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ABSTRACT

Two control strategies for multivariable processes are proposed that are based on a decentralised and a
steady state decoupling approach. The designed controllers are fractional order PIs. The efficiency and
robustness of the proposed strategies is tested and validated using a non-minimum phase process.
Previous research for the same non-minimum phase process has proven that simple decentralised or
decoupling techniques do not yield satisfactorily results and a multivariable IMC controller has been
proposed as an alternative solution. The simulation results presented in this paper show that the
proposed fractional order multivariable control strategies ensure an improved closed loop performance
and disturbance rejection, as well as increased robustness to modelling uncertainties, as compared to
traditional multivariable IMC controllers.

KEYWORDS: fractional order control, non-minimum phase system, water tanks, decentralized
control, decoupling control, Internal Model Control

INTRODUCTION

The large majority of chemical processes are multivariable in nature, exhibiting some strong couplings
and occasionally a non-minimum phase character that makes the control design problem a challenging
task [1,2]. In general, for such systems, the objective of a control system is to maintain several
controlled variables at independent set points. Despite the coupling problems associated with
multivariable systems, a non-minimum phase system is even more difficult to control. None of the
techniques that are based upon model inversion can be used since such an inversion leads to an
unstable closed loop system. Multivariable controllers have been previously designed for such
systems. However, simplified algorithms are generally preferred. In contrast to the centralised
multivariable control, decentralised control is widely preferred in practice and industrial applications
especially because of its main advantage that allows for an easy implementation and tuning, if a
sufficient number of sensors and actuators exist. It is also highly reliable.

For highly interacting processes, a decoupling control is usually preferred instead of a decentralized
algorithm. Decoupling is a procedure that reduces multivariable interactions [3] and sets the premises
for an improved design of the decentralized control. The mathematical procedure to decouple a MIMO
system consists in a transformation of the original transfer function matrix of the process into a
diagonal one, achieved by using an additional controller, also called a decoupler, which is designed in
order to compensate for process interactions. Then, for the resulting pseudo-plant, consisting of the
original model of the multivariable process and the decoupler, SISO techniques can directly be used in
designing the controllers.

The quadruple tank process, considered as a case study in this paper, is a multivariable process with a
multivariable zero located in the right half plane. Apart from the non-minimum phase character, it also
exhibits elegantly complex dynamics, including interactions and transmission zero [4]. This particular
processes has been the focus of numerous papers, since it exhibits characteristics of interest in both
control and research education. Bearing in mind that in process control industry, more than 95% of the
control loops are of PI/PID (Proportional plus Integral /Proportional plus Integral plus Derivative)
type, the most widely used control method for this type of processes has been the classical PID, either
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in a decentralised or in a decoupling approach [5]. For example, a recent paper compares the two
approaches, while the tuning of the PI controllers is performed in several ways, ranging from direct
synthesis, sequential relay with ZN settings, to more advanced methods such as the IMC (Internal
Model Control) [5]. To reduce the interaction effects, a partial decoupling method for MIMO systems
has also been proposed and implemented for the non-minimum phase quadruple tank system [6, 7].

Other more advanced methods have also been employed for the quadruple tank process, such as fuzzy
control algorithms implemented in a decentralised version [4], with the results clearly showing the
closed loop performance improvement compared to the traditional decentralised PI control. Fuzzy
logic has also been used to tune a combined state-feedback sliding-mode controller for quadruple tank
system [8]. The simulation results showed that the proposed version achieved better closed loop
performance than the stand alone versions of state-feedback controller or sliding-mode controller.
Sliding mode control has been designed and tested on an experimental setup, providing increased
robustness and excellent set point tracking [9].

For the particular setup considered in this paper, the quadruple tank system from Quanser, a
decentralised, decoupling and multivariable IMC strategies have been proposed [10], however the
experimental results obtained showed the necessity of more complex control algorithms when
stringent performance is envisaged and coupling, as well as RHP zeros need to be tackled efficiently.
For this particular process, both decentralized and decoupling controls achieved poor performance for
disturbance rejection tests, which motivated the application of the more advanced IMC control and
even a possible future work regarding model predictive control.

The purpose of this paper is to design a simple control algorithm that is based on combining fractional
order controllers with a decentralised as well as decoupling approach that allow for a SISO
interpretation of the controller tuning, but that can also achieve improved performance compared to
the multivariable IMC control (MIMO IMC). The fractional order PID (FOPID) controller was
proposed as a generalization of the traditional integer order PID controller. The use of fractional order
controllers is expected to enhance the performance of the closed loop system and increase the
robustness of the system [11,12,13], being used in a wide area of applications [14].

Several fractional order techniques have been proposed in literature for controlling multivariable
processes, such as the extension of the CRONE algorithm [15], MIMO-QFT robust synthesis
methodology combined with CRONE control [16], sliding mode control based on the selection of a
special fractional-order sliding variable [17]. Different methods for tuning multivariable fractional PID
have been proposed, such as an approach to consider the tuning formulated as an Hoo problem with a
controller structure constraint [18], the LMI (Linear Matrix Inequality) approach [19], as well as a
genetic algorithm for determining the gains and orders of the fractional order PID controllers [20].
Contrary to these multivariable fractional order control algorithms, the present paper proposes simpler
approaches, also based on robust fractional order control algorithms that enable the use of SISO
control techniques for multivariable processes.

ALTERNATIVE DESIGNS OF A FRACTIONAL ORDER CONTROLLER FOR
MULTIVARIABLE PROCESSES

The two alternative designs for the fractional order controller proposed in this paper consist ina
decentralised, as well as a steady state decoupling approach.
Decentralised approach

The decentralised approach in controlling MIMO systems consists in a proper selection of the input-
output pairings, with the purpose of dividing the initial control problem into several SISO control



loops, while aiming to reduce the amount of interaction. The first step in the decentralised approach
consists in a RGA (Relative Gain Array) analysis of the multivariable process that allows for a proper
pairing of the input-output signals [21, 22]. The next step consists in the design of the individual
fractional order PI controllers for each input-output pairing by neglecting the effect of the interaction
loop. The transfer function of the fractional order PI controller, proposed in this paper, is given as:
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with ne (0+2)the fractional order. To tune the fractional order PI controller, three performance

specifications are imposed: a) a certain gain crossover frequency - ®,,, b) a phase margin - ¢, - of

the open loop system, denoted Hq(s) and c) a robustness condition to gain variations. Considering that
the open loop transfer function is written as:

H(s)=Hpo_p(s)Hp(s) 2

where Hp(s) is the process transfer function, the tuning of the controller is done based on the following
set of equations [23,24,25]:
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where K is the real part and L is its imaginary part of the process Hp(jo,.). To simplify the

computation of the fractional order PI controller parameters, the values for k; and}. are determined
graphically using (4) and (5) [23,24,25], while k; is then computed using (3).

Decoupling approach
In case of a highly coupled MIMO system, the decentralised approach may result in poor closed loop

performance due to the multiple input-output interactions. A decoupling solution could then be used
instead. In this paper, a steady state decoupling is employed. Given the nxn MIMO system:
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the steady state decoupler is the inverse of the process transfer function gain matrix in (6), denoted as
G? . The steady state decoupled process is then computed as:
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The tuning of the fractional order PI controllers is then performed for each diagonal element in the

decoupled process Gp(s) using the same tuning procedure based on (3)-(5). The final multivariable
FO-PI controller computed as:
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CASE STUDY. CONTROL STRATEGIES FOR NON_MINIMUM PHASE QUADRUPLE
TANK SYSTEM

The schematic representation of the quadruple water tanks system is given in F ig. 1. The system is a
multivariable one, with two inputs, the voltages applied to the two pumps, denoted as Vpi(t) and
Vpa(t), and two outputs, the water levels of the lower tanks, Tank2 and Tank4, denoted as L(t) and
La(t), respectively. There is a strong coupling effect between the mputs and the outputs. Such a
coupling may be observed in Tank2 which has two inputs: the flow from Pumpl (Vyi(t)) through
Out2, marked with dashed red line, and the flow from Pump2 (Vp2(t)) through Outl, denoted with
green continuous line, that is the output flow from Tank1). Hence, the controlled level in Tank?2 (Ly) is
influenced by the two inputs.

By a simple adjustment of the percentage of water flow from each input, one can change the system
for having minimum phase or non-minimum phase dynamics [10]. The configuration used in this
paper and indicated in Figure 1 is a non-minimum phase one, with a greater flow coming from Pump2,
via Tankl, into Tank2, in comparison with the flow coming directly from Pumpl. This is due to the
fact that the outlet diameter Outl is bigger than the diameter Out2, while the outgoing orifices from
each tank Dol, Do2, Do3 and Do4 have the same diameter. A similar situation occurs in the case of
Tank4. Then, the dominant flow in Tank2 and Tank4 comes from the manner in which the physical
coupling is implemented via the choice of the setup [26,27].

The model transfer function matrix has been previously determined experimentally to be [10]:

1.64 2.49
. 18.43s+1 178.85% +26.74s +1
GE)= 2.56 1.28 ©)
172.25% +27.65+1 15.925 +1

The transmission zeros for the quadruple water tanks system are: z=-0.26; z= 0.07; z3= -0.06; z4= -
0.05. Due to the positive zero z=0.07, the system is non-minimum phase.



ri Y2
< - ‘ o= = » v ¢
Out 1fem} T Out 2iem] l Out 1lem] Out 2lem}

: |

' L]

L .

e : ";;j Tank 3
: D!_lcftl Tank 1 4 D¢

| L, fem] $ | LJ[C'“]
' : . i

(]

' oo

i D;‘Icn!] i )c;Lcn}

' 1 l

[ ] |
W ¥

. at *

— Du;crnj Tank 2 | | D" Tank 4
V[ ‘ Pumpl | Llem] V'-’.M.A Pump2 Lalem]
——

! = _hl
11D, {cm] To, tem
% —I i l Water i E P i— I
Basins

Fig. 1. Schematic diagram of the quadruple water tanks system

A simple RGA analysis show that for the configuration previously described the following RGA
values are obtained [10]:

_[-049 149
A—[1.49 —0.49} (10)

According to (10), t1-2/2-1 pairing is selected and two FO-PI controllers are then computed. The
following performance specifications are imposed for the two loops: ®,, =0.03, ¢, = 70° and
® g =0.03, ¢,, =70°. The resulting fractional order PI controllers, to be used in the decentralised

approach are:
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To tune the fractional order controllers for the decoupling control strategy, the decoupler was first
computed as:

¢ _(~03 0.58
G ‘( 0.6 —0.38) (12)

Similar performance specifications were imposed to design the fractional order controllers for the
decoupling strategy, ®,, =0.02, ¢, =70°and @, =0.02, ¢,, =70°, in order to obtain similar

closed loop performance in terms of overshoot and settling time. The two fractional order controllers
are:
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0.018
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with the final multivariable FO-PI controller determined using (8).

To compare the results, a multivariable IMC strategy has been designed according to [10], to yield
similar closed loop performance in terms of settling time, as compared to the decentralised and
decoupling fractional order control algorithms given by (11) and (13)-(14), respectively. The closed
loop simulation results, considering step changes in the reference signals for the levels L, and Ly, are
given in Fig. 2 and 3.

Since the simplified model in (9) was obtained by linearizing a nonlinear model around the operating
point of 10cm [10], the results in Fig. 2 and 3 are regarded as nominal operating conditions. The
decentralised and decoupling fractional order control strategies ensure no overshoot and 150 seconds
settling time. The 150 seconds settling time will be further considered as a performance criteria. The
MIMO IMC algorithm ensures the same settling time, but with an overshoot of 25%. It must be noted
here that zero overshoot for the MIMO IMC strategy is possible to be obtained at the expense of a
major increase in the settling time. In terms of interaction, the MIMO IMC offers the best results,
however this is valid under the assumption of a perfect model. Among the fractional order control
strategies, the decoupling approach provides better interaction responses than the decentralised control
algorithm.

To test the robustness of the designed controller, similar step changes in the reference signals were
considered, but with a variation of 30% of the gains and time constants of the process in (9):
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Fig. 2. Comparative nominal closed loop simulation results considering a step change in the reference
signal for L
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Fig. 3. Comparative nominal closed loop simulation results considering a step change in the reference
signal for L4

The closed loop comparative robustness simulation results are indicated in Fig. 4 and 5. As noted from
the two figures, for the fractional order control strategies, the 30% change in the modeling parameters
do not affect significantly the closed loop performance results, with no overshoot and a smaller settling
time below 120 seconds for both outputs. Considering the performance criteria of 150 seconds
maximum settling time, both the decentralised and the decoupling FO controllers meet this
requirement. The robustness of the decentralized and decoupling control strategies are almost identical
in terms of reference tracking. On the other hand, the MIMO IMC results show a degradation of the
closed loop performance, with a slight increase in the settling time of 170 seconds, but a significant
increase of the overshoot accounting to 50%. The maximum amplitudes of the interaction responses
show that the MIMO IMC and the decoupling FO controllers have similar performance, with the
decentralised FO controllers behaving the poorest. The settling time is however 50% larger with the
MIMO IMC (150 seconds) compared to the decentralised and decoupling FO controllers. Overall, the
proposed fractional order decentralised and decoupling strategies offer an increased robustness as
compared to the previously proposed MIMO IMC algorithm.
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Fig. 4. Comparative robust closed loop simulation results considering a step change in the reference
signal for L,
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Previous results [10] showed that poor disturbance rejection performance was achieved when using
classical integer order PID controllers in a decentralised or decoupling approach, which justified the
application of the more advanced MIMO IMC control. Fig. 6 and 7 present the disturbance rejection
tests, considering the nominal conditions, while Fig. 8 and 9 present the same disturbance rejection
tests in the case of the modeling errors in (15). The simulation results show that the MIMO IMC and
the decoupling fractional order controller are outperformed in terms of settling times by the
decentralised fractional order controller. Also, the MIMO IMC is more oscillating with increased
amplitudes compared to the decoupling fractional order controller.

To evaluate the disturbance rejection tests, the following performance index was used:

J=3 (r,(t)-y,(t)) , with =12 (16)
=0

t

where riis the setpoint for the corresponding output signal y; (either tank levels L, or Ly).
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Fig. 6. Comparative disturbance rejection tests considering nominal conditions and a step change in
the reference signal for L,
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Fig. 8. Comparative disturbance rejection tests considering modelling errors and a step change in the
reference signal for L,
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The computed values are given in Table 1 and show that the proposed fractional order control
strategies outperform the MIMO IMC in terms of disturbance rejection, both under nominal as well as
modelling errors.

Control strategy Output y1 Output y2

Nominal Modelling errors | Nominal Modelling errors
Decentralised J=10.35 J=9.37 J=11.35 J=10.03
fractional  order
control
Decoupling J=23.6 J=19.57 J=236 J=19.3
fractional  order
control
MIMO IMC J=3423 J=43.72 J=34.22 J=43.31

Table 1. Performance index for the disturbance rejection tests
EXPERIMENTAL RESULTS

The two fractional order control strategies described above have been tested on the coupled tanks
system by Quanser. Figures 10 and 11 show the comparative closed loop tests for both the
decentralised and the decoupling fractional order control strategies. The case study considered here
consists in a step change for the L reference from 9 cm to 11 ¢m, thus near the linearization point. The
La4reference signal is kept at 10 cm.

In terms of interaction, the decoupling fractional order control strategy performs better than the
decentralised fractional order control algorithm. Using the same performance index as in (16) for the
interaction responses yields a value of J=9.14 for the decoupled version, while for the decentralised
control strategy, J=21.26. This suggests that the decoupled control algorithm ensures a 50% reduction
of the interaction responses.

In terms of reference tracking, the experimental results in figure 10 show that the two fractional order
control strategies achieve similar performance. The settling time in both cases is 150 seconds, as
obtained in the simulation results presented in the previous section, with a slight increase in the
overshoot 0f 2%.
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Fig. 10. Comparative closed loop experimental results for reference tracking
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Fig. 11. Comparative closed loop experimental results for interaction response

CONCLUSIONS

This paper presented two alternative solutions for controlling non-minimum phase systems and
significant coupling. The previous traditional decentralised and decoupling strategies applied for the
presented case study, the quadruple tank system, have shown the necessity for an advanced control
solution, such as the MIMO IMC. The alternative solutions proposed in this paper consist in
decentralised and decoupling fractional order control strategies. The simulation results prove that the
proposed multivariable fractional order control algorithms outperform the MIMO IMC solution
previously proposed, in terms of closed loop performance, disturbance rejection, both under nominal
conditions, as well as modelling errors.

The experimental results considering the decoupled and decentralised fractional order control
strategies are in good agreement with the closed loop simulation results. The settling time and the
overshoot obtained on the experimental quadruple tank system meet the performance criteria specified
for the simulated closed loop system. The decoupled fractional order control algorithm achieves
similar performance in terms of reference tracking when compared to the decentralised fractional order
control strategy. The most important contribution of the decoupled fractional order control algorithm is
the 50% reduction in the interaction response, compared to the decentralised approach.
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