗y0 = 1, and the statement follows.

Fixing one particular element of the projective class of sprays, in effect, fixes a certain parametriza-
tion for the geodesics of F .

Suppose now that we are given an autonomous Lagrangian L on TQ. We may think of it as a
function L = L◦p on R×TQ (with p : R×TQ → TQ) which so happens not to depend on time
t explicitly. If we assume that L is regular, there is only one Lagrangian vector field ΓL on TQ.
Also L is regular in that case and the relation between ΓL and the time-dependent Lagrangian
vector field on R × TQ can simply be written as ΓL = ∂/∂t + ΓL. In what follows we will no
longer make a notational distinction between L and L. When necessary, however, we will use
different notations for the corresponding vector fields ΓL (on TQ) and ΓL (on R× TQ).

It is well-known that for an autonomous Lagrangian, ΓL (and ΓL) exhibits an energy first integral
EL = ∆Q(L) − L. If we now use the homogenization trick to construct the 1-homogeneous
function F as above in (7), we easily see that the coordinate x0 is cyclic for F . Therefore there
is conservation of the momentum, of the type

∂F

∂y0
(xa, ya) = −e (8)

(the minus sign is chosen for later convenience). In order to proceed with a Routh-type reduction
(as in the previous sections) we must be able to re-express the above momentum relation in the
form y0 = ιe(x

i, yi). The condition for this locally to happen is that F is R-regular, which means
here that ∂2F/∂(y0)2 6= 0.

Proposition 7. For an autonomous strongly convex Lagrangian L, the homogeneous function
F in (7) is R-regular and the Hessian of F is positive quasi-definite in T ◦(R× TQ).

Proof. Since
∂2F

∂(y0)2
=

1

(y0)3

(

∂2L

∂vi∂vj
◦ π

)

yiyj,

the first statement follows. For the second, we get for (wα) = (w0, wi) that

∂2F

∂yα∂yβ
wαwβ =

1

y0

(

∂2L

∂vi∂vj
◦ π

)(

wi − yi

y0
w0

)(

wj − yj

y0
w0

)

≥ 0,

with equality if wi = (w0/y0)yi. Since always w0 = (w0/y0)y0, we can conclude from this that
indeed wα = λyα, with λ = w0/y0.
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We will assume from now on that L is strongly convex. Remark that the momentum relation (8)
in T ◦(R × TQ) is here of the form e = EL(x

i, yi/y0). The sought (local) function ι0e(x
i, yi) > 0

satisfies therefore the identity
e = EL(x

i, yi/ι0e(x
i, yi)). (9)

From Proposition 3 we may conclude that ιe is always a 1-homogeneous function, and so is also
the Routhian of F , which in this case becomes

Fe(x
i, yi) = (F − ∂F

∂y0
y0)|y0=ι0e

= ι0e(x
i, yi)

(

L

(

xi,
yi

ι0e(x
i, yi)

)

+ e

)

. (10)

From Propositions 4 and 7 we know that the Hessian of Fe is also positive quasi-definite, and
that Fe can be suitably changed into a local Finsler function (in view of Proposition 2). In the
section on examples, we will discuss some cases when Fe defines a global Finsler function, or
when it can be changed into one. We will use the notation Ee =

1
2F

2
e for its energy function.

We know from Proposition 1 that the restriction of a Lagrangian vector field ΓF on R × TQ
to the level set where the momentum ∂F/∂y0 is −e is a Lagrangian vector field ΓFe on TQ,
for the Routhian Fe. We have that ΓF ◦ ιe = T ιe ◦ ΓFe . Since Fe is locally a Finsler function
(after possibly adding a total time derivative) we know that there exists a whole projective class
of sprays, which all have the same geodesics as points sets. Picking one out of the class, is
equivalent with choosing a parametrization for the geodesics. If we take the canonical spray
ΓEe , the parametrization is given by arc length. Another choice is the following. Consider
again the unique Lagrangian spray of F that is tangent to y0 = 1, ΓF,y0 . Its restriction to
∂F/∂y0 = −e defines, by Proposition 1 and 5 a specific Lagrangian spray of the projective
class of Fe. Let’s call it Γ̄ for now. Since this vector field is ιe-related to ΓFe,y0 , we have that
Γ̄(ι0e) = Γ̄(y0 ◦ ιe) = ΓF,y0(y

0) = 0. We can therefore conclude that Γ̄ = ΓFe, ι0e
, the unique vector

field in the projective class of Fe that is tangent to ι0e = 1. Remark that the relation ι0e(x, y) = 1
is equivalent with EL(x, y) = e, in view of relation (9). Given that, according to Proposition 6,
ΓL was the restriction of the same vector field ΓF,y0 to y0 = 1, we get, after discarding the term
∂/∂t in ΓL, that ΓL |EL=e= ΓFe, ι0e

|ι0e=1 as vector fields on TQ. In conclusion, we can say that:

Theorem 2. Let L be a strongly convex Lagrangian on TQ.

1. The restriction of its Lagrangian vector field ΓL to the energy level set where EL = e coin-
cides with the restriction to ι0e = 1 of the unique spray that is both projectively equivalent
to the canonical spray ΓEe of the function Fe in (10) and tangent to ι0e = 1.

2. The solutions of the Euler-Lagrange equations of L with energy EL = e are geodesics of
a local Finsler function Fe (possibly after the addition of a total time derivative, possibly
after a reparametrization).

In the statement of the theorem, we have used the word ‘geodesic’ in the sense of a set of points.
The addition ‘possibly after a reparametrization’ refers to the fact that one may use either the
canonical spray of Fe, or any other spray (like ΓFe, ι0e

) in its projective class to compute those
geodesics as parametrized curves.

5 Examples

Example 1. Consider first a positive, strongly convex and k-homogeneous Lagrangian L on Q,
∆Q(L) = pL, where k ≥ 2. The defining relation (9) for ι0e is then (k − 1)L(x, y/ι0e) = e. It has

9



ι0e = ((k − 1)L/e)1/k as a solution, when e > 0. With this, the corresponding 1-homogeneous
function is

Fe = k

(

k − 1

e

)
1−k
k

L
1

k .

Since here EL = (k − 1)L, we get that ΓL(L) = 0. One can verify that the Lagrangian field ΓL

of a k-homogeneous Lagrangian is in fact a spray, see e.g. [11]. Since L is also proportional with
a constant factor to (ι0e)

k, and since we assume that ΓFe is such that ΓFe, ι0e
(ι0e) = 0, the sprays

ΓL and ΓFe, ι0e
will coincide. This is, in particular, the case when k = 2 and L is the kinetic

energy associated to a Riemannian metric.

Example 2. We will call a Lagrangian magnetic if it is of the type

L(x, v) = 1
2gij(x)v

ivj + βi(x)v
i − V (x),

where g is a Riemannian metric on Q, β is a 1-form on Q and V is a smooth function on Q. The
Lagrangian L is always strongly convex, since its Hessian is given by the Riemannian metric.
Under the assumption that V (x) is bounded from above and e > maxx∈Q V (x), one easily finds
that

ι0e(x, y) =

√

gij(x)yiyj

2(e − V (x))

is the positive solution of the momentum relation (9). With that the function Fe is of so-called
Randers type,

Fe(x, y) =
√

g̃ij(x)yiyj + βi(x)y
i, (11)

where g̃ij = 2(e−V )gij is the Jacobi metric we mentioned in the Introduction. Obviously, when
βi = 0, we recover the statement of Theorem 1, when we consider the geodesics as being given
by the integral curves of the canonical spray ΓEe , where Ee =

1
2F

2
e = 1

2 g̃ijy
iyj.

The case where V = 0 can be found in [20], but the method used to obtain the result is different
from ours. Remark that in two- or three-dimensional Euclidean space this is the Lagrangian for
the motion of a classical charged particle, of unit charge, in the magnetic field determined by
d(βidx

i).

Let us consider again the general case. From the statement in Theorem 2 we know that strong
convexity only guarantees the existence of a local Finsler function. For this example it is possible
to give a criterion for when the Randers function (11) is actually a global Finsler function. Let
β# be the vector field which is such that g(β#,X) = β(X) for all X ∈ X (Q). It is well-known
that a Randers function determines a global Finsler function in the region determined by those
x ∈ Q for which g̃(β#, β#) < 1 (see e.g. [3]). One easily verifies that Fe will be a global Finsler
function if and only if e > 1

2g
ij(x)βi(x)βj(x) + V for all x ∈ Q, or if and only if

e > max
x∈Q

(

1
2g

ijβiβj + V
)

.

We can actually push this limit even more down. Recall from Proposition 2 that there remains
some freedom that we have not exploited so far. By adding a total time-derivative (i.e. by
replacing the one-form β by β − df for some function f) we do not change the set of geodesics.
With that in mind, the above criterion can be most easily rewritten by invoking the Hamiltonian
function of L, i.e. the function on T ∗Q given by H(x, p) = 1

2g
ij(x)(βi(x)−pi)(βj(x)−pj)+V (x).

If the number
c(L) = inf

f∈C∞(Q)
max
x∈Q

H(x, df)
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exists, we may conclude that the function Fe+(∂f/∂xi)yi (with + sign in Fe) is a global Finsler
function, for each energy level e such that e > c(L). The number c(L) coincides, at least for the
case of a magnetic Lagrangian, with what is called Mañé’s critical value in [12].

Example 3. Let us consider the following specific two-dimensional Lagrangian of magnetic
type,

L(x, v) =
v21 + v22

16
(

1− x21 − x22
)2 +

x2v1 − x1v2
2(1− x21 − x22)

.

This Lagrangian is strongly convex only in the area Q = {1−x21 −x22 > 0}, i.e. in the open unit
disk. If we assume that e > 0 the function ι0e satisfies

(ι0e(x, y))
2 =

y21 + y22
16e(1 − x21 − x22)

2
.

If we introduce a new parameter τ = 1/
√
e, the corresponding homogeneous function (10) is, up

to a constant factor,

Fτ (x, y) =

√

y21 + y22 + τ(x2y1 − x1y2)

2(1− x21 − x22)
. (12)

Different values of the parameter τ correspond with different energy levels for the original La-
grangian L. The above (parametrized) Randers function Fτ has also appeared in our paper [8],
where it was shown that all of its geodesics are circles (straight lines are considered as circles
of infinite radius). If we set τ = 0 we get the (Finsler function associated to the) Riemannian
metric of the hyperbolic plane (in its version as the Poincaré disk). Its geodesics are circles that
cross the border of the unit disk perpendicularly. If we set τ = 1 we get the so-called horocycles
as the Finslerian geodesics (actually, also when we would take τ = −1 if that were allowed in
the current setting). These are circles that are tangent to the unit circle at the origin. The
configurations for other values of τ interpolate between, and extend beyond, these.

In each of the two figures below, we have chosen a fixed initial position and a fixed initial tangent
direction. We have plotted for a few values of τ ≥ 0 the two geodesics of Fτ corresponding to
each of the two orientations of the initial tangent line. The black circles represent the special
cases of a hyperbolic geodesic or the horocycles (one for each orientation). The Randers function
(12) will be a Finsler function if Fτ > 0, or x21 + x22 < min(1, e = τ−2). Thus for 0 ≤ τ ≤ 1, Fτ

is a globally defined Finsler metric over the whole of the open unit disk. Its geodesics are the
grey circles outside the horocycles (to be precise: the arcs of those circles that lie within the
open unit disk). But for τ > 1 the function Fτ is a Finsler function only on x2 + y2 < e. Its
geodesics are given by grey circles inside the horocycles.
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6 Outlook

The last example was motivated in [8] by a study of the so-called Finsler projective metriz-
ability problem, see e.g. [4, 9, 19]. This is, roughly speaking, the question whether or not the
unparametrized base integral curves of a given geodesic class of sprays are the geodesics of a yet
to be determined Finsler function. It would be of interest to see whether Theorem 2 can provide
some help in finding such a Finsler function, or some new insight. An indication that this is
likely going to be the case, may be derived from the following observation. It is well-known
that here exists a canonical torsion-free invariant linear connection on each Lie group, given by
∇XY = 1

2 [X,Y ] for left-invariant vector fields X,Y . Its canonical spray determines a projective
class of sprays on each Lie group, in a natural way. In a series of papers, starting with [17], G.
Thompson and co-workers have studied the question whether there exists a regular Lagrangian
such that its Euler-Lagrange equation are equivalent with the geodesic equations of the connec-
tion. Since the Lagrangian field of a connection is a spray, Theorem 2 will provide a (local)
Finsler function for each of these Lagrangians, which will give a solution for the metrizability
problem of the canonical connection.

Much of the method we have developed in this paper relied on the fact that the time variable
t generates, for an autonomous Lagrangian L, a cyclic variable x0 for the corresponding 1-
homogeneous function F . The conserved momentum we have used in Routh’s procedure was
related to conservation of energy. We may translate this to the more general context of Noether
symmetries. It is well-known energy conservation is a consequence of the presence of the Noether
symmetry ∂/∂t for each autonomous Lagrangian. There exist, however, autonomous Lagrangian
systems with more general time-dependent Noether symmetries, not necessarily of the type of
a cyclic coordinate. Just to give one example, consider the Lagrangian given by L = 1

2 (v
2
1 + v22)

and its symmetry given by

2t
∂

∂t
+ x1

∂

∂x1
+ x2

∂

∂x2
.

The corresponding conservation law is (v21 + v22)t + x1v1 + x2v2 = µ. One may show that
any time-dependent Noether symmetry of a possibly time-dependent Lagrangian L defines an
autonomous Noether symmetry of the function F in (7). Moreover, as we have stated before,
also Routh’s reduction method remains valid in a more general context. It would be of interest
to investigate how much of our method can be generalized to include also these types of Noether
symmetries and their conservation laws.
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