
Parameterized Models
for On-line and Off-line Use

Pieter Wuille1 and Tom Schrijvers2

1 Dept. of Computer Science, K.U.Leuven, Belgium
pieter.wuille@cs.kuleuven.be

2 Dept. of Applied Mathematics and Computer Science
Universiteit Gent, Belgium
tom.schrijvers@ugent.be

Abstract. The Monadic Constraint Programming framework leverages
Haskell’s rich static type system and powerful abstraction mechanisms to
implement an embedded domain specific language (EDSL) for constraint
programming.
In this paper we show how the same constraint model expressed in the
EDSL can be processed in various modes by external constraint solvers.
We distinguish between on-line and off-line use of solvers. In off-line
mode, the model is not solved; instead it is compiled to lower-level code
that will search for solutions when compiled and run. For on-line use, the
search can be handled by either the framework or in the external solver.
Off-line mode requires recompilation after each change to the model. To
avoid repeated recompilation, we separate model from data by means of
parameters that need not be known at compile time. Parametrization
poses several challenges, which we resolve by embedding the EDSL more
deeply.

1 Introduction

The Monadic Constraint Programming framework integrates constraint pro-
gramming in the functional programming language Haskell [9] as a deeply em-
bedded domain specific language (EDSL). This has a considerable advantage
compared to special-purpose Functional Constraint (Logic) Programming (FCP)
languages such as Curry [7] or TOY [5]. We directly obtain state-of-the-art func-
tional programming support with zero effort, allowing us to focus on constraint
programming itself.

While the integration is not as tight, Haskell does offer good EDSL support
to make the embedding quite convenient. Moreover, being less tight does provide
for greater flexibility. Aspects that are baked into some FCP languages, such as
search strategies or the particular solver used, are much more easily interchanged
from within the program. In addition, the deep embedding of the EDSL allows
us to use the constraint model for more than straight (on-line) solving. For
instance, transformations can be applied to the model for optimization purposes
or to better target a particular constraint solver. Alternatively, the model does

not have to be solved on-line, but can drive a code generator that produces an
executable for off-line solving.

This paper reports on the FD-MCP module of the framework, specific to fi-
nite domain (FD) solvers. We show how the framework supports different modes
of processing an FD model, by both on-line and off-line solvers. Then we iden-
tify the need for parametrized models to make the off-line solver approach both
more useful and more efficient. We show how the framework is adjusted to sup-
port parametrized models, including deeply embedded iteration constructs and
indexed lists of constraint variables.

2 Monadic Constraint Programming

The MCP [10] framework is a highly generic constraint programming framework
for Haskell. It provides abstractions for writing constraint models, constraint
solvers and search strategies. This paper focuses on the solving and modeling
parts.

2.1 Generic Constraint Programming Infrastructure

MCP defines type classes, Haskell’s form of interfaces, for Solvers and Terms:

class Monad s => Solver s where

type Constraint s :: *

type Label s :: *

add :: Constraint s -> s Bool

run :: s a -> a

mark :: s (Label s)

goto :: Label s -> s ()

class Solver s => Term s t where

newvar :: s t

A type that implements the Solver type class must provide a type3 to rep-
resent its constraints and labels, an add function for adding constraints, a run

function to extract the results, a mark function to create a label of its current
state, and a goto function to return to a previous state.

A solver type s must also be a monad [11]. A monadic value s a is an
abstraction of a form of computation s that yields a result a. Constraint solvers
are typically computations that thread an implicit state: the constraint store.

A solver also provides one or more types of terms: Term s t expresses that
t is a term type of solver type s. Each term type provides a method newvar to
generate new constraint variables of that type.

MCP also defines a data type Model, representing a model tree:

3 Implemented using associated types in Haskell

2

data Model s a

= Return a -- return a value

| Add (Constraint s) (Model s a) -- add a constraint

| NewVar (t -> Model s a) (Model s a) -- introduce variable

| Try (Model s a) (Model s a) -- disjunction

...

The model tree is parametrized in the constraint solver s and returned result
type a. This provides a type-safe way for representing constraint problem models
for arbitrary solvers and result types. The Return node returns solutions. The
NewVar node introduces new variables. It takes a function as argument that
produces the subtree when passed the new variable. This encoding prevents
using a variable outside of the part of the tree where it is defined.

On top of the model data type, MCP provides syntactic sugar (functions that
construct model trees), such as exists (create a variable), exist n (create a
list of n variables), addC (add a constraint), /\ (conjunction), \/ (disjunction),
conj (conjunction of list of models), . . . Finally, Model s is also a monad.

2.2 The FD-MCP Module

The FD-MCP framework introduces an extra layer of abstraction between the
more generic Solver interface of the MCP framework and the concrete solver
implementations.

In contrast to MCP’s generic Solver interface, which is parametric in the
constraint domain, the FDSolver interface of FD-MCP is fully aware of the finite
domain (FD) constraint domain: both its syntax (terms and constraints) and
meaning (constraint theory). It does however make abstraction of the particular
FD solver and e.g., propagation techniques used. Hence, it provides a uniform
modeling language that abstracts from the syntactic differences between various
FD solvers.

On the one hand, this allows the development of solver-independent models,
model transformations (e.g., for optimization) and model abstractions (capturing
frequently used patterns). On the other hand, specific solvers may focus on
the efficient processing of their constraint primitives without worrying about
modeling infrastructure.

FD-MCP Modeling Primitives The FD-MCP modeling language is built as
a wrapper on top of the MCP solver interface. This way, the domain-independent
combinators of the MCP framework, such as conjunction (/\) and existential
quantification exists are available for FD models. The FD-MCP modeling lan-
guage adds FD-specific constructs to that. Advanced FD constructs are defined
in terms of a set of core primitives, resulting in a layered structure.

The FD layer abstracts from the solver-level concepts of variables and con-
straints, and allows everything to be expressed as arbitrarily-nested expressions.
Boolean expressions are used as constraints, implicitly supporting reification.

3

To improve genericity, the used expression data types are parametrized in
the type of terms they refer to. i refers to the type of integers terms, b to the
type of boolean terms.

data BoolExpr i b

= BoolVar b JBoolVar vK ≡ JvK
| BoolConst Bool JBoolConst nK ≡ n
| BoolAnd (BoolExpr i b) (BoolExpr i b) JBoolAnd a bK ≡ JaK ∧ JbK
| . . .
| Same (IntExpr i b) (IntExpr i b) JSame x yK ≡ JxK = JyK
| Less (IntExpr i b) (IntExpr i b) JLess x yK ≡ JxK < JyK
| Dom (IntExpr i b) (Integer,Integer) JDom x y zK ≡ JxK ∈ {y, . . . , z}
| AllDiff (ListExpr i b) JAllDiff [x1, . . . ,xn]K ≡

∧
i 6=j xi 6= xj

| . . .

data IntExpr i b

= IntVar i JIntVar vK ≡ JvK
| IntConst Integer JIntConst nK ≡ n
| Plus (IntExpr i l b) (IntExpr i l b) JPlus x yK ≡ JxK + JyK
| Mult (IntExpr i l b) (IntExpr i l b) JMult x yK ≡ JxK ∗ JyK
| . . .

where the comment after each constructor shows its denotation. In the specific
instance of using them as expressions, IntExpr (IntTerm s) (BoolTerm s)

and BoolExpr (IntTerm s) (BoolTerm s) will be used. The types IntTerm s

and BoolTerm s will be explained in Section 2.2.

Syntactic sugar On top of the core primitives, a number of convenient ab-
stractions and syntactic sugar exists. Firstly, standard arithmetic operators and
integer literals can be used for IntExpr thanks to an implementation of Haskell’s
Num type class.

instance Num (IntExpr i b) where

fromInteger = IntConst

(+) = Plus

...

Thus Plus x (Mult (IntConst 2) y) can be written succinctly as x + 2 * y.
Furthermore — to simplify writing models — syntactic sugar exists that adds

specific boolean expressions immediately as constraints in a model: 4

x @< y = Add (Less x y) true

x @> y = y @< x

x @>= y = x + 1 @> y

x @: (l,u) = Dom x l u

4 The [x @: d | x <- xs] expression is a list comprehension, meaning “a list of x
@: d, for each x from the list xs”.

4

1 model = exist 4 $ \list@[a,b,c,d] -> do

2 list ‘allin‘ (0,711)

3 a + b + c + d @= 711

4 a * b * c * d @= 711000000

5 sorted list

6 return list

Fig. 1. 7-11 puzzle example in FD-MCP

xs ‘allin‘ d = conj [x @: d | x <- xs]

. . .

In practice, these operators do not naively build an expression, but perform
simplifications as well. For example:

x @< y = Add (Less (simplify x) (simplify y)) true

simplify (Plus x (IntConst 0)) = x

simplify (Mult x (IntConst 0)) = IntConst 0

simplify ... = ...

i.e. @< acts as a smart constructor that first simplifies its arguments. The sim-
plifications are generic transformations, and form a first optimization step. In-
dependent from the solver, they apply identities such as x + 0 = x and 0x = 0
(shown above) to the model.

Example Figure 1 illustrates the resulting FD-MCP modeling language with
a model for the classical 7-11 puzzle. This puzzle concerns 4 unknown amounts
whose sum and product are both 7.11. The amounts are represented in units of
1 cent. 5

Line 1 starts the declaration of an FD-MCP model tree model. exist re-
quests a new list of 4 variables and has an (anonymous) callback function for
handling them as argument. This function itself takes the list of new variables
as argument, individually aliased as a, b, c and d. Lines 2–5 define a conjunction
of constraints that must hold for these variables:

– Line 2: restrict all variables’ domains to 0 . . . 711.
– Line 3: the sum of the four variables is 711.
– Line 4: the product of the four variables is 711000000.
– Line 5: each variable is larger than or equal to the next one (to break sym-

metry).

5 The $ operator is function application (f $ x = f x) which associates to the right
instead of the left. For instance, f $ g $ h x is equivalent to f (g (h x)), but
syntactically more convenient.

5

Mapping to the solver backend The conversion of high-level solver-independent
expressions to low-level solver-dependent constraints and variables is a complex
operation. Often there will be different possible outcomes, with varying perfor-
mance characteristics for solving. Hence it is a good candidate for optimization.

The FD-MCP system uses a graph-based compilation scheme to do this con-
version. Details of this compilation scheme are outside of the scope of this paper;
the explanation can be found in [13].

To have a solver integrated with FD-MCP, it must — in addition to the
Solver class — also instantiate the FDSolver class:

class (Term s (IntTerm s), Term s (BoolTerm s)) => FDSolver s where

type IntTerm s :: *

type BoolTerm s :: *

...

enforce :: BoolExpr (IntTerm s) (BoolTerm s) -> s Bool

This defines the FDSolver s class, which demands implementors to specify the asso-
ciated types IntTerm s and BoolTerm s. These are the types of variables that will be
used in the low-level form. In what follows, we will assume the class also defines a
function enforce that maps a boolean expression over its terms to a monadic action
that enforces the truth of that expression in its constraint store, returning False if this
leads to insatisfiability. In reality, the class is more extensive, and does not offload all
responsibility to the solver.

Integration with MCP The FDSolver type class allows us to define a generic
solver FDWrapper s that encapsulates the mapping from the generic model to the solver-
specific model.

The FDWrapper s is an MCP Solver which uses BoolExpr (IntTerm s) (BoolTerm

s) as constraints and BoolExpr’s and IntExpr’s as terms.6

1 newtype FDWrapper s a = FDWrapper { unFD :: StateT (FDState s) s a }

2 data FDState s = FDState { cons :: BoolExpr (IntTerm s) (BoolTerm s) }

3

4 commit :: FDSolver s => FDWrapper s ()

5 commit = do

6 s <- get

7 FDInstance $ lift $ enforce $ constraint s

8 put s { constraint = BoolConst True }

9

10 instance FDSolver s => Solver (FDWrapper s) where

11 type Constraint (FDWrapper s) = BoolExpr (IntTerm s) (BoolTerm s)

12 type Label (FDWrapper s) = Label s

13 add c = do

14 s <- get

15 put s { cons = (cons s) @&& c }

6 The instance requires s to belong to the FDSolver class, which requires a type
IntTerm s to belong to class Term s, which requires s to belong to class Solver

itself.

6

16 mark = do

17 commit

18 FDInstance $ lift $ mark

19 goto l = do

20 put initFDState

21 FDInstance $ lift $ goto l

22 run f = run $ evalStateT (unFD f) initFDState

23

24 instance Term (FDWrapper s) (IntExpr (IntTerm s) (BoolTerm s)) where

25 newvar = do

26 nv <- FDInstance $ lift $ newvar

27 return $ IntVar nv

Line 1 defines the FDWrapper s a type, a wrapper around a s solver, transformed
using the StateT monad transformer to maintain an additional state (FDState s)
through the computation. This state — defined on line 2 — contains a boolean ex-
pression cons that represents the conjunction of constraints that are not yet applied to
the underlying constraint solver. Lines 4–8 define the function commit, which flushes
this conjunction to the underlying solver using the earlier enforce function, and lift,
which transforms an action for the s monad to one for the FDWrapper s monad. Finally,
FDWrapper s is made an instance of Solver itself in lines 10–22. Line 11 states that
boolean expressions will be acceptable as constraints, and line 12 declares that labels
of the underlying solver are reused for the wrapper. The add function on lines 13–15
simply adds constraints to the conjunction (using the boolean expression operator @&&).
The mark and goto functions will flush the constraints, and call the respective function
of the underlying solver. Running the wrapped solver (line 22) requires evaluating it
using an initial state, and then running the resulting monad action in the underlying
solver. Expressions are declared as terms for FDWrapper s (lines 24–27) by wrapping
new underlying variables in a IntVar constructor to form IntExpr’s.

3 Solver Backends and Modes

The initial release of the MCP framework featured only one solver, a simple FD solver
implemented in Haskell. However, rather than implement a solver in Haskell, it is much
more attractive to interface external state-of-the-art solvers implemented in lower-level
languages. That is why we have provided an interface to the Gecode FD solver in
C++ [12]. In this work we expand considerably upon this initial interface and show how
the same external solver can be interfaced in different modes.

3.1 On-line and Off-line Modes

Firstly, we distinguish between on-line and off-line use. The former means that the
constraint model is processed by the MCP framework, in collaboration with the solver,
to produce solutions. This mode is used for the original Haskell-based FD solver. The
latter concerns staged compilation: in the first stage, the FD model is processed by the
MCP framework that produces code for the second stage in the solver’s programming
language; the stage-2 code produces solutions. This mode was used in the original
Gecode backend of [12]. The off-line mode comes with a compilation function 〈〈·〉〉 ::
Model OfflineSolver a→ C++ instead of the usual run function for solvers.

7

The off-line mode has a clear appeal for performance reasons: it avoids the inter-
pretative overhead when solving the constraint model in the second stage. Of course,
there is the compilation overhead of the first stage. We come back to this issue in the
next section, where we considerably improve the usefulness of the off-line mode.

The on-line mode is very convenient for programming the search: all the high-level
search features of the MCP framework are available. In contrast, our off-line Gecode
solver provides a fixed search strategy. A considerable disadvantage of the on-line mode
is the interpretative overhead of Haskell, which is confounded by the fact that the FD
solver is implemented in Haskell itself.

New on-line Gecode solver In this paper we present a new on-line mode for the
external Gecode solver. This combines the performance of Gecode with the high-level
search features of the MCP framework. The solver type is defined as:

newtype OnlineSolver a

= OnlineSolver { runOnline :: StateT GecodeState IO a }

The OnlineSolver is a monad composition of:

– the IO monad: to access the Gecode library through the Haskell Foreign Function
Interface (FFI), and

– the StateT GecodeState monad transformer: to maintain the solver state:

data GecodeState = GecodeState { space :: Space

, cexpr :: Map IntExpr IntTerm }

which consists of a reference to the current Gecode space, and a map to translate
FD expressions in the constraint model to constraint variables in the Gecode solver.

The OnlineSolver is recognized as an actual solver by the framework with the following
instance:

instance Solver OnlineSolver where

type Constraint OnlineSolver = GecodeConstraint

add c = addOnlineGecode c

run m = unsafePerformIO $ do state <- newState

evalStateT state (runOnline m)

type Label OnlineSolver = GecodeState

mark = get

goto s = copyState s >>= put

The supported constraints of this solver are of type GecodeConstraint. The
addOnlineGecode function adds a contraint to the current Gecode space, through the
FFI. This involves constructing the constraint arguments, the FD expressions, in the
Gecode solver. The cexpr helps out here, capturing earlier mappings of constraint
variables and other FD expressions that already have a representation in the Gecode
solver. This results in dynamic common subexpression elimination. Running the solver
means running the underlying IO monad and the state transformer, with appropriate
initial state.

Finally, for disjunctive models and branches in the search tree, we use the copying
technique in Gecode. Thus for the label of a solver state, we simply use the solver state,

8

i.e. the Gecode space, itself. Whenever creating a branch starting from a given space,
we install a copy of that space as the current space so as not to affect other branches.

Thanks to this relatively simple instance, we can now use the MCP infrastructure
(e.g., a search queue, compositional search transformers and enumeration) for the on-
line Gecode solver.

3.2 Programmed versus Fixed Search Modes

The new on-line Gecode backend of the framework offloads constraint propagation on
the Gecode solver, but still allows the programmer to program and specify the search
heuristics through the high-level interface. We call this approach the programmed search
mode. It has clear advantages in terms of expressivity, but it does incur an interpretative
penalty for search, which for many constraint problems has a considerable impact on
the overall solving time.

In order to avoid the interpretative overhead for search, we provide a second mode
of on-line use, the fixed search mode. Just like the off-line Gecode solver, this mode
provides a fixed search strategy implemented in C++ for the on-line Gecode solver. In
this mode, labelling the model does not produce a whole subtree that is affected by
the framework’s search heuristics. Instead, a single node is generated on the MCP side
that corresponds to many nodes in the Gecode solver which are processed by a fixed
search strategy.

4 Parameterized Models

Many FD models are naturally parameterized in a problem size and/or other instance-
specific integer values. For instance, the n-queens problem is parameterized in the board
size, the Golomb ruler problem is parameterized in the ruler size, . . .

Such parameterization does not pose any problem for the on-line solvers. The pa-
rameterized model is simply written as a model function from one (or more) integer
value to an FD model. An FDModel is simply a Model for an FDSolver, that returns a
list of solutions.

pmodel :: Int -> FDModel s

pmodel = \n -> ...

In order to solve the model, the model function is applied to the appropriate values,
and the resulting model is handed to the on-line solver. No surprises.

For off-line solvers, we could follow the same technique. However, then we would
obtain a non-parameterized off-line executable. Each time we would like to change the
parameters, we would have to generate a new off-line executable! That is very costly in
terms of compilation times, compared to the on-line solvers. The latter require only one
invocation of the Haskell compiler for a parameterized model, while the former requires
one invocation of the Haskell compiler and subsequently, for each instantiation of the
parameters, an invocation of the C++ compiler. Moreover, the size of the off-line code is
dependent on the problem size, because the framework fully flattens the model before
generating code. Hence, the larger the problem size, the bigger the generated C++ code,
and the longer the C++ compilation times. In summary, a new approach is necessary
to make parameterized models practical for off-line solving.

The remainder of this section shows our approach for representing and compiling
parameterized models. It has the two desirable properties: 1) a parameterized model

9

requires only a single invocation of the C++ compiler, and 2) the generated code does
not depend on the parameter value.

4.1 Parameters

We still represent parameterized models by model functions, but the functions take
expressions rather than integers as arguments.

pmodel :: IntExpr (IntTerm s) (BoolTerm s) -> FDModel s

pmodel = \n -> ...

For brevity, we will omit the type parameters (IntTerm s) and (BoolTerm s) in further
signatures mentioning FD expressions and models.

We still retain the above functionality for off-line solvers, as integer values can
be lifted to FD expressions using the IntConst :: Integer -> IntExpr constructor.
Moreover, IntExpr i b is also an instance of the Num type class, so integer literals can
be supplied directly as arguments: pmodel 1425.

Of more interest is of course the treatment of model functions for off-line solving.
A model function is compiled by applying it to special IntExpr values that represent
deferred values . These deferred values will not be known until the C++ stage. We denote
a deferred value in the first stage as `p, where p is the corresponding representation, a
C++ int variable, in the second stage.

So using these deferred variables, we again obtain an FDModel that can be compiled
much as before. Only the deferred values require special care. They are mapped to int

instance variables of the generated C++ class that represents the Gecode constraint
model. A new instance of the problem is created by instantiating an object of that
class with the desired integer values for the parameters.

4.2 Indexed Constraint Variable Lists

Unfortunately, this is not the end of the story. Parameters of type IntExpr have fewer
uses than values of type Integer. Indeed, the former can be used as arguments to
constraints, but the latter can appear in many useful Haskell library functions as well
as several functions of the MCP framework. Perhaps the most essential such function
is exist :: Integer -> ([t] -> FDModel) -> FDModel, which creates a list of the
specified number of constraint variables. In many parametric models, the number of
constraint variables depends on the parameter value.

However, for the off-line solver, the integer value of the parameter is not available.
Thus the actual creation of the list must be deferred from the on-line Haskell phase
to the off-line phase. Moreover, we may wish to use a different data structure than a
linked list in the off-line phase, such as an array in C++.

Hence, to allow writing models that can be used with both on-line and off-line
solvers, we extend the expression component with explicit list expressions:

data ListExpr i b l

= List [IntExpr i b l]

| ListVar l

| ListCat (ListExpr i b l) (ListExpr i b l)

data IntExpr i b l

10

= ...

| ListSize (ListExpr i b l)

| ListAt (ListExpr i b l) (IntExpr i b l)

data BoolExpr i b l

= ...

| ListEqual (ListExpr i b l) (ListExpr i b l)

So an additional type parameter l is added to the definitions of IntExpr and BoolExpr,
and a new expression type ListExpr is added. Furthermore, the FDSolver class is
extended with a ListTerm s associated type.

For on-line solvers like OvertonFD, it is defined as an on-line Haskell list:

type instance ListTerm OvertonFD = [IntTerm OvertonFD]

For off-line solvers like OfflineGecode, a deferred list `c is used that only records an
identifier c of the particular list:

type instance ListTerm OfflineGecode = OfflineList Int

However, when writing a constraint model that is polymorphic in the solver type,
ListTerm acts as an abstract data type that only allows a limited number of operations,
supported by both on-line and off-line solvers. Typically, all interaction with lists is
done using the higher-level ListExpr type. Supported functions on these expressions
include:

– fdexist :: IntExpr -> (ListExpr -> FDModel) -> FDModel

creates a new list of specified size, and acts as a generalization of exist. This
function is implemented in terms of exist for on-line solvers, but creates a new
deferred list for off-line solvers. Note that the size of generated code for the latter
is constant (a single array declaration) as opposed to linear like exist.

– (!) :: ListExpr -> IntExpr -> IntExpr returns an element at a given index in
the list. For on-line solvers it is implemented in terms of list indexation (!!), but
for off-line solvers a term denoting deferred indexation is returned. Then we have
that 〈〈`c ! i〉〉 = c[〈〈i〉〉] .

– collect :: [IntExpr] -> ListExpr turns a Haskell list of variables into a list
expression.

Global constraints form another class of functions that involve lists. These have
been modified to support list expressions instead of Haskell lists:

– allDiff :: ListExpr -> FDModel all expressions in the given list expression eval-
uate to mutually distinct values.

– sorted :: ListExpr -> FDModel the given list expression is sorted.
– allin :: ListExpr -> (IntExpr,IntExpr) -> FDModel

all expressions in the given list expression have a value between the given lower
and upper bounds.

4.3 Iteration

Often the above operations for lists are not expressive enough. Instead of imposing
global constraints on a list or indexing specific entries, many models process all elements
of a list one at a time. For this purpose an iteration construct is necessary.

11

Iteration Primitives We introduce in our framework the iteration primitive foreach
:: (IntExpr,IntExpr) -> (IntExpr -> FDModel) -> FDModel, whose denotation is:

Jforeach (l, u) fK ≡
u∧

i=l

Jf iK

For instance, we write
∧n

i=1(ci > i) as:

foreach (1,n) $ \i -> (c ! i) @> i

This is implemented by again extending the expression component:

data BoolExpr i b l

= ...

| ForEach (IntExpr i b l,IntExpr i b l) (IntExpr -> BoolExpr)

This time, we use the fact that functions are first-class objects in Haskell, and store the
inner expression as a function in the outer expression. This immediately adds support
for nesting and reification.

For on-line solvers, ForEach is translated literally according to its semantics:

enforce (ForEach (IntConst l,IntConst u) f) = conj [f i | i <- [l..u]]

However, for off-line solvers, the range of the loop may not be constant, if it depends
on a model parameter. Even if we do know the range, we may choose not to flatten the
loop if the range is too large. In these cases, foreach is compiled to a C++ for-loop:

〈〈ForEach (l, u) f〉〉 = for (int i = 〈〈l〉〉; i =< 〈〈u〉〉; i++) { 〈〈f `i〉〉 }

So the size of the generated code does not depend on the size of the iteration range.
Because iteration over the whole range, rather than a subrange, of a list occurs

quite frequently, we introduce a second iteration construct forall :: ListExpr ->

(IntExpr -> FDModel) -> FDModel, whose denotation is:

Jforall c fK ≡
∧
v∈c

Jf cK

For instance, we write
∧

v∈c(v > i) as:

forall c $ \v -> v @> i

or even shorter:

forall c (@> i)

forall is simply mapped to the more generic foreach construct:

forall c f = foreach (IntConst 1, ListSize c) $ \i -> f (c ! i)

which means that we get the following C++ code:

〈〈forall `c f〉〉 = for (int i = 0; i < 〈〈size `c〉〉; i++) { 〈〈f `c[i]〉〉 }

12

Example The following program is a parameterized model of the n-queens problem:

nqueens n = -- define model function ’nqueens’

fdexist n $ \q -> do -- new list ’q’ of size n

q ‘allin‘ (1,n) -- all variables in range [1..n]

foreach (1,n) $ \i -> -- for i in [1..n]

foreach (i+1,n) $ \j -> do -- for j in [i+1..n]

q!i @/= q!j -- \

q!i + i @/= q!j + j -- | constraints

q!i - i @/= q!j - j -- /

return q -- return result list

Except for import statements and a main function that inputs the parameter value,
calls the solver and outputs results, this is a fully working Haskell program.

Additional Higher-Order Constructs While the above iteration primitives are
expressive enough to formulate most list processing operations, often the formulation
can be quite awkward and the resulting code rather inefficient (e.g. requiring auxil-
iary lists). For that reason, we directly support additional higher-order list processing
constructs besides forall and foreach.

Mimicking the standard Haskell functions map and foldl, we provide the following:

– fdmap :: (IntExpr -> IntExpr) -> ListExpr ->

ListExpr transforms each element of a list using a specified function, similar to
the standard Haskell function map.

– fdfold :: (IntExpr -> IntExpr -> BoolExpr) -> IntExpr ->

ListExpr -> IntExpr folds a list to a single expression, similar to the standard
Haskell function foldl.

Again, the IntExpr and ListExpr types are extended with new constructors (Map
and Fold), and simplifications are applied when creating them. For example, applying
a fdmap on another fdmap results in a single Map, while applying an fdfold on an fdmap

will result in a single Fold.

In the case of a Gecode-based solver (either on-line or off-line), further optimizations
are applied. For example, a Fold that reduces a list using the (+) operator will be
translated to a single efficient sum constraint propagator.

5 Evaluation

In order to evaluate the two new extensions, the on-line Gecode solver support and the
support for parameterized models, existing benchmarks for Gecode have been ported
to FD-MCP. Tables 1, 2 and 3 show the results. Lines of code (LoC) are measured
using SLOCcount7, the timings in seconds are average CPU times over multiple runs.8

7 http://www.dwheeler.com/sloccount/
8 Benchmarks have been performed on a 64-bit Ubuntu 10.04 system using a 3.16GHz

Intel R© CoreTM2 Duo E8500 processor, with 4GiB RAM. Software versions: GHC
6.12.1, GNU G++ 4.4.3, Gecode 3.2.1.

13

5.1 Solving Results

The first table lists the absolute timings for the original C++ benchmark, and the
runtimes of the MCP versions relative to the original benchmark. The columns show
respectively: 1) the name of the benchmark, 2) the parameter value (if any), 3) the
runtime (in seconds) for the Gecode benchmark in C++, and the runtimes of 4) the
C++ code generated in off-line mode, 5) the parametrized C++ code in off-line mode,
5) the on-line Gecode solver in fixed search mode, 6) the on-line Gecode solver in
fixed programmed mode. All of columns 3)-6) are based on the same MCP model.
The − entries denote a time out (no result after 80 seconds). Columns 7–9 show the
corresponding compilation times and columns 9–12 show the number of lines of code.

Any timings close to the C++ runtime (column 3) indicate that the corresponding
MCP mode is a valid alternative for direct Gecode implementation in terms of efficiency.
The results for the naive Haskell solver are not shown here, but are at least an order
of magnitude worse. Hence, it has been worthwhile to invest in Gecode backends for
MCP.

A few times we observe that the compiled code generated in MCP off-line mode
is slightly faster than the original Gecode benchmark. This is likely due to start-up
overhead where the absolute runtime is only a few milliseconds.

These results show that more concise Haskell MCP programs can be used to gen-
erate C++ code whose performance matches that of original C++ implementations.
When solving directly, there is an often small performance penalty when using the
fixed search, and larger one when using programmed search.

5.2 Code Generation Results

Table 3 compares the generated code size and corresponding compilation times with
those of an earlier version of FD-MCP, which did not yet support parametrization or
higher-order constructs.

The results clearly support two conclusions:

1. Models written in MCP are more concise than in Gecode, and

2. Parametrized generated code avoids parameter-dependent code sizes.

6 Related and Future Work

There is wide range of CP systems and languages. We will mention a few. We subdivide
them in stand-alone languages and API’s. A more extensive overview of related work
can be found in [10].

Stand-alone modeling languages Zinc [8] is a stand-alone modeling language. Model
transformations and compilation processes to different constraint solver backends are
implemented in a second language, Cadmium, which is based on ACD term rewrit-
ing [3].

Rules2CP [4] is another stand-alone modeling language. The compilation of Rules2CP
to SICStus Prolog is also specified by rewrite rules.

14

name size
Runtime (s) Compile time (s) Lines of code

C++ MCP GCC GHC C++ Haskell
gen. search run C++ gen. Haskell orig. gen.

allinterval 7 0.004 0.004 0.0079 0.0096 1.3 0.87 0.035 52 89 22
8 0.0045 0.0046 0.0091 0.014
9 0.0065 0.0069 0.012 0.031
10 0.016 0.018 0.024 0.11
11 0.066 0.077 0.08 0.5
12 0.32 0.38 0.37 2.5
13 1.8 2.1 2 13
14 10 12 12 -
15 61 - - -

alpha 0.0045 0.018 0.023 1.1 0.047 0 257 39

bibd 0.004 0.0052 0.095 0.1 1.3 0.88 0.044 119 121 20

efpa 0.0044 0.005 0.065 0.067 1.8 0.96 0.045 199 154 19

golombruler 6 0.0041 0.0041 0.024 0.026 1.3 0.88 0.045 87 113 27
7 0.0073 0.0081 0.035 0.056
8 0.042 0.047 0.08 0.23
9 0.35 0.4 0.41 1.6
10 3.2 3.5 3.2 12

grocery 0.099 0.099 0.093 0.098 1.3 0.84 .032 42 77 12

magicseries 10 0.0039 0.0039 0.0093 0.0097 1.3 0.87 0.034 62 98 15
20 0.004 0.004 0.015 0.016
50 0.0046 0.0043 0.032 0.036
75 0.0054 0.0048 0.048 0.054
100 0.0067 0.0053 0.063 0.074
200 0.016 0.0095 0.13 0.17
375 0.06 0.027 0.28 0.4
500 0.12 0.048 0.41 0.62
1000 0.94 0.36 1.4 2.2

Table 1. Benchmarks

15

name size
Runtime (s) Compile time (s) Lines of code

C++ MCP GCC GHC C++ Haskell
gen. search run C++ gen. Haskell orig. gen.

magicsquare 3 0.0039 0.0039 0.011 0.011 1.3 0.87 0.044 62 95 27
4 0.0081 0.0091 0.02 0.07
5 0.4 0.48 0.61 -
6 0.0042 0.0043 0.021 -
7 2.6 2.9 4.4 -

partition 10 0.0044 0.0043 0.0096 0.02 1.4 0.9 0.046 74 105 28
14 0.0086 0.0079 0.017 0.35
18 0.019 0.016 0.033 8.9
20 0.053 0.045 0.082 30
22 0.16 0.14 0.23 -
24 0.55 0.47 0.77 -
26 0.56 0.48 0.8 -
28 1.9 1.6 2.7 -
30 5 4.3 7 -
32 6.5 5.6 9.3 -

queens 8 0.004 0.004 0.016 0.017 1.3 0.86 0.035 80 81 14
10 0.004 0.0039 0.022 0.023
13 0.0043 0.0042 0.034 0.035
21 0.0042 0.004 0.08 0.13
34 0.0047 0.0044 0.2 -
55 0.0079 0.0075 0.52 -
70 0.0082 0.0073 0.84 -
89 0.012 0.011 1.4 -
100 0.015 0.013 1.7 -
111 0.089 0.089 2.2 -

Table 2. Benchmarks (continued)

Benchmark
Lines of code Compilation time(s)

C++ MCP C++ MCP
param. C++ non-param. C++ param. C++ non-param. C++

allinterval
3

52 89
71

3.3 2.7
2.0

15 179 2.7

queens
4

80 81
79

3.4 2.5
2.1

100 534 >20

partition
4

74 105
103

3.3 3.1
2.2

20 295 4.5

magicsquare
3

62 95
92

3.4 2.9
2.8

6 206 3.1

Table 3. Lines of code and compilation times

16

Constraint Programming API’s Two other functional programming languages which
provide CP support are Alice ML9 and FaCiLe [1]. While Alice ML provides a run-time
interface to Gecode [6], FaCiLe uses its own constraint solver in OCaml. Both provide
a rather low-level and imperative API, which corresponds to the C++ API of Gecode in
the case of Alice ML, and relies on side effects. Neither supports alternative backends
or model transformations.

Integrations Cipriano et al. [2] translate constraint models written in both Prolog
CLP(FD) and (Mini)Zinc to Gecode via an intermediate language called CNT without
loop constructs. The transformation from CNT to Gecode is implemented in Haskell.
In order to avoid the Gecode code blow-up, it attempts to identify loops in the unrolled
CNT model. It also performs a number of simplifications in the model. Our approach is
much more convenient and efficient, providing explicit looping constructs and compiling
these directly without intermediate loop unrolling, and with strong guarantees that
loops remain loops.

Future work The support for lists should also be further extended to multi-dimensional
indexing, which is quite convenient for modelling grid-based problems like sudoku, and
collection parameters for providing a variable number of deferred data such as supply
and demand quantities in a transportation problem.

One of the greatest challenges ahead of the MCP framework is the combination of
programmed search and off-line solving. This combines the high-level search modeling
with the performance advantages of C++ code by extending the staged compilation
technique to include the search specification.

7 Conclusions

We have shown how to link the FD-MCP framework with Gecode to allow efficient on-
line solving of constraint problems modeled using it. Furthermore, we added deferred
parameters, indexable lists and higher-order list processing constructs to the provided
abstractions, allowing shorter and more useful off-line code to be generated. These
extensions were implemented10 and benchmarks show that there is often only a small
performance penalty compared to native C++ implementations.

Acknowledgments We are grateful to Peter Stuckey for his helpful comments.

References

1. N. Barnier. Application de la programmation par contraintes à des problèmes de
gestion du trafic aérien. PhD thesis, Institut National Polytechnique de Toulouse,
December 2002. http://www.recherche.enac.fr/opti/papers/thesis/.

2. R. Cipriano, A. Dovier, and J. Mauro. Compiling and executing declarative mod-
eling languages to Gecode. In M. G. de la Banda and E. Pontelli, editors, ICLP,
volume 5366 of LNCS, pages 744–748, 2008.

9 http://www.ps.uni-sb.de/alice
10 Available at http://www.cs.kuleuven.be/~toms/MCP/

17

3. G. J. Duck, P. J. Stuckey, and S. Brand. ACD term rewriting. In S. Etalle and
M. Truszczynski, editors, ICLP, volume 4079 of LNCS, pages 117–131, 2006.

4. F. Fages and J. Martin. From Rules to Constraint Programs with the Rules2CP
Modelling Language. In Recent Advances in Constraints, LNAI, 2009.

5. A. J. Fernandez, T. Hortala-Gonzalez, F. Saenz-Perez, and R. Del Vado-Virseda.
Constraint functional logic programming over finite domains. Theory Pract. Log.
Program., 7(5):537–582, 2007.

6. Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

7. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.curry-language.org, 2006.

8. K. Marriott et al. The design of the Zinc modelling language. Constraints,
13(3):229–267, 2008.

9. S. Peyton Jones et al. The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming, 13(1):0–255, Jan 2003.

10. T. Schrijvers, P. Stuckey, and P. Wadler. Monadic Constraint Programming. J.
Func. Prog., 19(6):663–697, 2009.

11. P. Wadler. Monads for functional programming. In Advanced Functional Program-
ming, pages 24–52, London, UK, 1995.

12. P. Wuille and T. Schrijvers. Monadic Constraint Programming with Gecode. In
Proceedings of the 8th International Workshop on Constraint Modelling and Re-
formulation, pages 171–185, 2009.

13. P. Wuille and T. Schrijvers. Expressive Models for Monadic Constraint Program-
ming. In Proceedings of the 9th International Workshop on Constraint Modelling
and Reformulation, 2010. accepted.

18

