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Summary 52 

Nitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and 53 

stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels 54 

and to activate NO-related responses, but this strategy is often hindered by the relative instability 55 

of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to 56 

plants, as NO-releasing nanomaterials (e.g., S-nitrosothiol-containing chitosan nanoparticles) have 57 

many beneficial physicochemical and biochemical properties compared to non-encapsulated NO 58 

donors. Nano NO donors are effective in increasing tissue NO levels and enhancing NO effects 59 

both in animal and human systems. The authors believe, and would like to emphasize, that new 60 

trends and technologies are essential for advancing plant NO research and nanotechnology may 61 

represent a breakthrough in traditional agriculture and environmental science. Herein, we aim to 62 

draw the attention of the scientific community to the potential of NO-releasing nanomaterials in 63 

both basic and applied plant research as alternatives to conventional NO donors, providing a brief 64 

overview of the current knowledge and identifying future research directions. We also express our 65 

opinion about the challenges for the application of nano NO donors, such as the environmental 66 

footprint and stakeholder’s acceptance of these materials. 67 

 68 

Main body of the text 69 

Nitric oxide (NO) is widely recognized as a signaling molecule with a myriad of functions 70 

in plant growth, development, stress responses and interaction with beneficial microorganisms 71 

(Kolbert et al., 2019, 2021), with an untapped biotechnological potential (Marvasi, 2017; Corpas 72 

et al., 2020; Sun et al., 2021). More than 20 years after the pioneer works in this field (Leshem & 73 

Haramaty, 1996; Gouvea et al., 1997; Laxalt et al., 1997; Delledonne et al., 1998; Durner et al., 74 

1998), the proper delivery of NO to plant cells is still a challenge that hinders its use in natural 75 

field conditions. As NO is a gaseous free radical with a short half-life under aerobic conditions, 76 

the exogenous treatment with molecules that act as NO donors has been used as the main strategy 77 

to increase plant endogenous NO content and provoke NO biological effects (Seabra & Oliveira, 78 

2016; Seabra et al., 2022). Despite several NO donors being available, such molecules usually 79 

show properties that compromise the desired signaling action of NO on target plants, because they 80 

have rapid degradation and are sensitive to environmental factors, release NO too quickly, and/or 81 

generate toxic by-products (Fig. 1a). 82 
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Nanotechnology is a novel approach that has been successfully used for a wide range of 83 

agricultural applications to modulate various processes such as seed germination, seedling 84 

development and growth, photosynthesis, hormonal balance, disease resistance and plant nutrition 85 

(Ahmad et al., 2022; El-Shetehy et al., 2021; Jiang et al., 2021; and references therein). One of 86 

the most promising strategies is the nanoencapsulation of agrochemicals (e.g., pesticides and 87 

fertilizers) to improve their delivery to plants (Usman et al., 2020; Fincheira et al., 2021). Briefly, 88 

the active ingredient is trapped into a nanomaterial that protects it from degradation and allows a 89 

sustained release. Due to the higher specific surface area and ability of nanomaterials to interact 90 

with cells compared to bulk materials, the nanoencapsulation enhances ingredient uptake by plant 91 

tissues and reduces its environmental losses, yielding higher efficiency and efficacy (Pascoli et al., 92 

2018; Jiménez-Arias et al., 2020; Takeshita et al., 2021). Thus, better effects of the agrochemical 93 

on the target organisms can be obtained with less frequent applications and lower doses, whereas 94 

the negative environmental impacts can be minimized.  95 

Polymeric nanoparticles are used to encapsulate NO donors for biomedical purposes 96 

(Pieretti et al., 2020). However, the application of nanoencapsulated NO donors in plants is much 97 

more recent and can bring enormous benefits to this field, including the sustained and localized 98 

NO release under varying environmental conditions and improved NO bioavailability in plant 99 

tissues (Fig. 1b). The few studies published up to now reporting the treatment of plants with nano 100 

NO donors provide exciting findings and many avenues to be further explored (Tables 1 and 2). 101 

Briefly, the nanoencapsulation of NO donors increased the NO delivery to plants due to a sustained 102 

NO release. As NO might be toxic at higher concentrations, there are more benefits with lower 103 

and prolonged NO doses, that are more easily attained by the use of nano NO donors. 104 

Most studies have focused on plant protection against abiotic stress, but NO-releasing 105 

nanomaterials could also be used for the induction of plant response to biotic stress and for 106 

modulating plant growth and development. As potential and practical applications in agriculture, 107 

we would suggest the use of nano NO donors in seed and seedling priming for improving 108 

germination and early growth (specially under limiting conditions), in saplings for enhancing stress 109 

tolerance, in micropropagation for improving plantlet development and hardening, and in 110 

floriculture and fruit post-harvest for increasing the shelf life of flowers and fruits. 111 

As there are different ways to supply nano NO donors to plants (e.g., seed treatment, soil 112 

amendment, leaf and fruit spraying, and cell culture), the entry route of the nanocarrier into the 113 
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plant is variable and thus may result in different responses (Fincheira et al., 2020; Pereira et al., 114 

2021). In addition, several NO donors can be used such as S-nitrosothiols (SNOs), NONOates, 115 

diazeniumdiolates, sodium nitroprusside (SNP), Roussin’s black salt, metal nitrosyl complexes, 116 

and nitro fatty acids (Mata-Pérez et al., 2016), as well as molecules that induce endogenous NO 117 

synthesis by plants, such as organic nitrate/nitrate, nitrite, polyamines, and L-arginine (Pissolato 118 

et al., 2020; Silveira et al., 2021b; Seabra et al., 2022). Another important factor to be explored is 119 

the nature of nanomaterials, which may vary in size, morphology, chemical composition, surface 120 

charge, and presence of functional groups in their surface (Fig. 1c), promoting significant variation 121 

in the biological effects of NO-releasing nano formulations. By changing the nanoparticle 122 

characteristics, its adhesion and absorption by plants, cell internalization, and short- and long-123 

distance translocation can be altered to obtain a more efficient nano formulation to a given purpose 124 

(Avellan et al., 2021; Zhang et al., 2021). The development of stimuli-responsive nanocarriers is 125 

another possibility as well as nanomaterials with binding motifs/functional groups, allowing a 126 

better targeting to specific tissues/cells/organelles (Pieretti et al., 2020; Liang et al., 2021). These 127 

strategies are extensively explored in biomedical applications but poorly explored in plant science 128 

(Seabra et al., 2014). 129 

The few pioneer studies of nano NO donors in plants have explored only chitosan 130 

nanoparticles, which is a cost-efficient and eco-friendly biopolymer (Oliveira et al., 2016; Lopes-131 

Oliveira et al., 2019; do Carmo et al., 2021; Silveira et al., 2021a). However, there are many other 132 

biodegradable, biocompatible polymers obtained from renewable sources to be used, such as 133 

lignin, alginate, cellulose and zein (Darder et al., 2020; Urzedo et al., 2020; Low et al., 2021). In 134 

addition to polymeric nanoparticles, there are different classes of nanomaterials for NO 135 

incorporation (via nanoencapsulation or surface functionalization) as liposomes (Suchyta & 136 

Schoenfisch, 2015), metal/metal oxide nanoparticles coated with organic matrix (Santos et al., 137 

2016; Pieretti et al., 2021), and carbon-based nanomaterials (Tanum et al., 2019, Jin et al., 2021) 138 

(Fig. 1b). Another possibility is the application of NO gas allied to nanoporous materials, such as 139 

metal organic frameworks (MOFs) and zeolites, that adsorb NO gas and release it upon contact 140 

with moisture (Seabra & Durán, 2010). These nanomaterials have been used only for biomedical 141 

applications. They have a limited amount of NO loading in addition to fast NO release, high cost 142 

and difficult storage (McKinlay et al., 2013). 143 
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The possibility to join NO-releasing nanomaterials with other bioactive compounds used 144 

as plant growth regulators or compounds able to increase the endogenous NO production is an 145 

approach deserving attention in further studies (Silveira et al., 2021b; Pissolato et al., 2020). In 146 

any experiment, it is very important to define the proper controls to differentiate the effects of NO 147 

donor from those of the nanocarrier, as many nanomaterials (including chitosan) may induce dose-148 

dependent responses that are beneficial to plant growth and defense (Kumaraswamy et al., 2018; 149 

Malerba & Cerana, 2018). For instance, it has been recently demonstrated that the application of 150 

copper oxide nanoparticles increased the endogenous S-nitrosothiol levels of lettuce (Lactuca 151 

sativa L.) seedlings (Pelegrino et al., 2020; Kohatsu et al., 2021). Thus, the nanomaterial per se 152 

can potentiate the effect of the NO donor in modulating the plant NO homeostasis. 153 

 Although significant advance has been achieved in the use of NO-releasing nanomaterials 154 

in plants, there are key questions that remain unresolved (Fig. 1d): 155 

a) What is the fate of the nanomaterials and the NO donor in plant tissues? Tracking the nanomaterial 156 

and the NO donor in plant tissues is essential to understand the mechanisms of interaction among 157 

them, thus providing information on how we could design smarter nanocarriers and how they could 158 

be employed to manipulate cellular processes (Avellan et al., 2017, 2021). This approach could 159 

also provide information about the best application strategy (including type and frequency/number 160 

of treatments) to guarantee an efficient and effective NO delivery. The local and systemic impacts 161 

of free and nano NO donors on plant NO homeostasis should also be addressed, as the 162 

nanomaterials can enhance the translocation and distribution of the delivered compounds inside 163 

plants, mediating systemic responses (Avellan et al., 2019; Lowry et al., 2019; Takeshita et al., 164 

2021). Then, the development of reliable protocols to accurately track NO/NO derivatives and 165 

nanomaterials in plant tissues is required. For example, fluorescently-labelled nanomaterials 166 

(Bombo et al., 2019) can be used together with NOx detection dyes (e.g., diaminofluorescein- and 167 

diaminorhodamine-based probes) to localize simultaneously both entities in plant tissues by 168 

confocal microscopy. The binding of rare metallic elements (such as gadolinium) is another way 169 

to track the nanomaterial inside plants (Zhang et al., 2021). In this sense, the use of magnetic 170 

nanoparticles that allows directing them to a specific plant organ with the use of a magnet could 171 

be an alternative such as has been used in medical applications (Sola-Leyva et al., 2020). The 172 

knowledge about the fate of nanomaterials in planta is also important to verify whether potentially 173 

harmful nanomaterials and/or their by-products could accumulate in edible parts of the plants. 174 
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b) What is the extent of NO signaling in plants upon supplying NO-releasing nanomaterials in 175 

comparison to conventional NO donors? Given that the NO-triggered cellular effects depend on 176 

the kinetics release and the chemical nature of the NO donor, as well as on the subcellular 177 

localization of NO, it should be evaluated whether the use of NO-releasing nanomaterials would 178 

allow a better specificity of NO effects and if the target biomolecules in local and systemic tissues 179 

are changed. The subcellular site of NO production and its spatial and temporal diffusion are key 180 

parameters of NO specificity (Hess et al., 2005; Umbreen et al., 2018); thus, the cellular 181 

distribution of NO derived from nanoformulations is an important point to follow.  Several omics 182 

approaches (e.g., proteomics, metabolomics and transcriptomics) would be very much useful to 183 

uncover the underlying processes and signaling induced by NO-releasing nanomaterials. 184 

c) What is the extent of the impacts of NO-releasing nanomaterials to the environment and to 185 

organisms that interact with plants, such as insects, microorganisms and humans? 186 

Ecotoxicological assays with bioindicator organisms in terrestrial and aquatic systems (including 187 

mesocosm approaches) are necessary to verify the safety of nano NO donors to the environment 188 

and plant-interacting organisms (Tortella et al., 2020). In addition, microbiome and functional 189 

analyses of the soil may indicate the effects of NO-releasing nanomaterials on soil microbiota. As 190 

NO is also an important signaling molecule for microorganisms (Astuti et al., 2018), it could be 191 

hypothesized whether the effects of NO-releasing nanomaterials on plants could be mediated by 192 

changes in microbial activity (particularly for soil treatment). The possible impacts of nano NO 193 

donors to human beings who will consume fruits and vegetables obtained from plants treated with 194 

these nanomaterials should be also investigated. It is noteworthy that, due to the short half-life of 195 

released NO and its derivatives, the low doses of NO donors applied to plants are likely to have 196 

much lower impact on NO metabolism in humans in comparison to nitrate/nitrite present in plant 197 

food. In addition, the treatment of plants with NO donors allied to nanomaterials has the potential 198 

to improve the nutritional attributes of vegetables (Pelegrino et al., 2021). It is noteworthy that, as 199 

the NO concentration required for signaling in plants is low, a high dilution ratio of the stock nano 200 

formulations is usually carried out (do Carmo et al., 2021), thus minimizing the exposition of the 201 

plant/environment/human to the nanomaterial and NO derivatives. Efforts for augmenting the 202 

amount of the NO donor incorporated into the biocompatible nanomaterials (that generally have a 203 

safe profile) are welcomed, which would allow even higher dilution rates.  204 
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d) What would be the social acceptance of this approach? Once demonstrated the beneficial vs. 205 

negative effects of the application of NO-releasing nanomaterials, we believe that the public and 206 

societal opinion about the use of this technology is a vital point to be considered, to avoid a 207 

rejection similar to that happened with genetically modified organisms and classical chemical-208 

based pesticides. Proper actions for scientific dissemination and continuous dialogue with 209 

stakeholders (companies, farmers, consumers, governmental and non-governmental agencies) 210 

should not be put aside by researchers, thus ensuring an effective communication about the 211 

significant benefits of this technology in view of its costs and potential issues. A detailed cost-212 

benefit analysis would be an important future research area to help establish the potential financial 213 

advantage associated with this nascent technology. In addition, for a proper acceptance of NO-214 

releasing nanomaterials, the shelf life of the formulation should be taken into account, and this 215 

aspect depends on the nature of the NO donor and the nanomaterial. For instance, in the case of S-216 

nitrosothiol-loaded chitosan nanoparticles, the non-nitrosated formulation can be transported at 217 

room temperature and stored at refrigeration for up to one month, but there are many strategies to 218 

be tested in order to improve their durability. Last but not least, it is noteworthy that there is no 219 

appropriate international regulatory framework of nanomaterials in the agri-food sector, which 220 

might pose severe limitations to their application and public acceptance (Sodano, 2018; Allan et 221 

al., 2021).  222 

In summary, despite of extensive applications in nanomaterials, only minor progress has 223 

been achieved in plant science by using NO-releasing nanomaterials. Basic and applied research 224 

is still required to understand their mode of action in plants and to safely translate this technology 225 

to field applications. To this end, not only a scientific investigation of the detailed effects of nano 226 

NO donors on plants is mandatory, but also a realistic evaluation of (i) the advantages in terms of 227 

costs and benefits of this approach, (ii) the industrial interests, (iii) the farmers’ and consumers’ 228 

perception and acceptance of this new technology, and (iv) the economic viability of this strategy 229 

in the whole production chain of agricultural products. To achieve this huge challenge, we believe 230 

that collaboration among multidisciplinary teams with skills in chemistry, material sciences, 231 

biology, agronomy, ecotoxicology, food engineering and socio-economy is fundamental. We 232 

expect that this Viewpoint opens new avenues for this exciting and promising approach that would 233 

contribute to the development of precision agriculture. 234 

 235 
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Figure 1. Schematic representation of (a) major classes of NO donors applied in plants, (b) major 446 

types of nanomaterials to carry and delivery NO, (c) properties of NO-releasing nanomaterials, 447 

and (d) major challenges for the use of NO-releasing nanomaterials in plants. 448 
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Table 1. NO-releasing nanoparticles and their effects on plants under diverse physiological and environmental conditions.  

NPs Species Conditions Application/ dosage Responses* Reference 

SN-MSA 

CNPs 

Maize (Zea mays L.) Salinity Soil application 

(50 and 100 µM) 

(+) leaf S-nitrosothiol content 

(−) photochemical damage 

(+) chlorophyll content 

(+) growth 

Oliveira et al., 2016 

GSNO 

CNPs 

Sweet cherries fruit  

(Prunus avium L. cv. Hongdeng) 

Fruit storage 

(postharvest) 

Immersed fruits 

(60 mM) 

(−) fruit weight loss 

(−) respiration rate 

(−) ethylene production 

(+) soluble solids content 

(−) oxidative stress 

(+) antioxidant response 

Ma et al., 2019 

SN-MSA 

CNPs 

Neotropical tree seedling  

(Heliocarpus popayanensis Kunth) 

Seedlings 

submitted to 

acclimation 

under full sun 

Soil application 

(2 mM) 

(+) growth Lopes-Oliveira et al., 2019 

Neotropical tree seedling  

[Cariniana estrellensis (Raddi) 

Kuntze] 

(+) leaf S-nitrosothiol content 

 

GSNO 

CNPs 

Sugarcane  

(Saccharum spp. cv. IACSP94-2094) 

Drought Foliar supply 

(100 µM) 

(+) leaf CO2 assimilation 

(+) root:shoot ratio 

Silveira et al., 2019 
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GSNO 

CNPs 

SNAC 

CNPs 

SN-MSA 

CNPs 

Sugarcane 

(Saccharum spp. cv. IACSP95-5000) 

Drought Foliar supply 

(100 µM) 

(+) leaf gas exchange during the 

recovery period 

(+) S-nitrosothiol content 

(+) chlorophyll content 

(−) growth inhibition 

(−) oxidative stress 

Silveira et al., 2021a 

SNP 

CNPs 

(+) oxidative stress 

not effective in mitigating water 

deficit 

SN-MSA 

CNPs 

Neotropical tree seedling  

(Heliocarpus popayanensis Kunth) 

Drought Soil application 

(200 µM) 

(+) S-nitrosothiol content 

(+) root hair formation 

(+) leaf gas exchange 

(+) leaf relative water content 

(−) oxidative stress 

(+) antioxidant response 

do Carmo et al., 2021 

Abbreviations: CNPs, chitosan nanoparticles; GSNO, S-nitrosoglutathione; SNAC, S-nitroso-N-acetylcysteine; SN-MSA; S-nitroso-

mercaptosuccinic acid; SNP, sodium nitroprusside.  

*(+) and (−), respectively, mean increases and decreases in a given trait or process. 
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Table 2. Description of the different nanoencapsulated NO donors*. 

Nanoparticles 

NO release 

light/dark 

(% in 8 h) 

Estimated cost 

for 50 mM 

solution** 

(US$ per liter) 

Encapsulation 

efficiency 

(%) 

By-products 

SN-MSA-CNPs 94.0±2.3/94.1±0.9 5.9 99.8 Oxidized mercaptosuccinic acid 

GSNO-CNPs 64.6±0.7/17.7±0.8 63.7 99.7 Oxidized glutathione 

SNAC-CNPs 66.1±3.1/26.3±3.7 8.8 99.5 Oxidized N-acetylcysteine 

SNP-CNPs *** 8.0 7.8 
Cyanide, ferrocyanide and 

ferricyanide 

Abbreviations: CNPs, chitosan nanoparticles; GSNO, S-nitrosoglutathione; SNAC, S-nitroso-N-

acetylcysteine; SN-MSA; S-nitroso-mercaptosuccinic acid; SNP, sodium nitroprusside. 

* Based on Silveira et al. (2021a). 

**Prices may vary among chemical companies and countries. 

***It was not possible to accurately verify the NO release profile from SNP-CNPs.  

  

 


