
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 716984, 13 pages
doi:10.1155/2012/716984

Research Article

Dynamic Circuit Specialisation for
Key-Based Encryption Algorithms and DNA Alignment

Tom Davidson, Fatma Abouelella, Karel Bruneel, and Dirk Stroobandt

ELIS Department, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Correspondence should be addressed to Tom Davidson, tom.davidson@ugent.be

Received 30 April 2011; Revised 30 August 2011; Accepted 3 September 2011

Academic Editor: Marco D. Santambrogio

Copyright © 2012 Tom Davidson et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Parameterised reconfiguration is a method for dynamic circuit specialization on FPGAs. The main advantage of this new concept
is the high resource efficiency. Additionally, there is an automated tool flow, TMAP, that converts a hardware design into a more
resource-efficient run-time reconfigurable design without a large design effort. We will start by explaining the core principles
behind the dynamic circuit specialization technique. Next, we show the possible gains in encryption applications using an AES
encoder. Our AES design shows a 20.6% area gain compared to an unoptimized hardware implementation and a 5.3% gain
compared to a manually optimized third-party hardware implementation. We also used TMAP on a Triple-DES and an RC6
implementation, where we achieve a 27.8% and a 72.7% LUT-area gain. In addition, we discuss a run-time reconfigurable DNA
aligner. We focus on the optimizations to the dynamic specialization overhead. Our final design is up to 2.80-times more efficient
on cheaper FPGAs than the original DNA aligner when at least one DNA sequence is longer than 758 characters. Most sequences
in DNA alignment are of the order 213.

1. Introduction

Parameterised configurations are a new concept for dynamic
circuit specialization that uses FPGA reconfiguration. It was
developed to use run-time reconfiguration (RTR) to dynam-
ically specify the design [1]. This concept is implemented
in the TMAP tool flow, an alternative to the normal FPGA
tool flow. The TMAP tool flow allows us to automatically
make a run-time reconfigurable design, based on the original
design. Its principles and advantages are discussed in section
2. Because this is a new technique, there is still a lot of
exploration needed to fully understand how it should be used
and what the potential gains are for different applications.
This paper shows that in at least two fields, key-based en-
cryption and DNA alignment, substantial gains can be made
using parameterised configurations. The TMAP tool flow
allows us to check very quickly whether or not a certain
implementation is suitable for dynamic circuit specialization
or not. In Section 3 we will discuss the similarities between
this tool flow and hardware/software partitioning that does
not use run-time reconfiguration. There, we will also show

that using parameterised configurations extends the hard-
ware/software boundary.

To explain how parameterised configuration can be used
in encryption applications, we start with a straightforward
implementation of the Advanced Encryption Standard. AES
is an encryption algorithm detailed by the NIST in [2] and is
explained in more detail in Section 4. In this section we will
also detail the design decisions for our own AES implemen-
tation, k AES. Next, we will explain how exactly the TMAP
tool flow is used on this application to make the design run-
time reconfigurable. In Section 5 we will discuss the result of
applying TMAP to k AES. We show a 20.9% area gain for the
k AES implementation, compared to the normal FPGA tool
flow. In addition, we will compare this result with four other,
manually optimized, designs, Crypto-PAn [3], Avalon AES
[4], AES128 [5], and AES core [6]. We will show results.
We will also use TMAP on the manually optimized designs,
and discuss why this does not result in significant gains.
Finally, allowing a design to be dynamically specialized will
always introduce a specialization overhead, we will discuss
this overhead for the AES implementation in this section.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55892891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 International Journal of Reconfigurable Computing

In Section 6 we will expand our results for the AES algo-
rithm to two other key-based encryption algorithms. For the
TripleDES [7] encryption algorithm we see a 27.2% LUT-
area gain for using parameterisable configuration. The sec-
ond algorithm is the RC6 [8] encryption algorithm, here we
have a 72.7% LUT-area gain.

In addition to the encryption algorithms we will also dis-
cuss an example of a specialised string matching algorithm,
a DNA aligner. DNA alignment is discussed in Section 7.
In this case, we followed a different path than with the
AES application. We started with an existing DNA aligner,
changed the control flow slightly, and applied the TMAP tool
flow. The resulting RTR aligner does not show a reduction
in the number of LUTs, but does reduce the number of used
BRAMs significantly. It changes the resource tradeoff of the
design. The RTR aligner can be implemented on a much
cheaper FPGA. We will discuss the details of the RTR aligner
and its advantages in comparison with the original design
in Section 8. In Section 8.3 we will discuss the test-setup
and experimental results for the RTR aligner, with concrete
numbers on reconfiguration time as measured on an actual
FPGA.

In the case of the DNA aligner, the specialisation over-
head has a large impact on the design. We will discuss this
overhead in detail in Section 9. In this section we will also
discuss how to reduce this specialisation overhead using
several optimizations.

2. Parameterised Configurations and TMAP

FPGAs can be configured to implement any function, as long
as there are enough FPGA resources available. The functions
on the FPGA are completely controlled by memory. This
memory is called the configuration memory. An FPGA con-
figuration of a design describes what values the configuration
memory should have to implement the design. Since the con-
figuration memory consists of SRAMs, this memory can
be overwritten at run time, and thus the functionality on
an FPGA can be changed at run time. This is why FPGAs
can be used for run-time reconfigurable implementations of
applications and why they are a useful platform for dynamic
circuit specialization.

Dynamic circuit specialisation strives to specialise a cir-
cuit, at run time, for the specific inputs at that time. This
is a form of constant propagation in hardware. This special-
isation results in a circuit that is both faster and smaller
than the original circuit. Each specialisation takes time, both
to generate the specialised configuration and to configure
the FPGA. This means that in practice, dynamic circuit
specialisation is only useful when some of the inputs of the
circuit change less frequently than others. We will call these
slowly changing inputs parameters from now on.

There has already been a lot of research on run-time
reconfiguration on FPGAs. Most vendors even have their
own tool flow for run-time configuration. The Xilinx Modu-
lar design flow is one example [9]. This design flow allows
the user to use the FPGA hardware in a time-multiplexed
way. If one wants to implement two or more applications
that never need to be available at the same time, then this

design flow can be used to implement both applications on
the same FPGA area. This can be done for completely dif-
ferent applications or for different specialisations of the same
circuit. At run time, when a new application is needed, the
appropriate configuration is retrieved from memory and the
FPGA will be (partially) reconfigured.

This design flow could be used for dynamic circuit spe-
cialisation, but only in some very specific cases. The problem
with this approach is that it scales exponentially with respect
to the number of parameter bits. A solution for this could
be to generate the specialised circuit at run time. However
running the full FPGA tool flow at run time introduces an
overhead of seconds to hours, a much too large overhead for
most run-time reconfigurable applications.

Parameterised configuration is not the only method
or concept for dynamic circuit specialisation. The existing
techniques, for both dynamic circuit specialisation and run-
time reconfiguration in general, fall in two main categories
based on how they approach placement and routing.

The first group avoids placement and routing at run
time and so has trouble realising LUT-area gains. Reference
[10] is an example of this. They bypass logic cells that be-
come unnecessary after run-time constant propagation. This
results in a circuit with better timing behaviour, but this does
not decrease the number of LUTs the application needs. Our
technique, parameterised configurations does show good
area gains.

The second group implements some form of placement
and routing at run time. This group of solutions does show
LUT-area gains. The problem with this approach is that
placement and routing stay NP-complete problems, even if
they are simplified. Solving NP-complete problems at run
time is very hard because of the limited time available.
Our approach takes care of all NP-complete algorithms at
compile time. Reference [11] shows work in developing a
JIT hardware compiler, aimed at solving simplified place and
route problems at run time. Reference [12] is a paper that
also falls in this category. They simplify the routing problem
by reducing the complexity of the routing architecture. The
paper presents a global dynamic router for connecting recon-
figurable modules. This global dynamic router allows the
connections between modules to be dynamically changed,
not the connections within these modules.

The parameterisable configuration concept strives to
solve the problems with the existing techniques. A conven-
tional FPGA configuration consists of LUT truth table bits
and routing bits. A parameterised configuration is an FPGA
configuration where some of the LUT truth table bits are
expressed as Boolean functions instead of Boolean values.
The Boolean functions are functions of the parameters we
discussed earlier. If the parameters change, then the new
configuration is generated by evaluating the Boolean func-
tions, based on the current parameter values. By evaluating
the Boolean functions a fully specified FPGA configuration
can be generated very quickly. This generation only involves
evaluating Boolean expressions, and can be done fast enough
for use at run time. Actual measurements of this evaluation
time will be discussed in Section 9.



International Journal of Reconfigurable Computing 3

A parameterised configuration consists of two parts. A
template, the part of the configuration that has fixed Bool-
ean values, and the Boolean functions, the part of the de-
sign that is dependent on the parameters. In [1, 13] the
TMAP tool flow is presented. This tool flow is able to gen-
erate parameterised configurations automatically, based on
VHDL. This tool flow is an adaptation of the conventional
FPGA tool flow for the generation of configurations. Both
tool flows are shown in Figure 1.

The conventional tool flow is shown in Figure 1(a). The
synthesis tool converts a VHDL description of the design to a
gate level circuit. The technology mapper maps this circuit
on an LUT-circuit. This LUT-circuit is then given to the
placer and the router to place the design on an actual FPGA.

There are several changes for the TMAP tool flow, as seen
in Figure 1(b). First, the VHDL code is now annotated. These
annotations show which input signals should be considered
parameters. This annotated VHDL file is then given to an
adapted technology mapper, the TMAP technology mapper.
This mapper also maps the design to an LUT-circuit, but
the truth tables of these LUTs can now be dependent on the
parameter values, instead of being fixed in a conventional
FPGA tool flow. The result is that logic that is only dependent
on parameter values will now be expressed as Boolean fun-
ctions. These Boolean functions determine the truth tables
of some of the LUTs. This means the total number of LUTs
will be smaller because some of the functionality, orig-
inally expressed in LUTs, will now be incorporated in the
Boolean functions. This will lead to LUT-area gains. Both the
placement and the routing is done with the same tools as the
conventional FPGA tool flow.

It is clear that parameterised configurations can be used
to implement dynamic circuit specialisation. As said before,
the parameterised configuration consists of two parts, the
template and the Boolean functions. The template contains
all the LUTs that need to be placed and routed. The area
needed to implement this template is smaller than using
the original toolflow without parameters. All the logic that
is only dependent on the parameters is now expressed in
Boolean functions and does not require separate LUTs. How-
ever, a template in itself does not contain all the information
necessary for a fully working implementation. Some of the
truth tables are expressed in the Boolean functions. To get
a working specialised implementation, these Boolean func-
tions need to be evaluated, based on the actual parameter
values.

The above means that all the NP-complete problems, like
place and route, can be done at compile time, because they
determine the template which does not change at run time.
At run time we only need to evaluate Boolean functions,
based on the current parameter values, to specialise the cir-
cuit. When a parameter changes, the Boolean functions need
to be evaluated and the FPGA needs to be reconfigured
according to the new results. This introduces an overhead.

A much more detailed overview of parameterised config-
urations is given in both [1, 13]. Important for us is that the
input of the TMAP tool flow is annotated VHDL and its out-
put is a working parameterised configuration. This output
also includes the code that needs to be executed to evaluate

the Boolean functions. The annotations added to the VHDL
are very simple and their only role is to tell the tool which of
the input signals are parameters. Any of the input signals of
a design or parts of a design can be selected as parameters. It
is still the job of the designer to chose the parameters, from
that point on no user intervention is needed.

The reconfiguration platform, regardless of reconfigura-
tion technique, always consists of two elements, the FPGA
itself and a configuration manager. This configuration man-
ager is responsible for evaluating the Boolean functions
and supervising the reconfiguration of the FPGA. The con-
figuration manager is generally a CPU. We will use a Pow-
erPC on the FPGA but that is not the only option.

A different perspective on parameterisable configura-
tions is given in the next section. There we will discuss
how using TMAP can be seen as executing a hardware/
software partitioning. This partitioning extends the hard-
ware/software boundary, because run-time reconfiguration
is used.

3. TMAP as HW/SW Partitioning

The TMAP tool flow is an extended hardware/software
partitioning method. It is based on the distinction between
the slowly changing inputs, the parameters, and swiftly
changing inputs (regular inputs). Once we have selected the
parameters, the tool (TMAP) generates a parameterised con-
figuration of the design. This parameterised configuration
can then be split up in a hardware and a software part. The
hardware part corresponds to the bits in the parameterised
configuration that have Boolean values (0 or 1). This will
give us an incomplete FPGA configuration, the template.
The software part then consists of Boolean expressions
in the parameterised configuration that are dependent on
the parameters. Evaluating these Boolean expressions will
generate the values to complete the FPGA configuration, and
is done in software by the configuration manager.

The similarities between TMAP and hardware/software
partitioning are discussed in detail in [14]. However, it is
important to realize that because run-time reconfiguration
is used, the hardware/software boundary can be extended
compared to traditional hardware/software partitioning.

3.1. The Hardware/Software Boundary. Using FPGAs and
run-time reconfiguration the hardware/software boundary
can be extended so a larger part of the design can be imple-
mented in software. This is possible because run-time recon-
figuration allows the use of specialized circuits. In a con-
ventional hardware/software partitioning, the hardware part
would have to be generic to accommodate all possible pa-
rameter values. Using FPGAs and run-time reconfiguration,
the hardware part can be optimized for specific parameter
values.

In a conventional approach to hardware/software parti-
tioning without run-time reconfiguration, such as [15], we
would select the slowly changing inputs of the design. Next
we identify the functionalities that are only dependent on
these parameters. This way the hardware/software boundary
is identified. In the next step the boundary is replaced by



4 International Journal of Reconfigurable Computing

Generic

HDL design
Synthesis Techn.mapping Place and route

Generic

configuration

(a)

Annotated

HDL design
Synthesis TMAP

Parameterized
configuration

Place and

outingr

(b)

Figure 1: Conventional and TMAP FPGA tool flow.

registers and the functionalities that are only dependent
on the parameters all get a software equivalent. The actual
hardware then consists of the registers and the remainder
of the design. The signal values on the boundary will be
calculated by the software, and then written to those registers.

When using an approach that includes run-time recon-
figuration, several things change. Using the parameterised
configuration concept, and the TMAP tool flow, we can
extend the hardware/software boundary by moving it to
the configuration memory instead of adding registers to the
design. In addition, because parameterised configurations
are used, the hardware will be a specialized circuit that is
optimized for specific parameter values. This is in contrast
to the generic hardware design of the previous approach. As
for the software, in this case it consists of Boolean functions
that are generated automatically, based on the hardware
functionality that is replaced Figures 2 and 3.

In the next sections of this paper we will discuss in greater
detail what the effects are of applying TMAP and parameter-
isable configurations on actual applications. First, in Sections
4 and 5 we will discuss a series of AES implementations,
including our own k AES design. We will explain why using
TMAP on our design has better gains, compared to other
AES implementations. In Section 6 we will also discuss two
other encryption algorithms. Finally, we will discuss our
tmapped DNA aligner, the RTR aligner in Section 7. Because
the specialisation overhead is important in this case, we will
give a detailed overview and offer optimisations in Section 9.

4. Advanced Encryption Standard

The complete Advanced Encryption Standard (AES) is de-
scribed in [2] by the NIST. This document describes the
details and mathematical background involved with the
different AESs. We will only discuss the hardware implemen-
tation of the algorithm, and therefore will only focus on the
practical implications of AES.

In its most basic form, AES describes how to encode
128 bits of data, using an encoding scheme based on a specific
key value. The Advanced Encryption Standard consists of
three separate standards, whose main difference is the length
of this key (128, 192, and 256 bits). The three standards
are very similar and do not require significantly different
hardware implementations. This is why we only discuss the
128-bit AES algorithm in this paper.

The 128-bit AES application can be split up in two
parts: data encoding and key expansion. The data encoding
explains how the data will be converted into encoded data.
For this process we need several values that are key de-
pendent, the round keys, which are generated by the key
expansion.

(1) Data Encoding. In the AES algorithm the input data
is encoded per 128-bit blocks. We split this data up in
16 bytes, and assign each byte a location in a 4-by-4 state
matrix. The encoding part of the AES algorithm consists of
a series of bytetransformations that are applied to the state.
These transformations are combined in a specific order and
grouped in a round, and each round has a round key input.
This round key value is different for each round, and all these
values are the result of the key expansion.

(2) Key Expansion. The round keys, necessary for the
addRoundkey transformation in the different rounds, are
derived from the input key. This key is expanded to generate
the different round keys. The first round key is the input key,
this key is used in the first addRoundKey() that is applied
to the data input. From the second round key, the round
key generation uses some similar transformations as the data
encoding process. A more detailed description of the exact
transformations used in both the key expansion and the data
encoding can be found in [2].

4.1. k AES. To explain how the TMAP tool flow works, we
chose an application where the parameter is easy to identify.
As described in Section 4, the AES application consists of two
main parts: the data encoding and the key generation. Both
parts are clearly separated and work, in general, on a different
time scale. In most practical applications the key changes
much slower than the input data. So, the key input signal is
a good parameter choice, we expect a large part, if not all, of
the key expansion will be moved to Boolean functions.

To show how parameterised configuration can signifi-
cantly optimize a design very quickly by making it run-
time reconfigurable, we wrote our own AES implementation,
k AES. In the next Section 5, this design will be compared
with several other AES designs. k AES is almost a direct
reflection of the hardware described in the NIST document
[2]. The design was deliberately kept fully parallel, and it was
therefore very simple to write and test.



International Journal of Reconfigurable Computing 5

Parameters

s

Hardware

Software

Swiftly
changing

input

Registers

Figure 2: Conventional hardware/software partitioning.

Parameters

s

Hardware

Software

Swiftly
changing

input

Configuration memory

Figure 3: Hardware/software partitioning using TMAP.

The design is split up in two main parts, a chain of 10
rounds that implements the encoding process and a chain
of 10 k rounds that take care of the key expansion. The key
expansion is combinatorial. The actual transformations are
not clock dependent, all the parts are instantiated separately
and are only used for calculating one transformation. All this
means that we use a lot of area, but conversely encode the
data very fast. The throughput is 128 bit of encoded data
every clock cycle.

4.2. Making k AES Run-Time Reconfigurable. Once we have
designed our k AES implementation, the next step is to use
the TMAP tool flow on this design. Since the tool flow is
automatic once we have annotated the VHDL code, the main
decision designers have to make when using this technique
is which signals to select as parameters. Some designs are
clearly suited for this approach, like our AES encoder, k AES,
and other encryption algorithms that are key based. If a key
is used to encode the data, in most cases this key changes very
slowly compared to the data.

Once the parameter is selected the TMAP tool flow
can be used as any other FPGA tool flow is used. It will
generate a parameterised configuration in approximately
the same amount of time a traditional FPGA tool flow
needs to generate an FPGA configuration from a VHDL
description. These kind of optimizations are a lot faster
than manually optimizing a VHDL implementation by, for
example, reducing parallelism in the key expansion. We
will discuss the result of applying TMAP to k AES in the
next section, where we will also discuss several other AES
implementations. Applying TMAP to these implementations
yields much smaller gains. We will briefly discuss the reasons
for this observation.

Table 1: The resource usage, in 4 LUTs, of the different AES designs.

fpga TMAP Gain Throughput (Gbps)

k AES 45178 35843 20.3% 17.68

Crypto-PAn 37874 37750 0.3% 11.26

Avalon AES 8448 8448 0% 1.31

AES128 5111 5071 0.7% 0.92

AES core 5973 5973 0% 0.12

5. Comparison of AES Implementations

In this section we will discuss the results of applying TMAP
to different AES implementations. Quartus was used as the
synthesis tool. As the technology mapper when TMAP was
not used, we chose the mapper available in ABC [16], called
fpga. Also, to provide a good basis to compare the different
designs, we will only compare LUT-only implementations.
This was decided because it is entirely dependent on external
factors if you would rather use more BRAMs and less LUTs
or the other way around. The DNA aligner in the next
section is a good example of TMAP influencing the resource
tradeoff. This tradeoff will be discussed in much more detail
in Section 8.3.

5.1. Area Optimization through Parameterised Configurations.
In Section 2 we discussed the concept of parameterised
configuration and the TMAP tool flow. The result of the
TMAP tool flow can be seen in Table 1.

The first important result in Table 1 is that, as suggested
in Section 4, TMAP succeeds in optimizing our original
k AES design significantly. The version of k AES mapped
by TMAP is 20.3% smaller than the design mapped by the
original mapper. Basically, the TMAP tool flow has removed
all the parts of the design that are solely dependent on the
parameter, in this case the key input, and has converted
those parts to Boolean functions. For the k AES design this
means that almost the full key expansion has been moved to
software.

However, we do see a difference in clock speeds between
both designs. The original k AES has a maximum clock speed
of 146.63 Mhz while the tmapped version only has a clock
speed of 138.17 Mhz. This is still significantly better than the
other AES implementations below, but does mean a 5.7%
clock speed decrease. This means we offer up a 5.7% of
throughput to reduce the area by more than 20%.

One comment is needed here: the usage of dynamic cir-
cuit specialization will introduce a specialization overhead.
Each time the key changes, the new FPGA configuration has
to be generated and the FPGA itself has to be reconfigured,
the total of both types of overhead is called the specialization
overhead. The impact of this overhead will be discussed in
Section 5.3.

5.2. Comparison to Opencore AES Implementations. To com-
pare our design to other designs, we looked at the publicly
available AES implementations found on the opencores.org
website. For applying TMAP the designs need to be written



6 International Journal of Reconfigurable Computing

in VHDL. We only looked at the “stable” cores that were
finished. We found 5 AES implementations that fit these
criteria. We had to discarded one implementation because
its results with the fpga technology mapper generated
errors. This leaves us with four AES implementations, the
Avalon AES [4], the Crypto-PAn [3], the AES128 [5], and
the AES core [6] implementation. The original goals of these
applications are less important, and we will only discuss the
AES implementations within these applications.

In the first application, “Crypto-PAn”, an AES-encoding
module implements the rounds in a similar way as in our AES
implementation, k AES. The main difference is in the key
expansion, where the Crypto-PAn AES implementation uses
a much more complex and more sequential design, involving
a state machine. This contrasts to the more parallel k AES
implementation, where the key expansion is spread out into
10 k rounds. For this design, the throughput is the same as
for the k AES design, 128 encoded bits every clock cycle. This
design can be clocked at 88.043 Mhz.

As Table 1 indicates, we see that, the unoptimized k AES
implementation is quite a bit larger than the Crypto-PAn
design, 45178 LUTs compared to 37874 LUTs. The optimized
version of k AES, however, shows a 5% area gain, compared
to the manually optimized Crypto-PAn design. From Table 1
it is also clear that both the throughput and the size of the
design are worse than the optimized k AES implementation.
When comparing k AES and Crypto-PAn, the design time
and complexity should also be taken into account. The k AES
key expansion is significantly more simple and easier to
implement and test. As the results show, using TMAP, k AES
was optimized automatically to the point where it is smaller
than more complex and time-consuming implementations.

The second application, “Avalon AES,” is even more
sequential. Not only in the key-expansion, but also in the
encoding part of the AES algorithm. This implementation
only consists of one round that is used sequentially to run the
full AES algorithm. This design is significantly more complex
than the k AES. It also has a much lower throughput. This
design needs 10 clock cycles to generate 128 bits of encoded
data. The clock speed of this design is 102.76 Mhz. There are
significant differences between k AES and Avalaon AES. It
is very hard to directly compare both designs, because they
are both Pareto efficient. Which one is better is decided by
external factors.

The third and fourth application, AES128 and AES core,
are both similar to the Avalon AES implementation of the
AES algorithm. The AES128 is a fully sequential AES impl-
ementation. It outputs encoded 128 bits of data every 13
clock cycles. This design clocks at 94.20 Mhz. The AES core
design is even more sequential, as it works on a byte level
instead of the full 128-bit data length. The design size is
small, but encrypting 128 bits of data takes more clock cycles.
The clock speed of the AES core design is 156.6Mhz. This is
the fastest design, but also the one which will take the largest
number of clock cycles to encode 128 bits of data.

If we look at the “TMAP” column of Table 1, we see
that the gains to the other designs for using TMAP are a
lot less or even nonexistent. The reason is closely linked to
how parameterised configurations work. Since we chose the

key input as a parameter, all the signals that are dependent
on the key input, and not on any other signals, are removed
from the design. In the case of a fully parallelised design,
like k AES, this results in almost the complete key expansion
being moved to software as Boolean functions. In more
sequential designs, however, the key expansion is not only
dependent on the key input, but also on swiftly changing
signals. In these designs, internal timing and hardware reuse
make sure that the signals change at a higher rate than the key
input. This means a smaller part of the design will be only
dependent on the parameters. In essence, a (much) smaller
part of the key expansion is moved to software, because most
of the hardware used for the key expansion is reused, and
thus no longer only dependent on the key input. This is
clearly the case in the opencore designs.

These results were attained by comparing 128-bit key
AES implementations.

5.3. Specialization Overhead. In the case of AES and similar
scenarios the impact of the specialisation overhead is fully
dependent on external factors and individual-use cases.
In most user-initiated parameter changes an overhead of
milliseconds, which is very attainable using TMAP, will be
unnoticeable to the human user. In this case, dynamic circuit
specialization can be used without a large or noticeable
impact on the user experience.

In other cases, any delay will be too large. For example,
one can easily image a encryption scheme in which the AES
key changes for every new 128 bit of input data. In this case
the specialization overhead will have a huge impact on the
actual operating speed of the design because it will need to be
reconfigured very frequently. In most of those cases a delay in
the order of milliseconds will never be acceptable.

In Section 9 we will discuss the specialisation overhead
further, for the case of the DNA aligner. We will also discuss
optimizations to reduce this overhead. But first, in the
next section, we will show our results with other key-based
encryption algorithms.

6. Other Encryption Algorithms

To check whether our results are transferable to other key-
based encoding algorithms, we looked at two other encoding
algorithms, “TripleDES” [7] and “RC6” [8].

The TripleDES algorithm is based on a Data Encryption
Standard (DES) encoding/decoding scheme. The data is first
encoded with a specific key, then decoded with another key,
and finally encoded again with a third key. These separate
encoding/decoding steps are done using the DES algorithm.
We select the three input keys as parameters for similar
reasons as in the AES application. Since a suitable opencore
implementation was available for TripleDES [17], we anno-
tated their VHDL description and ran the design through the
TMAP tool flow without any further adaptations. The result
is a 28.7% area gain, from 3584 to 2552 LUTs.

The second algorithm is the RC6 algorithm, it was
designed for the AES competition and was one of the
finalists. RC6 has a block size of 128 bits and supports key



International Journal of Reconfigurable Computing 7

sizes of 128, 192, and 256 bits. An opencores implementation
of this algorithm was also available [18]. Here, we also chose
the key as a parameter. Using TMAP on this implementation
resulted in a 72.7% LUT-area gain, from 4635 to 1265 LUTS.

7. DNA Alignment

DNA alignment is used here as an example of a string
matching algorithm, so not a lot of detail on the biological
background will be given. The actual algorithm is the Smith-
Waterman algorithm, proposed in [19]. The aim of this
algorithm is to find the region within two DNA sequences,
sequence A and B, where they share the most similarities.

This is done by filling in a score matrix (F). Each element
in the score matrix corresponds to one character in sequence
A and one character in sequence B. The rows are associated
with sequence A, which we will call the vertical sequence
from now on. The columns are associated with sequence B,
which we will call the horizontal sequence from now on. The
element i, j of the score matrix then corresponds to the score
for comparing Ai and Bj . The score matrix is filled by solving
(1) for each element. Once the matrix is completely filled in,
the regions with the most similarities are found by starting
from the maximum value in the score matrix and using a
trace-back algorithm to find the start of this region,

Fi, j = Max
(
FD
i, j ,F

V
i, j ,F

H
i, j

)
, (1)

where

FD
i, j = Fi−1, j−1 + S

(
A(i),B

(
j
))

,

FV
i, j = Fi−1, j + ω,

FH
i, j = Fi, j−1 + ω.

(2)

FD takes the matrix element diagonally above and adds a
value S. This value S is positive if A(i) and B(j) are the same
and negative in case of a mismatch. The values for all possible
pairs A(i) and B(j) are described in a substitution matrix.
The values in this substitution matrix are based on biological
considerations, so we will not go into further detail here. The
value taken from this matrix is called the substitution cost.

FV takes the matrix element directly above and adds a
gap penalty, ω. FH does the same but with the element to the
left. The maximum of these three values (FD

i, j ,F
V
i, j ,F

H
i, j) is then

selected and assigned to Fi, j .

8. RTR Aligner

To get a run-time reconfigurable DNA aligner, we started
with an already existing DNA aligner, that was developed
for a project (the FlexWare project) funded by the IWT in
Flanders and therefore called the Flexware aligner [20]. We
will first discuss the structure of this Flexware aligner briefly,
then we will discuss the changes and decisions made to turn
it into an RTR aligner.

8.1. Flexware Aligner. The Flexware aligner, like most DNA
aligners, is based on the observation that the data dependen-

(i, j)
(i, j − 1)

(i− 1, j − 1) (i− 1, j)

Figure 4: The data dependencies in the Smith-Waterman algorithm
[20].

cies in the Smith-Waterman algorithm are west, northwest,
and north, as you can see from Figure 4. This means that the
algorithm can be HW accelerated by using a systolic array, as
shown in Figure 5. Vertical sequence (A) is streamed through
the array and each PE calculates an element of the score
matrix each clock tick. Once the full vertical sequence has
been streamed through the array, the maximum score and its
location are known.

If there are not enough PEs to compare the sequences
completely, memory is used to store temporary data. Then,
the horizontal sequence is streamed through the array
multiple times, each time with different column characters.
In Figure 6, you can see the progress of the PEs of this
systolic array through the score matrix. Each clock tick a PE
calculates the score for its row and column characters.

In general the DNA sequences that are compared are
longer (213) than the number of PEs that fit on an FPGA, at
most hundreds on very large FPGAs. This means that more
PEs will always speed up the execution.

8.2. RTR Aligner. The parameter selection in the case of the
DNA aligner is less straightforward than in the case of AES.
However, looking at the inputs of the systolic array we can see
that, for each PE, the column character stays constant while
the whole vertical sequence is streamed through the systolic
array. On the design level the column sequence was chosen
as a parameter, for an individual PE this translates to the
column character being chosen as a parameter.

Before applying TMAP to the Flexware aligner, some
changes to the control flow were made so the aligner could be
started and stopped without any problems. This is necessary
because between configurations the aligner will have to stop
working and we need to be able to restart it when the
reconfiguration is done. The result of these changes and
applying the TMAP tool flow is the RTR aligner. We will
compare this RTR aligner to the original Flexware aligner in
detail below.

In most practical cases, the horizontal sequence will
always be longer than the amount of PEs. This means that



8 International Journal of Reconfigurable Computing

PE1

B(1)

A(n) A(n− 1)

Score Score
PE2

B(2)

A(n− 2)

Score
PE3

B(3)

A(n− 3)

Score
PE4

B(4)

A(n− 4)

Score

Figure 5: A systolic array.

Figure 6: Progress of the PEs in the score matrix during the Smith-Waterman algorithm [20].

the column character of the PEs will change several times
during operation. The PEs will need to be reconfigured every
time they are started on a new column. This introduces an
overhead that will be discussed in Section 9.

From the previous details on the Flexware aligner, and
from actual measurements in Figure 8, it is clear that extra
PEs are an important factor in the system’s overall efficiency.
In the original Flexware aligner each PE required its own
BlockRAM. This is not the case for the RTR aligner where
the number of PEs has no influence on the BRAM usage.
In FPGAs with a limited number of BRAMs this can make a
huge difference in resource usage. For example, Table 2 shows
that the resource usage of the RTR aligner on a Spartan device
is a lot better than for the Flexware aligner. It should be noted
that only comparing the increase in the number of PEs is
not a good comparison. The RTR aligner will be less efficient
because it will have to be reconfigured several times. This will
be discussed in a lot more detail in the next section, where
we will show experimental results based on an actual FPGA
implementation.

8.3. Experimental Results. In this section we will compare
the operation of the Flexware aligner and the RTR aligner.
The next section will discuss the specialization overhead and
optimizations based on the data in this section.

As discussed in Section 2, the reconfiguration platform
consists of two elements, the FPGA itself and a configuration
manager. The configuration manager is generally a CPU.

Table 2: The resource usage in the Flexware and RTR aligner on a
Spartan XC3S1600E-4FG484.

Flexware RTR Max. avail.

Slices 3766 (25%) 14708 (99%) 14752

Slice flip flops 2635 (8%) 9515 (32%) 29504

4-input LUTs 6967 (23%) 27382 (92%) 29504

BRAM 36 (100%) 19 (52%) 36

PEs 14 50 —

Our test platform is shown in Figure 7. We used the
Virtex II Pro, this FPGA has a PowerPC. The PowerPC is used
as the configuration manager. Additionally, the Virtex II Pro
has a readily available run-time reconfiguration interface, the
HWICAP. We will use this platform to test our design, all the
data in this section was collected on the test platform. In all
our tests, the OPB/PLB-bus was clocked at 100 Mhz.

8.3.1. Flexware Aligner versus RTR Aligner. In Figure 8 we
display the influence of the amount of PEs on the execution
time of both the Flexware aligner and the RTR aligner.
For the RTR aligner this is the execution time without the
specialization overhead. As you can see there is a difference
between both aligners, but at most it is 18 μs, this is caused by
the control flow changes that were made to the RTR aligner
to allow for dynamic circuit specialization. It is also clear



International Journal of Reconfigurable Computing 9

PowerPC BRAM

Bridge

PLB bus

OPB bus

HWICAP Reconfigurable IP

Virtex-II roP

Figure 7: Virtex II Pro run-time reconfigurable platform.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
xe

cu
ti

on
ti

m
e

(m
s)

5 10 15 20 25 30 35

Number of PEs

Flexware aligner
RTR ali ng er

Figure 8: Execution time (ms) for both aligners, without reconfigu-
ration overhead, based on measurements on the test platform when
comparing a 188 to a 258 DNA sequence.

that the relative gain of additional PEs decreases as the total
number of PEs in the system increases, for both designs.

For the designs described above the maximum clock
speed was measured too. For 4 PEs the RTR aligner clocks
at 62 Mhz and the Flexware aligner at 59 Mhz. However,
this difference reduces steadily as the area of both designs
increases with additional PEs. For designs with 20 or more
PEs this difference is less than 1 Mhz. For both designs the
clock speed gradually settles down to around 50 Mhz when
designs span the complete Virtex II Pro FPGA. There is no
clear difference between the two, certainly not for the largest
designs.

Now we look at the RTR aligner with the specialisation
overhead included. In this case the total execution time is
around 3.7 seconds, for any number of PEs, when comparing
a 188 to a 258 DNA sequence. It is very clear that this
specialization overhead imposes too large a cost on the

500 1000 1500 2000 2500 3000 3500 4000
99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

Length of the DNA sequence

R
ec

on
f.

ov
er

h
ea

d
(\

%
)

of
to

ta
le

xe
cu

ti
on

5 PEs
10 PEs
15 PEs
20 PEs

25 PEs
30 PEs
35 PEs

Figure 9: Fraction of the total time spent on reconfiguration, with
increasing DNA sequence length, based on measurements on the
test platform.

design, in this case. Using HWICAP reconfiguration makes
the system very inefficient compared to the Flexware aligner.
In the following optimizations we will reduce this overhead
drastically and eventually make the design more efficient
than the Flexware aligner. The reason there is no reduction
of the total execution time with additional PEs is because
the added reconfiguration time of the extra PEs offsets the
execution time increase. This will also change with our
optimizations.

Figure 9 shows that the fraction of the time spent on
actual execution increases with longer DNA sequences,
regardless of the number of PEs.

8.3.2. Increasing the DNA Sequence Length. The measure-
ments for Figure 8 were taken comparing sequences of 188
and 258 characters. Those are small sequences in DNA
alignment, where sequences in the order of 213 are a lot more
common. Increasing the sequence length will impact both
designs in a different way.

The Flexware aligner’s overall execution time is pro-
portional with the product of the sequence lengths. If one
sequence is doubled, the execution time also doubles. If both
sequences double the execution time is quadrupled.

Before we can discuss the impact of increasing the seq-
uence length on the RTR aligner, we need to make clear
which sequence is chosen as a parameter. Because of the
specialization overhead, minimizing the number of reconfig-
urations is essential. This means choosing the shortlinebreak
est sequence as a parameter is clearly the best choice, this
can greatly reduce the number of times the PEs need to be
reconfigured.

With the shortest sequence as the parameter, increasing
the other sequence length will work to the advantage of



10 International Journal of Reconfigurable Computing

the RTR aligner. The number of reconfigurations will stay
the same but the time spent on execution will increase, as
with the Flexware aligner. This means the relative cost of
reconfiguring will decrease.

Another way to see this is that if the nonparameter seq-
uence length increases, a configuration will be used longer
before it is changed. From this we can conclude that for
the RTR aligner to be working efficiently, the nonparameter
sequence needs to be as long as possible. We will go into
further detail on this in the next section.

9. Specialisation Overhead

A fundamental property of dynamic circuit specialization is
the overhead incurred by this dynamic specialization. There
are several possible scenarios, one was discussed with the AES
implementation in Section 5.3. In AES the parameter change
is decided externally, by a user or a governing program,
because its parameter, the key, is an input of the global de-
sign.

In the RTR aligner there is a subtle difference. There is
also an external parameter decision, a program or user de-
cides which two sequences need to be compared. Internally,
however, the application itself will govern the actual param-
eter change at the input of the PEs. Each time a PE is started
on a new column, it will need to be reconfigured.

In this section we will discuss the RTR aligner specialisa-
tion overhead in more detail. In the last parts of this section
we will also discuss optimizations we have implemented to
reduce the specialization overhead and make the RTR aligner
more efficient than the Flexware aligner.

In the case of the RTR aligner the specialization overhead
has a huge influence on the overall efficiency of the design.
This is because the timing of the specialization is a part of the
systems normal operating environment. Each comparison
of two DNA sequences will entail a certain number of re-
configurations. This number is dependent on the length of
the sequences and the number of processing elements. To be
clear, each time the last PE finishes its column, all the PEs are
reconfigured and a start signal is given to restart the calcula-
tions. The next time the last PE has finished its column, a new
reconfiguration is done. This goes on until every element of
the score matrix has been calculated. The average specializa-
tion overhead of one such reconfiguration, which is reconfig-
uring each PE one time, is displayed in Figure 10. It is clear
that if more PEs need to be reconfigured, the specialization
takes longer. This increase is invariable of sequence length.
Figure 10 also shows that sometimes a larger design will have
a smaller specialization overhead. We will discuss this later in
the subsection about the reconfiguration overhead.

There are a lot of ways to minimize this specialization
overhead, several of the more interesting ones will be applied
to the RTR aligner in order to make it more efficient than the
Flexware aligner for the case shown in Table 2.

Before we look at optimizing the specialization overhead,
we must first determine in which cases it will be used. The
RTR aligner uses no BRAMs for its PE implementation, the
Flexware aligner uses one BRAM for every PE. Most high-end

5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

Number of PEs

R
ec

on
fi

gu
ra

ti
on

ov
er

h
ea

d
(m

s)

Figure 10: Specialization overhead (ms) needed to reconfigure the
PEs of the RTR aligner one time, based on measurements in the test
platform.

FPGAs, such as the Xilinx Virtex-line, have enough BRAMs.
They generally run out of LUTs before all BRAMs are used by
the Flexware aligner. Cheaper FPGAs, however, such as the
Xilinx Spartan discussed below quickly run out of BRAMs
before all the available LUTs are used, making these FPGAs
much less optimal for the Flexware aligner. An example of
this is shown in Table 2.

The reason why Spartan implementations are interesting
is the price difference between Spartan and Virtex FPGAs.
This difference is easily a factor of 10 for equally sized FPGAs.

In [21] we calculated the maximum allowed special-
ization overhead for the RTR aligner to be as efficient as
the Flexware aligner. In the case of the Spartan displayed
in Table 2, this resulted in the following upper bound for
the specialization overhead of 50 PEs, 455 μ seconds. This
is an upper bound for the time needed to reconfigure all
the PEs one time. From the measurements of the special-
ization overhead displayed in Figure 10 it is clear that we
already surpass this upper bound for 5 PEs, let alone 50. To
improve the efficiency and meet this upper bound, we will
discuss several optimizations to the RTR aligner. The SRL
optimization discussed below is interesting for any run-rime
reconfigurable application that needs to be reconfigured as
fast as possible.

Sadly, we have no Spartan XC3S1600E-4FG484 board to
test the final design. We will apply the optimisations to the
design implemented on the test platform. Based on these
results we will discuss the effect of the optimisations on the
application. The biggest disadvantage is that the Virtex II
Pro does not have enough area to implement 50 PEs. So, in
the following we will always discuss the results on the test
platform first. Next, we will discuss what the effect of these
optimisations is on the use case with the Spartan FPGA.

The first thing we have to realize is that the specialization
overhead can be split up in two parts, the evaluation time
and the reconfiguration time. The evaluation time is the time



International Journal of Reconfigurable Computing 11

needed for evaluating Boolean functions of the parameters,
as described in Section 2. The reconfiguration time is the
time needed to write these values to the configuration me-
mory of the FPGA.

From Table 3, we can see that the evaluation time takes
about 0.24% of the total specialization overhead and the
actual reconfiguration time takes up 99.76% of the total
specialization overhead. Also, these numbers are fairly con-
stant when the number of PEs increases.

We can decrease both of these overheads in different
ways. Because the reconfiguration time is by far the largest
factor in the overhead we will optimize this reconfiguration
time first.

9.1. Reconfiguration Time. A large part of the reconfiguration
time is introduced by the HWICAP. The way it handles the
reconfiguration is not always efficient [22]. It changes the
truth tables in three stage. First, it needs to read a full frame
from the configuration memory. Then it changes the truth
table values. And last, it writes back the full frame. In addi-
tion, it writes a padding frame to flush the reconfiguration
pipeline [23]. In the Virtex II Pro, each frame contains 320
LUTs with a small header. One can see that changing a single
LUT truth table introduces a large overhead. Furthermore,
the overhead is dependent on the placement of our design.
In a worst case scenario, every LUT of a PE is in a different
column. Each PE has 18 LUTs that need to be reconfigured.
So, for each PE 18 frames have to be read and 36 have to be
written. Figure 10 shows this dependency. If a larger design
is placed more efficiently then this can lead to a significant
reduction in the total reconfiguration time.

The HWICAP is not the only way to access the con-
figuration memory of the FPGA at run time. In [24] the
reconfiguration time is reduced using shift register LUTs
(SRLs). An SRL is an LUT whose truth table bits are also
arranged as a shift register. This shift register functions like
any shift register, with a shift in, a shift out, and a clock.
Thus, the truth table of an SRL can be changed by shifting
in new values through the shift in input. By connecting the
shift out output of one SRL to the shift in input of another
SRL, a long SRL chain can be formed. This long SRL chain
can then be used to change the truth tables of all the LUTs
that are part of it.

Such a long SRL chain can then be used to reconfigure
the FPGA very quickly, by shifting the new configuration
into the truth tables of the connected LUTs. This way the
reconfiguration time is reduced to only hundreds or thou-
\linebreak sands of clock cycles, instead of hundreds of
thousands as with the HWICAP.

The SRL chain(s) can be added on top of the already
existing design. The parameterised configurations tool flow
determines which truth tables need to be changed. These
LUTs are then marked and arranged in an SRL chain
that is completely independent of the design. The chain is
connected at the input with the configuration manager, it
has no output and is only used to change the truth tables of
the LUTs. Reference [24] also shows that the impact on the
clock frequency of the design of adding these shift register

Table 3: The specialization overhead, split up in reconfiguration
time and evaluation time.

PEs Reconfiguration time (ms) Evaluation time (ms)

5 7.9 (99.76%) 0.019 (0.24%)

10 18.0 (99.76%) 0.044 (0.24%)

15 22.1 (99.74%) 0.057 (0.26%)

20 27.8 (99.76%) 0.069 (0.24%)

25 38.5 (99.76%) 0.095 (0.24%)

30 36.4 (99.74%) 0.095 (0.26%)

35 48.2 (99.76%) 0.120 (0.24%)

Table 4: The reconfiguration time, using shift register LUT re-
configuration in the RTR aligner.

PEs Clock cycles Theoretical (μs) Measured (μs)

5 1440 27.91 29.15

10 2880 56.78 59.93

15 4320 84.18 88.93

20 5760 112.31 118.94

25 7200 142.68 151.13

30 8640 172.04 182.23

35 10080 199.83 211.93

LUT chain(s) is minimal. Important to note is that not every
FPGA has this SRL functionality. The Spartan 3 and Virtex II
Pro LUTs both have this capability.

The reconfiguration time using SRL reconfiguration
can be seen in Table 4. Compared to the reconfiguration
overhead using the HWICAP, as seen in both Figure 10 and
Table 3, this is a huge decrease. The SRL chain is clocked at
the same speed as the design.

The third column shows the theoretical reconfiguration
time, assuming one long SRL. We know that we need to
reconfigure 18 LUTs in each PE and that reconfiguring
1 bit takes one clock cycle. Based on these numbers we
can calculate for each RTR implementation how long the
reconfiguration using SRLs should take. In the next column
we show our measured results on the test platform. In each
instance we see that the measured reconfiguration time is
5% to 6% larger than the expected value. This is because of
inaccuracies in our measurements. The reconfiguration time
is completely dependent on the SRLs, which are completely
deterministic. However, this extra overhead has no impact
on our conclusions. The reconfiguration time using SRLs
is two orders of magnitude smaller than the run-time
reconfiguration overhead using the HWICAP.

In the use case shown in Table 2 we have 50 PEs at a clock
speed of 46.25 Mhz. The theoretical reconfiguration time is
then 313.04 μs. The upper bound from [21] is 455 μs. We are
well below this upper bound, even if we assume that the 6%
overhead is not related to inaccuracy in the way we measured.
In that case the reconfiguration time is 331.82 μs. Of course,
this does not necessarily mean that the total specialisation
overhead is below the upper bound. For this to be the case
we need to look at the evaluation time too.



12 International Journal of Reconfigurable Computing

9.2. Evaluation Time. The evaluation of the Boolean func-
tions in our run-time reconfigurable platform is done by the
PowerPC, shown in Figure 7. However, there are two good
reasons to change this in the design on the Spartan. The first
reason is that the Spartan has no PowerPC, so we would
need to evaluate the Boolean functions on a Microblaze or
a custom processor. A second reason to change this is that, in
the case of the RTR aligner, the evaluation does not involve
any Boolean evaluation. The new truth tables are directly
dependent on the parameters, no Boolean expressions are
necessary. Because of both these reasons, we propose to
use a dedicated hardware block that will function as the
configuration manager.

This dedicated hardware block takes a character of the
parameter DNA sequence as the input and outputs the bit
values that need to be shifted into the SRLs one clock tick
at a time. This means, once we have started the dedicated
hardware, we can start shifting in the results into the SRL
the next clock cycle. The reconfiguration and evaluation can
happen at the same time. This will greatly reduce the total
specialization overhead. The extra time overhead introduced
by the evaluation is then only one clock cycle, compared to
the overhead from reconfiguring using SRLs.

Of course the size of this dedicated hardware block
will influence how many PEs we can fit on the FPGA.
This block uses a very small amount of LUTs (49) but
does use one BRAM. In return for adding one BRAM, our
total specialization overhead is reduced to the values seen
in Table 4, with one additional clock cycle for starting the
dedicated hardware block. This is a huge decrease from the
specialization overhead shown in Figure 10. We can clearly
see the advantages of these optimizations.

An advantage in addition of using the SRLs combined
with the dedicated hardware is that we can further reduce our
specialization overhead by using two or more SRL chains and
an equal number of dedicated hardware blocks. In this case
one SRL chain will be split up in two or more SRL-chains
that are half as long, this will then reduce the reconfiguration
time by half.

Finally, we look back at the upper bound, 455 μs pro-
posed in [21], for the RTR aligner presented in Table 2. Since
the Spartan FPGA has SRL capabilities, we can make use
of the SRL reconfiguration. Additionally, because we still
have unused BRAMs in our RTR aligner, we can use the
dedicated hardware block. We do, however, have to remove
one PE to make room for the dedicated hardware block. If
we lower the number of PEs of the RTR aligner by one, the
new upper bound becomes 442.43 μs. For 49 PEs and using
both optimizations, our specialization overhead is reduced
to 305.14 μs, well below our new upper bound. If we again
take an extra 6% of reconfiguration time into account this
number becomes 323.45 μs, still below the upper bound.

We can calculate, based on [21] that the RTR aligner will
finish its execution earlier than the Flexware aligner on the
Spartan XC3S1600E-4FG484, provided the nonparameter
sequence is long enough. If we assume the nonparameter
sequence is 213 characters, then the RTR aligner will be
between 1.15 and 1.29 times more efficient than the Flexware
aligner, depending on the length of the parameter sequence.

The RTR aligner is more efficient than the Flexware
aligner as long as the nonparameter sequence is longer than
6046 characters. We can decrease this number and increase
the overall efficiency by using two or more SRL chains and
dedicated hardware blocks. For example, using two SRL
chains, and two dedicated hardware blocks, increases the
maximum efficiency of the RTR over the Flexware aligner to
1.90. The nonparameter sequence lower bound for efficiency
is then lowered to 2824. This trend holds for larger numbers
of SRL chains.

Since one PE in the RTR aligner has a size of 369 LUTs,
we can fit 7 dedicated hardware blocks in the area used for
one PE. This means we can use 7 SRL chains. This improves
the maximum efficiency of the RTR aligner to 2.80-times
the Flexware aligner for nonparameter sequences longer than
758 characters.

10. Conclusions

In this paper we have shown that parameterised configu-
rations as a method for dynamic circuit specialization and
the corresponding TMAP tool flow can be used to improve
key-based encryption and DNA alignment. In the case of
encryption we show an area gain of 20.6% in the case of AES
encryption, a gain of 29.3% for a TripleDES implementation,
and a 72.7% gain for a RC6 implementation. As an example
of a string matching algorithm we chose an existing DNA
aligner, which we adapted to the RTR aligner. This RTR
aligner runs more efficiently on cheaper FPGAs than the
original design. We also showed methods to greatly reduce
the specialization overhead introduced by dynamic circuit
specialization, and discussed their effects in detail for the
RTR aligner. They allow the RTR aligner to be up to
2.80-times more efficient that the Flexware aligner for
nonparameter sequences longer than 758 characters.

Acknowledgment

This paper was funded by a Ph.D. grant of the Institute
for the Promotion of Innovation through Science and
Technology in Flanders.

References

[1] K. Bruneel and D. Stroobandt, “Automatic generation of run-
time parameterizable configurations,” in Proceedings of the
International Conference on Field Programmable Logic and
Applications (FPL ’08), pp. 361–366, September 2008.

[2] N. I. of Standards and Technology, “Announcing the AD-
VANCED ENCRYPTION STANDARD (AES),” November
2001.

[3] “Opencores.org, the Cryptopan project,” http://www.open-
cores.org/project,cryptopan core.

[4] “Opencores.org, the Avalon AES project,” http://www.open-
cores.org/project,avs aes.

[5] “Opencores.org, the AES128 project,” http://opencores.org/
project,aes crypto core.



International Journal of Reconfigurable Computing 13

[6] “Opencores.org, the AES core project,” http://opencores.org/
project,aes 128 192 256.

[7] D. Coppersmith, D. B. Johnson, and S. M. Matyas, “A pro-
posed mode for triple-DES encryption,” IBM Journal of
Research and Development, vol. 40, no. 2, pp. 253–261, 1996.

[8] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin,
“The RC6 block cipher,” in Proceedings of the 1st Advanced
Encryption Standard (AES) Conference, p. 16, 1998.

[9] Xilinx Inc., Two Flows for Partial Reconfiguration: Module
Based or Small Bit Manipulations, Xilinx Inc., 2002.

[10] N. McKay and S. Singh, “Dynamic specialisation of XC6200
FPGAs by parial evaluation,” in Proceedings of the 8th Inter-
national Workshop on Field-Programmable Logic and Appli-
cations, from FPGAs to Computing Paradigm, pp. 298–307,
Springer, London, UK, 1998.

[11] E. Bergeron, M. Feeley, and J. P. David, “Hardware JIT com-
pilation for off-the-shelf dynamically reconfigurable FPGAs,”
in Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th International Conference on Compiler
Construction (CC ’08/ETAPS ’08), pp. 178–192, Springer,
Berlin, Germany, 2008.

[12] J. Surı́s, C. Patterson, and P. Athanas, “An efficient run-time
router for connecting modules in FPGAs,” in Proceedings of
the International Conference on Field Programmable Logic and
Applications (FPL ’08), pp. 125–130, September 2008.

[13] K. Bruneel and D. Stroobandt, “Reconfigurability-aware struc-
tural mapping for LUT-based FPGAs,” in Proceedings of the
International Conference on Reconfigurable Computing and
FPGAs (ReConFig ’08), pp. 223–228, December 2008.

[14] T. Davidson, K. Bruneel, and D. Stroobandt, “Run-time recon-
figuration for automatic hardware/software partitioning,”
in Proceedings of International Conference on Reconfigurable
Computing and FPGAs (ReConFig ’10), pp. 424–429, IEEE
Computer Society, Los Alamitos, Calif, USA, 2010.

[15] A. Kalavade and P. A. Subrahmanyam, “Hardware/software
partitioning for multifunction systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
17, no. 9, pp. 819–837, 1998.

[16] “ABC: A System for Sequential Synthesis and Verification,”
Berkeley Logic Synthesis and Verification Group, http://www
.eecs.berkeley.edu/∼alanmi/abc/.

[17] N. Seewald and K. Sissell, “Braskem triples income, postpones
venezuela projects,” Chemical Week, vol. 171, no. 22, 2009.

[18] “Opencores.org, the RC6 cryptocraphy project,” http://open-
cores.org/project,cryptography.

[19] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195–197, 1981.

[20] F. Project, “Deliverable 2.6: Report on the process of the
implementation of the Smith-Waterman algorithm on the
FPGA architecture,” November 2007.

[21] T. Davidson, K. Bruneel, H. Devos, and D. Stroobandt, “Apply-
ing parameterizable dynamic configurations to sequence
alignment,” in Proceedings of International Conference on
Parallel Computing (ParCo ’10), p. 8, Lyon, France, 2010.

[22] K. Bruneel, F. M. M. A. Abouelella, and D. Stroobandt,
“Automatically mapping applications to a self-reconfiguring
platform,” in Proceedings of Design, Automation and Test in
Europe, K. Preas, Ed., vol. 4, pp. 964–969, Nice, France, 2009.

[23] O. Blodget, P. James-Roxby, E. Keller, S. Mcmillan, and P. Sun-
dararajan, “A self-reconfiguring platform,” in Proceedings of
Field Programmable Logic and Applications, pp. 565–574, 2003.

[24] B. Al Farisi, K. Bruneel, H. Devos, and D. Stroobandt, “Au-
tomatic tool flow for shift-register-LUT reconfiguration: mak-

ing run-time reconfiguration fast and easy (abstract only),”
in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’10),
pp. 287–287, ACM, New York, NY, USA, 2010.


