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We set up an infrared-based moment problem to obtain estimates of the masses of the scalar, pseudoscalar
and tensor glueballs in Euclidean Yang-Mills theories using the Refined Gribov-Zwanziger (RGZ) version of
the Landau gauge, which takes into account nonperturbative physics related to gauge copies. Employing lattice
input for the mass scales of the RGZ gluon propagator, the lowest order moment problem approximation gives
the values m0++ ≈ 1.96 GeV, m2++ ≈ 2.04 GeV and m0−+ ≈ 2.19 GeV in the SU(3) case, all within a 20%
range of the corresponding lattice values. We also recover the mass hierarchy m0++ < m2++ < m0−+.
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There is little doubt that Quantum Chromodynamics (QCD)
displays confinement: the elementary excitations, viz. the
quarks and gluons, which carry color charge, are not observ-
able. They appear in the physical spectrum only in color-
less combinations. Although confinement has not yet been
proven, the experimental and numerical lattice evidence is
overwhelming. Next to the hadronic sector, the spectrum of
QCD is expected to exhibit glueballs, colorless purely gluonic
states. Their observation is, however, cumbersome, due to the
mixing with mesonic states with identical quantum numbers.
This complication can be circumvented by first studying pure
SU(N) Yang-Mills (YM) theory, i.e. QCD without quarks. In
this setting, there is ample lattice evidence for the existence
of glueballs, see [1] for an overview on the glueball related
literature.
In the continuum approach to QCD, one usually needs to
choose a gauge. It well known that a local and Lorentz covari-
ant gauge, which singles out only one representant per gauge
orbit, does not exist [2]. Gribov was the first to realize that the
elimination of gauge copies is a non-trivial issue [3]. Take,
for example, the Landau gauge ∂µAµ = 0, and consider an
(infinitesimal) gauge transformation, A′µ = Aµ +Dµω. Then
∂µA′µ = 0 if ∂µDµω = 0. Thus, Landau gauge copies certainly
occur when the Faddeev-Popov operator Mab = −∂µDab

µ ,
Dab

µ = ∂µδab−g f abcAc
µ has zero modes. To exclude this class

of gauge copies, it was proposed [3] to restrict the functional
integration to the region Ω =

{
Aa

µ|∂µAa
µ = 0,Mab > 0

}
. Gri-

bov, and later on Zwanziger, were able to translate this restric-
tion into the framework of local quantum field theory [3, 4].
This leads to an improved Faddeev-Popov action, known as
the GZ action,

SGZ =
∫

d4x
[

1
4

F2
µν +ba

∂µAa
µ + ca

∂µDab
µ cb

+ϕ
ac
µ ∂νDab

ν ϕ
bc
µ −ω

ac
µ ∂νDab

ν ω
bc
µ +gγ

2 f abcAa
µ

(
ϕ

bc
µ +ϕ

bc
µ

)
−g f abc

∂µω
ae
ν Dbd

µ cd
ϕ

ce
ν + γ

4d(N2−1)
]
, (1)
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with {ϕab
µ ,ϕab

µ } and {ωab
µ ,ωab

µ } a set of bosonic,
resp. fermionic fields. The parameter γ, carrying the di-
mension of a mass, is not free, but corresponds to the
nonvanishing solution of the gap equation ∂Evac

∂γ
= 0, known

as the horizon condition [4], where Evac is the vacuum energy.
The presence of the parameter γ∼ ΛQCD and the horizon con-
dition have a deep influence on the IR behavior of the gluon
and ghost propagator, a result which cannot be achieved with
perturbation theory derived from the Faddeev-Popov action.
In [5, 6], some of us showed that additional effects, under the
form of d = 2 condensates, have to be taken into account,
giving rise to the so called Refined Gribov-Zwanziger action.
The resulting gluon and ghost propagators are in agreement
with lattice data at large volume [7]. Here, we suffice to
mention that a major role is played by dynamically generated
mass terms which can be accommodated by the following
version of the GZ action [5, 6],

SGZ → SGZ +
∫

d4x
(

m2

2
Aa

µAa
µ−M2

ϕ
ab
µ ϕ

ab
µ

)
, (2)

which accounts for a d = 2 condensate in the gluon sector [8]
and one in the {ϕab

µ ,ϕab
µ ,ωab

µ ,ωab
µ } sector [5, 6]. The tree level

gluon propagator 〈Aa
µAb

ν〉k = δab
(
δµν− kµkν/k2

)
D(k2) is

D(k2) =
k2 +M2

k4 +(m2 +M2)k2 +λ4 ,λ
4 = 2g2Nγ

4 +m2M2 . (3)

In [9], it was tested inhowfar (3) could reproduce the lattice
data quantitatively. An accurate fit was possible up to k ≈
1.5 GeV, leading to the continuum extrapolated values

M2 +m2 ≈ 0.337 GeV2 ,M2 ≈ 2.15 GeV2 ,λ4 ≈ 0.26 GeV4 .

As we did not consider loop corrections, it is no surprise that
the perturbative/UV logarithmic tail is not well-reproduced
[9]. It is believed that relevant nonperturbative contributions
come from momentum space gluon configuration A(k) for
k . 1 GeV, see e.g. [10]. This suggests that expression (3)
can capture a large amount of the nonperturbative/IR content
of the gluon propagator. It is easily seen that expression (3)
has 2 cc poles, given in GeV units by

−k2 = m2
± = µ2± i

√
2θ

2 = 0.1685±0.4812i .

ar
X

iv
:1

01
0.

36
38

v3
  [

he
p-

th
] 

 1
2 

Ja
n 

20
11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55892838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:david.dudal@ugent.be,msguimaraes@uerj.br, sorella@uerj.br
mailto:david.dudal@ugent.be,msguimaraes@uerj.br, sorella@uerj.br


2

We introduced the parameters µ2 and θ2 for later convenience.
These cc masses imply a violation of positivity [12] in the
gluon propagator, again in compliance with numerical data
[11]. This can be seen as a manifestation of confinement:
gluons cannot propagate as free physical particles. We re-
mind here that, in order to have a physical meaning, an Eu-
clidean two-point correlation function F(k2) should exhibit
the Källén-Lehmann spectral representation [12]

F(k2) =
∫

∞

τ0

ρ(t)
t + k2 dt , (4)

where ρ(t) has to be positive for t ≥ τ0, as it corresponds to a
cross section by the optical theorem. The spectral density ρ(t)
contains a large amount of physical information. For example,
a pole at k2 =−m2

∗ in F(k2), i.e. a physical particle with mass
m∗, corresponds to a delta function, δ(t−m2

∗), present in ρ(t).
Usually, as YM is asymptotically free, one computes large
momentum contributions to F(k2), supplemented by nonper-
turbative OPE contributions, which are employed to estimate
physical quantities for which a truly nonperturbative analytic
evaluation is unknown. For instance, a single resonance plus
a continuum parametrization, ρ(t) = aδ(t−m2

∗)+ bθ(t− t0),
enables one to obtain estimates of the spectrum, being at the
basis of what is referred to as sum rules, moments problem,
etc., see [13].
In the current GZ context, a different approach seems to be
more appropriate. We recall that the propagator (3) is ideally
suited to describe the IR sector of YM theories in the Lan-
dau gauge. We shall first describe our set up, and afterwards
explain why we feel that it is the most appropriate way to pro-
ceed. Setting t = 1/s in (4) yields

F(k2) =
∫ 1/τ0

0

ρ(1/s)
s

1
1+ sk2 ds≡

∫
Σ0

0

σ(s)
1+ sk2 ds ,

which is ideally suited to be Taylor expanded at small k2

F(k2) = ∑
n

νn(−1)n(k2)n , (5)

where we defined the moments

νn =
∫

Σ0

0
sn

σ(s)ds . (6)

Let us also introduce

f (z) =
1
z

F
(
−1

z

)
=

∫
Σ0

0

σ(s)
z− s

ds ,

which provides us with a more standard formulation for the
(reduced) Hausdorff moment problem with finite boundaries
[14]. In general, the (reduced) moment problem amounts to
search for a spectral function σ(s) ≥ 0 capable of generating
a (finite) set of numbers νn, according to (6). This problem
has been solved in terms of Padé approximants [14], which
are rational approximations to a given function, which is here
a glueball propagator. The poles of this rational approxima-
tion can be interpreted as mass estimates for the unknown full
propagator, of which we only know the approximation F(k2).

Usually, the Padé approximant is a much better approxima-
tion to a function than its Taylor series. An expansion at small
k2 > 0 corresponds to an expansion in 1

z near z ∼ −∞. By
power counting, we see that f (z) ∼ 1

z for z ∼ −∞, thence we
shall need a Padé approximation of the type [N,N−1] [14],

f (z) =
PN−1(z)
QN(z)

+O
(
z−2N) , (7)

where N refers to the order of the polynomial. By match-
ing l.h.s. and r.h.s. of (7) up to the designated order, the co-
efficients of the polynomials PN−1(z) and QN(z) can be com-
pletely determined in terms of the moments νn. The QN will
be orthogonal polynomials over [0,Σ0] with weight σ(s) [14].
Consequently, their poles z∗ will all be real, different and lying
in the interval ]0,Σ0[. Concerning the mass estimates, these
will be then necessarily real and larger than 1/Σ0 = τ0, with
τ0 the threshold appearing in (4). An important role is played
by the positivity of σ(s) or, more precisely, by the require-
ment that the moments νn correspond to a positive weight
σ(s). This can also be characterized completely in terms of
the Padé approximants, see [14].
Before proceeding, we spend a few words on subtractions.
The UV infinities of a Green function like F(k2) will be re-
flected in the large t-behaviour of ρ(t), making the integral
(4) to blow up. These infinities can be dealt with by turning
to a subtracted spectral representation. By a sufficient number
of derivatives w.r.t. k2, let us say r, the integral (4) can be reg-
ulated. By integrating ∂rF(k2)

(∂k2)r back each time from T to k2, we
get the following finite subtracted representation

Fsub(k2)≡ (−1)r(k2−T )r
∫

Σ0

0

srσ(s)
(1+ sT )r︸ ︷︷ ︸
≡σ′(s)

1
1+ sk2 ds .

T is the subtraction scale, which can be chosen at will. As
physical results should not depend on T , we shall use the lore
of minimal sensitivity [15]. Notice that acting with ∂r

(∂k2)r is
sufficient to kill the divergent moments ν0, . . . ,νr−1 in the se-
ries (5), the residual moments are well-defined. It is clear
that any reasonable scheme capable of discussing the gener-
ation of poles in the subtracted Fsub(k2), shall do the same
for F(k2), since the difference between both expressions is
a polynomial in k2. We shall thus consider the IR moment
problem associated to the ν′n, which we define using F̂(k2) =∫ Σ0

0
σ′(s)

1+sk2 ds, so that we can introduce f̂ (z) = 1
z F̂
(
− 1

z

)
with

ν′n =
∫ Σ0

0 snσ′(s)ds < ∞.
We still need to specify exactly which moment problem we in-
tend to solve. As mentioned, the propagator (3) gives a good
description of the IR region. Evidently, a glueball operator
constructed from such gluon propagator cannot be a true ap-
proximation over the whole momentum region. Nevertheless,
we might expect that it can be trusted in the IR. Indeed, at tree
level, we can always write

Fsub(k2)

(−1)r(k2−T )r =
∫

dq
f (k,q)

q
, (8)
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where f assembles information on the gluon propagator,
tensor structures, etc. Since the r.h.s. of (8) is supposed
to be finite, so must be the l.h.s., as such we know that
limq→∞ f (k,q) < ∞ based on power counting. For small k2,
the value of the integral (8) should be dominated by low
q2, i.e. by low momentum information of the gluon propa-
gators, since we can expand the function f (k,q) = f (0,q)+
∂ f
∂k2 (0,q)k2 + . . .. Generically, acting with ∂

∂k2 on f (k,q) can
only bring down more powers of q2 in the integrand, thereby
further diminishing the effect of the UV. Similar arguments
hold for higher loop integrals, meaning that we should only
keep IR information in our glueball propagator. In general,
one could also construct an UV moment problem by expand-
ing (4) for large k2, but in the light of the previous remark, this
appears paradoxical, as the input of a Gribov-like propagator
is clearly of an IR nature. We shall thus only keep the low-
est IR moments ν′n. The more moments we keep, the “less”
IR and hence trustworthy the data becomes. In practice, we
shall only keep the 2 first moments ν′0 and ν′1, which usually
already give a very good approximation to the function one
starts with. We have now to specify which RGZ operators we
identify with glueballs. In general, given a glueball with quan-
tum numbers JPC, one needs a composite operator with ex-
actly those numbers. In the YM context, this is done by look-
ing at the appropriate classically gauge invariant operator. For
the sake of presentation, let us discuss here briefly the scalar
glueball, which ought to be related to F2

µν. We shall work
at lowest order, thus we can look at its Abelian content f 2

µν.
Upon inspection of the action (1), it is clear that the gluon and
the new fields are partially mixed up. We already mentioned
the occurrence of the 2 cc masses in the corresponding gluon
propagator. It is useful to introduce the so-called i-particles
which enable us to diagonalize the kinetic part of the action
(2). Using linear combinations of Aa

µ and {ϕab
µ ,ϕab

µ } [16], one
can diagonalize the tree level piece of (2)∫

d4x
[

1
2

λ
a
µ
(
−∂

2 +m2
+

)
λ

a
µ +

1
2

η
a
µ
(
−∂

2 +m2
−
)

η
a
µ + rest

]
.

Clearly, the cc fields λa
µ and ηa

µ have the cc masses m2
±.

We can introduce the field strengths λa
µν = ∂µλa

ν− ∂νλa
µ and

ηa
µν = ∂µλa

ν−∂νλa
µ, and verify that f 2

µν = λa
µνηa

µν + rest.
Details about the foregoing construction will be reported else-
where. The first part λa

µνηa
µν will generate a physically mean-

ingful piece in the corresponding correlator, i.e. with a Källén-
Lehmann representation, while the second part is responsible
for an unphysical piece [16]. For the remainder of this work,
we shall simply focus on the physical part of the operator. We
repeat that this approach is currently only an assumption. In
ongoing work, we are investigating whether this kind of oper-
ator can be consistently extended to the interacting quantum
level and whether it can be constructed in accordance with the
softly broken BRST [6] or with the modified BRST transfor-
mation of [17]. The previous assumption about what a physi-
cal glueball operator would look like will be justified here by
the numerical estimates for the masses which we shall be able
to work out.
Let us investigate now explicitly the scalar, pseudoscalar and

tensor glueball. For the scalar we can employ the physical part
of F2

µν, while for the pseudoscalar we look at 1
2 εµναβFµνFαβ.

For the tensor, we would use the standard operator [13]

θµν = FαµFαν−
δµν

4
F2

αβ
, (9)

which is the classical energy-momentum tensor of the con-
ventional YM action. As it is symmetric, traceless1 and
divergence-free, it is the ideal candidate to describe a pure
2++ state. But in our context we have mass scales, so the
energy-momentum tensor, which differs from (9), displays a
nonvanishing trace, giving rise to a scalar state, so that we
do not end up with a pure 2++ state. We could maintain (9)
as a candidate, but it is not conserved and so its divergence
can create vector states. It is easy to construct a traceless and
divergence-free rank 2 tensor from the operator FαµFαν. In
particular, we propose here

Θµν = ∂
4
θµν−∂

2
∂µ∂αθαν−∂

2
∂ν∂αθαµ

+∂
2
(

δµν−
2
3

Pµν

)
∂α∂βθαβ ,

with Pµν = δµν−
∂µ∂ν

∂2 the transverse projector. By construc-
tion, we have Θµν = Θνµ, next to ∂µΘµν = 0. We also find
Θµµ = 0, while for γ = 0, Θµν = ∂4θµν, so that Θµν reduces to
the derivative of the energy-momentum tensor. Thus, Θµν ap-
pears to be a useful local generalization of the normally stud-
ied energy-momentum tensor. In addition, Θµν is identical to
the rank 2 tensor employed in [19].
It remains to evaluate the spectral densities of the physical
part of the scalar, pseudoscalar and tensorial correlation func-
tions. For the threshold, we have τ0 = 2(µ2 +

√
µ4 +2θ4) =

1.3568 GeV2 ≡ 1
Σ0

. With some calculational effort one finds
(see also [20])

f♦(z) =
∫

Σ0

0

√
1
s2 −8θ4− 4µ2

s
σ
′′
♦(s)

dt
z− s

with ♦ ∈ {0++,0−+,2++} and

σ
′′
0++(s) = c0++

s3

(1+ sT )3

(
1

2s2 +2θ
4− 2

s
µ2 +3µ4

)
,

σ
′′
0−+(s) = c0−+

s3

(1+ sT )3

(
2θ

4 +
µ2

s
− 1

4s2

)
,

σ
′′
2++(s) = c2++

s7

(1+ sT )7 ×(
16

θ8

s2 −4
θ4µ2

s3 +16
θ4

s4 +9
µ4

s4 −
9µ2

2s5 +
3

2s6

)
,

where the c♦’s are positive constants, irrelevant for our pur-
poses. The [0,1] Padé approximants will be given by

P♦(z) =
−ν

′2
0

ν′1−ν′0z
. (10)

1 The trace anomaly is often ignored in a first order approximation [1].
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Employing (10), we immediately find a pole at z = ν′1/ν′0,
meaning that the mass estimate itself is given by m0++ =√

ν′0/ν′1. In the following figure, we show the results as func-
tions of the subtraction scale T

m0++

m0-+

m2++

0.5 1.0 1.5 2.0 2.5 3.0
T

2.5

3.0

3.5

4.0

mHGeVL

We now invoke the principal of minimal sensitivity to fix the
scale T . Although we are unable to find a T∗ which would
be a minimum or inflection point for m♦(T ), the situation
changes when looking at the relative masses. We find an
inflection point2 in m2++

m0++
, resp. m2++

m0−+
, given by T∗ ≈ 0.34,

resp. T∗ ≈ 0.35. It is reassuring that this optimal T∗ is al-
most identical, while it is also located in the window where-
fore m0++ < m2++ < m0−+. Setting T∗ = 0.34, we come to
main result of this letter, namely

m0++ ≈ 1.96 GeV ,m0−+ ≈ 2.19 GeV ,m2++ ≈ 2.04 GeV .
(11)

Evidently, we should not have hoped to recover the lattice data
very precisely, after all we are relying on a tree level propaga-
tor. Though, it is interesting that we are able to reproduce the
hierarchy m0++ < m2++ < m0−+ and that the mass estimates

(11) are not too far from the lattice values [1]

mlat
0++ ≈ 1.73 GeV ,mlat

0−+ ≈ 2.59 GeV ,mlat
2++ ≈ 2.40 GeV .

Comparing our results to the lattice, one sees that we are
within a 20% range. It is worth mentioning that we omitted
instanton contributions, known to be relevant for the scalar
and pseudoscalar channel, giving an attractive, resp. repulsive
contribution around 200-300 MeV, see e.g. some works of [1].
We hope to come back to this issue in future work.
Needless to say, many aspects of the Gribov-Zwanziger ap-
proach are still open. For instance, the issues of how to give
a precise definition of the physical subspace and how to prove
its unitarity remain to be unraveled. Though, given the reason-
able estimates for the masses we have obtained in a first sim-
ple approximation, the study of the spectrum of the glueballs
within the Gribov-Zwanziger framework looks very promis-
ing and viable. Let us also mention that the IR moment prob-
lem settled here could also be helpful to investigate the spec-
trum of the glueballs in other approaches, also predicting a
confining gluon propagator [18]. One could try to get as good
information as possible on the low momentum glueball opera-
tors and feed this as input to the moment problem. Arguments
based on IR power counting have already found applications
in Schwinger-Dyson inspired studies, see e.g. [21]. We hope
this letter will stimulate further research on glueballs, what-
ever approach one is inclined to work with.

We are grateful to N. Vandersickel for discussions. D. D. is
supported by the Research-Foundation (Flanders). S. P. S.
and M. S. G. acknowledge support from CNPq-Brazil, Faperj,
SR2-UERJ, CAPES and CLAF.

2 We tried the same for m0−+
m0++

, giving a zero in the third derivative, at T∗ ≈
0.35.

[1] V. Crede and C. A. Meyer, Prog. Part. Nucl. Phys. 63 (2009)
74; V. Mathieu, N. Kochelev and V. Vento, Int. J. Mod. Phys.
E 18 (2009) 1; Y. Chen et al., Phys. Rev. D 73 (2006) 014516;
S. Narison, Nucl. Phys. B 509 (1998) 312; A. B. Kaidalov and
Yu. A. Simonov, Phys. Atom. Nucl. 63 (2000) 1428 [Yad. Fiz.
63 (2000) 1428]; T. Schafer and E. V. Shuryak, Phys. Rev. Lett.
75 (1995) 1707.

[2] I. M. Singer, Commun. Math. Phys. 60 (1978) 7.
[3] V. N. Gribov, Nucl. Phys. B 139 (1978) 1.
[4] D. Zwanziger, Nucl. Phys. B 323 (1989) 513; ibid. 399 (1993)

477.
[5] D. Dudal, S. P. Sorella, N. Vandersickel and H. Verschelde,

Phys. Rev. D 77 (2008) 071501.
[6] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and

H. Verschelde, Phys. Rev. D 78 (2008) 065047.
[7] A. Cucchieri and T. Mendes, PoS LAT2007 (2007) 297; Phys.

Rev. Lett. 100 (2008) 241601; I. L. Bogolubsky, E. M. Ilgen-
fritz, M. Muller-Preussker et al., PoS LAT2007 (2007) 290.

[8] F. V. Gubarev, L. Stodolsky, V. I. Zakharov, Phys. Rev. Lett. 86
(2001) 2220-2222; F. V. Gubarev, V. I. Zakharov, Phys. Lett.
B501 (2001) 28-36.

[9] D. Dudal, O. Oliveira and N. Vandersickel, Phys. Rev. D 81
(2010) 074505.

[10] A. Cucchieri and T. Mendes, Phys. Rev. D81 (2010) 016005.

[11] P. O. Bowman et al., Phys. Rev. D 76 (2007) 094505.
[12] K. Osterwalder and R. Schrader, Commun. Math. Phys. 31

(1973) 83; ibid. 42 (1975) 281.
[13] S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17

(2002) 1.
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