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Abstract

In a series of recent papers, we have introduced higher spin Dirac operators, which
are far-reaching generalisations of the classical Dirac operator. Whereas the latter
acts on spinor-valued functions, the former acts on functions taking values in arbitrary
irreducible half-integer highest weight representations for the spin group. In this paper,
we describe a general procedure to decompose the polynomial kernel spaces for these
operators in irreducible summands for the regular action of the spin group. We will
do this in an inductive way, making use of twisted higher spin operators.
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1 Introduction

This paper deals with higher spin Dirac operators (HSD operators for short), which
are elliptic first-order differential operators generalising the classical Dirac operator from
physics, in the sense that they act on functions f(x) which are defined on Rm and take
their values in arbitrary irreducible finite-dimensional modules for the spin group or its
orthogonal Lie algebra so(m). In the framework of theoretical physics, these operators
(acting on higher spin fields) are usually defined in terms of the abstract index notation
(tensor notation), but there exists a nice alternative to study these operators within the
setting of Clifford analysis. This is a function theory generalising both classical complex
analysis and harmonic analysis on Rm, see e.g. [1, 11, 15, 16]. The advantage of the
latter framework, as opposed to the one involving abstract indices, lies in the fact that one
can make use of explicit realisations and computations in several vector variables to study
function theoretical properties of the HSD operators. Apart from the references mentioned
earlier, centered around the classical Dirac operator, we also mention e.g. [5, 6], in which
the Rarita-Schwinger operator was generalised and studied, and the more recent papers
[3, 9] in which further generalisations were considered. The aim of the present paper is
to study the vector space of polynomial solutions for arbitrary HSD operators as a spin
group module. This is a non-trivial question, which was already treated for the Rarita-
Schwinger operators Rl1 and Ql1,l2 in respectively [5] and [2], but still remains an open
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question for the most general operator Ql1,...,lk . The main problem lies in the fact that the
HSD operators stand in sharp contrast to the classical Dirac operator. Whereas the space
of polynomial solutions for the latter defines a model for an irreducible spin representation,
solution spaces for the former are highly reducible and need to be decomposed into several
summands.
In order to tackle this problem, we will first introduce basic concepts from both Clifford
analysis and representation theory in section 2, allowing us to define the HSD operators
in full generality. In section 3, we will turn our attention to two types of higher spin
operators, the higher spin twistor operators (HST operators for short) and the higher spin
Dirac operators, realising them as generators (among other operators) for the transvector
algebra Z(osp(1, 2k + 2), osp(1, 2k)) and proving a few results which are crucial for what
follows. In section 4, we will then define the so-called twisted version for these HSD
operators, and introduce a special class of solutions for HSD operators, in order to prepare
ourselves for the main topic of this article. In section 5, an inductive argument will be
used to formulate a conjecture describing arbitrary solutions (reducing it to a combinatorial
problem), and in section 6 we will illustrate how this can be verified up to order 3 using
a computer package.

2 Notations and definitions

In this paper, we will constantly work with invariant operators acting on functions taking
values in irreducible representations for the spin group (cfr. infra) or its Lie algebra so(m).
A useful model for both this Lie group and its Lie algebra can be given in terms of the
(real or complex) Clifford algebra Rm and Cm = Rm ⊗ C. Both algebras are defined in
terms of the standard orthonormal basis {ej : 1 ≤ j ≤ m} for the underlying vector space
Rm by means of the multiplication rules eiej + ejei = −2δij . The space of (real) bivectors
is defined as

R(2)
m := spanR{eij := eiej : 1 ≤ i < j ≤ m} ⊂ Rm ,

and one has that so(m) ∼= C(2)
m = R(2)

m ⊗C, where the Lie bracket is given by the standard
commutator bracket. The (real) spin group, for which so(m) defines the (complex) Lie
algebra, is given by even products of unit vectors:

Spin(m) :=


2k∏
j=1

ωj : ωj ∈ Sm−1

 ,

where Sm−1 ⊂ Rm stands for the unit sphere. Arbitrary finite-dimensional representations
Vλ for the spin group or its Lie algebra are then characterised by their highest weight,
containing coordinates λ = (l1, . . . , ln) with respect to the standard basis {Lj : 1 ≤ j ≤ n}
for the dual space h∗. Here, h denotes a Cartan subalgebra for the algebra so(m) with
m = 2n or m = 2n+ 1. Note that we will restrict ourselves to odd dimensions from now
on, which means that so(m) = Bn in Dynkin’s notation.
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Remark 1. Although the results are not conceptually different for even dimensions, there
are notational complications arising from the fact that the space of Dirac spinors decom-
poses into even and odd Weyl spinors. All the results in this paper are also true in case
of an even dimension as well, as one can also consider the entire (reducible) space of
Dirac spinors in even dimension. However, if one wants irreducible representations, each
representation has to be split up according to parity of the underlying Weyl spinors.

Let us then introduce models for arbitrary irreducible half-integer highest weight modules.
First of all, we have the spinor space S, characterised by its highest weight (1

2 , . . . ,
1
2),

which can be realised as the vector space S ∼= S±2n+2. The action is then given by standard
multiplication B · ψ := Bψ, for all B ∈ so(m) and ψ ∈ S. The (massless) Dirac operator,
lying at the very core of Clifford analysis, can now be defined as the conformally invariant
elliptic differential operator acting on functions taking values in the spinor space S. This
operator is given by ∂x :=

∑
j ej∂xj , and factorises the Laplace operator in the sense that

∂2
x = −∆x. This implies that the vector space containing polynomial solutions for ∂x can

be seen as a subspace of the space of Cm-valued harmonic polynomials. We will often use
homogeneous polynomials, for which we introduce the following notation: homogeneous
polynomials of degree h in a vector variable x will be denoted by Ph(Rm,C). Next, we
also need dummy variables uj ∈ Rm. We will denote the Euler operator (resp. Dirac
operator and Laplace operator) in terms of the vector variable uj by means of Ej (resp.
∂j and ∆j), and the Euclidean inner product on Rm by 〈·, ·〉. Also, define the angular
momentum operator by Lxij = xi∂xj − xj∂xi . The following result refines the fact that
spherical harmonics define an irreducible module under the action of the orthogonal Lie
algebra:

Proposition 1 (e.g. [7]). The vector space of l1-homogeneous monogenic polynomials,
defined by means of

Ml1(Rm,S) := {Ml1(u1) ∈ Pl1(Rm,C)⊗ S : ∂1Ml1(u1) = 0} ,

gives a model for the irreducible so(m)-module with highest weight (l1 + 1
2 ,

1
2 , . . . ,

1
2) under

the (derived) regular dL-action, for all eij ∈ so(m) given by

dL(eij) ·Ml1(u1) :=
d

dt

∣∣∣∣
t=0

eteijMl1(e−teiju1e
teij ) =

(
eij − 2Lu1ij

)
Ml1(u1) .

This can be generalised to arbitrary (half-integer) highest weights of the form

λ′ := (l1, . . . , lk)
′ =

(
l1 +

1

2
, l2 +

1

2
, . . . , lk +

1

2
,
1

2
, . . . ,

1

2

)
,

where l1 ≥ l2 ≥ . . . ≥ lk > 0 (the so-called dominant weight condition), and where we
have introduced a short-hand notation for half-integer highest weights (the prime denotes
the Cartan product with the spinor space). To do so, one only needs to consider functions
f(u1, . . . , uk) in the dummy vector variables uj ∈ Rm, taking values in the spinor space and
satisfying a certain system of differential equations. For notational ease, we will denote
(u1, . . . , uk) by u(k). Then one has (see e.g. [7, 15]):
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Proposition 2. A polynomial Sλ(u(k)) ∈ Pλ(Rkm,C)⊗S is simplicial monogenic of degree
λ = (l1, . . . , lk) in the variables (u1, . . . , uk) if it satisfies the following equations:

EjSλ = ljSλ ∀ 1 ≤ j ≤ k
∂jSλ = 0 ∀ 1 ≤ j ≤ k

〈ui, ∂j〉Sλ = 0 ∀ 1 ≤ i < j ≤ k .

In case l1 ≥ l2 ≥ . . . ≥ lk, the vector space Sλ(Rkm,S) containing λ-homogeneous simplicial
monogenics defines a model for the irreducible so(m)-module with highest weight λ′ under
the (derived) regular action, for all eij ∈ so(m) given by

dL(eij) · Sλ(u(k)) :=
d

dt

∣∣∣∣
t=0

eteijSλ(e−teiju1e
teij , . . . , e−teijuke

teij )

=

eij − 2
k∑
p=1

L
up
ij

Sλ(u(k)) .

In [7], it was shown that the irreducible finite-dimensional representation Sλ, with highest
weight λ′, is generated by the highest weight vector

Pλ(u(k)) = 〈u1, f1〉l1−l2〈u1 ∧ u2, f1 ∧ f2〉l2−l3 · · · 〈u1 ∧ · · · ∧ uk, f1 ∧ · · · ∧ fk〉lkI, (1)

where each of these inner products is defined by means of

〈u1 ∧ · · · ∧ uk, f1 ∧ · · · ∧ fk〉 = det

〈u1, f1〉 · · · 〈u1, fk〉
...

. . .
...

〈uk, f1〉 · · · 〈uk, fk〉


=

∑
σ∈Sk

sgn(σ)〈uσ(1), f1〉 · · · 〈uσ(k), fk〉,

with Sk the symmetric group in k elements, and where I =
∏n
j=1 fjf

†
j with

(
fj , f
†
j

)
:=

(
ej − iej+n

2
,−ej + iej+n

2

)
defines the Witt basis. We then have that

Sλ = SpanC{sPλ(s∗u1s, . . . , s
∗uks) : s ∈ Spin(m)}.

One can now consider smooth functions f(x;u(k)) ∈ C∞(Rm,Sλ) taking values in the
module Sλ. This means that for each x ∈ Rm fixed, the resulting polynomial in the dummy
variables uj satisfies the requirements from the proposition above. On these functions, two
types of conformally invariant differential operators can be defined: generalisations of the
Dirac operator (HSD operators) and higher spin twistor operators (HST operators). The
former preserve the values and are elliptic, whereas the latter map functions taking values
in Sλ to functions taking values in Sµ with λ 6= µ. Our main interest is the following
operator:
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Definition 1. For an arbitrary half-integer highest weight λ′, the associated HSD operator
Qλ is given by

Qλ :=

k∏
j=1

(
1 +

uj∂j
2Ej +m− 2

)
∂x : C∞(Rm,Sλ)→ C∞(Rm,Sλ) .

Note that the product is understood to be ordered, with indices increasing from left to right,
and that the Euler operator in the variable uj in the denominator acts as the constant lj.
Also note that in case λ′ = (l1)′, which corresponds to higher-dimensional versions of the
classical Rarita-Schwinger operator coming from physics [23], the operator is denoted by
means of Rl1 rather than Ql1.

Remark 2. We refer the reader to section 3 for the construction of these operators.

The true aim of this paper is to describe polynomial null solutions f(x;u(k)) satisfying
the equation Qλf(x;u(k)) = 0. To do so, we will make use of the twistor operators, whose
existence is implied by Fegan’s result and the theory of generalised Stein-Weiss gradients,
see [13, 25].

3 Higher spin operators

For the detailed construction of HSD and HST operators, we refer to the recent article [12],
but we will give a brief overview here as well. The idea is to construct these operators as
generators of the transvector algebra Z(osp(1, 2k+2), osp(1, 2k)). The abstract definitions
of such algebras can be found in e.g. [22, 26, 27]. We will recall the definitions in the
present Clifford analysis context. First, we need the definition of the Lie superalgebra
osp(1, 2k) as an operator subalgebra of the Clifford-Weyl algebra

W ⊗ Cm = AlgR
(
uij , ∂uij : 1 ≤ i ≤ k, 1 ≤ j ≤ m

)
⊗ Cm.

Lemma 1. The orthosymplectic Lie superalgebra osp(1, 2k) is the algebra generated by

osp(1, 2k) = Alg(u1, . . . , uk, ∂1, . . . , ∂k),

whereby the even Lie subalgebra sp(2k) is generated by

sp(2k) = k = Alg(〈∂i, ∂j〉, 〈ui, uj〉, 〈ui, ∂j〉 : 1 ≤ i, j ≤ k).

Let us introduce the subalgebra h ⊂ osp(1, 2k)

h = Alg
(
Ei +

m

2
: 1 ≤ i ≤ k

)
,

which serves as our Cartan subalgebra. One can now define a crucial object posp(1,2k)

inside the algebra U ′(osp(1, 2k)), which is defined as the tensor product of the universal
enveloping algebra U(osp(1, 2k)) for the algebra osp(1, 2k) and the field R(h) of fractions in
the Cartan subalgebra (this means that Euler operators will appear in the denominator).
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Definition 2. The extremal projector for the Lie algebra osp(1, 2k) is the uniquely defined
element posp(1,2k) ∈ U ′(osp(1, 2k)) satisfying the requirements posp(1,2k)k

− = k+posp(1,2k) = 0
and p2

osp(1,2k) = posp(1,2k). The subalgebras k± are hereby defined as the subspaces containing

positive (resp. negative) root vectors:

k+ = k+0 ⊕ k+1
= span (∆a, 〈∂a, ∂b〉, 〈ui, ∂j〉 : 1 ≤ i < j ≤ k, 1 ≤ a 6= b ≤ k)⊕ span (∂a : 1 ≤ a ≤ k)

k− = k−0 ⊕ k−1
= span

(
|ua|2, 〈ua, ub〉, 〈uj , ∂i〉 : 1 ≤ i < j ≤ k, 1 ≤ a 6= b ≤ k

)
⊕ span (ua : 1 ≤ a ≤ k) .

Hereby, the subindex 0 and 1 refer to the even and odd part of osp(1, 2k) respectively.

For the explicit form for this extremal projection operator posp(1,2k) we refer to [12], as we
will only need a simplified version here. The upshot is that the HSD operators are defined
as the operators posp(1,2k)∂x, and the twistor operators as the operators posp(1,2k)〈∂x, ∂a〉,
with 1 ≤ a ≤ k. The twistor operators clearly lower the degree in one of the variables ua,
and preserve simplicial monogenicity of the values due to the properties of the extremal
projector. As a matter of fact, since the operators ∆j , 〈∂i, ∂j〉 and ∂j commute with
〈∂x, ∂a〉, it is enough to consider the extremal projection operator related to the subalgebra
gl(k) ⊂ osp(1, 2k) for the twistor operators. Plugging in this expression, and omitting
redundant factors, this leads to the following definitions:

Definition 3. For an arbitrary highest weight λ′ = (l1, . . . , lk)
′ with lk > 0, one can define

the HSD operators
Qλ : C∞(Rm,Sλ)→ C∞(Rm,Sλ) .

The (reduced) explicit form for these operators is given by

Qλ = posp(1,2k)∂x =

k∏
i=1

(
1 +

ui∂i
m+ 2Ei − 2i

)
∂x,

Note that the product in this equation is ordered (i increasing from left to right), as the
factors do not commute. Also, in accordance with Remark 1, one has to mention that the
HSD operators changes the parity of Weyl spinors.

Definition 4. For an arbitrary half-integer highest weight λ = (l1, . . . , lk)
′ with lk > 0,

one can define the HST operators

T (j)
λ : C∞(Rm,Sλ)→ C∞(Rm,Sl1,...,lj−1,lj−1,lj+1,...,lk) ,

provided lj > lj+1. The upper index (j) hereby refers to the variable in which the degree
of homogeneity will decrease. Their explicit form is up to a constant given by

T (j)
λ := posp(1,2k)〈∂x, ∂j〉 =

k∏
p=j+1

(
1 +

1

Ep − Ej + j − (p+ 1)
〈up, ∂j〉〈uj , ∂p〉

)
〈∂j , ∂x〉 ,
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for j < k and T (k)
λ = 〈∂k, ∂x〉. Note that this product is also understood to be ordered,

with increasing indices from left to right. The Euler operators in the denominator again
automatically introduce constants lj in case a fixed λ is chosen. Considering Remark 1
again, one has to mention that the HST operators preserve the parity of Weyl spinors.

Remark 3. Note that because of the Euler operators appearing in the explicit formulas,
these operators are essentially independent of λ. This is why we will from now on also use

the notations T (j) := T (j)
λ for the HST operators, and Q := Qλ for HSD operators, unless

it is essential to know what space the operators act on. This will considerably reduce the
notation load.

In general, these operators have nice commutation relations, coming from the fact that
they are generators of the transvector algebra mentioned earlier. We will explicitly prove
the relations that will play a crucial role in what follows.

Lemma 2. For all a < b, we have the relation

T (b)T (a) = T (a)T (b)Ea − Eb + b− a+ 1

Ea − Eb + b− a
, (2)

which means that HST operators commute up to a coefficient in R(h).

Proof. When expanding the product in the expression of T (a), we get that

T (a) = 〈∂a, ∂x〉+
∑

a<i1<···<is≤k

〈ui1 , ∂a〉〈ui2 , ∂i1〉 · · · 〈uis , ∂is−1〉〈∂is , ∂x〉
(Ea − Ei1 + i1 − a) · · · (Ea − Eis + is − a)

. (3)

Assume that a < b, then we notice that because of the properties of the extremal projector
and the fact that 〈∂a, ∂x〉 commutes with each factor of the projector in T (b) in its simplest
form (see Definition 4), we get that

posp(1,2k)〈∂a, ∂x〉posp(1,2k)〈∂b, ∂x〉 = posp(1,2k)〈∂a, ∂x〉〈∂b, ∂x〉. (4)

Still keeping in mind that the extremal projector posp(1,2k) has the property that

posp(1,2k)〈uj , ∂i〉 = 0,

and using (3) for all i < j, a straightforward calculation gives us

posp(1,2k)〈∂b, ∂x〉posp(1,2k)〈∂a, ∂x〉 = posp(1,2k)〈∂a, ∂x〉〈∂b, ∂x〉
Ea − Eb + b− a+ 1

Ea − Eb + b− a
. (5)

Thus, if a ≤ b, by combining (4) and (5), we arrive at

T (b)T (a) = T (a)T (b)Ea − Eb + b− a+ 1

Ea − Eb + b− a
,

as was to be proved.
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Remark 4. In Lemma 2, by commuting, we merely mean that the expressions of the
twistor operators commute up to a coefficient in R(h), as elements of the transvector
algebra. When acting on functions, the operators on the LHS and RHS of (2) are in fact
different operators, as they act on polynomials of a different degree of homogeneity. The
same remark also holds for the following lemma.

Lemma 3. We have the relation

T (a)Q =
m+ Ea − 2a

m+ Ea − 2a+ 2
QT (a),

meaning that HST operators and HSD operators commute up to a coefficient in R(h).

Proof. On the one hand we have that

QT (a) = posp(1,2k)∂xposp(1,2k)〈∂a, ∂x〉 = posp(1,2k)∂x〈∂a, ∂x〉,

since 〈uj , ∂i〉 and ∂x commute, and posp(1,2k)〈uj , ∂i〉 = 0 for all i < j. On the other hand,
a straightforward calculation shows that

posp(1,2k)〈∂a, ∂x〉posp(1,2k)∂x = posp(1,2k)〈∂a, ∂x〉
k∏
i=a

(
1 +

ui∂i
m+ 2Ei − 2i

)
∂x

=
m+ Ea − 2a

m+ Ea − 2a+ 2
posp(1,2k)〈∂a, ∂x〉∂x,

again using the properties of the extremal projector.

4 Recursively defined HSD operators

The explicit form for the operator Qλ in definition 1 was obtained in e.g. [9], using the
notion of twisted Dirac operators. It is however also possible to define these operators
through the action of twisted HSD operators, which has the advantage that they allow for
a recursive definition. In [10], we have introduced the following definition, which is based
on the fact that for λ = (l1, . . . , lk), one has that Sλ ⊂ Sl1,...,lk−1

⊗Hlk .

Definition 5. Given an arbitrary highest weight λ′ = (l1, . . . , lk)
′ with k > 1, one can

define the twisted HSD operator by means of

QTl1,...,lk−1
:= Ql1,...,lk−1

⊗ 1 : C∞(Rm,Sλ)→ C∞(Rm,Sl1,...,lk−1
⊗Hlk) ,

where Hlk = Plk(Rm,C) ∩ ker ∆k denotes the vector space of lk-homogeneous harmonic
(scalar-valued) polynomials in the variable uk ∈ Rm.

Remark 5. Note that this basically means that the twisted HSD operator Ql1,...,lk−1
⊗ 1

is the HSD operator associated to a related highest weight acting on functions assuming
the ‘wrong’ values. In Clifford analysis, this merely amounts to the difference between e.g.
Rl1f(x;u1) and Rl1f(x;u1, u2). Provided f(x;u1) takes values in Ml1, the former defines
an action of a true HSD operator, whereas the latter is a twisted HSD operator, acting on
functions f(x;u1, u2) taking values in Sl1,l2.
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Remark 6. From now on, we will almost never write these twisted HSD operators using
the tensor product symbol. It will be clear from the context or explicitly mentioned when
the ‘twisted’ version of an operator is used (like in the example above).

Despite the fact that the tensor product at the right hand side of the definition above
becomes quite complicated in general (it is not even multiplicity-free, except for a few
trivial cases), the image of the twisted version of the operator Qλ acting on Sλ-valued
functions is contained in the sum of two submodules only (see [10]):

Proposition 3. Given an arbitrary highest weight λ′ = (l1, . . . , lk)
′ with k > 1, one has:

QTl1,...,lk−1
: C∞(Rm,Sλ)→ C∞(Rm,Sλ ⊕ Sλ−Lk) .

More explicitly, the action on Sλ-valued functions decomposes as follows:

QTl1,...,lk−1
= Qλ +

2

2lk +m− 2k
πl1,...,lk−1

[uk]T
(k)
λ .

Hereby, the operator πl1,...,lk−1
has to be seen as the projection of the multiplication operator

uk on the space Sl1,...,lk−1
⊗Hlk , i.e.

πl1,...,lk−1
[uk] =

k−1∏
j=1

(
1 +

uj∂j
2lj +m− 2

)
uk : C∞(Rm,Sλ)→ C∞(Rm,Sl1,...,lk−1

⊗Hlk) .

Remark 7. Note that the factor πl1,...,lk−1
[uk] in the proposition is often referred to as

the so-called embedding factor. This notation stems from the fact that decomposing tensor
products like the one from above, i.e. Sl1,...,lk−1

⊗ Hlk , consists of two tasks: first of all,
one can make a list of all highest weights of irreducible modules which are included as a
submodule. Secondly, for each of these submodules there is an embedding factor explicitly
realising the way in which this submodule occurs inside the tensor product. For example,
in abstract notation one has for all l1 > 0:

(l1)⊗ (
1

2
, . . . ,

1

2
) ∼= (l1)′ ⊕ (l1 − 1)′ ,

whereas in Clifford analysis this becomes

Hl1(Rm,S) =Ml1(Rm,S)⊕ u1Ml1−1(Rm,S) .

The factor u1 plays the role of embedding factor in this formula (Fischer decomposition).

Proposition 3 will be crucial in our reasoning, as it reveals a relation between solutions of
HSD operators of different order, and a twistor operator. This will be the key ingredient
to an inductive structure on the kernel of Qλ. We then conclude this section with the
description of a special class of solutions for the operator Qλ, which are known as solutions
of type A (see [9]). To do so, we need the following space of polynomials:
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Definition 6. For all integers h ∈ N and highest weights λ′ = (l1, . . . , lk)
′, we define the

vector space

Ms
h;λ := {Mh;λ(x;u(k)) ∈ Ph(Rm,Sλ) : ∂xMh,λ(x;u(k)) = 0} .

This means that this vector space contains S-valued polynomials which are monogenic in
each of the variables (x;u(k)) and satisfy extra conditions 〈ui, ∂j〉Mh;λ = 0 in the dummy
variables (for i < j).

Remark 8. In the case where k = 1, Ms
h;l1

is the space of double monogenic polynomials,
i.e. polynomials that are monogenic in both x and u1.

In view of the fact that the operator Qλ can be seen as a suitable projection operator
applied after the action of the operator ∂x, see Definition 1, it is clear that the vector space
Ms

h;λ contains h-homogeneous solutions for the operator Qλ. These are then precisely the
solutions of type A. In [9], these spaces were decomposed into irreducible summands under
the so(m)-action, hereby relying heavily on the Howe dual pair Spin(m)×sp(2k) underlying
Clifford analysis in k vector variables. Note that this was done under the restriction that
the degree in homogeneity satisfies h ≥ l1:

Theorem 1. For all highest weights λ′ = (l1, . . . , lk)
′ and integers h ≥ l1, one has that

Ms
h;λ
∼=

⊕
(d1,...,dk)

Sµ(d) ,

where µ(d) denotes the dominant highest weight (µ0, µ1, . . . , µk)
′, with µ0 := h+

∑k
j=1 dj

and µj = lj−dj. In order for µ to be dominant, the integers dj must satisfy the conditions
0 ≤ dj ≤ lj − lj+1, for all 1 ≤ j ≤ k.

It is now clear that if one knows how to relate arbitrary polynomial solutions to these
special solutions of type A, that this automatically solves the question of how to decompose
the former in terms of irreducible summands under the so(m)-action. This approach will
be worked out in the next section.

5 Higher spin kernel decompositions

From now on, we will fix an arbitrary highest weight λ′ = (l1, . . . , lk)
′ with k > 2 and

focus on the following problem: How can one decompose the space

Kh;λ := Ph(Rm,Sλ) ∩ kerQλ

as a (highly reducible) module under the regular action of the algebra so(m), with h ∈ N
the degree of homogeneity of the polynomial solutions (i.e. in x ∈ Rm)?
Sometimes, it will be necessary to explicitly attach the highest weight as an index (i.e. in
vector notation), but in that case we will omit the prime to enlighten the notations:

Kh;λ = Kh;(l1,...,lk) .

10



Note that we exclude k ∈ {1, 2} as these polynomial kernel spaces have been described in
respectively [5] and [2]. We briefly recall these results to illustrate the type of result we
are after:

Theorem 2. For all integers h ≥ l1 > 0, the kernel of the Rarita-Schwinger operator Rl1
decomposes as follows:

Kh;(l1) := Ph(Rm,Ml1) ∩ kerRl1

∼=
(
Kh;(l1) ∩ ker T (1)

)
⊕

l1⊕
j1=1

(
Kh;(l1) ∩ ker

(
T (1)

)j1+1 )
/
(
Kh;(l1) ∩ ker

(
T (1)

)j1 )
∼=

l1⊕
j1=0

Ms
h−j1;l1−j1

=

l1⊕
i1=0

Ms
h−l1+i1;i1 .

We can visualise the latter sum as a line of dots on an axis, whereby each dot represents
the space Ms

h−l1+i1;i1
(see Figure 1).

0 l1 i1

Figure 1: The kernel space of Rl1 , where each dot represents a space Ms
h−l1+i1;i1

Theorem 3. For all highest weights λ′ = (l1, l2)′ and integers h ≥ l1 + l2, the kernel of
the HSD operator Qλ decomposes as follows:

Kh;(l1,l2) := Ph(Rm,Sλ) ∩ kerQλ

∼=
(
Kh;(l1,l2) ∩ ker T (2)

)
⊕

l2⊕
j2=1

(
Kh;(l1,l2) ∩ ker

(
T (2)

)j2+1 )
/
(
Kh;(l1,l2) ∩ ker

(
T (2)

)j2 )
∼=

l1−l2⊕
j1=0

l2⊕
j2=0

Ms
h−j1−j2;l1−j1,l2−j2

=

l1⊕
i1=l2

l2⊕
i2=0

Ms
h−l1−l2+i1+i2;i1,i2 .

The second sum is easier to interpret, as the summation indices ip represent the degree of
homogeneity of up of the polynomials in the spaces contained in the direct sum. We can
visualise this sum over the dots in the rectangular grid in Figure 2.
By comparing Figure 1 and 2, we see a cuboid grid structure appearing in respectively
a 1-dimensional and a 2-dimensional space. This emerging pattern raises the question
whether this would be true in general, allowing us to formulate a proposition for general
highest weights λ′.

11



l2 l1

l2

i1

i2

Figure 2: The kernel space of Ql1,l2 , where each dot represents a space of type A solutions

Proposition 4. For all highest weights λ′ = (l1, . . . , lk)
′ and integers h ≥ l1 + l2, the

kernel of the HSD operator Qλ decomposes as follows:

Kh;λ := Ph(Rm,Sλ) ∩ kerQλ ∼=
l1−l2⊕
j1=0

· · ·
lk−1−lk⊕
jk−1=0

lk⊕
jk=0

Ms
h−

∑k
p=1 jp;l1−j1,...,lk−jk

= Ph(Rm,Sλ) ∩ kerQλ ∼=
l1⊕

i1=l2

· · ·
lk−1⊕

ik−1=lk

lk⊕
ik=0

Ms
h−

∑k
p=1(lp−ip);i1,...,ik

. (6)

Remark 9. The condition h ≥ l1 + l2 appearing in the proposition is easily explained. For
each term in the direct sum to exist, we have to check the condition of Theorem 1, which
translates here to h−

∑k
p=1 jp ≥ l1− j1 or h ≥ l1 +

∑k
p=2 jp. Due to the boundaries in the

direct sum for jp(p ≥ 2), the latter sum cannot exceed l2.

In the remainder of this article, this is what we will investigate. Since the general case
might be hard to grasp right away, we will illustrate our approach for the case k = 3 first,
and discuss k > 3 afterwards.

5.1 The case k = 3

We will prove that kerhQl1,l2,l3 has a cuboid grid structure, as predicted in (6), which is
visualised in Figure 3. Throughout this subsection, we will assume λ = (l1, l2, l3), with
l1 ≥ l2 ≥ l3 ≥ 0, and h ≥ l1 + l2. We will define a grading onto this kernel space, hereby
exploiting the different twistor operators. A first grading will be given by the twistor
operator T (3). Therefore, let us introduce the following spaces.

12



i3

i2

i1

0 l3

l2

l1

l3

l2

Figure 3: The kernel space of Ql1,l2,l3 , consisting of (l1 − l2 + 1)(l2 − l3 + 1)(l3 + 1) dots,
where each dot represents a space of type A solutions

Definition 7. For arbitrary highest weights λ′ = (l1, l2, l3)′ with l3 > 0, we put:

K(0)
h;λ := Kh;λ ∩ ker T (3)

K(j3)
h;λ :=

(
Kh;λ ∩ ker

(
T (3)

)j3+1 )
/
(
Kh;λ ∩ ker

(
T (3)

)j3 )
.

We then have the following lemma

Lemma 4. For all f ∈ C∞(Rm,Sλ), we have that(
T (3)

)l3+1
f = 0.

13



Proof. Since degu3(f) = l3, and T (3) lowers the degree of u3 by 1, this is obviously true.

Remark 10. Keep in mind that a ‘power’ of a twistor operator is just a notation, as each
consecutive twistor operator acts on a different space (since the degree of u3 is lowered by
one each time).

This lemma allows a decomposition of the form

Kh;λ
∼=

l3⊕
j3=0

K(j3)
h;λ . (7)

Assuming for now that we will indeed get a box structure, this decomposition can be
visualised as in Figure 4, where the cuboid structure is split into l3 + 1 rectangular slices,

numbered from 0 to l3, each slice representing a space K(j3)
h;λ (with 0 ≤ j3 ≤ l3), counting

from right to left.

j3 l3 0

Figure 4: A first grading on Kh;l1,l2,l3

We have now defined a grading on the kernel space of Ql1,l2,l3 using the twistor operator
T (3). From Lemma 2, we know that twistor operators commute up to a Cartan factor.

This means that we can define a second grading on the slices K(j3)
h;λ , this time using the

twistor operator T (2), which is independent of the first grading. Let us therefore introduce
the following notations:

Definition 8. For arbitrary highest weights λ′ = (l1, l2, l3)′, we put:

K(0,j3)
h;λ := K(j3)

h;λ ∩ ker T (2)

K(j2,j3)
h;λ :=

(
K(j3)
h;λ ∩ ker

(
T (2)

)j2+1
)
/

(
K(j3)
h;λ ∩ ker

(
T (2)

)j2)
.
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Remark 11. Note that we put the index j2 before j3, this is done according to the order
of the twistor operators we use to define the gradings.

Similarly as above, we have the following lemma (the proof of which will be given in the
next section, in full generality):

Lemma 5. For all f ∈ C∞(Rm,Sλ), we have that(
T (2)

)l2−l3+1
f = 0.

We thus have a decomposition of the form

K(j3)
h;λ
∼=

l2−l3⊕
j2=0

K(j2,j3)
h;λ =⇒ Kh;λ

∼=
l3⊕

j3=0

l2−l3⊕
j2=0

K(j2,j3)
h;λ .

Graphically, the grading on the planes are represented by the dashed line segments in

Figure 5. Each line segment stands for a space K(j2,j3)
h;λ , where j3 labels the rectangular

slice, and j2 labels the dashed line segments in the directions of the arrows. Until now, we

j3 l3 0

l2 − l3
j2

Figure 5: A second grading on Kh;l1,l2,l3

have thus defined a grading using T (3) and T (2). We can define a third and final grading

using the last twistor operator, T (1), on the ‘dashed line segments’ K(j2,j3)
h;λ . This gives rise

to the following definition:

Definition 9. For arbitrary highest weights λ′ = (l1, l2, l3)′, we put:

K(0,j2,j3)
h;λ := K(j2,j3)

h;λ ∩ ker T (1)

K(j1,j2,j3)
h;λ :=

(
K(j2,j3)
h;λ ∩ ker

(
T (1)

)j1+1
)
/

(
K(j2,j3)
h;λ ∩ ker

(
T (1)

)j1)
.
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We then again have:

Lemma 6. For all f ∈ C∞(Rm,Sλ), we have that(
T (1)

)l1−l2+1
f = 0.

This thus leads to

K(j2,j3)
h;λ

∼=
l1−l2⊕
j1=0

K(j1,j2,j3)
h;λ =⇒ Kh;λ

∼=
l3⊕

j3=0

l2−l3⊕
j2=0

l1−l2⊕
j1=0

K(j1,j2,j3)
h;λ .

Graphically, the final grading on the dashed line segments is depicted by means of the

dots in Figure 6. Each dot here represents a space K(j1,j2,j3)
h;λ .

j3 l3 0

l2 − l3
j2

j1

l1 − l2

Figure 6: A third and final grading on Kh;l1,l2,l3

Remark 12. The problem at hand, i.e. describing the kernel space of Ql1,l2,l3, is now

reduced to describing the spaces K(j1,j2,j3)
h;λ .

5.2 The general case

Let us now take a look at the general case. From now on, we will assume λ = (l1, . . . , lk)
with l1 ≥ · · · ≥ lk > 0 and In order to decompose Kh;λ for arbitrary half-integer highest
weights, we first of all define a grading on the kernel space using the twistor operator T (k),
inspired by Definition 7:
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Definition 10. For arbitrary highest weights λ′ = (l1, . . . , lk)
′ with lk > 0, we put:

K(0)
h;λ := Kh;λ ∩ ker T (k)

K(jk)
h;λ :=

(
Kh;λ ∩ ker

(
T (k)

)jk+1 )
/
(
Kh;λ ∩ ker

(
T (k)

)jk )
.

The following lemma will then again lead to a direct sum decomposition.

Lemma 7. For all f ∈ C∞(Rm,Sλ), we have that(
T (k)

)lk+1
f = 0.

Proof. Since deguk(f) = lk, and T (k) lowers the degree in uk by 1, this is trivial.

From Lemma 7, and Definition 10, we thus have:

Kh;λ
∼=

lk⊕
jk=0

K(jk)
h;λ .

Remark 13. Comparing this to the case k = 3, where this translated into a decomposition
into rectangular slices, this amounts to a decomposition in rectangular hypercuboid slices.

Since 〈∂x, ∂k〉 = T (k)
λ when acting on Sλ-valued polynomials, one immediately sees that

K(0)
h;λ = Ph(Rm,Sλ) ∩ kerQTl1,...,lk−1

.

In view of the fact that the twisted operator is essentially the HSD operator Ql1,...,lk−1

acting on Sλ-valued functions, this clearly suggests using induction on the length of the
highest weight of the underlying representation characterising the values.

Lemma 8. Given an arbitrary highest weight λ′ = (l1, . . . , lk)
′ with lk > 0, one has:

〈∂x, ∂k〉Qλ =
m+ 2Ek − 2k

m+ 2Ek − 2k + 2
Qλ−Lk〈∂x, ∂k〉 .

Proof. This follows directly from the fact that 〈∂x, ∂k〉 = T (k)
λ , and Lemma 2.

This lemma actually tells us that for each f ∈ kerQλ, we have that either 〈∂x, ∂k〉f = 0,
or 〈∂x, ∂k〉f ∈ kerQλ−Lk . Or more generally, we have the following theorem.

Theorem 4. Given a fixed highest weight λ′ = (l1, . . . , lk)
′ and an integer h ∈ N, one has

the following property for all 1 ≤ jk ≤ lk:

ϕk;jk := 〈∂x, ∂k〉jk : K(jk)
h;λ → K

(0)
h−jk;λ−jkLk . (8)

Proof. From Definition 10, it follows that the operator 〈∂x, ∂k〉jk maps polynomials in K(jk)
h;λ

to elements of the vector space ker〈∂x, ∂k〉. Together with Lemma 8, this then proves the
assertion.
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Remark 14. Note that the target space at the right-hand side of (8) contains solutions
for the twisted version of the operator Ql1,...,lk−1

, acting on Sλ−jkLk-valued functions.

Remark 15. Note that 〈∂x, ∂k〉 is the twistor operator T (k), which results in the fact that

ϕk;jk =
(
T (k)

)jk , keeping in mind that we can ‘write’ a power of a twistor operator due to
the fact that we use the Euler notations. One should realise that each consecutive twistor
operator actually acts on a different polynomial space, as the degree of uk lowers with each
consecutive action of T (k).

Remark 16. It is hereby crucial to point out that the mappings ϕk;jk from the previous
proposition are not necessarily surjective, which means that not all irreducible summands
in the 0-graded image space at the right-hand side (containing null solutions for a twisted
HSD operator) will be present in the jk-graded subspace at the left-hand side of the arrow.

From Theorem 4, the question arises whether an analogue of this theorem holds for the
other twistor operators as well. This is indeed the case, as we will show in the following
theorem, but first we need a lemma.

Lemma 9. For all f ∈ C∞(Rm,Sλ), we have that(
T (a)

)la−la+1+1
f = 0.

Proof. Denoting g =
(
T (a)

)la−la+1
f , we have that g ∈ C∞(Rm,Sl1,...,la−1,la+1,la+1,...,lk)

where degua(g) = degua+1
(g) = la+1. Remember that Sλ is generated by (1). Moreover,

the highest weight vector of Sl1,...,la−1,la+1,la+1,...,lk is symmetrical in ua and ua+1. Since
〈ua+1, ∂a〉 is Spin(m)-invariant, this means that

〈ua+1, ∂a〉g = 0, (9)

or g is an element in the kernel of an extra operator which is not in the definition of
simplicial monogenicity. We find that

T (a)g =
k∏

j=a+1

(
1− 〈uj , ∂a〉〈ua, ∂j〉

Ea − Ej + j − a+ 1

)
〈∂a, ∂x〉g.

Using the relation 〈ua+1, ∂a〉〈ua, ∂a+1〉 = 〈ua, ∂a+1〉〈ua+1, ∂a〉+ Ea+1 − Ea, this equals

〈ua, ∂a+1〉〈ua+1, ∂a〉
k∏

j=a+2

(
1− 〈uj , ∂a〉〈ua, ∂j〉

Ea − Ej + j − a+ 1

)
〈∂a, ∂x〉g.

Inductively running 〈ua+1, ∂a〉 through each factor, using the fact that 〈ua+1, ∂j〉g = 0, for
all j > a+ 1, and (9), we find that

T (a)g = 0.

This proves the lemma.
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This lemma is crucial for what follows, and basically gives us an upper boundary on the
number of times a twistor operator on Kh,λ until the result becomes trivial. Also, let us
recall a result that was proved in [8]. It essentially tells us that certain twistor operator
compositions are trivial. For the sake of completeness we briefly recall the proof here.

Proposition 5. For a fixed highest weight λ = (l1, ..., lj−2, lj , lj , lj+1, ..., lk)
′ (note that

lj = lj−1), one has that

T (j−1)
l1,...,lj−2,lj ,lj−1,lj+1,...,lk

◦ T (j)
l1,...,lj−2,lj ,lj ,lj+1,...,lk

≡ 0 .

Proof. First of all, we note that this twistor operator composition connects the following
three dominant highest weights:

(l1, ..., lj−2, lj , lj , lj+1, ..., lk)
′ = (l1 − 1, ..., lj−2 − 1, lj − 1, lj − 1, lj+1, ..., lk)

′

+(1, ..., 1, 1, 1, 0, ..., 0)

(l1, ..., lj−2, lj , lj − 1, lj+1, ..., lk)
′ = (l1 − 1, ..., lj−2 − 1, lj − 1, lj − 1, lj+1, ..., lk)

′

+(1, ..., 1, 1, 0, 0, ..., 0)

(l1, ..., lj−2, lj − 1, lj − 1, lj+1, ..., lk)
′ = (l1 − 1, ..., lj−2 − 1, lj − 1, lj − 1, lj+1, ..., lk)

′

+(1, ..., 1, 0, 0, 0, ..., 0) .

In other words, the highest weights in the composition all sit inside the tensor product of
one fixed highest weight (call it µ) and three fundamental highest weights, which we will
denote by means of ω+, ω0 and ω− respectively (in that order). As a matter of fact, the
spaces Sλ associated to the dominant weights at the left-hand side are precisely the Cartan
products of the fixed space Sµ and the representations V±ω and V0

ω. The latter correspond
to exterior powers of the fundamental representation, and this means that the sequence
of differential operators V+

ω → V0
ω → V−ω is nothing but a part of the de Rham sequence

for the codifferential operator. If we twist this particular sequence with the representation
Sµ (i.e. considering Sµ-valued forms), we still get a composition which is trivial. So is
the restriction and projection of this composition to the Cartan products. Now, in view
of the fact that the only first-order operators acting between the Cartan products are the
aforementioned twistor operators, we have that the composition

T (j−1)
l1,...,lj−2,lj ,lj−1,lj+1,...,lk

◦ T (j)
(l1,...,lj−2,lj ,lj ,lj+1,...,lk)

is indeed zero.

Let us first focus on the space K(0)
h;λ, which would be the first hyperslice (compare to Figure

4). Inspired by Definition 10, we define the following spaces:

Definition 11. For arbitrary highest weights λ′ = (l1, . . . , lk)
′, we put:

K(0,ji+1,...,jk)
h;λ := K(ji+1,...,jk)

h;λ ∩ ker T (i)

K(ji,ji+1,...,jk)
h;λ :=

(
K(ji+1,...,jk)
h;λ ∩ ker

(
T (i)

)ji+1
)
/

(
K(ji+1,...,jk)
h;λ ∩ ker

(
T (i)

)ji)
.
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Remark 17. It is instructive to realise that the number of upper indices is actually the
codimension of the graphical interpretation of the space. For the case k = 3, we have for

instance that K(j3)
h;λ is a rectangular slice of codimension 1, K(j2,j3)

h;λ is a line segment of

codimension 2, and K(j1,j2,j3)
h;λ is a dot of codimension 3.

With this definition, we can state the following proposition.

Proposition 6. The kernel space of Qλ has the following decomposition:

Kh;λ
∼=

l1−l2⊕
j1=0

· · ·
lk−1−lk⊕
jk−1=0

lk⊕
jk=0

K(j1,j2,...,jk)
h;λ . (10)

Proof. Using Lemma 9 and Proposition 5 we have for all 0 ≤ jk ≤ lk that

K(jk)
h;λ
∼=

lk−1−lk⊕
jk−1=0

K(jk−1,jk)
h;λ

and in general, that

K(ji+1,...,jk)
h;λ

∼=
li−li+1⊕
ji=0

K(ji,ji+1,...,jk)
h;λ .

Using this argument inductively on Kh;λ we get a full decomposition of the ‘hyperrectangle’
in ‘dots’.

5.3 Interpreting the spaces K(j1,j2,...,jk)
h;λ

First of all, we will take a closer look the component K(0,...,0)
h;λ of this direct sum.

Lemma 10. We have the following equality:

K(0,...,0)
h;λ = Kh;λ ∩ ker {〈∂x, ∂i〉 : i ∈ {1, . . . , k}} .

Proof. From the definition of K(0,...,0)
h;λ , we know that any f ∈ K(0,...,0)

h;λ satisfies the relation

T (i)f = 0, for all 1 ≤ i ≤ k. The k-th twistor operator is defined as

T (k) = 〈∂k, ∂x〉,

thus 〈∂k, ∂x〉f = 0. It then follows that

0 = T (k−1)f =

(
1 +

1

Ek − Ek−1 + k − 1− (k + 1)
〈uk, ∂k−1〉〈uk−1, ∂k〉

)
〈∂k−1, ∂x〉f

= 〈∂k−1, ∂x〉f,
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where we have used that [〈uk−1, ∂k〉, 〈∂k−1, ∂x〉] = −〈∂k, ∂x〉. Continuing this argument
inductively on the twistor operators, we find that

0 = T (j)f =

k∏
p=j+1

(
1 +

1

Ep − Ej + j − (p+ 1)
〈up, ∂j〉〈uj , ∂p〉

)
〈∂j , ∂x〉f = 〈∂j , ∂x〉f.

This proves that

K(0,...,0)
h;λ ⊆ Kh;λ ∩ ker {〈∂x, ∂i〉 : i ∈ {1, . . . , k}} .

From the fact that each twistor operator can be written as (3), whereby each term ends
with an operator of the form 〈∂i, ∂x〉, follows the inverse inclusion, finishing the proof.

We can then link this space to the type A solutions defined in section 4.

Theorem 5. One has that K(0,...,0)
h;λ =Ms

h;λ.

Proof. We have that

K(0,...,0)
h;λ = Kh;λ ∩ ker {〈∂x, ∂i〉 : i ∈ {1, . . . , k}} ,

so for all f ∈ K(0,...,0)
h;λ ⊂ Ph(Rm,Sλ), we have

0 = Qλf =
k∏
j=1

(
1 +

uj∂j
2Ej +m− 2

)
∂x = ∂xf,

since ∂i∂x = −∂x∂i − 2〈∂i, ∂x〉. Thus we have proved that

K(0,...,0)
h;λ ⊆Ms

h;λ.

On the other hand, for all g ∈Ms
h;λ, we have that

〈∂i, ∂x〉g =
1

2
(∂i∂x + ∂x∂i)g = 0,

thus
Ms

h;λ ⊆ Kh;λ ∩ ker {〈∂x, ∂i〉 : i ∈ {1, . . . , k}} = K(0,...,0)
h;λ ,

the inverse inclusion, which finishes the proof.

Thus far, we have been able to describe the space K(0,...,0)
h;λ . Let us take a look at the

other components of the decomposition (10). Let us introduce some operators through
the following theorem.

Theorem 6. Given a fixed highest weight λ′ = (l1, . . . , lk)
′ and an integer h ∈ N, one has

the following property for all 1 ≤ i ≤ k − 1 and all 1 ≤ ji ≤ li − li+1:

ϕi;ji :=
(
T (i)

)ji
:(

Kh;λ ∩ ker
(
T (i)

)ji+1
)
/

(
Kh;λ ∩ ker

(
T (i)

)ji)
→ Kh−ji;λ−jiLi ∩ ker T (i) .
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Remark 18. The operators ϕi;ji give us a way to relate functions in kerQλ ∩ ker
(
T (i)

)ji
to functions in the kernel of another HSD operator and the kernel of T (i) itself. In a sense,
this operator gives us a way to ‘lower’ the upper index ji in Definition 11.

Proof. This follows directly from Lemma 3. Lemma 9 gives us a lower boundary for j for

the space
(
Kh;λ ∩ ker

(
T (i)

)j+1
)

to become trivial.

From the definition of K(j1,j2,...,jk)
h;λ , and the properties of the operators ϕi;ji , we find that

K(j1,j2,...,jk)
h;λ

∼=
(
ϕ1,j1 · · ·ϕk−1,jk−1

ϕk,jkKh,λ
)
∩ ker

(
T (1), T (2), . . . , T (k)

)
=

((
T (k)

)jk (
T (k−1)

)jk−1

· · ·
(
T (1)

)j1
Kh,λ

)
∩ ker

(
T (1), T (2), . . . , T (k)

)
.

Using the same argument from Lemma 10, we get

K(j1,j2,...,jk)
h;λ

∼=
(
〈∂1, ∂x〉j1 . . . 〈∂k, ∂x〉jkKh,λ

)
∩ ker (〈∂1, ∂x〉, . . . , 〈∂k, ∂x〉) .

Then the properties of the operators ϕi;ji tell us that

K(j1,j2,...,jk)
h;λ ⊆ K(0,...,0)

h−
∑k
i=1 ji,l1−j1,...,lk−jk

.

Using Theorem 5, we find that

K(j1,j2,...,jk)
h;λ ⊆Ms

h−
∑k
i=1 ji,l1−j1,...,lk−jk

. (11)

We know how a space Ms
h,λ decomposes (see Theorem 1). This means that if we can

prove the inverse inclusion of (11), we have found a full decomposition of Kh;λ. In order
to try and prove this, we will attempt to count the dimensions of both spaces. Therefore,
we need a generalised CK-extension.

5.4 A generalised CK-extension

In the classical case, there exists a CK-extension related to the Dirac operator (e.g. [11]),
which allows the construction of monogenic functions (null solutions of the Dirac operator)
from functions in one variable less. In this subsection, we try to find out if a similar method
can be found to construct solutions of higher spin Dirac operators. Remember that the
higher spin Dirac operator is defined as follows

Qλ = posp(1,2k)∂x =

k∏
j=1

(
1 +

uj∂j
m+ 2Ei − 2i

)
∂x : C∞(Rm,Sλ)→ C∞(Rm,Sλ).

We define a vector variable and the Dirac operator in Rm−1 as

x∗ =

m−1∑
j=1

ejxj and ∂x∗ =

m−1∑
j=1

ej∂xj .
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Then we can also define the higher spin Dirac operator on Rm−1 as

Q∗λ = posp(1,2k)∂x∗ .

For any function f one has that

f ∈ kerhQλ ⇔ ∂xmf = −(posp(1,2k)em)−1Q∗λf.

Obviously, posp(1,2k)em needs to be invertible (see next lemma). The unique solution to
this first order differential equation is given by

f(x) = e−xm(posp(1,2k)em)−1Q∗λf(x∗, 0)

=
∞∑
j=0

(−xm)j

j!
((posp(1,2k)em)−1Q∗λ)jf(x∗, 0).

Lemma 11. The operator posp(1,2k)em is invertible.

Proof. From [8, Theorem 6], we have that

∆n = Qλ

 ∑
λ∈B(λ)

c(µ, λ)Gµ,λ∆n−|µ,λ|−1Gλ,µ

Qλ,
where Gµ,λ is a product of twistor operators, c(µ, λ) are constants, Gλ,µ is the inverse

operator of Gµ,λ, λ = (l1, . . . , lk), µ = (µ1, . . . , µk), |µ, λ| =
∑k

i=1 |µi − li|, and where
B(λ) = [l2, l1]× [l3, l2]× · · · × [lk−1, lk]× [0, lk]. Replacing ∂x by em, we get

(−1)n = posp(1,2k)[em]

 ∑
λ∈B(λ)

c(µ, λ)Gµ,λ[em](−1)n−|µ,λ|−1Gλ,µ[em]

 posp(1,2k)[em].

One can choose n = l1 + 1. This proves that posp(1,2k)[em] is indeed invertible.

The following corollary is crucial.

Corollary 1. As vector spaces,

kerhQλ ∼= Ph(Rm−1)⊗ Sλ,

Proof. This is true, since the generalised CK-extension tells us that each f ∈ kerQλ is in
1− 1-correspondence with an f∗(x∗) = f(x∗, 0) ∈ C∞(Rm−1,Sλ).

This means that
dim kerhQλ = dim(Ph(Rm−1)) dim(Sλ).

Hence, we must find a way to calculate the dimension of Sλ.
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5.5 Dimension formula for Sλ
In order to calculate the dimension of Sλ as a Spin(m)-representation, we make use of the
Weyl dimension formula (e.g. [14]), stating that

dimSλ =

∏
α∈∆+〈λ+ δ, α〉∏
α∈∆+〈δ, α〉

, (12)

whereby δ =
(
n− 1

2 , n−
3
2 , . . . ,

1
2

)
, half the sum of the positive weights, 〈·, ·〉 is the Killing

form, and ∆+ the positive root system

∆+ = {(1,±1, 0, . . . , 0), (1, 0,±1, 0, . . . , 0), . . . , (0, . . . , 0, 1,±1),

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} .

The denominator of the dimension formula is then given by∏
α∈∆+

〈δ, α〉

=

(
n− 1

2
+ n− 3

2

)(
n− 1

2
+ n− 5

2

)
· · ·
(
n− 1

2
+

1

2

)
×
(
n− 3

2
+ n− 5

2

)(
n− 3

2
+ n− 7

2

)
· · ·
(
n− 3

2
+

1

2

)
× · · ·

(
3

2
+

1

2

)
×
(
n− 1

2
− n+

3

2

)(
n− 1

2
− n+

5

2

)
· · ·
(
n− 1

2
− 1

2

)
×
(
n− 3

2
− n+

5

2

)(
n− 3

2
− n+

7

2

)
· · ·
(
n− 3

2
− 1

2

)
× · · ·

(
3

2
− 1

2

)
×
(
n− 1

2

)(
n− 3

2

)
· · · 1

2
,

which reduces to

(2n− 2)!(2n− 4)! · · · 2!
(2n− 1)(2n− 3) · · · 1

2n
=

1

2n

n∏
j=1

(2j − 1)! .

The numerator of (12), is obtained as follows:∏
α∈∆+

〈λ+ δ, α〉

=
∏

1≤i<j≤k
(li + lj + 2n− i− j + 2)(li− lj + j − i)

k∏
j=1

(li + 2n− k − i+ 1)!

(li + k − i)!

n−k∏
j=1

(2j − 1)! .
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This thus leads to

dim(Sλ) = 2n
∏

1≤i<j≤k
(li + lj + 2n− i− j + 2)(li − lj + j − i)

×
k∏
j=1

(
lj + 2n− k − j + 1

2n− 2k + 1

)
(2n− 2k + 1)!

(2n− 2k + 2j − 1)!
(13)

We can implement it in Maple by means of the code

dimensionFormula:= proc(HW,k,n)

local a, i, j, l, m;

for i from 1 to k-1 do

for j from i+1 to k do

a:=a*(HW[i]+HW[j]+2*n-i-j+2)*(HW[i]-HW[j]+j-i):

od;

od;

for l from 1 to k do

a:=a*(HW[l]+2*n-k-l+1)!/((2*n-2*k+1)!*(HW[l]+k-l)!)

od;

for m from 0 to k-2 do

a:=(a*(2*n-2*k+1)!)/((2*n-1-2*m)!):

od;

a;

end proc:

In this code, HW represents λ as a (1× k)-matrix.

5.6 Open problem

We can use formula (13) from the previous subsection to finish the proof of Proposition
4. Indeed, on the one hand side, we have that

Kh;λ
∼=

l1−l2⊕
j1=0

· · ·
lk−1−lk⊕
jk−1=0

lk⊕
jk=0

K(j1,j2,...,jk)
h;λ ⊆

l1−l2⊕
j1=0

· · ·
lk−1−lk⊕
jk−1=0

lk⊕
jk=0

Ms
h−

∑k
p=1 jp;l1−j1,...,lk−jk

due to (11). If we can prove that the dimensions of the spaces on both sides of the equation
are equal, then the proof is finished. Due to Corollary 1, we have:

dim(Kh;λ) = dim(Ph(Rm−1)) dim(Sλ).
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On the other hand, thanks to Theorem 1, we have that the the dimension of the space on
the righthandside equals

dim

l1−l2⊕
j1=0

· · ·
lk−1−lk⊕
jk−1=0

lk⊕
jk=0

Ms
h−

∑k
p=1 jp;l1−j1,...,lk−jk


=

l1−l2∑
j1=0

· · ·
lk−1−lk∑
jk−1=0

lk∑
jk=0

l1−j1−l2+j2∑
i1=0

· · ·
lk−1−jk−1−lk+jk∑

ik−1=0

lk−jk∑
ik=0

dim
(
Sh+

∑k
p=1 ip−jp,l1−i1−j1,...,lk−ip−jp

)
.

In the case of k = 1, 2 and 3 this is symbolically doable with Maple [21] using the code
above, and the respective dimensions are indeed found to be equal:

k dimKh;λ

1 2n
(
h+2n−1

h

)(
l1+2n−1

l1

)
2 2n

(
h+2n−1

h

)(
l1+2n−2
l1+1

)(
l2+2n−3

l2

) (l1+l2+2n−1)(l1−l2+1)
(2n−1)(2n−2)

3 2n
(
h+2n−1

h

)(
l1+2n−3
l1+2

)(
l2+2n−4
l2+1

)(
l3+2n−5

l3

)
× (l1+l2+2n−1)(l1+l3+2n−2)(l2+l3+2n−3)(l1−l2+1)(l1−l3+2)(l2−l3+1)

(2n−1)(2n−2)(2n−3)2(2n−4)2

However, in full generality this still needs to be confirmed.

6 Conclusion

In this paper, we found a way to decompose the space kerhQλ of null solutions for an
arbitrary HSD operator using an inductive procedure (exploiting the power of the twistor
operators and the twisted version of the HSD operators). Invoking the CK-extension, this
reduced the problem to a combinatorial counting argument. For the cases k ∈ {1, 2, 3}
(the number of dummy variables describing the values of our higher spin fields) this was
verified explicitly, whereas the general case seems to be out of grasp at this point.
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[11] Delanghe, R., Sommen, F., Souček, V., Clifford analysis and spinor valued functions,
Kluwer Academic Publishers, Dordrecht, 1992.

[12] Eelbode, D., Raeymaekers, T., Construction of higher spin operators using transvector
algebras, submitted

[13] Fegan, H. D., Conformally invariant first order differential operators, Quart. J. Math.
27 (1976), pp. 513-538.

[14] Fulton, W., Harris, J., Representation theory: a first course, Springer-Verlag, New
York, 1991.

[15] Gilbert, J., Murray, M.A.M., Clifford algebras and Dirac operators in harmonic anal-
ysis, Cambridge University Press, Cambridge, 1991.

[16] Guerlebeck, K., Sprossig, W., Quaternionic and Clifford Calculus for Physicists and
Engineers, Wiley, 1998.

[17] Howe, R., Transcending classical invariant theory, J. Amer. Math. Soc. 2 No. 3 (1989),
pp. 535-552.

[18] Howe, R., Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 No.
2 (1989), pp. 539-570.

[19] Humphreys, J., Introduction to Lie algebra and representation theory, Springer-
Verlag, New York, 1972.

27



[20] Klimyk, A. U., Infinitesimal operators for representations of complex Lie groups and
Clebsch-Gordan coefficients for compact groups, J. Phys. A: Math. Gen 15 (1982),
pp. 3009-3023.

[21] Maple 17, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

[22] Molev, A.I., Yangians and classical Lie algebras, Mathematical surveys and mono-
graphs 143, AMS Bookstore (2007).

[23] Rarita, W., Schwinger, J., On a theory of particles with half-integer spin, Phys. Rev.
60 (1941), pp. 61.

[24] Slovak, J., Natural operators on conformal manifolds, Masaryk University Disserta-
tion (Brno, 1993)

[25] Stein, E.W. , Weiss, G., Generalization of the Cauchy-Riemann equations and repre-
sentations of the rotation group, Amer. J. Math. 90 (1968), pp. 163-196.

[26] Tolstoy, V.N., Extremal projections for reductive classical Lie superalgebras with a
non-degenerate generalised Killing form, Russ. Math. Surv. 40, pp. 241-242, 1985.

[27] Zhelobenko, D.P. Transvector algebras in representation theory and dynamic sym-
metry, Group Theoretical Methods in Physics: Proceedings of the Third Yurmala
Seminar 1, 1985.

28


