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Abstract

We study the binary dual codes associated with Desarguesian projective planes PG(2, q), with q = 2h,
and their links with (q+ t, t)-arcs of type (0, 2, t), by considering the elements of Fq as binary h-tuples.
Using a correspondence between (q+ t, t)-arcs of type (0, 2, t) and projective triads in PG(2, q), q even,
we present an alternative proof of the classification result on projective triads. We construct a new
infinite family of (q + t, t)-arcs of type (0, 2, t) with t = q

4 , using a particular form of the primitive
polynomial of the field Fq.
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1 Introduction

Originally introduced by Gallager [6], low density parity check (LDPC) codes are frequently used these
days due to their excellent empirical performance under belief-propagation/sum-product decoding. In
some cases, their performance is even near to the Shannon limit [15]. In general, a binary LDPC code
C is a linear block code defined by a sparse parity check matrix H, this is a matrix that contains a lot
more 0s than 1s.

To exploit structural properties, one usually wants an explicit construction rather than random ma-
trices. Lately, many constructions related to finite geometries have been studied because of their low
complexity decoding features [11, 17], such as generalized quadrangles [9, 14], linear representations
[18, 22, 23] and partial and semipartial geometries [7, 12].
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In particular, codes derived from projective planes have been used in several high-end modern data
transmission systems [2, 3]. In this paper, we will take a deeper look at the structure of this LDPC
code.

The incidence matrix Mq of PG(2, q), with q = ph and p prime, has a p-rank of
(
p+1
2

)h
+ 1 [21] and

is symmetric, because of the self-duality of PG(2, q). Two linear codes related to this matrix are

commonly studied: the p-ary [q2 + q + 1,
(
p+1
2

)h
+ 1]-code generated by Mq over Fp, which we denote

by Cgen, and the p-ary [q2 + q + 1, 2
(
q+1
2

)
−
(
p+1
2

)h
] code with Mq as its parity check matrix over

Fp, which we denote by Cpcm. In this paper, when studying Cgen, we let the points of the geometry
correspond to the positions of the code, and when studying Cpcm, we let the lines of the geometry
correspond to the positions of the code. For example, in the case of a binary code (p = 2), a code
word of Cpcm is a set of lines such that each point is contained in an even number of these lines, and
a code word of Cgen is the binary sum of any number of incidence vectors of lines.

The reason why we use a different setting for each code is the following. Since we will study the row
span of Cgen, and in particular the dimension of certain subspaces of it, we are interested in linear
combinations of rows of the incidence matrix M of PG(2, q) which yield the zero vector. Now in the
tranposed matrix MT , where columns correspond to lines and rows correspond to points, this is a
linear combination of columns yielding the zero vector, which is well-known to correspond to a code
word of the code defined by MT as its parity check matrix, which is in our case Cpcm. A code word
of Cpcm hence corresponds to a set of lines hitting each point an even number of times.

In [1], it is shown that the minimum distance of Cgen is q + 1 and that the code words of minimum
weight are exactly the incidence vectors of the projective lines. The minimum weight of Cpcm is not
known in general. For p = 2, the minimum weight of Cpcm is q + 2 and the code words of minimum
weight are exactly the dual hyperovals [1].

In 1991, G.E. Moorhouse [16] found and proved an explicit basis for the rows of the incidence matrix,
in the case h = 1 (i.e.

(
p+1
2

)
+ 1 rows which are linearly independent). The construction is as follows:

fix one line L and let S = {L}. Now consider the line L as the line at infinity of the projective plane.
Then add to S all p affine lines through one point of L. Then add to S any p− 1 affine lines through
another point of L. Continue in this way, and finally add to S any one affine line through the second
last point of L. Do nothing for the last point of L. Then S forms a basis for the p-ary row space of
the incidence matrix.

For q = ph, with p prime and h > 1, the existence of a similar result has been an open problem for
nearly 20 years now. The nature of finite fields of non-prime order suggests that any generalization
of this result will no longer allow to pick the points/lines in arbitrary order. This is, however, not a
though restriction: a general construction, even in one particular order, would already be an interesting
result.

In Section 3, we provide a detailed conjecture, backed up by computer simulations, of how such a
generalized Moorhouse basis for PG(2, q) can look like for the case p = 2, i.e. q = 2h. We discuss
a strong relationship with (dual) (q + t, t)-arcs of type (0, 2, t), a special type of small code words of
Cpcm. In Section 5, we construct a new infinite class of such arcs with t = q/4, parameters which were
previously unknown to exist. We end by listing some possibilities for further work.
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2 Preliminaries

The following structure will be shown to be closely related to the dual code of the projective plane of
even order.

Definition 2.1. A (q + t, t)-arc of type (0, 2, t) in PG(2, q) is a set S of q + t points in PG(2, q) for
which every projective line ` meets S in either 0, 2 or t points.

Definition 2.1 was introduced in [10] and it is proven that (q+ t, t)-arcs of type (0, 2, t) with 1 < t < q
can only exist if q is even. Moreover, they prove that t needs to be a divisor of q, i.e. t = 2r with
r ≤ h. They also provide a construction of such arcs if h− r divides h. From now on, we will assume
that q is even (and hence is a power of 2) and t divides q.

Remark 2.2. A hyperoval in PG(2, q), q = 2h with h ≥ 1, can be seen as a (q + 2, 2)-arc of type
(0, 2, 2). One can see (q + t, t)-arcs of type (0, 2, t) as a generalization of hyperovals. The symmetric
difference of two lines of PG(2, q) can be seen as a (2q, q)-arc of type (0, 2, q).

Definition 2.3. A (q + t, t)-arc of type (0, 2, t) in PG(2, q), q = 2h, is said to have a t-nucleus if all
the t-secants are concurrent.

In [10] it is proven that all (q + t, t)-arcs of type (0, 2, t) have a t-nucleus if h− r + 1 6= gcd(h, r − 1),
conjecturing that it holds for all r, h. That conjecture was proven in [5].

Conjecture 2.4 ([10]). If 4 divides t and t divides q, then there exists a (q+ t, t)-arc of type (0, 2, t).

Conjecture 2.4 is open for more than 20 years now. In [10] it is proven that a (2h + 2r, 2r)-arc exists
when h− r is a proper divisor of h. Later, in [5] the authors prove another infinite class of such arcs
for which h− r is not a proper divisor of h; more precisely they construct

• a (2hr + 2h(r−1), 2h(r−1))-arc of type (0, 2, 2h(r−1)) in PG(2, 2hr);

• a (2hr + 2h(r−1)+1, 2h(r−1)+1)-arc of type (0, 2, 2h(r−1)+1) in PG(2, 2hr);

• a (2hr + 2h(r−1)+s, 2h(r−1)+s)-arc of type (0, 2, 2h(r−1)+s) in PG(2, 2hr) if there exists a (2h +
2s, 2s)-arc of type (0, 2, 2s) in PG(2, 2h).

Since then, no new infinite classes have been found. Some (40, 8)-arcs of type (0, 2, 8) in PG(2, 32)
were found in [13] via computer searches. Shortly after, a (36, 4)-arc of type (0, 2, 4) in PG(2, 32) was
discovered in [8], also via computer searches. Hence, in PG(2, 32), there are (32 + t, t)-arcs of type
(0, 2, t) for all divisors t of 32. The next open cases are (68, 4)-arcs of type (0, 2, 4) in PG(2, 64), and
(128 + t, t)-arcs of type (0, 2, t) for t = 4, 8, 16, 32. In Section 5 we construct a new infinite class of
(q + q/4, q/4)-arcs of type (0, 2, q/4), for all q = 2h, h ≥ 3.

Definition 2.5. A dual (q + t, t)-arc of type (0, 2, t) in PG(2, q) is a set S of q + t lines in PG(2, q)
for which every projective point lies on either 0, 2 or t lines of S.

Note that the (binary) sum of the incidence vectors of the lines in a dual (q + t, t)-arc is equal to the
zero word, since t is necessarily even.

It is clear that, since PG(2, q) is self-dual, arcs are equivalent to dual arcs, and all properties for
arcs also hold for dual arcs (and vice versa). In a similar fashion one can use concepts such as dual
t-nucleus, which is just the dual of the t-nucleus. In the next section we will work completely in the
dual setting.
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3 A basis for PG(2, q), q even

From now on, we limit ourselves to the case that q is even, i.e. q = 2h.

Notation 3.1. We will denote

S(h, i) :=

h∑
k=i

(
h

k

)
.

For any projective point p(0, 1, β) with

β = ah−1α
h−1 + ah−2α

h−2 + · · ·+ a1α+ a0 ∈ Fq,

where α is a primitive element of Fq and all ai ∈ F2, we denote lc(p) = max{i : ai 6= 0} + 1 and we
call this the leading coefficient of the point. The leading coefficient of (0, 1, 0) is defined to be 0 and
the leading coefficient of (0, 0, 1) is defined to be +∞.

A standard way to find a basis of any vector space, is to start from the zero vector space and sequentially
add all vectors to it. A basis is then the set of vectors which caused an increase in dimension when
they were added.

Using a row-reduced form to store the basis, this can be implemented efficiently in software. Applying
this standard technique to the vector space spanned by the rows of the matrix of PG(2, q), with q = 2h,
we find that the following pattern holds for all q ≤ 512. We conjecture it to hold for all q.

Conjecture 3.2. Let L be the projective line with equation X0 = 0, and let A be the 1× (q2 + q+1)-
matrix containing the point-incidence vector of L. We again consider this line L as the line at infinity
of an affine plane. Now, for

p ∈ [(0, 1, 0), (0, 1, 1), (0, 1, α), (0, 1, α+ 1), (0, 1, α2), . . . , (0, 1, αh−1 + · · ·+ α+ 1), (0, 0, 1)],

in that order, we add the incidence vectors of each of the q affine lines through p to the set of rows of
A. Then the rank of A increases by S(h, i) when adding the lines through a point p with lc(p) = i, for
i = 0, 1, . . . , h,+∞.

This yields us a more structural rank formula: the rank of the incidence matrix of PG(2, q) is 3h + 1,
which can be written as

1 + S(h, 0) + S(h, 1) + S(h, 2) + S(h, 2)︸ ︷︷ ︸
2 terms

+S(h, 3) + · · ·+ S(h, 3)︸ ︷︷ ︸
4 terms

+ · · · .

Hard to verify by computer, but structurally more important, is the following Conjecture 3.3. Conjec-
ture 3.3 provides a structural explanation for Conjecture 3.2 and on itself greatly generalizes Conjecture
2.4.

Conjecture 3.3. The numbers from Conjecture 3.2 can be explained as follows.

• The vanishing of the term
(
h
0

)
when adding any point p with lc(p) > 0, is explained by the

presence of dual (2q, q)-arcs of type (0, 2, q) in PG(2, q) with as its dual t-secants: p and the
points with lc at most 0 (i.e. (0, 1, 0)).

• The vanishing of the term
(
h
1

)
when adding any point p with lc(p) > 1, is explained by the

presence of dual
(
3
2q,

1
2q
)
-arcs of type

(
0, 2, 12q

)
in PG(2, q) with as its dual t-secants: p and the

points with lc at most 1.
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• The vanishing of the term
(
h
i

)
when adding any point p with lc(p) > i, for i = 0, . . . , h − 1, is

explained by the presence of dual
(
2h + 2h−i, 2h−i

)
-arcs of type (0, 2, 2h−i) in PG(2, q) with as

its dual t-secants: p and the points with lc at most i.

• The vanishing of the term
(

h
h−1
)

when adding any point p with lc(p) > h−1, is explained by the
presence of dual hyperovals that do not contain the line X0 = 0, and in which p and the points
with lc at most h− 1 are dual secants. These can be seen as

(
2h + 2, 2

)
-arcs of type (0, 2, 2) in

PG(2, q) with as its dual t-secants: p and the points with lc at most h− 1.

• The vanishing of the term
(
h
h

)
when adding the point p with lc(p) = +∞ (which is equivalent to

lc(p) > h), is explained by the presence of a dual hyperoval that does contain the line X0 = 0
and in which all points on that line are dual secants. (To some extent, after removing the line at
infinity this can be seen as

(
2h + 1, 1

)
-arcs of type (0, 2, 1) in PG(2, q), with as its dual t-secants

the whole line X0 = 0. Adding the line at infinity yields a code word of Cpcm as in the cases
above.

Conjecture 3.3 is a strong generalization of Conjecture 2.4, which only claims the existence of the code
words mentioned in Conjecture 3.3. Conjecture 2.4 has been open for over 20 years now. We hope
that this more structural conjecture can give a new impulse to the problem. In particular, the author
believes that one can find (q + t, t)-arcs of type (0, 2, t) for all parameters in Conjecture 2.4, with the
additional requirement that these arcs are defined by sets of lines with linear F2-equations on their
coefficients when considering F2h as Fh

2 , as in the examples constructed in Section 5.

To support the plausibility of Conjecture 3.3, let us look at some particular cases.

• The last bullet of Conjecture 3.3 is clear, since for each affine line ` there exist dual regular
hyperovals containing both X0 = 0 and `.

• The first bullet is easily shown as follows: let L be a line intersecting X0 = 0 in a point
p 6= (0, 1, 0). Then the incidence vector of L can be written as the sum of all incidence vectors
of the other lines through p and the incidence vectors of all lines through (0, 1, 0).

• The second bullet is not trivial anymore. We will prove this part in Lemma 4.3, which fully
classifies all (q+ q/2, q/2)-arcs of type (0, 2, q/2) and gives a more concise construction than the
one in [10].

• The third and fourth bullet are still open. Computer results suggest that the weight of each
code word in the code generated by all lines through points with lc ≤ i, is always a multiple
of 2h−i+1; but a proof of this is still unknown. However, despite Conjecture 3.3 only being a
conjecture, an interesting result pops up: our linear dependence search yields code words of
Cpcm which use only a small number of points on X0 = 0. If Conjecture 3.3 holds, then these
code words are likely to be the sum of one or more (q + t, t)-arcs of type (0, 2, t). Using this
idea, we obtained a new infinite family of (q + t, t)-arcs of type (0, 2, t), which is an interesting
result on its own, and which also greatly improves the plausibility of Conjecture 3.3. This new
infinite family is presented in Section 5.

When considering the points on X0 = 0 in a different order, it seems that the rank of the matrix
consisting of the line incidence vectors is never larger than what is claimed in Conjecture 3.2. With
random ordering, it is also not true that using at most 2i points of X0 = 0, the weight of the obtained
code words of Cpcm is always a multiple of 2h−i+1. For example, for q = 64 and i = 2, one can obtain
code words of weight 120 when the points are taken on an F4-subline.

In Section 4, we will prove the second bullet, and we discuss an interesting corollary about projective
triads. As said before, if Conjecture 3.3 is true, then one should be able to construct dual (q+ t, t)-arcs
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of type (0, 2, t) by looking at linear dependencies between incidence vectors of lines. In particular, we
exploited this idea by studying the linear dependencies between the incidence vectors of lines through
the points (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, α) and (0, 1, α2). Adding these vectors to a vector space in
a well-chosen order and using the standard technique from the start of this section, we found linear
dependencies between these lines resulting in (q + q/4, q/4)-arcs of type (0, 2, q/4) for all q ≥ 512.
For q = 128 and q = 512, this resulted in arcs of previously unknown parameters. And again, the
fact that this technique works again strengthens the plausibility of Conjecture 3.3. In Section 5, we
used the above observation and the arcs derived from it, to obtain a general construction of dual
(q + q/4, q/4)-arcs of type (0, 2, q/4) in PG(2, q), q even. For q = 2h with h odd, such arcs were not
previously known.

4 Projective triads and (q + t, t)-arcs of type (0, 2, t)

Definition 4.1. In PG(2, q), q even, consider three lines `1, `2, `3, concurrent at a point r. A projective
triad is a set S of 3

2q+ 1 points of PG(2, q), contained in `1 ∪ `2 ∪ `3 and containing r, such that each
line `i contains q

2 + 1 points of S, and each projective line not through r intersects S in 1 or 3 points.

Projective triads are mainly studied in the context of blocking sets.

Remark 4.2. Let S be a projective triad and let S′ = (`1 ∪ `2 ∪ `3) \ S. Then

• each line `i contains (q + 1)−
(
q
2 + 1

)
= q

2 points from S′,

• each other line through r contains 1− 1 = 0 points from S′,

• each line not through r contains 3 − i points from S′ with i ∈ {1, 3}, hence each such line
contains 0 or 2 points from S′.

All in all, each line contains 0, 2 or q
2 points of S′. Since |S′| = (3q+ 1)−

(
3
2q + 1

)
= q+ q

2 , it follows
that S′ is a (q + t, t)-arc of type (0, 2, t), for t = q

2 .

On the other hand, if S′ is a (q + t, t)-arc of type (0, 2, t) with t = q
2 , then it has a t-nucleus r, and

hence it is contained in three lines `1, `2, `3. In a similar fashion, S = (`1 ∪ `2 ∪ `3) \ S′ is now a
projective triad.

Hence, a projective triad uniquely corresponds to a (q + t, t)-arc of type (0, 2, t) with t = q
2 . We will

now classify the (dual) (q + t, t)-arcs of type (0, 2, t) with t = q
2 . Without loss of generality we may

assume the dual nucleus to be the line X0 = 0 and by a coordinate transformation, we can let the
dual secants be (0, 0, 1), (0, 1, 0) and (0, 1, 1).

Lemma 4.3. The subset of Cpcm of code words consisting of the lines through (0, 0, 1), (0, 1, 0) and

(0, 1, 1), different from the line X0 = 0, is a subcode of dimension h+ 2 = 0 +
(
h
0

)
+
((

h
0

)
+
(
h
1

))
with

weight polynomial 1 + (4q − 4)X3q/2 + 3X2q.

Proof. We will completely classify the code words of this code. Denote our three points by p0(0, 0, 1),
p1(0, 1, 0), p2(0, 1, 1). We recall that a code word here corresponds to a set of lines through one of p0,
p1 or p2, such that each point outside of X0 = 0 is contained in an even number of lines (and hence in
either 0 or 2 lines) of the set.
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Let c be any code word. Denote by s, t, u respectively the number of lines in supp(c) through p0, p1, p2.
If at least one of s, t, u is zero, there are only four code words: the empty word and the

(
3
2

)
= 3 words

formed by the (2q, q)-arcs of type (0, 2, q). Now consider any other word with s, t, u > 0. Any line
through p0 must intersect exactly t+ u lines through the other two points, hence t+ u = q. Similarly,
s+ t = q and s+ u = q. Solving this system of equations, we get s = t = u = q/2.

Now coordinatize the lines of supp(c) as follows:

• write the lines through p0(0, 0, 1) as [µ, 1, 0] with µ ∈ S, |S| = q/2,

• write the lines through p1(0, 1, 0) as [µ, 0, 1] with µ ∈ T , |T | = q/2,

• write the lines through p2(0, 1, 1) as [µ, 1, 1] with µ ∈ U , |U | = q/2.

The condition that each point (1, x, y) should be contained in an even number of lines of supp(c), is
equivalent to saying that for each x, y ∈ Fq, an even number of the statements x ∈ S, y ∈ T , x+y ∈ U
should be fulfilled. In particular, for fixed x /∈ S we have x+T = U and x+U = T , hence ∀x, x′, x′′ /∈ S
we have x + x′ + x′′ + T = x + T . This means that, considering (Fq,+) as a h-dimensional vector
space over F2, the elements of S form an affine subspace. Similarly, T and U also need to be affine
subspaces. From their sizes, S, T and U are affine hyperplanes.

For hyperplanes. it follows from x + T = U that T and U need to be equal or parallel. Similarly,
S, T, U all belong to the same parallel class. Hence, for some c, c′, c0, c1, . . . , ch−1 ∈ F2,

S = {ah−1αh−1 + · · ·+ a1α+ a0 : ch−1ah−1 + · · ·+ c1a1 + c0a0 = c},

T = {ah−1αh−1 + · · ·+ a1α+ a0 : ch−1ah−1 + · · ·+ c1a1 + c0a0 = c′},

U = {ah−1αh−1 + · · ·+ a1α+ a0 : ch−1ah−1 + · · ·+ c1a1 + c0a0 = c+ c′ + 1},

where we remind that an even number of c, c′, c+ c′ + 1 are zero, for each c, c′ ∈ {0, 1}.

Clearly, for each binary choice of these h + 2 parameters, we get a different code word of weight 3
2q,

and the degenerate choice c0 = c1 = · · · = ch−1 = 0 yields the 4 code words mentioned at the start of
the proof, having weight different from 3

2q.

As a by-product, we find a complete classification of the projective triads. A classification equivalent
to Corollary 4.4 was found before in [20], and implicitly in [19].

Corollary 4.4. Let `1, `2, `3 in PG(2, q), q even, be any three concurrent lines. Let A ∈ PGL(3, q)
be the coordinate transformation which maps these lines to [0, 0, 1], [0, 1, 0], [0, 1, 1], let Πt be any
hyperplane in AG(h, 2), with equation ch−1Xh−1 + · · ·+ c1X1 + c0X0 = t, and let c, c′ ∈ {0, 1}. If we
let

S = {(1, 0, 0)}
∪{(ah−1αh−1 + · · ·+ a1α+ a0, 0, 1)|(ah−1, . . . , a1, a0) ∈ Πc}
∪{(ah−1αh−1 + · · ·+ a1α+ a0, 1, 0)|(ah−1, . . . , a1, a0) ∈ Πc′}
∪{(ah−1αh−1 + · · ·+ a1α+ a0, 1, 1)|(ah−1, . . . , a1, a0) ∈ Πc+c′},

then {A−1s|s ∈ S} forms a projective triad on `1, `2, `3. Moreover, if q > 2, all 4q−4 projective triads
on `1, `2, `3 arise from this construction.
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5 A new construction

For an n-dimensional vector space V and a vector v ∈ V , we can computationally find v as a linear
combination of a given basis {v1, . . . , vn} of V . Using only incidence vectors of lines as basis, and
with v also an incidence vector of a different line, the linear combination v =

∑
i∈I vi shows that the

corresponding set of lines forms a code word of Cpcm. If Conjecture 3.3 is true, every code word is
composed of a linear combination of (q+ t, t)-arcs of type (0, 2, t). For t = q/4, we found that in some
cases, code words obtained in this way can be equal to such an arc. This observation led us to several
examples, which we could embed in the following construction.

Let Fq be a finite field, with q = 2h, h ≥ 4, built up with

αh = ah−1α
h−1 + ah−2α

h−2 + · · ·+ a1α+ a0

with all ai ∈ {0, 1}, as its primitive polynomial. From [4] it follows that we may choose ah−1 = ah−2 =
0 for h ≥ 8. For h = 4, 5, 6, 7 one can easily verify that respectively α4 + α+ 1 = 0, α5 + α2 + 1 = 0,
α6 + α+ 1 = 0 and α7 + α3 + 1 = 0 are primitive polynomials of degree h with ah−1 = ah−2 = 0.

Consider the projective line in PG(2, q) with equation X0 = 0, and consider the points (0, 0, 1), (0, 1, 0),
(0, 1, 1), (0, 1, α) and (0, 1, α2); these points will be the dual t-secants and the line X0 = 0 will be the
dual t-nucleus. Now we write all other lines through (0, 0, 1) as 〈(0, 0, 1), (1, t, 0)〉 with t ∈ Fq and we
write all other lines through (0, 1, x) as 〈(0, 1, x), (1, 0, t)〉 with t ∈ Fq.

Any element z ∈ Fq can be written uniquely as

z = zh−1α
h−1 + zh−2α

h−2 + · · ·+ z1α+ z0,

with each zi ∈ {0, 1}. By (z)i we will denote zi. We will now construct two (very similar) classes of
examples: let par ∈ {0, 1} be a fixed element of F2; our infinite class will depend on par. Consider the
following five sets of lines.

• A := {〈(0, 0, 1), (1, t, 0)〉 with th−2 = 0, th−3 = 1},

• B := {〈(0, 1, 0), (1, 0, t)〉 with th−1 = 0, th−2 = 1},

• C := {〈(0, 1, 1), (1, 0, t)〉 with th−2 = 0, th−3 + th−4 + · · ·+ t0 = par},

• D := {〈(0, 1, α), (1, 0, t)〉 with th−1 + th−2 = 1, th−3 + th−4 + · · ·+ t0 = par},

• E := {〈(0, 1, α2), (1, 0, t)〉 with th−1 = 0, th−2 + th−3 + th−4 + · · ·+ t0 = par},

then we will show that these form a dual (q + q/4, q/4)-arc of type (0, 2, q/4). That the set A ∪ B ∪
C ∪D∪E contains q+ q/4 lines, is clear. That there are 5 points in which q/4 lines meet is also clear.
What is not clear, is that each point with coordinates (1, x, y) lies on either 0 or 2 of these lines. This
will be proven in what follows.

Notation 5.1. Denote by S the set of lines of A ∪B ∪ C ∪D ∪ E.

From now on, we consider X0 = 0 to be the line at infinity and we consider its complement as the
affine plane AG(2, q).

Lemma 5.2. The union of the affine points contained in any line of a set A, B, C, D or E, is for
each of the 5 sets as follows:
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• pA := {(1, x, y) : xh−2 = 0, xh−3 = 1},
• pB := {(1, x, y) : yh−1 = 0, yh−2 = 1},
• pC := {(1, x, y) : xh−2 + yh−2 = 0, xh−3 + xh−4 + · · ·+ x0 + yh−3 + yh−4 + · · ·+ y0 = par},
• pD := {(1, x, y) : xh−2 +xh−3 +yh−1 +yh−2 = 1, xh−4 + · · ·+x0 +yh−3 +yh−4 + · · ·+y0 = par},
• pE := {(1, x, y) : xh−3 + yh−1 = 0, xh−4 + · · ·+ x0 + yh−2 + yh−3 + yh−4 + · · ·+ y0 = par}.

Proof. For A, B and C, this is obvious. For D, let the primitive polynomial be αh = ah−3α
h−3 +

ah−4α
h−4 + · · ·+ a1α+ a0 as assumed before. Then

αx = xh−1α
h + xh−2α

h−1 + xh−3α
h−2 + xh−4α

h−3 + · · ·+ x0α
= xh−2α

h−1 + xh−3α
h−2 + (xh−4 + xh−1ah−3)αh−3 + · · ·

+(x0 + xh−1a1)α+ xh−1a0.

Hence, th−1 + th−2 = (αx+ y)h−1 + (αx+ y)h−2 = 1 reduces to xh−2 + xh−3 + yh−1 + yh−2 = 1 and

th−3 + th−4 + · · ·+ t0 = (αx+ y)h−3 + (αx+ y)h−4 + · · ·+ (αx+ y)0 = par

reduces to

xh−1(ah−3 + ah−4 + · · ·+ a0) + xh−4 + · · ·+ x0 + yh−3 + yh−4 + · · ·+ y0 = par.

Since ah−3 + ah−4 + · · ·+ a0 = 0 (otherwise 1 is a root of the primitive polynomial), the latter reduces
to

xh−4 + · · ·+ x0 + yh−3 + yh−4 + · · ·+ y0 = par

as claimed. Finally, for E,

α2x = α(xh−1α
h + xh−2α

h−1 + xh−3α
h−2 + xh−4α

h−3 + · · ·+ x0α)
= α(xh−2α

h−1 + xh−3α
h−2 + (xh−4 + xh−1ah−3)αh−3

+ · · ·+ (x0 + xh−1a1)α+ xh−1a0)
= xh−2α

h + xh−3α
h−1 + (xh−4 + xh−1ah−3)αh−2 + · · ·

+(x0 + xh−1a1)α2 + xh−1a0α
= (xh−3 + ah−1xh−2)αh−1 + (xh−4 + xh−1ah−3 + xh−2ah−2)αh−2

+ · · ·+ (x0 + xh−1a1 + xh−2a2)α2

+(xh−1a0 + xh−2a1)α+ xh−2a0
= xh−3α

h−1 + (xh−4 + xh−1ah−3)αh−2

+(xh−5 + xh−1ah−4 + xh−2ah−3)αh−3 + · · ·
+(x0 + xh−1a1 + xh−2a2)α2 + (xh−1a0 + xh−2a1)α
+xh−2a0.

Hence, th−1 = (α2x+ y)h−1 = 0 reduces to xh−3 + yh−1 = 0 and

th−2 + th−3 + th−4 + · · ·+ t0
= (α2x+ y)h−2 + (α2x+ y)h−3 + (α2x+ y)h−4 + · · ·+ (α2x+ y)0
= par

reduces to

(xh−1 + xh−2)(ah−3 + · · ·+ a0) + xh−4 + · · ·+ x0 + yh−2 + yh−3 + yh−4 + · · ·+ y0 = par.

Since again ah−3 + · · ·+ a0 = 0, this reduces to

xh−4 + · · ·+ x0 + yh−2 + yh−3 + yh−4 + · · ·+ y0 = par

as claimed.
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Lemma 5.3. Let `1, `2, `3 be three concurrent lines of S. Then `1, `2, `3 all belong to the same set A,
B, C, D or E.

Proof. It is clear that if two of them belong to different sets, they all belong to a different set. So
what we have to verify is that

pA ∩ pB ∩ pC = ∅, pA ∩ pB ∩ pD = ∅, . . . , pC ∩ pD ∩ pE = ∅.

If we define c := xh−4 + · · · + x0 + yh−4 + · · · + y0 + par, then the systems of equations obtained in
Lemma 5.2 become:

• pA := {(1, x, y) : xh−2 = 0, xh−3 = 1},

• pB := {(1, x, y) : yh−1 = 0, yh−2 = 1},

• pC := {(1, x, y) : xh−2 + yh−2 = 0, xh−3 + yh−3 + c = 0},

• pD := {(1, x, y) : xh−2 + xh−3 + yh−1 + yh−2 = 1, yh−3 + c = 0},

• pE := {(1, x, y) : xh−3 + yh−1 = 0, yh−2 + yh−3 + c = 0},

and one can easily verify that any three of these yield an inconsistent system of linear equations over
F2.

Theorem 5.4. The set of lines S is a dual (q + q/4, q/4)-arc of type (0, 2, q/4).

Proof. As we remarked before, all that is left to prove is that each affine point lies on either 0 or 2
lines of S. From Lemma 5.3, it follows that an affine point cannot lie on three or more lines. Hence,
each point lies on either 0, 1 or 2 lines. Now assume that there exists an affine point p which only
lies on one line L ∈ S. The q lines in the 4 sets not containing L, intersect L in one affine point each,
different from p. By the pigeonhole principle (q incidences for q − 1 possible points), there must be
two such lines intersecting L in the same point, a contradiction with Lemma 5.3. Hence, every affine
point lies on 0 or 2 lines of S.

6 Conclusions and further work

We have proposed several detailed conjectures on Desarguesian projective planes of even order, and
their links with (q + t, t)-arcs of type (0, 2, t). Considering the elements of Fq as binary h-tuples and
using a particular form of the primitive polynomial of the field Fq, we have constructed a new infinite
class of (q + t, t)-arcs of type (0, 2, t) with previously unknown parameters. We have given a full
classification of the projective triads in PG(2, q), q even. We finish this paper by discussing some
options for possible further work.

Clearly, proving Conjecture 2.4 or Conjecture 3.3 would be an important achievement. However, it
seems that this is a difficult problem. Intermediate results, improving our understanding of these
structures, would be a good way to go. In particular, proving Conjecture 3.2 by other methods could
be a good first step, and finding more infinite classes of arcs could also potentially bring us closer to
an answer to the problem.

Lemma 4.3 shows that all (q+ t, t)-arcs of type (0, 2, t) are linear (i.e. they arise from linear equations
considering Fq as Fh

2 ) if t = q/2. For t = q, this is also clearly the case. For t = 2, this is trivially
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fulfilled since every two points in AG(2, h) form an affine subspace. A natural question would be if
there exist (q + t, t)-arcs of type (0, 2, t) which are not linear, for 4 ≤ t ≤ q/4. If not, this would be a
major step towards proving Conjecture 3.3, and an important result on its own. It would also allow
more efficient computer searches for classifying (q + t, t)-arcs of type (0, 2, t) in small planes.

An important step in the construction of the new class of arcs was the result that the coefficient of αh−1

and αh−2 can be assumed to be zero in the primitive polynomial of the field. Without this assumption,
several extra terms would usually be added to the equations and we would no longer be able to cancel
out the extra terms a0 + · · ·+ ah−3. It would be very interesting to see a general construction without
assumptions on the primitive polynomial – in particular, to understand how adding the terms αh−1 or
αh−2 affects the form of the linear F2-equations imposed on t. A better understanding of this behavior
would bring us closer to a general construction.

A last (minor) possibility for further work would be to try to find a similar construction to obtain
an infinite family of (q + q/8, q/8)-arcs of type (0, 2, q/8), since [4] allows to choose the first three
coordinates zero, where we only used this for the first two coordinates. Examples of such arcs however
do not roll easily out of the projective plane matrix, which is why we have not yet been able to
construct such a family.

Acknowledgement. The author wants to thank Leo Storme for his detailed proofreading and useful
suggestions.
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