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Abstract

Distributed sensing is commonly used to obtain accurate spectral information over a large area. More and more
heterogeneous devices are being incorporated in distributed sensing with the aim of obtaining more flexible sensing
performance at lower cost. Although the concept of combining the strengths of various sensing devices is promising,
the question of how to compare and combine the heterogeneous sensing results in a meaningful way is still open. To
this end, this paper proposes a set of methodologies that are derived from several spectrum sensing experiments
using heterogeneous sensing solutions. Each of the solutions offers different radio frequency front-end flexibility,
sensing speed and accuracy and varies in the way the samples are processed and stored. The proposed
methodologies cover four fundamental aspects in heterogeneous sensing: (i) storing experiment descriptions and
heterogeneous results in a common data format; (ii) coping with different measurement resolutions (in time or
frequency domain); (iii) calibrating devices under strictly controlled conditions and (iv) processing techniques to
efficiently analyse the obtained results. We believe that this paper provides an important first step towards a
standardized and systematic approach of heterogeneous sensing solutions.
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1 Introduction
It has been shown that a licensed spectrum is often
underused in time and space. As a concrete example, a 6-
day measurement campaign in multiple cities of Europe
indicates that the UHF TV bands are less than 62.2%
utilized [1]. In order to improve spectrum usage, the
research community proposed the concept of cognitive
radio (CR) [2,3], which offers a mechanism for unlicensed
users (i.e. secondary users) to use the licensed spectrum
in the absence of the primary users. There are two funda-
mentally opposite approaches to determine whether the
primary user is active. In the first approach, the secondary
user senses the spectrum [4] to decide whether it is avail-
able or not; while in the second approach, a geo-location
database built upon information of primary transmit-
ters and radio propagation models is accessed in order
to locate spectrum opportunities [5]. The first approach
tends to be less accurate while the second has difficulties
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adapting to dynamic scenarios. More recently, also hybrid
geo-location databases have been considered to improve
accuracy [6].
While initially the Federal Communications Commis-

sion (FCC) only allowed opportunistic access to licensed
spectrum via the geo-location database approach, in a
recent revision, requirements for devices relying solely
on spectrum sensing have been included in the FCC
regulation [7]. The new regulation states that sensing
devices must demonstrate a very high degree of confi-
dence to avoid interfering with the incumbents and they
must meet the minimum sensitivity requirements for sev-
eral types of primary signal (i.e. −114 dBm for analog
and digital TV signal and −107 dBm for low power
auxiliary).
Currently, mainly due to cost considerations, these con-

straints are hard to satisfy for commercial devices. Fortu-
nately, the lack of individual sensitivity can be compen-
sated by using cooperative sensing with multiple sensing
devices [8]. These sensing devices can be installed as
part of the infrastructure for the sole purpose of spec-
trum sensing [9], or existing user devices can be involved
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through a crowdsourcing approach [10]. In both cases, the
devices involved in the collaborative spectrum sensing are
likely to be heterogeneous, thus performing heterogeneous
spectrum sensing. Unlike spectrum sensing using homoge-
neous devices, heterogeneous sensing is more challenging
due to the fact that it involves high- to low-end sens-
ing devices and their corresponding approaches to pro-
cess or store the results. More particularly, heterogeneous
spectrum sensing experiments are faced by the following
challenges:

1.1 Storage format
Spectrum sensing devices may record data in different
formats. Each type of device has its own way of log-
ging data, which could be plain text, or different types
of binary formats. Apart from the format of actual mea-
surements, the lack of common configuration and well-
defined meta information makes it hard to initialize the
measurements and interpret the results. Therefore, we
need a uniform and well-structured storage mechanism
for heterogeneous sensing devices.

1.2 Measurement resolution
In addition, measurements from heterogeneous devices
may have different resolutions in time and frequency
domains. Consider the following example: two devices (A
and B) are both monitoring the same range of spectrum;
device Ameasures the power spectrumwith a 1-MHz res-
olution bandwidth updating each second, while device B
measures with a resolution bandwidth of 10 KHz at the
rate of two times per second. Obviously, it is not possi-
ble to directly compare or combine the results from A
and B. When dealing with the output from heterogeneous
devices, the situation in the above example often occurs.
Thus, we need a method to obtain a common resolution
before a meaningful comparison or combination of the
heterogeneous data sources can be made.

1.3 Calibration
Some devices, particularly the low-end ones, may be
uncalibrated. Simple wireless devices typically provide the
spectrum information using the existing channel assess-
ment module for the purpose of wireless medium access
control (MAC). For MAC purposes, the output of the
channel assessment module is used within the device,
thus it only needs to be relatively correct, rather than
absolutely. However, for the purpose of heterogeneous
spectrum sensing, it is important that sensing results are
produced against a common reference; hence, there is a
need for calibration. Though most high-end devices are
calibrated individually by their manufactures, a uniform
calibration process is still desired in case there are notice-
able differences in the factory calibration process or even
individual differences among the same type of devices. For

instance, prior to experiments, the authors in [11] cali-
brate the internal noise level of multiple radio receivers
of the same type in a shielded environment. However,
this approach cannot be used to calibrate heterogeneous
devices, as internal noise level is one of the primary het-
erogeneities among devices. In conclusion, there is a need
for a uniform calibration mechanism for heterogeneous
spectrum sensing.

1.4 Processing methods
Due to the use of different devices and complex exper-
iment scenarios (i.e. distributed measurements, multiple
iterations), heterogeneous spectrum sensing usually gen-
erates a large amount of data. Efficient processing meth-
ods are crucial to reach an objective conclusion in a
reasonable amount of time. Although for certain per-
formance metrics, well-accepted processing approaches
exist; most of the time, it is not feasible to pursue a uni-
form processing mechanism for all experiments. A more
pragmatic way is to simply make use of existing methods
when applicable. Thus, we believe there is a need to share
experiences related to processing heterogeneous data.
In this paper, we identify the challenges and discuss

the methodologies of heterogeneous spectrum sensing
regarding the following aspects: storage format, mea-
surement resolution, calibration and processing methods.
First, we propose a common data format for uniformly
defining experiments and storing the results. Then we
provide a set of methodologies regarding measurement
resolution, device calibration and data processing, which
are implemented, validated and evaluated on reference
scenarios. Thus, the main contributions of this paper are
the common data format, the methodologies, the valida-
tion and the evaluation.
The remainder of this paper is structured as follows:

first, the related work is discussed in Section 2; after that,
Section 3 describes the proposed methodologies regard-
ing the aforementioned four challenges, while the perfor-
mance of these methodologies are verified with concrete
implementations and real-life experiments in Section 4.
Finally, we conclude this paper in Section 5.

2 Related work
This section gives an overview of related work for het-
erogeneous spectrum sensing. The following aspects are
discussed: (i) the storage format, (ii) the measurement
resolution, (iii) calibration methods and (iv) processing
mechanisms.

2.1 Storage format
The IEEE 1900.6 standard [12] defines spectrum sensing-
related parameters and data structures, and as such may
be considered as a guideline of data storage for spectrum
sensing. Since this is also the main interest of our work,
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the terminologies available in this standard have been
considered and used whenever applicable. In comparison,
the IETF PAWS standard [13] is limited to the communi-
cation among TV white space devices and databases, thus
it is less relevant to the low level challenges in heteroge-
neous spectrum sensing.
Apart from existing standards, authors in [14,15] use

heterogeneous spectrum sensing to construct a radio
environment map (REM), which includes a dedicated
spectrum data server (SDS) to collect heterogeneous sens-
ing data. After the data collection phase, the server fusion
(SF) interface is used to communicate with other pro-
cessing units. It is seen that the architecture of splitting
storage and processing units performs well in real exper-
iments and can be easily adapted as part of existing LTE
network [16]. Compared to [14,15], this work has a more
general perspective for sensing experimentation. We aim
to provide tools for common data storage that focuses
more on low level spectrum data and not specifically
tailored to any application purposes.

2.2 Measurement resolution
Measurement resolution is an important indication of the
sensing capabilities of a device. Advanced sensing devices
usually have more flexibilities for configuring which reso-
lution to use for the measurements.
A straightforward way to achieve a common resolution

is to use common configurations at the measurement time
(e.g. choose a resolution bandwidth that is available on
all devices) [17]. When no common setting is available
among the considered devices, the authors in [17] deter-
mine the settings for each device by performance (e.g.
choose a sweeping pattern or detector type after a num-
ber of initial trial measurements). While this approach is
practical and reasonable, it is not clear how experimenters
can achieve data with common resolutions for further
processing when no common settings could be found.
The authors of [18] use experimental measurements

to illustrate how the choices of measurement resolutions
can influence the detection performance. However, the
methodologies discussed in [18] do not take heteroge-
neous devices into account.
Therefore, this paper proposes a post-processing

approach to derive data with common resolutions regard-
less of the settings chosen at the measurement time.

2.3 Calibration
As described in the previous section, the internal noise
level used in [11] is not an ideal metric for calibrating het-
erogeneous sensing devices, because it is expected to be
different. The authors of [8] propose to use satellite band
signals for cooperative sensing devices to identify shadow
effects. Since satellite signals have relatively constant
strength over a wide area, devices that receive weaker

satellite signals have a higher probability to be shad-
owed by obstacles. Though this solution is not directly
related to calibration, the idea of using satellite band sig-
nals as reference could be used to calibrate devices in
outdoor measurements. In general, for the calibration
of heterogeneous devices, a known and constant power
level is needed as input reference [14,15]. This is also
the main principle of calibration followed by our pre-
vious work [19]. Apart from a stable reference signal,
calibration experiments need to be strictly controlled.
In this paper, we share our experience of using coaxial-
cable-based experiments to achieve accurate calibration
solutions.

2.4 Processing methods
Unlike the previous challenges, the processing mecha-
nisms are very experiment specific. For energy detection,
themagnitude of the complex samples is calculated to rep-
resent the received signal strength. Alternatively, the mag-
nitude of the output from the fast Fourier transform (FFT)
could be used instead of time domain samples [14,15]. For
the purpose of detection performance, a receiver operat-
ing characteristic (ROC) plot is often used to observe the
device’s sensitivity under various input conditions. The
work in [14,15] goes one step further by using the inverse
distance weighting (IDT) technique to interpolate discrete
energy measurements into a REM. Though it is not fea-
sible to have a uniform processing approach, we believe
there is a need to share processing experience in order to
improve the efficiency.

3 Methodologies for realizing heterogeneous
sensing

This section describes the methodologies for realizing
heterogeneous sensing regarding the previously identified
challenges.
Conceptually, we propose the following workflow for

heterogeneous spectrum sensing (see Figure 1). The ini-

Figure 1 Conceptual workflow towards heterogeneous
spectrum sensing. (i) Uniform CDF experiment descriptions are
translated into device-specific configuration scripts. (ii) The collected
results are converted into a common data format. (iii) The results are
further processed based on the common data formant.
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tial phase for performing sensing experiments consists
of configuring the heterogeneous devices, sending them
the instructions for starting the sensing and collecting
the data. This involves creating a series of device-specific
scripts. As one of the contributions of this paper, we pro-
pose a uniform way of providing the configuration to the
devices and storing the data from the devices. We use a
common data format (CDF) for experiment description
and data storage that is device independent and machine
readable. Spectrum sensing descriptions and settings are
defined using this common data format as depicted in
Figure 1. In the first step, these uniform descriptions are
then converted into device (or testbed/infrastructure)-
specific configurations and control scripts. In the sec-
ond step, the results of the experiments are transformed
into a common representation format. As the third and
final step, the resulting uniformly described data is fur-
ther processed by a set of tools to align the resolution,
achieve calibration and compute spectrum occupancy-
related metrics.
It should be noted that, the information needed in

the calibration phase comes from separate experiments,
which will be denoted as calibration experiments in the
remaining part of the paper. Calibration experiments are
not necessarily part of every experiment iteration, but it
should be at least performed once before the real sensing
measurements start.

3.1 Common data format
The proposed common data format has been developed
to ease spectrum sensing experimentation across devices
and testbeds and contains three main parts. The first part

refers to the description of the experiment abstract, the
second part refers to the spectrum sensing experiment,
thus the so-calledmeta-data. The third part focuses on the
actual traces resulted from the experiment.
The experiment description provides a detailed descrip-

tion of the experiment, such as how it was performed
and what kind of data was collected. From the top level,
the description contains the following fields: experiment
abstract, meta-information and experiment iteration(s).
Below each field (except for experiment abstract), some
sub fields are defined, as shown in Figure 2.

3.1.1 Experiment abstract
Experiment abstract is a high level description of the
experiment, providing a basic idea of the experiment
motivation, as well as the expected output. It is pos-
sible to relate to other experiments by adding relevant
information. For instance, when experiment B is a scaled
extension of experiment A, the following sentence ‘repeti-
tion of experiment A on a larger scale’ can be noted in the
abstract of experiment B. In addition, we providemeans to
link to related documentations, such as publications that
are based on a given experiment.

3.1.2 Meta-information
Meta-information is the information required for describ-
ing, understanding and evaluating the experiment. All
experimental details except the data itself should be
described in this field. The most important items are
the description of involved devices, physical setup of the
experiment, the selected signal type and frequency, as well
as the description of the measurements.

l

l

l

l

l l

Figure 2 The architecture of the CDF. (i) experiment abstract, (ii)meta information and (iii) experiment iterations containing data traces.
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The description of the involved devices is critical
to reproduce the experiment. It should not only be
limited to textual description but also provide refer-
ences to the relevant data sheets. Moreover, we rec-
ommend to include information of related software
and, if necessary, the operating system. The bottom
line is that the collected information must suffice to
repeat the experiment from scratch, starting from find-
ing the same devices to setting up the identical software
environment.
The physical experiment setup mainly refers to the

description of how devices are positioned and connected.
Ideally, there should be a location map to indicate the
topology of the devices. Wireless experiments are sensi-
tive to environmental factors, such as if an experiment
is conducted indoor or outdoor, or if an experiment is
conducted under a static or rather dynamic environment.
Thus, we recommend to document this information in the
meta-information as well.
Furthermore, the operating frequency and the char-

acteristics of the used signals are noted as additional
parameters. This creates a convenient way of index-
ing the existing experiments, e.g. one can easily find
all sensing experiments in the TV white space. Thus,
it allows experimenters to reuse past experiments more
efficiently.
Finally, the measurement description contains a com-

mon description of the recorded data of all the exper-
iment iterations, allowing experimenters to understand
and process the data more smoothly. It specifies the con-
figuration used by each device (e.g. gain settings, sample
frequency) and the collected data types (e.g. frequency,
signal power, time stamp). In addition, each data type is
associated with a measurement unit (e.g. Hz, dBm, μs).
For more information related to defining measurement
units, readers are referred to the IEEE 1900.6 [12]
standard.

3.1.3 Experiment iteration(s)
Experiment iteration provides information that is related
to the execution of a particular experiment round. There
are two sub fields in each experiment iteration: the trace
description and the trace file reference. The trace descrip-
tion is similar to the description in the meta-information
but may extend or refine the meta-information partially
if necessary, as shown by the red line in Figure 2. For
instance, if a set of measurements is used to compare
the influence of different radio frequency (RF) front-
end gain settings, trace description is an ideal place
to indicate what gain setting is used in each experi-
ment iteration. This way, different settings among exper-
iment iterations can be highlighted without the need
of describing the entire experiment setup over and
again.

The trace file reference is a ‘pointer’ towards the mea-
surement data, which indicates where the measurement
trace is physically stored.
A reference implementation of the CDF architecture is

presented in Section 4.1.

3.2 Measurement resolution
Typically, one spectrum sensing trace cannot be directly
compared to another, due to the differences in frequency
and/or time domain. To overcome the heterogeneous fre-
quency resolution, the easiest and most straightforward
approach is to integrate the power spectral density (PSD)
in a certain frequency interval and use the integrated
power as the metric for comparison. This also implies that
the selected interval for integration needs to be wider than
the largest resolution bandwidth among all the sensing
solutions.
There are different approaches to overcome the dif-

ferences in time resolution. The easiest way is to apply
averaging on the traces obtained in the same time dura-
tion. Alternatively, instead of using averaging, one can
apply max-hold filtering, so the combined trace contains
every transient signal that ever appeared in the observa-
tion period. By using integration in the frequency domain
and averaging or max-holding in the time domain, a com-
mon metric is derived from various raw spectra. This is
referred to as the common metric in the remainder of the
paper. We provide a reference implementation of this pro-
cessing scheme in the CDF toolbox (pw_integration
function).

3.3 Calibration
Calibration of heterogeneous devices essentially means
comparing the received power of each device to its cor-
responding input signal strength. The calibration process
consists of four steps. First, a set of reference signals has
to be selected. Second, the path loss between the signal
source and the devices under calibration must be strictly
controlled. Third, a suitable metric for performing the cal-
ibration has to be identified and fourth, the offset between
the reference signal and the signals received by the devices
has to be computed.
For the first step, it is generally advisable to use a

set of diversified input signals (i.e. different bandwidth
and signal strength) so that the calibration experiment
is general enough to cope with different types of input.
Also the generated signal needs to be continuous so
that the recorded signal has a constant amplitude. This
ensures that the sensing performance in terms of tim-
ing does not affect the performance in terms of power
accuracy. The produced signal strength needs to be
tuned within the dynamic range of all devices. If the
signal is too strong, it may saturate the device under
calibration; on the other hand, when it is too weak,
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the signal might be buried by noise. Both situations
should be avoided. Ideally, a high-end signal generator
should be used as the signal source to meet the above
constraints.
For the second step, the most at-hand method is to use

a coaxial cable for controlling the path loss between the
signal source and the sensing devices. An alternative way
would be to use an anechoic chamber where the path loss
is not affected by the multi-path effect.
In the third step, the received signal strength needs

to be calculated from the power spectral density, which
comes down to performing integration over the interval
where the signal is transmitted in the frequency domain.
If the integration interval is not the same as the signal
bandwidth, the obtained metric will rely partially on the
device’s noise floor instead of solely on the input signal,
thus, not qualified for power calibration.
Finally, in the fourth step, the power offset is then com-

puted according to Equation 1, where the transmit power
is denoted as Ptx, the received power is denoted as Prx, and
the total attenuation caused by coaxial cables and splitters
is denoted as Patten:

Poffset = Ptx − Patten − Prx (1)

In Equation 1, Poffset accounts for the combined hetero-
geneity of the RF front-end, analog-to-digital converter
(ADC) and the processing unit. However, it does not
include the influence of the antenna, as the antenna is
replaced by the coaxial cable connections. For devices
using different types of antenna, the power offset needs to
be readjusted with the antenna gain.
If the relative position of the transmitter and receiver

is known, the influence of the radiation pattern should
also be taken into account. For omnidirectional antenna,
the radiation pattern changes with the elevation angle
between the transmitter and receiver; while for directional
antenna, the radiation pattern varies with both horizon-
tal and vertical angles [20]. When the relative position
of transmitter and receiver is unknown, it is necessary to
rotate the directional antenna several times to cover the
360◦ [18].
Sometimes, Poffset varies with the input signal strength

and the settings of the sensing device (i.e. gain settings).
For instance, it is mentioned in [15] that the RFX2400
daughter-board of USRP does not have a linear input and
output (IO) relationship. In this case, more measurements
need to be performed to cope with different input signal
strength and sensing configurations.

3.4 Processing
Sensitivity and accuracy are two important metrics to
compare spectrum sensing devices. For heterogeneous

sensitivity analysis, experimenters tend to form a main-
stream processing style, which is discussed in the first
part of this section. As for power accuracy, generally, a
high-end device (i.e. spectrum analyser) is used as bench-
marker in variousmeasurements. However, when it comes
to large scale heterogeneousmeasurements, this approach
becomes very tedious. Thus, there is a need to process
data in a more elegant approach, which is what we discuss
in the second part of this section.

3.4.1 Heterogeneous sensitivity analysis
The sensitivity of a sensing device is reflected by its noise
floor. Unlike power accuracy, sensitivity cannot be evalu-
ated by the common metric derived in Section 3.2. This is
because the noise floor is affected by the resolution band-
width, thus the integrated power metric will always be
higher than the original noise floor.
The most straightforward way is to observe the mean

and variance value of the spectrum trace when no signal is
present. Alternatively, we can also use the receiver operat-
ing characteristic. The ROC is obtained by expressing the
probability of detection (Pd) as a function of the probabil-
ity of false alarm (Pf). Some papers utilize the probability
of missed detection (Pm) which is simply given by 1 − Pd.
Despite of the heterogeneity in power spectra, ROC can

be obtained via a common approach:

• Record spectrum traces when no signal is present.
• Vary Pf from 0% to 100% in small steps and

determine a detection threshold for each Pf based on
the previously recorded trace.

• Apply a signal at the input of the sensing device and
record spectrum trace again.

• Compute Pd or Pm for all the detection thresholds
determined in the second step from the trace
recorded in the previous step

The advantage of ROC analysis is that it is device inde-
pendent, as for a given false alarm, each device can have
its own threshold. The only constraint is that the detection
threshold should be calculated in an uniform approach
for all devices. This is why it is commonly applied in the
heterogeneous sensitivity studies [14,15,19].
As for the method to obtain detection threshold, there

are many optimized variants [21-23]. As an example, the
constant false alarm (CFA) approach [11] is described in
Equation 2, where σn denotes the variance of the noise
samples, N denotes the number of spectrum samples, Pf
denotes the target false alarm and λ denotes the calculated
detection threshold, respectively.

λ = σ 2
n (1 + Q−1(Pf)√

N/2
) (2)
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3.4.2 Heterogeneous accuracy analysis
As stated previously, distributed heterogeneous measure-
ments usually generate a large amount of data, which
needs more efficient processing mechanisms. When pro-
cessing a large dataset, the basic approach is to look
at how the data is distributed, which can be achieved
by computation of several statistics (i.e. mean, variance).
However, to gain more insights of the data (i.e. discover
a common behaviour, or a group of data that displays
similarity within the entire set), then more advanced tech-
niques, such as correlation, various linear regression algo-
rithms need to be involved. Essentially, we recommend
to use the basic techniques of data mining for analysing
large scale heterogeneous sensing experiments, among
which four most relevant techniques are exemplified as
follows:

• Dependency modelling - the establishment of
relationships between variables. This could be that
the detection probability depends on the target signal
strength or the distance between the transmitter and
the sensing device.

• Outlier detection - the identification of the unusual
spectrum records, which could be caused by
malfunctioning devices or other unknown
interferences.

• Regression - is a statistical way to explore the
relationship among variables which models the data
with the least error.

• Clustering - is the task of discovering groups and
structures in the data that are in one way or another
‘similar.’ In case of spectrum sensing, this could be
that a group of sensing devices are shadowed by a
common obstacle.

The outlier detection is a rather basic step, which can be
achieved by many statistical tools or simply manual obser-
vations. The procedure of ‘Clustering’ and ‘Regression’
are addressed with a concrete experiment in Section 4.4.
For the dependency modelling, we find that the path loss
model (the relationship between received signal strength
and distance) is generally applicable for dependency
modelling in the case of distributed sensing measure-
ments. More particularly, the well-known log-distance
path loss model can be expressed by two parameters -
the path loss coefficient exponent α and the path loss
offset β :

PL(d) = 20 × α × log10(d) + β , (3)

where d is the distance between the transmitter and the
receiver. When using the logarithmic distance as the argu-
ment, the equation reduces to a simple linear expression.

Hence, various approaches, such as least square regres-
sion, can be used to estimate α and β .
The role of the path loss model is essentially a way to

extract new parameters out of the raw data sets. It is a
tool to correlate data from distributed locations. Although
deriving the path loss model is not always easy or feasible,
the basic idea of correlating data to extract new param-
eters is generally applicable and highly valuable in our
experience.

4 Reference implementation and
experimentation

This section first presents the implementation of the
common data format in Section 4.1 and then illustrates
how to apply the methodologies defined in the pre-
vious section with real-life experiments. More specif-
ically, Section 4.2 describes a calibration experiment,
which uses the method proposed in Section 3.2 to
overcome the different measurement resolutions and
then obtains the power offset following the mecha-
nisms proposed in Section 3.3. Sections 4.3 and 4.4
present two experiments that use processing techniques
discussed in Section 3.4 to evaluate two fundamental
sensing performance metrics (sensitivity and accuracy),
respectively.

4.1 Common data format implementation
The reference implementation of the CDF architecture
consists of three parts: the CDF experiment description,
the CDF data structure for common storage and the CDF
toolbox for additional functionalities such as conversion
between formats and result analysis.

4.1.1 The CDF experiment description
The CDF experiment described in Section 3.1 can be
easily translated into modern markup languages such
as XML and JSON. We made a design choice to use
XML because (i) it can be read and processed by a
large set of programming languages, and (ii) it is inter-
nally used by OMF - a testbed cOntrol and Manage-
ment Framework [24] which is widely adopted by many
modern wireless testbed facilities [25,26]. The goal here
is to ensure that the CDF experiment description can
be easily translated to testbed/device-specific implemen-
tations. Additionally, we provide an XML schema [27]
to validate the semantic correctness of an experiment
description.

4.1.2 The CDF data structure
The CDF data structure is one of the formats that the trace
file field in the CDF experiment description can reference
to, it is meant to be a starting point where users can easily
load data from different devices. The content of the CDF
data structure is illustrated below:
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p = common data format structure

p.Name = Unique identifier of the sensing device

p.Location = Location of the sensing device (m) e.g. [x,y,z]

p.CentreFreq = Array of centre frequencies corresponding to

the columns of the power matrix (Hz)

p.BW = Bandwidth around each centre frequency (Hz)

p.Tstart = Start time of the measurement in datestr format

e.g. ’24-Jan-2003 11:58:15’

p.SampleTime = Array of timestamps relative to Tstart (s)

corresponding to rows of the power matrix (Hz)

p.Power = Matrix containing power measurements (dBm)

row contains all frequencies for one timestamp

For FFT-based sensing devices, defining both ‘BW’ and
‘CentreFreq’ is unnecessary. However, for pure sweeping-
based sensing devices, the resolution bandwidth depends
on the width of the band pass filter at the RF front-end,
which is not necessarily the same as the distance between
the consecutive RF centre frequencies. Therefore, both
fields are included in the data structure so that it is suitable
to store results from all types of sensing devices.
The field ‘Location’ is included in both the CDF exper-

iment description and the CDF data structure, because
it not only is important as ‘meta-information’ but also
needed in various of calculations. Note that the device
location in ‘meta-information’ is a description of the gen-
eral experiment topology, while in the CDF data structure,
it has to be expressed incoordinates.
The remaining fields of the CDF data structure are self-

explaining, hence, omitted from further explanations.

4.1.3 The CDF toolbox
The CDF toolbox is a set of functions implemented in
Matlab to support the usage of the CDF data structure.We
choose Matlab as the programming environment because
it is powerful in matrix processing and widely used among
research and academic institutions. The most often used
functions are listed below:

• The create_structure function extracts
information from the input spectrum trace, and store
the data in the CDF data structure.

• The pw_integration computes the power of a
certain frequency band by integrating the PSD over
the corresponding interval. It takes three input
parameters - the spectrum trace in the CDF data
structure, the begin and the end of the frequency
interval, and produces the integrated power as output.

• Several plotting and analysis tools are implemented
based on the fields of the CDF data structure, which
makes the CDF more attractive from practical point
of view.

Sample scripts of the CDF toolbox are made available
online [27]. The scripts are currently only developed for

devices used in the CREWa project. However, they can
serve as valuable examples for other devices, given the fact
that the existing examples already cover large varieties of
sensing devices and data formats. Although it is not jet a
full-fledged toolbox for sensing analysis, we believe it is
one step towards the support of heterogeneous devices.

4.2 Calibration and resolution
This section first gives an overview of the devices involved
in the experimental evaluations of the entire Section 4 and
then describes a calibration experiment using the com-
mon metric derived in Section 3.2 and the instructions
given in Section 3.3.

4.2.1 Overview of sensing devices
Telosb [28] is a sensor node developed at UC Berkeley.
It is widely used by wireless sensor network community.
The platform uses the IEEE 802.15.4-compliant CC2420
transceiver [29], which operates in the 2.4 GHz ISM band.
The sensing application is built above TinyOS [30]. In
our experiments, the device sweeps over the target spec-
trum in steps of 2 MHz and measures RF energy in each
step. A single received signal strength indication (RSSI)
is collected at every RF centre frequency. The RSSI is
transferred to the host computer via USB connection in
real-time. It takes around 2 ms to sweep over the entire
2.4 GHz ISM band. The collected RSSI value and its
timestamp are stored in a comma-separated value (CSV)
file. TelosB has less flexibility towards spectrum sens-
ing applications, both in processing algorithms and RF
functionalities; however, it has the lowest price as well.
ThemetaGeek Wi-Spy 2.4x and [31] Airmagnet [32] are

both low-cost spectrum analysing devices, and they both
use USB dongles as the RF front-end. The sensing mecha-
nism of Wi-Spy resembles TelosB in the sense that it also
uses a narrow-band RF receiver to scan across the band
of interest in tiny steps. The step width ranges from 50
KHz to over 600 KHz, depending on the width of the fre-
quency span. This essentially determines the resolution
bandwidth of the spectrum trace. In our experiments, the
Wi-Spy is used jointly with the Kismet Spectools [33] in



Liu et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:70 Page 9 of 15

Linux environment, instead of the standard ‘Chanalyzer’
software. By doing so, the power spectrum trace can be
stored in a non-proprietary format, which is more con-
venient for further processing. Unlike Wi-Spy, Airmagnet
relies on FFT-based sensing algorithm. The radio of Air-
magnet has a 20-MHz instantaneous bandwidth. It per-
forms sweeping in steps of 20 MHz to cover a bandwidth
that is wider than the instantaneous span. For 2.4 GHz
ISM band, it has a fixed span of 83MHzwith 156 KHz res-
olution bandwidth. The PSD of Airmagnet can be stored
with either CSV format or other proprietary formats.
USRP [34] is a relatively low-cost SDR platform that

consists of two parts - a fixed motherboard and a remov-
able daughterboard. The motherboard contains ADC and
digital-to-analog converter (DAC), a field programmable
gate array (FPGA) for digital down sampling and an inter-
face connected to a host computer. The daughterboard
provides RF front-end functionalities. There are many
third-party software platforms, such as GNU Radio [35]
and Iris SDR platform [36], which can communicate with
the USRP. Thus, spectrum sensing applications can be
implemented in many ways.
The imec sensing engine [37] is an integrated sensing

device based on a custom design that targets for low-
power and hand-held devices. Hence, it is powered and
configured over a single USB connection. Similar to USRP,
it has a separate PCB for the RF front-end functionality.
The imec sensing engine has a very wide RF frequency
range (from 100 MHz up to 6 GHz) and a programmable
instantaneous bandwidth between 1 MHz and 40 MHz.
Additionally, it uses a dedicated integrated circuit (IC)
for signal processing instead of using the host computer.
There are several pre-defined modes in the IC, including
sensing based on FFT and sensing based on fast sweeping
over a set of consecutive RF frequencies. The host applica-
tion of imec sensing engine is written in C; therefore, the
storage format is also flexible.
The overview of the devices are summarized in Table 1.

4.2.2 Calibration experiment
For the first step, the reference signals are defined as con-
tinuous OFDM signals with two different bandwidths (22
MHz and 5MHz), transmitted on three different channels

(Wi-Fi channel 1,6,11 for the 22 MHz signal and Zigbee
channel 11,16,26 for the 5 MHz signal), with three input
signal strength (−60 dBm, −70 dBm, −80 dBm). The 22
MHz and 5 MHz bandwidth are selected to emulate Wi-
Fi and Zigbee signals, respectively. A Rohde & Schwarz
signal generator is used as the signal source.
The signal generator is connected to the sensing devices

with coaxial cables and splitters as shown in Figure 3.
The idle terminals are properly connected to terminators
with matching impedance (50�). The calibration experi-
ment consists of two simultaneous operations: continuous
RF signal is produced by the signal generator, and at the
same time, all devices record the sensing data to cover the
same frequency span (2.4 GHz ISM band) for the same
amount of time (1min). This process is repeated for all the
predefined reference signals, which means 18 iterations in
total (2 types of bandwidth, 3 input levels, 3 channels).
After the recording, the raw spectra traces are con-

verted in to the CDF data structure. Then the received
power within the transmitted signal bandwidth is cal-
culated from the raw PSD. More particularly, the
create_structure and the pw_integration func-
tions within the CDF toolbox are used to perform these
operations. As the input signal has a constant amplitude,
and the devices are configured to sense for the same
amount of time, averaging the Prx over the entire sensing
duration is the most logical way to compute the common
metric. Finally the power offset of each device against each
reference signal is calculated according to Equation 1.
The minimum, maximum and average value of the mea-

sured offsets are plotted in Figure 4. The results indicate
that the USRP solution has the largest offset, most likely
due to the fact that it is a general research platform and
the output of the customized software is not strictly cali-
brated. Airmagnet and Wi-Spy are both commercial USB
spectrum devices, but their offsets are the opposite of
each other. Additionally, Airmagnet has much bigger vari-
ations during the measurements (seen by the difference
between the maximum and minimum offset values). We
believe that this is most likely caused by the difference in
sensing approach - Airmagnet uses FFT-based process-
ing approach while Wi-Spy relies on pure narrow band
sweeping (see Table 1). As this paper does not focus on

Table 1 Overview of the sensing solutions

Device Resolution Frequency Processing Sweeping Cost
name bandwidth span

TelosB 2 MHz 2.4 GHz ISM band RSSI Narrow band Medium

Wi-Spy2.4x 50 to 600 KHz 2.4 GHz ISM band RSSI Narrow band Medium

Airmagnet 155 KHz 2.4 and 5 GHz ISM bands FFT In 20 MHz Low

USRP 48 KHz∗ RF board dependent FFT In 20 MHz∗ Medium

imecse 78 KHz∗ 100 MHz to 6 GHz FFT In 20 MHz∗ High

∗ Indicates that the entry is configurable and only a typical value is entered.
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Figure 3 Replace wireless mediumwith coaxial cable and splitters.

the performance of sensing devices, the exact cause of
the different offsets is not examined. However, the fact
that heterogeneous devices have very different offsets
confirms the need for calibration.
Finally, we would like to examine the calibration result

by looking at the spectra of different devices with the same
resolution bandwidth. To do so, we first subtract the mean
Poffset from the collected raw spectra, and then divide the
entire 2.4MHz ISM band into a set of 2MHzwide consec-
utive intervals (2 MHz is the largest resolution bandwidth
among the considered devices, see Table 1) and perform
integration over each of these intervals using the CDF
toolbox. This operation essentially brings all spectra to the
same frequency resolution. For comparison, the original
raw spectra and the resulting spectra of the measure-
ment obtained under one type of reference signal (22MHz
OFDM on Wi-Fi channel 1 with −60 dBm input power)
are shown in plots (a) and (b) of Figure 5, respectively. Plot
(a) shows that devices with larger resolution bandwidth
have higher level of PSD than devices with finer resolution
bandwidth. This behaviour can be best illustrated when
comparing the raw spectra of TelosB and imec sensing

engine. Compared to plot (a), the spectra in plot (b) are
much smoother due to the coarser resolution bandwidth
and closer to each other within the interval where the
signal is present, which is the expected behaviour after
the calibration and resolution conversion. At the same
time, we notice that there is still big differences between
the spectra where the signal is not present. This differ-
ence is no longer linked to the influence of resolution
bandwidth, but solely reflects the internal noise level of
devices. Finally, the envelope of the 22 MHz OFDM signal
is slightly shifted to the right for the case of TelosB, this
is because the resolution bandwidth of TelosB is not fine
enough to resolve the exact boundary of the OFDM signal
in the frequency domain.

4.3 Reference experiment for heterogeneous sensitivity
analysis

This section describes an experiment for sensitivity analy-
sis following the instructions in Section 3.4.1. The experi-
ment setup involves an MS3700A signal generator, placed
9 m away from the rest of the sensing devices. This
experiment does not include the Airmagnet device due to
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practical limitations at the time of this measurement. All
devices are placed on the same horizontal level, with no
obstacles in between.
First, samples are recorded when devices are shielded

away from external signals. Then recordings are made
when an 8 MHz wide OFDM signal is transmitted with
various signal strength. The raw traces are converted to

the CDF data structure via the create_structure
function in the CDF toolbox. In the next step, the detec-
tion thresholds for a set of Pf are calculated according to
Equation 2, and finally the corresponding Pd values are
computed.
The ROC plot obtained under −4 dBm signal strength

is displayed in Figure 6. It shows that imec sensing

Figure 6 Example ROC plot obtained with heterogeneous devices.
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engine and Wi-Spy have better sensitivity than USRP
and TelosB. The lack of sensitivity for TelosB is clearly
caused by the limitation of its large resolution band-
width. While for USRP, the low sensitivity is due to
insufficient amplification applied at the time of the exper-
iment, which can be resolved in more recent sensing
implementations [38].

4.4 Reference experiment for heterogeneous accuracy
analysis

This section uses an experiment to illustrate how the pro-
cessing mechanisms described in Section 3.4.2 can be
used in power accuracy analysis. The experimental setup
is shown in Figure 7, where 23 measurement locations
and one transmitter’s location are chosen within an indoor
cafeteria. During the measurement, the signal generator
transmits a constant 20 MHz wide OFDM signal on Wi-
Fi channel 8 (2.447 GHz), with 3 dBm transmit power.
Each of the aforementioned sensing devices is configured
to record the spectrum at all locations for a duration of
minimum 30 s.
As stated in 3.4.2, the simple logarithmic path loss

model is used for dependency modelling. Based on

Equation 2, path loss model is characterized by two
parameters: the path loss exponent α and offset β .
Therefore, the dependency modelling is realized by esti-
mating the two parameters with the distributed power
measurements.
Only one measurement fromWi-Spy device is identified

as outlier due to the fact that its output was abnormal, the
rest of the measurements are considered valid.
Two types of regression techniques are applied for the

estimation: the least square regression and the robust
regression. The least square regression attributes an
equal weight to all input data so that the resulting α

and β give the minimum mean squared error over the
input dataset. On the other hand, the robust regres-
sion iteratively attributes weights to different ranges of
the dataset, so that the impact of potential outliers is
minimized.
Finally, the measurement locations are grouped into

different clusters so that the locations which has a line-
of-sight (LOS) topology, with respect to the transmitter,
are separated from those that are in a none line-of-sight
(NLOS) condition (shadowed by the coffee machine).
The resulting path loss models estimated with the least

Figure 7 Experiment setup and ‘Cluster’ of locations adapted from [39].
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square regression for both location clusters are shown
in Figure 8. We observe that compared to LOS model,
NLOS has a smaller slope but higher offset. The high off-
set in NLOS estimation is caused by the shadow effect.
For the same reason, around shadow, the increment of
path loss caused by distance can be compensated by the
decreasing amount of shadowing; hence, the path loss
exponent appears to be smaller than the LOS estima-
tion. This analysis gives extra insight on the impact of
shadowing in the power accuracy measurement, thanks
to the ‘cluster’ of devices. More technical details about
this experiment and its result analysis are presented
in [39].

5 Conclusions
In this paper, we identify and address several challenges
in heterogeneous spectrum sensing. First, we provide a
common data format (CDF) (consisting of data structure
and toolbox) to configure sensing devices and store mea-
surement results in a uniform approach. We show that
the use of CDF can effectively reduce the experiment
overhead, however its implementation requires device-
specific scripts.
Second, we apply aggregation techniques to raw

spectra in both frequency and time domain (through
CDF toolbox) to overcome heterogeneous measurement

resolution. We show that this technique can be used to
compare heterogeneous spectra conveniently, however, it
cannot be applied in sensitivity analysis, since sensitivity
and resolution are related.
Third, we propose the use of a strict calibration pro-

cess: replace the wireless medium by coaxial cables, use
high-end signal generator as reference, derive the power
offsets among devices and perform calibration. We val-
idate experimentally that this approach is highly reli-
able and repeatable. The drawback is that the usage
of coaxial cable leaves the antenna out of the cali-
bration system. This can be resolved by adjusting the
measured power offset with the offsets among antenna
gains.
Finally, we share our experience of analysing two funda-

mental heterogeneous sensing metrics. More particularly,
a well-accepted common procedure is applied to hetero-
geneous devices to achieve fair sensitivity analysis; basic
data-mining techniques are used to extract new param-
eters concerning distributed power accuracy analysis. It
can be seen that these techniques greatly improve the
processing efficiency and trigger profound understand-
ing of the measurements. Though processing mechanisms
generally vary with experiment details, sharing these to
the community will lead to a quicker harmonisation of
approaches.
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In the future, before extending the CDF to support more
devices, the device-specific implementation can be sim-
plified and validated via standard procedures. Also more
advanced aggregation techniques could be explored in
order to meet the needs of different analysis and the influ-
ence of the antenna could be studied more in depth to
improve the calibration accuracy.
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