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Abstract

For offline data-driven multiobjective optimization problems (MOPs), no new data is
available during the optimization process. Approximation models (or surrogates) are
first built using the provided offline data and an optimizer, e.g. a multiobjective evo-
lutionary algorithm, can then be utilized to find Pareto optimal solutions to the prob-
lem with surrogates as objective functions. In contrast to online data-driven MOPs,
these surrogates cannot be updated with new data and, hence, the approximation ac-
curacy cannot be improved by considering new data during the optimization process.
Gaussian process regression (GPR) models are widely used as surrogates because of
their ability to provide uncertainty information. However, building GPRs becomes
computationally expensive when the size of the dataset is large. Using sparse GPRs
reduces the computational cost of building the surrogates. However, sparse GPRs are
not tailored to solve offline data-driven MOPs, where good accuracy of the surrogates
is needed near Pareto optimal solutions. Treed GPR (TGPR-MO) surrogates for offline
data-driven MOPs with continuous decision variables are proposed in this paper. The
proposed surrogates first split the decision space into subregions using regression trees
and build GPRs sequentially in regions close to Pareto optimal solutions in the decision
space to accurately approximate tradeoffs between the objective functions. TGPR-MO
surrogates are computationally inexpensive because GPRs are built only in a smaller
region of the decision space utilizing a subset of the data. The TGPR-MO surrogates
were tested on distance-based visualizable problems with various data sizes, sampling
strategies, numbers of objective functions, and decision variables. Experimental results
showed that the TGPR-MO surrogates are computationally cheaper and can handle
datasets of large size. Furthermore, TGPR-MO surrogates produced solutions closer to
Pareto optimal solutions compared to full GPRs and sparse GPRs.
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1 Introduction

A multiobjective optimization problem (MOP) consists of two or more conflicting ob-
jective functions that are optimized simultaneously. The solutions of an MOP are called
Pareto optimal when the value of any objective function cannot be further improved
without degrading some of the others; thus, tradeoffs exist among the objective func-
tions. Not all real-world MOPs have analytical functions or simulation models avail-
able. Instead, the MOP may need to be formulated by utilizing the data acquired from
a phenomenon, e.g. real-life processes, physical experiments, and sensors. To solve
this MOP, first the underlying objective functions are approximated by fitting surrogates
(also known as metamodels) on the data available. Next, a multiobjective evolutionary
algorithm (MOEA) can be used to approximate the set of Pareto optimal solutions by
considering the surrogates as objective functions.

Data-driven optimization problems are classified into online and offline ones (Jin
et al., 2019). For online data-driven optimization, new data can be acquired during the
optimization process, e.g. by conducting further experiments or simulations to update
the surrogates (Shahriari et al., 2016). In contrast, for offline data-driven optimization
problems, no new data can be acquired, and the optimization has to proceed by only
using the existing data (Wang et al., 2019). Ideally, the underlying objective values of
the solutions should be better than the objective values in the provided dataset. All the
available data should be utilized to build surrogates with good approximation while
solving offline data-driven MOPs. However, when the size of the data set is large, e.g.
in Wang et al. (2016); Wang and Jin (2020), building certain surrogates like Gaussian
processes, can become computationally expensive. Because the surrogates cannot be
updated with new data while solving offline data-driven MOPs, the approximation ac-
curacy of the surrogates directly influences the closeness of the solutions to the Pareto
optimal set. Most of the previous works on offline data-driven optimization, such as
Wang et al. (2019, 2016); Wang and Jin (2020); Yang et al. (2020), considered different
surrogate modelling techniques for solving offline data-driven optimization problems.
However, these works did not consider the tradeoffs between the underlying objective
functions while building the surrogates. Other developed approaches, e.g. Mazum-
dar et al. (2019, 2022); Rahat et al. (2018); Hughes (2001), relied on the uncertainty in
the prediction of Gaussian processes to improve the quality of solutions. The previous
works on offline data-driven optimization dealing with large datasets, e.g. Wang et al.
(2016); Wang and Jin (2020) did not quantify the uncertainty, which is a critical com-
ponent in solving offline data-driven MOPs, as shown in Mazumdar et al. (2019, 2020,
2022). This paper proposes an approach to build computationally cheap surrogates
with a high approximation accuracy at the region around the Pareto optimal set. The
surrogates use a combination of regression trees and Gaussian process regression mod-
els and provide uncertainty in the prediction. The proposed surrogates are tailored
toward solving offline data-driven MOPs and are capable of handling large datasets
(tested for a maximum size of 50,000).

To study offline data-driven MOPs, data is sampled from benchmark problems for
which the Pareto optimal set is known. Knowledge of the Pareto optimal set enables
quality comparisons of the solutions obtained by different optimization approaches
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and surrogates. While solving an offline data-driven MOP, generally two types of in-
dicators are used to quantify the quality of the solutions (Mazumdar et al., 2019, 2020).
The approximation accuracy is measured in root mean squared error (RMSE) between
the approximated objective values of the surrogates and the underlying objective val-
ues. In addition, the hypervolume (Zitzler and Thiele, 1998) indicator is used to mea-
sure how close the approximated Pareto front (after evaluating with the underlying
objective functions) is to the Pareto front of the underlying MOP.

Kriging or Gaussian process regression (GPR) (Forrester et al., 2008) is a popular
choice of surrogate (Rasmussen and Williams, 2006) for solving offline problems since it
also provides information about the uncertainty in the approximation. Previous works
(Hughes, 2001; Rahat et al., 2018; Mazumdar et al., 2019, 2022) have shown that utiliz-
ing the uncertainty prediction from GPR surrogates produces solutions with improved
accuracy and hypervolume. The uncertainty prediction from GPR makes it an attrac-
tive choice of surrogates for solving offline data-driven MOPs. Most of the approaches
for solving offline data-driven MOPs build a global GPR surrogate for each objective
using all the provided data. However, full GPRs have high computational and memory
complexity when the size of the dataset (or sample size) is large. An alternative to full
GPRs is to use sparse GPRs (Snelson and Ghahramani, 2005; Titsias, 2009), which build
approximation models with a small subset of data called support or inducing points.
In Titsias (2009) a variational method was proposed to select the inducing points by
gradient descent or greedy search algorithm. However, this method becomes compu-
tationally expensive when the dataset is large. On the other hand, using fewer points
for building the surrogates reduces the approximation accuracy of the surrogates com-
pared to full GPRs (Titsias, 2009). Other works such as Emmerich et al. (2006) proposed
building GPR using only K-nearest neighbour samples from the point that is to be pre-
dicted.

While performing multiobjective optimization using surrogates, it is desirable to
obtain a good approximation accuracy at the region around the Pareto set, which is
referred to as the tradeoff region in this paper. The accuracy of the surrogates in other re-
gions of the decision space (excluding the tradeoff region) is not of utmost importance.
A possible approach to reduce the computational cost is to build local GPR surrogates
for the underlying objective functions exclusively in the tradeoff region. Using local
GPRs reduces the overall computational cost of building GPRs while providing a good
approximation accuracy at the tradeoff region. Previous works (Kim et al., 2005; Das
and Srivastava, 2010; van Stein et al., 2015) partitioned the decision space into regions
and fitted GPRs in each region. Partitioning the decision space is relatively inexpensive,
and each GPR utilizes smaller sets of data. This concept was extended by Gramacy and
Lee (2008) to fit GPRs in each region or leaf nodes partitioned by a Bayesian treed model
previously proposed by Chipman et al. (1998). In Assael et al. (2014), treed GPRs were
proposed to deal with cases where the noise is different for different samples. All the
previous works build GPRs in all the regions of the decision space. These types of GPRs
become computationally expensive, depending on the number of regions and amount
of data in each region. Moreover, these surrogates do not consider the tradeoff region
of the offline data-driven MOP during the building process.

This paper proposes treed GPR surrogates for multiobjective optimization (TGPR-
MO) which have a high accuracy around the tradeoff region and are tailored for solving
offline data-driven MOPs with continuous decision variables. First, computationally
inexpensive regression tree surrogates are built using the provided dataset. The regres-
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sion tree surrogates provide a less accurate approximation of the underlying objective
functions (compared to GPRs) (Loh, 2011) and split the decision space into regions. A
region is defined as the part of the decision space that is enclosed by the leaf node of the
fitted regression trees. The approximation accuracy of the prediction by the leaf node is
the accuracy of the region. Next, an MOEA is executed considering the regression trees
as objective functions. The solutions of the MOEA are not very accurate but provide
the approximate location of the tradeoff region. After a certain number of generations
of the MOEA, the accuracy of the trees’ prediction is improved by building GPRs at
leaf nodes within the tradeoff region. The GPRs built improve the accuracy of the so-
lutions in the region of the decision space corresponding to the leaf node they replace.
The final surrogates consist of regression trees with GPRs at a few leaf nodes providing
accurate approximations exclusively in the tradeoff region.

The TGPR-MO surrogates were tested on several instances of distance-based vi-
sualizable test problems (DBMOPP) with different numbers of decision variables and
objective functions. Various sizes of the initial dataset with different sampling strate-
gies were used in the tests. Numerical experiments showed that TGPR-MO surrogates
significantly reduced the building time for surrogates when using large size data while
solving offline data-driven MOPs. TGPR-MO surrogates also produced solutions with
a better hypervolume compared to sparse GPR surrogates.

The rest of the paper is arranged as follows. The background of offline data-driven
MOPs, GPRs, and regression trees is given in Section 2. The proposed TGPR-MO sur-
rogates are detailed in Section 3. The experimental results consisting of a comparison
of TGPR-MO surrogates with other surrogates are presented in Section 4. Section 5,
concludes and discusses the future research perspectives.

2 Background

For an offline data-driven MOP, the starting point for solving the problem is (pre-
collected) data. In this paper, we assume that the available data is the output of a
process or phenomenon. The process of generating the data is referred to as the un-
derlying objective functions of an MOP. The underlying MOP that has to be solved is
considered to be of the following form:

minimize (f1(x), . . . , fK(x))

subject to x ∈ Ω,
(1)

where K ≥ 2 is the number of objective functions and Ω is the feasible region in the
decision space <n. For a feasible decision vector x (consisting of n decision variables),
the corresponding objective vector is f(x) = (f1(x), . . . , fK(x)), where f1(x), . . . , fK(x)
are the objective (function) values.

A solution x ∈ Ω dominates another solution x′ ∈ Ω if fi(x) ≤ fi(x
′) for all i =

1, . . . ,K and fi(x) < fi(x
′) for at least one i = 1, . . . ,K. If a solution of an MOP is not

dominated by any other feasible solutions, it is called nondominated. Solving an MOP
using a multiobjective optimization algorithm e.g. an MOEA typically produces a set of
mutually nondominated solutions. The solutions of the optimization problem defined
in Equation (1) that are nondominated in the whole set Ω are called Pareto optimal
solutions.
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Build 
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Run 
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Output 
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data

Figure 1: Flowchart of a generic offline data-driven multiobjective optimization ap-
proach.

A generic way to solve an offline data-driven MOP with an MOEA as the optimizer
is shown in Figure 1. As explained in Jin et al. (2019); Wang et al. (2019), the solution
process can be divided into three components: (a) data collection, (b) formulating the
MOP and surrogate building, and (c) optimization with surrogates.

The optimization process starts with an offline dataset consisting of N samples. A
sample consists of a decision vector x and its corresponding objective vector f(x) as
a tuple of two matrices: (X,Y ) where X ∈ <N×n and Y ∈ <N×K . Each row in X
and Y is a decision vector and its corresponding objective vector, respectively. Next,
surrogates are built using all or a subset of the data. The surrogates are considered as
objective functions by an MOEA to solve the offline data-driven MOP. For simplicity
of describing a surrogate model for a single objective i, let yi ∈ <N×1 be the vector of
objective values fi(x) for all decision vectors x ∈ X .

2.1 Gaussian Process Regression

In this work, a surrogate model is built for each objective function. For simplicity in
terminologies, y is considered here instead of yi to introduce the Gaussian processes
regression (GPR) and regression trees. GPRs have been widely used in surrogate as-
sisted optimization and time-series analysis (Jin et al., 2019; Chugh et al., 2019). The
major advantage of using a GPR is its ability to provide the distribution about its pre-
diction (or the uncertainty). A GPR is a multivariate normal distribution with a mean
µ and a covariance matrix C:

y ∼ N (µ, C). (2)

For simplicity in calculations, a mean of zero is considered without loss of generality.
The covariance matrix C uses a covariance (or kernel) function to define correlation
between two samples, x and x′. In this work, we use the Matérn 5/2 kernel because
it does not make the covariance functions unrealistically smooth compared to other
kernels such as the Gaussian (or RBF) kernel. Therefore, it is more appropriate for
solving practical optimisation problems (Snoek et al., 2012). The kernel is defined as:

κ(x,x′,Θ) = σ2
f (1 +

√
5

n∑
j=1

rj +
5

3

n∑
j=1

r2j ) exp(−
√

5

n∑
j=1

rj) + σ2
t δxx′

where rj =
|xj−x′j |

lj
and xj and x′j are the jth components of the decision vector of x

and x′, Θ = (σf, l1, . . . , ln, σt) is the set of parameters in the GPR model and δxx′ is
the Kronecker delta function. The notation |xj − x′j | represents the Euclidean distance
between xj and x′j . The parameters σf, lj and σt represent the amplitude, length scale of
the jth variable and noise in the data, respectively. For more details on the significance
of these parameters, see Rasmussen and Williams (2006).
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To build a GPR model, the parameters mentioned above can be estimated by max-
imizing the marginal likelihood function:

p(y | X,Θ) =
1√
|2πC|

exp
(
− 1

2y>C−1y
)
. (3)

After estimating the parameters, the model defined in Equation (2) can be used for the
posterior predictive distribution at a new decision vector x∗. The GPR model provides
a posterior predictive distribution which is also Gaussian:

p (y∗|x∗, X,y,Θ) = N
(
κ(x∗, X,Θ)C−1y, κ(x∗,x∗,Θ)

− κ(x∗, X,Θ)>C−1κ(X,x∗,Θ)
)
. (4)

The posterior mean in the equation above is κ(x∗, X,Θ)C−1y, and the variance repre-
senting the uncertainty is κ(x∗,x∗,Θ)− κ(x∗, X,Θ)>C−1κ(X,x∗,Θ).

2.2 Regression Trees

A regression tree recursively partitions the decision space such that the provided sam-
ples with similar objective function values are grouped together (Loh, 2011). Each node
φ of the tree contains data Qφ = (Xφ,yφ) with Nφ samples, where each row of Xφ ∈
<Nφ×n is a decision vector xi and each row of yφ ∈ <Nφ×1 is its corresponding objective
value yi, i = 1, . . . , Nφ. Node φ is split into nodes φleft and φright according to parame-
ter θ = (j, t), which specifies a jth decision variable (1 ≤ j ≤ n) and a threshold t, by
partitioning Qφ into two disjoint subsets Qφ

left

θ = {(Xφleft
,yφ

left
) | (xi, yi) ∈ Qφ ∧ xij ≤ t}

and Qφ
right

θ = Qφ \ Qφ
left

θ . That is, split parameter θ partitions the samples (rows) in Qφ

according to the value of variable xj of each decision vector x ∈ Xφ.

Given a node φ and a split parameter θ, the quality of the split or the total loss is
calculated as:

G(Qφ, θ) =
Nφleft

Nφ
H(Qφ

left

θ ) +
Nφright

Nφ
H(Qφ

right

θ ), (5)

where Nφleft
and Nφright

are the number of samples in Qφ
left

θ and Qφ
right

θ , respectively, and
H(Qφ) is a loss function. For instance, the loss function for mean-squared error is:

H(Qφ) =
1

Nφ

∑
yi∈Qφ

(yi − ȳφ)2, (6)

where ȳφ is the mean objective value in Qφ. An optimal split θ∗ of a node φ can be
found by minimizing the loss function defined in Equation (5) using a single objective
optimization algorithm. In the proposed TGPR-MO surrogates, the splitting process is
recursed for both Qφ

left

θ∗ and Qφ
right

θ∗ until splitting a node would produce a leaf node with
less than a predefined minimum number of samples, Nmin.

For predicting any given decision variable value, the regression tree is traversed
to the respective leaf node. The prediction of the tree at the leaf node l, which contains
training subset Ql with N l number of samples, is ȳl = 1

N l

∑
yi∈Ql yi.
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3 Treed GPRs for Multiobjective Optimization (TGPR-MO)

The time complexity of a full GPR is cubic, which is polynomial. A suitable alternative
to reduce the computational cost is to split the dataset and build GPRs exclusively in
the tradeoff region. The proposed TGPR-MO surrogates are based on this modelling
approach. The following subsections describe the building process of the proposed
TGPR-MO surrogates. A detailed accuracy and complexity analysis and comparison
with full GPRs and sparse GPRs are also provided.

3.1 Building the TGPR-MO Surrogates

In a generalized treed GPR surrogate, first a regression tree model is built using the pro-
vided data as described in Section 2.2. The splitting at the nodes is done by minimizing
the total loss function (Equation 5). The subset of data at the lth leaf node is Ql, where
l = 1, . . . , L and L is the total number of leaf nodes in the regression tree built. A GPR
is fitted at every leaf node of the regression tree using the data Ql = (X l,yl). The GPRs
are built in a similar fashion as described in Section 2.1 by maximizing the marginal
likelihood at the leaf node l, as defined in Equation (3). The posterior predictive distri-
bution of the lth GPR is p

(
y∗|x∗, X l,yl,Θ

)
, as defined in Equation (4). Building GPRs

with smaller subsets of data reduces the overall cost of building surrogates compared
to building a GPR with the entire dataset. However, building GPRs at all the leaf nodes
becomes expensive when there are too many of them, and the data subset at each leaf
node is large. Moreover, for solving an offline data-driven MOP, an accurate approxi-
mation of the global landscape of the underlying objective functions is not required. A
good approximation of the local landscape near the tradeoff region is sufficient.

While performing multiobjective optimization using surrogates, the approxima-
tion accuracy in the tradeoff region is crucial and directly influences the quality of the
approximated Pareto optimal solutions. Hence, to obtain better quality solutions, it is
desirable to have accurate approximations in the tradeoff region. While building the
regression trees, the splits at each node divide the decision space. The leaf nodes of the
regression trees are the smallest regions the decision space is split into. In addition, the
initial approximation of regression tree surrogates (though not highly accurate) pro-
vides information about the tradeoffs between the objective functions. After building
the regression trees with all the provided data, an MOEA is run considering them as ob-
jective functions. The solutions found by the MOEA are not accurate, but they provide
an approximation of the Pareto front. The accuracy of the tradeoff region is the approxi-
mation accuracy of the region enclosed by the leaf nodes that predicts the approximated
Pareto front. Later, local GPRs are built exclusively in the leaf nodes representing the
tradeoff region and achieve an accurate approximation only in the neighbourhood of
the Pareto set. Next, the algorithm to build the treed GPR surrogates for multiobjective
optimization (TGPR-MO) tailored to solve offline data-driven MOPs is introduced.

Algorithm 1 starts with a dataset containingN samples withK objective functions
and n decision variables. First, K regression trees (one per objective function) are built
with all the provided data. Just the parameter Nmin is adjusted, and the depth of the
trees is not controlled. After building the regression trees, there can be a maximum of
N
Nmin

leaf nodes. Initially, there are no GPRs present at the leaf nodes, and the predictions
are from the regression trees (i.e., ȳl). Next, a population is initialized and an MOEA is
executed that iteratively builds GPRs at specific leaf nodes. Each iteration consists of

Evolutionary Computation Volume x, Number x 7
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Algorithm 1: Build process of TGPR-MO surrogates
Input: Offline data of size N with n decision variables and K objectives;

Nmin = minimum number of samples at a leaf node;
Imax = maximum number of iterations of building GPRs at leaves;
Gmax = maximum number of generations of the MOEA per iteration

Output: TGPR-MO surrogates
1 For each objective j = 1, . . . ,K, initialize a treed GPR surrogate by building a

regression tree using the given offline data and Nmin
2 Initialize MOEA population
3 Initialize iteration counter, I = 0
4 while I < Imax and any solution falls in the leaf nodes without GPRs do
5 Set counter of generations per iteration, G = 0
6 while G < Gmax do
7 Perform crossover and mutation and generate offspring
8 Evaluate the individuals using the treed GPR surrogates and combine

the parents and offspring
9 Perform MOEA specific selection

10 G = G+ 1

11 For each treed GPR surrogate j = 1, . . . ,K, find the leaf node that has the
maximum loss function value in the prediction of the population of s
solutions: ljML = arg maxi=1,...,sH(Ql

j
i ) where j = 1, . . . ,K

12 Build GPRs using subset Ql
j
ML for j = 1, . . . ,K

13 Replace the prediction of the trees’ leaf nodes with the built GPRs
14 I = I + 1

running the MOEA for Gmax generations (that is a predefined parameter) and building
a GPR at one leaf node in every tree. In every generation, offspring individuals are
produced using crossover and mutation operators and evaluated using the treed GPRs.
Selection of individuals is then performed using MOEA-specific selection criterion, and
the process is repeated for Gmax generations within an iteration. The inner workings of
the proposed algorithm are exemplified in two-dimensional decision spaces in Section
1 and Figure 1 of the supplementary material.

After the MOEA completesGmax generations, the approximation errors of the solu-
tions (for each objective) are compared. The comparison is done by first calculating the
loss function value, here the mean squared error, as defined in Equation (6), of the leaf
node predicting the objective values of the solutions found by the MOEA. For the treed
GPR surrogate corresponding to the jth objective, let lj1, . . . , l

j
s denote the leaf nodes

containing the s solutions found by the MOEA and let H(Ql
j
1), . . . ,H(Ql

j
s) denote the

loss function value of those leaf nodes, then one GRP is built at the leaf node i∗ with the
maximum loss value, i.e. i∗ = arg maxi=1,...,sH(Ql

j
i ), using its subset of samples Ql

j
i∗ .

If multiple solutions fall within the same leaf node, the loss value is calculated once
and only one GPR is built for that leaf node. The process of building GPRs is repeated
for j = 1, . . . ,K treed GPRs. The process of adding GPRs to the leaf nodes is repeated
until any of the following criteria are met:

8 Evolutionary Computation Volume x, Number x
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• Number of iterations has reached the predefined maximum of Imax.

• All the solutions in the MOEA’s population fall in the leaf nodes that have GPRs
built.

The regression trees perform two tasks: a) they provide an approximation of the
underlying objective functions, and b) they split the decision space into smaller regions.
Using regression trees over other clustering algorithms is advantageous since they are
optimized for reducing the prediction error. Other clustering algorithms, e.g., K-means
clustering and mean shift clustering, utilize a loss function in the decision space and
not in the objective space. Therefore, regression trees provide a good prediction of the
approximated objective functions in addition to splitting the decision space into sub-
regions. In the initial iterations, the MOEA first finds solutions using the approximation
provided by the regression tree surrogates (that may have poor accuracy). These solu-
tions have a higher approximation error , but they provide information about the trade-
off between the objective functions. To improve the approximation accuracy, GPRs are
built for solutions provided by the trees that have the maximum approximation error.
This ensures that GPRs are built exclusively in the region of the Pareto set and where
the tree’s approximation is the worst, simultaneously. In later iterations, if the decision
vector in the MOEA’s population falls within the path of the leaf node where a GPR is
already built, the posterior predictive mean of the GPR is used as the final prediction
of the surrogate. Otherwise, the prediction is the mean value at the leaf node of the
regression trees. Local GPRs are built sequentially because building a local GPR at a
leaf node improves the accuracy of the solutions in the following iteration. Thus, many
solutions found in the previous iteration (belonging to different leaf nodes of the trees)
may be eliminated as newer and better solutions are discovered. Eliminating solutions
reduces the number of local GPRs required to be built to approximate the underlying
objective functions.

Input:
Dataset

Build regression
tree surrogates


Start

Find solutions with
maximum error

Find leaf nodes on
which those solutions

fall


Build GPRs utilizing
subset of data at leaf

nodes


Stop

Run MOEA

(for building)


No

Yes

Run MOEA

(for solving the MOP)


Output:
Solutions

Building TGPR-MO surrogates

AND

any solution falls in the

leaf nodes without
GPRs ?


Figure 2: The flowchart for solving offline data-driven MOPs with TGPR-MO surro-
gates with an MOEA.
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The flowchart for solving offline data-driven MOPs with TGPR-MO surrogates is
shown in Figure 2. The approach starts with a dataset and regression trees are built
for each objective. The blocks within the dotted lines represent the building process
of TGPR-MO surrogates as described in Algorithm 1. After Algorithm 1 is completed,
the surrogates are composed of regression trees with GPRs at some of the leaf nodes.
The built TGPR-MO surrogates are then used for multiobjective optimization using a
second MOEA. Or the MOEA used in Algorithm 1 may simply continue to run from
the last population for an additional number of generations without further modifying
the surrogates.
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Figure 3: Progress of the building process of TGPR-MO surrogates for a bi-objective
DTLZ2 (a)–(c) and a DBMOPP (d)–(f) problem. The plots show the solutions (in blue)
of the MOEA (predicted by the treed GPR surrogates) at different iterations I of the
building process. The Pareto front of the underlying MOP is shown in orange ‘?’.

The building process of TGPR-MO surrogates is illustrated in Figure 3. The figures
show the solutions obtained by the MOEA in some of the iterations of Algorithm 1 for
two bi-objective test problems. The two problems are DTLZ2 with n = 10 (Figure 3a-
3c) from the DTLZ (Deb et al., 2005) test suite and a distance-based visualizable test
problem (DBMOPP) (Fieldsend et al., 2019a) with n = 2 (Figure 3d-3f). The problem
configuration for the DBMOPP problem was the same as problem P1 which can be
found in Table 1. For each problem, a dataset of size N = 2000 was generated by
Latin hypercube sampling (LHS). The MOEA used was RVEA (Cheng et al., 2016) with
standard parameter settings. The first column shows the solutions obtained by the
MOEA in the first iteration before any GPRs are built at the leaf nodes of the trees. As
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the objective values of the solutions are predicted by the regression trees, the obtained
solutions do not form a smooth Pareto front. In the second column, it can be observed
that the solutions are obtained after four more iterations. Few GPRs are built at the
leaf nodes, and the approximated Pareto front gradually becomes more smooth. At
this iteration, the objective values of the solutions are predicted by the regression trees
and GPRs at leaves for either or both the objective functions. The last column shows
the final iteration of the surrogate building process, when all solutions in the MOEA’s
population are predicted by leaf nodes that contain GPRs. Building the surrogates for
the DTLZ2 problem consumes more iterations than the DBMOPP problem instance.
This behavior is due to the Pareto set of DTLZ problems that is located in a larger
region of the decision space. Hence, more GPRs are required to be built at the leaves of
the trees to approximate the tradeoff region accurately.

Figure 4: Illustration of the building process of GPRs at leaf nodes of the regression
trees in two subsequent iterations. Red leaf nodes denote a GPR that has built using
the subset of data.

Figure 4 shows an illustration of the leaf node that is considered for building GPRs
for two subsequent iterations in a bi-objective minimization problem. The iteration
I ∈ {1, 2} and the objective j ∈ {1, 2} are also indicated. The red coloured leaf nodes
are chosen for building GPRs at each iteration. In the first iteration, the solutions are
predicted by nodes 4 and 5 for the first objective and node 5 for the second objective.
Node 4 and node 5 for the first and second objective’s tree have the highest RMSE.
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Hence, GPRs are built using the subset of data in those leaf nodes. In the second iter-
ation, the solutions predicted by the trees are from node 4 and node 5 (with the GPR
built) for the first objective. For the second objective, the solutions are predicted by leaf
node 4 and node 5 (with the GPR built). The process of building GPRs is repeated at
node 4 and node 5 for the first and second objective’s trees, respectively. The process
will be repeated until the stopping criteria mentioned before are satisfied.

3.2 Accuracy Analysis

The fitness landscape of a bi-objective DBMOPP problem with n = 2 (with the same
configuration as P1 in Table 1) is illustrated in Figure 5. The figures show the accuracy
of the approximation of full GPR, sparse GPR, and TGPR-MO surrogates. The accuracy
is measured as the RMSE (described later in subsection 4.1) between the approximated
objective values of the surrogates and the evaluated values of the underlying objective
functions. The number of samples in the dataset was N = 2000 with Latin hyper-
cube sampling (LHS). The contour lines represent the underlying objective functions’
landscape in Figure 5a and the approximated objective functions’ landscape in Fig-
ure 5b–5d. A further close-up of the tradeoff regions for the sparse GPR and TGPR-MO
surrogates are shown in Figure 5e and 5f, respectively. The color grading represents the
RMSE between the approximated and the underlying objective functions, and the blue
dots represent the Pareto set.

It can be observed that full GPRs (that use all the data) in Figure 5b have the highest
accuracy in all the approximated regions of the decision space. For the sparse GPR
surrogates in Figure 5c, the accuracy is good in all the regions with deterioration near
the Pareto set. In the case of the proposed TGPR-MO surrogates in Figure 5d, the
accuracy is low in most of the regions of the decision space except near the Pareto
set. It can also be observed that the contour lines are linear in most regions because of
the prediction provided by the leaf nodes of the trees. However, near the Pareto set the
GPRs at the leaf nodes are used for predictions, thus making the contours non-linear.
Comparing the accuracy near the Pareto set for sparse GPR and TGPR-MO surrogates
in Figure 5e and Figure 5f, it is evident that TGPR-MO surrogates provide a better
approximation accuracy compared to sparse GPR surrogates.

3.3 Complexity

While building TGPR-MO surrogates, a maximum of K GPRs are built in every iter-
ation. These GPRs can have Nmin to 2Nmin − 1 samples, because a split at the node
of a tree occurs when the subset size is larger than or equal to 2Nmin. Thus every leaf
node has at least Nmin samples and a maximum of 2Nmin − 1 samples. As these local
GPRs have a smaller number of samples, the computational cost is low. The complex-
ity of building TGPR-MO surrogates can vary depending on the function landscape,
the number of decision variables, and the provided data. The worst-case complexity
will be achieved when GPRs are built at all the leaf nodes of the regression tree with
2Nmin − 1 samples at each leaf node. The complexity of building a GPR at a leaf node
is O((2Nmin − 1)3). As the total number of leaf nodes (in the worst case) is N

2Nmin−1 , the
total complexity of building GPRs at all the leaf nodes is O(N(2Nmin − 1)2). For an
MOP withK objective functions, the worst case time complexity isO(KN(2Nmin−1)2)
with a memory complexity of O(KN(2Nmin − 1)).
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Figure 5: Contour plots of the (a) underlying objective function, landscape approxi-
mated by (b) full GPRs, (c) sparse GPRs, and (d) the proposed TGPR-MO surrogates.
Close up of the Pareto set for (e) sparse GPRs and (f) the proposed TGPR-MO surro-
gates. The contour lines (in solid and dotted) indicate the value of objective functions
f1(x) and f2(x), respectively. Colour shade represents the RMSE in the approximation
(darker is higher RMSE), and the blue dots show the Pareto set.
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Even in the worst case, the computational cost of building TGPR-MO surrogates is
significantly smaller than building full GPRs that have time and memory complexities
of O(N3) and O(N2), respectively. The complexity for building sparse GPRs with M
(where M < N ) inducing points is O(KNM2). However, as mentioned previously,
finding the induction points uses a gradient descent or greedy search algorithm that
becomes expensive when the sample size is large, increasing the overall computational
cost. In contrast, the complexity of TGPR-MO surrogates during optimization is pri-
marily due to evaluating the individuals using the regression trees and GPRs at the
leaves, which is significantly lower. The optimization results and comparisons of the
proposed TPGR-MO surrogates with other surrogate models are shown in the next sec-
tion.

4 Experimental Results

The goal of the proposed TGPR-MO surrogates is to build computationally cheaper
surrogates when dealing with large datasets for solving offline data-driven MOPs. This
section reports the tests performed to find whether TGPR-MO surrogates have signifi-
cant improvement over sparse GPRs and full GPRs in computation time and the qual-
ity of the solutions (in hypervolume and accuracy). The starting point of the experi-
ments was data generated from distance-based visualizable test problems (DBMOPP)
(Fieldsend et al., 2019a) for a better understanding of the behaviour of the surrogates.
For the DBMOPP test problems, the solutions in the decision and objective spaces can
be simultaneously visualized. Thus, the search behaviour can be observed with the
progress of the optimization process. In addition, the complexity of these problems
can be controlled by the features (e.g., varying density, number of local fronts, domi-
nance resistance regions, numbers of objective functions and decision variables). These
advantages provide more control over the problems and make them adjustable to re-
flect the needs of real-world optimisation problems. These features of DBMOPP test
problems prove to be more advantageous compared to DTLZ (Deb et al., 2005) bench-
mark problems. A detailed description of the experiment settings, results, and in-depth
analysis are provided in the following subsections.

4.1 Experimental Setup

All the approaches for solving the offline data-driven MOP were coded in Python utiliz-
ing the DESDEO framework (Misitano et al., 2021) (https://desdeo.it.jyu.fi).1

The experiments were executed on one node of an HPC cluster equipped with AMD
Rome CPUs, each node having 128 cores running at 2.6 GHz, with 256 GiB of mem-
ory. Each individual run was executed on one CPU core and allocated a maximum
memory usage of 2 GiB. The regression tree was built using the sklearn Python pack-
age (Pedregosa et al., 2011). For building the GPRs at the leaf nodes the GPy (GPy,
2012) Python package was used.

4.1.1 Benchmark problems

Four DBMOPP problems P1-4 as shown in Table 1 were used. The problem instances
and data were generated by the code provided by Fieldsend et al. (2019b). All com-
binations of numbers of objective functions (K ∈ {3, 5, 7}) and numbers of decision

1Source code available at https://github.com/industrial-optimization-group/TreedGP MOEA
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Table 1: Configurations of the DBMOPP problems used.

Problem Configuration Dimension (n) Objectives (K)

P1

number of disconnected set regions = 0,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

2, 5, 7 and 10 3, 5, and 7

P2

number of disconnected set regions = 1,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

2, 5, 7 and 10 3, 5, and 7

P3

number of disconnected set regions = 2,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

2, 5, 7 and 10 3, 5, and 7

P4

number of disconnected set regions = 0,
number of local fronts = 0,

number of dominance resistance regions = 1,
number of discontinuous regions = 0

2, 5, 7 and 10 3, 5, and 7

variables (n ∈ {2, 5, 7, 10}) were used for the tests. The total number of problem in-
stances tested was 48, and every problem instance represented a different type of prob-
lem characteristic.

4.1.2 Datasets

For generating the data, Latin hypercube sampling (LHS) and multivariate normal
sampling (MVNS) (Forrester et al., 2008) were used. In MVNS sampling, the objec-
tive functions were considered independent with mean at the mid-point of the decision
space, that is, zero for DBMOPP problems. The variance of the sampling distribution
was set to 0.1 for all the objective functions. Using MVNS sampling tests the ability of
the surrogate models and optimization algorithm to handle biased (or skewed) datasets
(Mazumdar et al., 2022). Sample sizes of initial data (N ∈ {2000, 10000, 50000}) were
chosen for the tests. A total of 288 cases were tested, and 31 sets of data with a ran-
dom seed were generated for each test case. Each of these dataset were the starting
point of the three different surrogate models that were tested. These individual runs
were independent, and the results were used to compare the surrogates’ performances
statistically.

4.1.3 Settings for TGPR-MO surrogates

The MOEA for building TGPR-MO surrogates was RVEA (Cheng et al., 2016),
a decomposition-based MOEA (Zhang and Li, 2007; Deb and Jain, 2014).
Decomposition-based MOEAs have shown to be effective in solving offline data-driven
MOPs with more than three objective functions. However, the surrogate is not limited
to RVEA and one can use any MOEA of choice. The parameters for RVEA were kept
the same as suggested by Cheng et al. (2016). The parameter Gmax was set to 50. The
maximum number of iterations was set to Imax = N

Nmin
= N

10n . Such a value of Imax was
chosen considering one GPR is built at a leaf node for all the trees in each iteration (as
the maximum number of leaf nodes is N

Nmin
). The loss function used for building the

trees was MSE as mentioned in Equation (6) with Nmin = 10n. These parameters were
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chosen because sufficient design points are necessary for building GPRs at the leaves.
Based on recommendations from the GPR literature (Chapman et al., 1994; Jones et al.,
1998), at least 10n points are required at each leaf node. The kernel used for building
the GPRs at the leaf nodes was Mátern 5/2 with automatic relevance determination
enabled.

4.1.4 Other surrogates tested

The proposed TGPR-MO surrogates were compared with sparse GPR and full GPR
surrogates. The same GPy package and kernel were used for building both of these
surrogates as for the TGPR-MO surrogates. For sparse GPR surrogates, the number of
induction points was set to M = 10n. Here the overall process of solving an offline
data-driven MOP with a specific surrogate is referred to as an approach for simplicity. It
should be noted that random forest was not considered in the tests as the focus of this
paper is on GPR surrogates.

4.1.5 Parameter settings of MOEA (for solving the offline data-driven MOP)

For solving the offline data-driven MOP with surrogates as objective functions, RVEA
with the same default parameter settings was used. The termination criterion for RVEA
was 1000 generations, which was sufficient for all the approaches tested to converge. To
generate a uniform Pareto front, the reference vectors are rearranged or adapted after
a certain number of generations in RVEA. The reference vector adaptation rate was set
to once every 100 generations.

4.1.6 Performance indicators

The quality of the solutions obtained by the MOEA was measured in terms of their hy-
pervolume (HV) after evaluating them with the underlying objective functions of the
test problems. For computing the HV indicator, the reference point of y∗ = (y∗1 , y

∗
2 ,

. . . , y∗K) in the objective space was chosen, such that is dominated by all the solutions.
In this paper, the reference point used was y∗ = (2

√
K, 2
√
K, . . . , 2

√
K) because this

point is always dominated in DBMOPP problems. The multivariate RMSE of the ob-
jective values of the solutions obtained by the MOEA with their respective underlying
objective values was used to measure the accuracy. The multivariate RMSE is the Eu-
clidean distance between the approximated and evaluated underlying objective func-

tion values of the solutions and is given by 1
s

∑s
i=1

√∑K
j=1(f̂j,i − fj,i)2, where s is the

number of solutions, f̂j,i and fj,i are the approximated and the underlying objective
value, respectively, for the ith solution and jth objective. Finally, the computational
cost of the various methods was measured as the time taken in seconds to build the
surrogates.

In this paper, multivariate RMSE is referred to as RMSE for simplicity. The hyper-
volume and RMSE indicators are used here to benchmark the performance of TGPR-
MO surrogates for solving an offline data-driven MOP. Evaluating the solutions with
the underlying objective functions in an offline data-driven MOP may not be possible
in real life.
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4.2 Results and Discussions

While running the experiments, it was observed that building full GPR surrogates with
10 000 and 50 000 sample sizes consistently gave out-of-memory errors. The storage
complexity of full GPRs is O(KN2) and each element of the array is a 64-bit float.
Hence, the memory requirement for three objective functions and sample sizes of 10 000
and 50 000 is 2.3 GiB and 56 GiB, respectively. Thus, building GPR surrogates using all
the provided offline data will become almost impossible with readily available comput-
ing resources when the sample size is large. Hence the results for full GPR surrogates
are not included for sample sizes of 10 000 and 50 000.

A pairwise Wilcoxon two-tailed significance test was conducted to compare the
performance of the different approaches. The calculated p-values were Bonferonni cor-
rected, and α = 0.05 was considered for rejecting the null hypothesis (an approach is
not significantly better or worse than another approach). The median values were com-
pared to determine whether an approach is significantly better or worse than another
one, provided that the p-value is less than α. A pairwise comparison of the approaches
with a scoring system was used for ranking the approaches. An approach is given a
score of +1 if it is significantly better than the other approach. A score of −1 is given
to the approach if it is significantly worse than the other approach. If the approach is
not significantly better or worse than the other approach, a score of zero is given to
both approaches. The sum of the scores is used for ranking all the approaches (a higher
score gives a better rank) for the indicator being compared. A rank of ‘1’ indicates that
an approach has performed significantly better than all other approaches. Equal ranks
indicate that those approaches are not significantly different in their performance.

The performance of the approaches is summarized in Table 2. The ranks of the ap-
proaches for three different indicators are colour coded in green, yellow, and red in the
order of best to worst. It should be noted that these rankings are categorized with re-
spect to the sample size and sampling strategies. The total number of instances is 96 (48
for LHS and MVNS each) for each sample size. Each instance consists of the combina-
tion of the various problem settings, i.e. the number of samples (N ), sampling strategy,
number of objective functions (K), number of decision variables (n) and problem con-
figuration. The number of instances in which full GPRs or sparse GPRs perform better,
worse, or not significantly different compared to the proposed TGPR-MO surrogates is
denoted by “+”, “−” and “≈” respectively. For TGPR-MO surrogates, only the num-
ber of instances where it performed significantly better than both full GPRs and sparse
GPRs (or it ranked the best) is shown.

The rows measuring “Time” in Table 2 show that the proposed TGPR-MO surro-
gates were computationally the cheapest compared to the full GPR and sparse GPR
for different sample sizes and sampling strategies. The number of instances TGPR-MO
performed significantly better than the other two surrogates in each sub-category is
close to 48 (that was the total number of instances in each sub-category). The TGPR-
MO surrogates performed better than sparse GPR surrogates in hypervolume for all
sample sizes and sampling strategies. However, full GPRs performed the best in hy-
pervolume for a sample size of 2000. For 2000 samples, sparse GPRs outperformed
TGPR-MO surrogates for both sampling strategies in RMSE and full GPR performed
the best. The RMSE of the solutions for TGPR-MO surrogates was better than sparse
GPRs for samples sizes of 10000 and 50000 for LHS sampling only. Whereas, for MVNS
sampling the sparse GPR slightly outperformed TGPR-MO surrogates for 10000 and
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Table 2: Summary of pairwise comparison of the hypervolume (HV), RMSE, and time
(seconds) for the different approaches. The number of instances in which full GP and
sparse GP surrogates perform better, worse, and not significantly different compared
to the TGP-MO surrogates is indicated by “+”, “-” and “≈”, respectively. The full GP
runs failed due to memory overflow in the instances marked “—”. The approaches’
performance is ranked by the color code green, yellow, and red in the order of best to
worst, respectively.

Sample
size

Sampling
strategy Indicator

Surrogate type

Full GP Sparse GP TGP-MO
+ / - / ≈ + / - / ≈ +

2000

LHS
HV 9 / 9 / 30 4 / 38 / 6 9

RMSE 43 / 2 / 3 19 / 21 / 8 1
Time (s) 0 / 48 / 0 1 / 46 / 1 46

MVNS
HV 17 / 14 / 17 14 / 28 / 6 12

RMSE 34 / 7 / 7 20 / 16 / 12 2
Time (s) 0 / 48 / 0 1 / 47 / 0 47

10000

LHS
HV — 4 / 33 / 11 33

RMSE — 19 / 23 / 6 23
Time (s) — 0 / 48 / 0 48

MVNS
HV — 11 / 29 / 8 29

RMSE — 21 / 16 / 11 16
Time (s) — 0 / 48 / 0 48

50000

LHS
HV — 3 / 35 / 10 35

RMSE — 15 / 24 / 9 24
Time (s) — 0 / 48 / 0 48

MVNS
HV — 10 / 29 / 9 29

RMSE — 23 / 19 / 6 19
Time (s) — 0 / 48 / 0 48
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Table 3: Comparison of selected test instances showing the median hypervolume,
RMSE and time and their standard deviation (in italics) of the 31 test runs. The best
performing approaches are shown in bold.

Sample
size

Sampling
strategy Problem K n

Hypervolume RMSE Time (s)

Full GPR Sparse GPR TGPR-MO Full GPR Sparse GPR TGPR-MO Full GPR Sparse GPR TGPR-MO

2000

LHS

P3 3 5
7.54E+01 5.49E+01 7.48E+01 4.18E-02 1.04E+00 2.67E-01 1.36E+02 8.64E+01 1.40E+01
4.02E+00 9.35E+00 2.73E+00 2.74E-01 5.72E-01 1.38E-01 1.85E+01 2.16E+01 1.20E+01

P4 5 10
1.46E+04 1.27E+04 1.64E+04 1.75E+00 1.79E+00 9.33E-01 6.16E+02 5.51E+02 2.62E+01
6.73E+02 1.23E+03 5.59E+02 3.69E-01 4.38E-01 1.66E-01 1.40E+02 1.43E+02 1.12E+01

P3 7 5
9.21E+06 6.55E+06 9.23E+06 5.11E-02 2.16E+00 1.66E-01 3.20E+02 2.10E+02 2.83E+01
1.00E+05 1.24E+06 9.32E+04 8.26E-02 9.70E-01 1.11E-01 5.38E+01 3.46E+01 1.53E+01

MVNS

P3 3 10
5.71E+01 5.65E+01 6.27E+01 1.08E+00 1.52E+00 8.55E-01 3.25E+02 3.56E+02 1.31E+01
4.14E+00 6.35E+00 5.10E+00 4.65E-01 6.09E-01 1.99E-01 6.76E+01 1.19E+02 2.45E+00

P2 5 10
1.26E+04 1.06E+04 1.30E+04 1.86E+00 2.76E+00 2.04E+00 5.34E+02 5.51E+02 1.39E+01
2.08E+03 2.10E+03 1.20E+03 1.95E-01 1.59E-01 2.78E-01 1.01E+02 7.64E+01 8.00E+00

P2 7 7
7.81E+06 6.42E+06 8.82E+06 7.80E-01 3.76E+00 9.80E-01 3.57E+02 4.36E+02 1.27E+01
5.36E+05 2.62E+05 5.30E+05 2.07E-01 8.55E-01 2.38E-01 4.40E+01 6.32E+01 1.69E+01

10000

LHS

P3 3 5 —–
6.26E+01 7.58E+01

—–
8.95E-01 1.50E-01

—–
1.45E+03 2.49E+01

9.78E+00 5.93E-01 4.85E-01 5.05E-02 2.22E+02 8.80E+00

P4 5 10 —–
1.27E+04 1.65E+04

—–
2.10E+00 7.09E-01

—–
6.52E+03 5.93E+01

6.09E+02 8.26E+02 2.22E-01 2.28E-01 1.24E+03 2.11E+01

P1 7 10 —–
6.71E+06 8.59E+06

—–
1.56E+00 9.73E-01

—–
9.37E+03 3.78E+01

1.90E+05 2.61E+05 1.84E-01 8.82E-02 1.38E+03 1.32E+01

MVNS

P3 3 10 —–
4.97E+01 6.27E+01

—–
1.68E+00 9.09E-01

—–
4.12E+03 1.42E+01

5.40E+00 3.31E+00 3.40E-01 1.52E-01 6.69E+02 1.52E+00

P3 5 5 —–
1.23E+04 1.75E+04

—–
2.32E+00 1.83E-01

—–
2.38E+03 4.73E+01

2.50E+03 3.15E+02 1.10E+00 1.22E-01 4.65E+02 1.19E+01

P3 7 5 —–
6.55E+06 9.24E+06

—–
2.91E+00 1.22E-01

—–
3.51E+03 8.94E+01

1.22E+06 1.01E+05 1.34E+00 1.42E-01 6.54E+02 3.02E+01

50000

LHS

P3 3 10 —–
6.04E+01 7.30E+01

—–
8.29E-01 3.91E-01

—–
2.16E+04 3.16E+01

7.28E+00 2.62E+00 6.08E-01 8.63E-02 1.77E+03 9.25E+00

P3 5 10 —–
1.45E+04 1.65E+04

—–
8.64E-01 6.18E-01

—–
3.59E+04 3.90E+01

4.10E+02 4.04E+02 2.10E-01 1.20E-01 6.29E+03 1.10E+01

P1 7 10 —–
7.49E+06 8.65E+06

—–
9.20E-01 7.44E-01

—–
5.05E+04 8.77E+01

1.12E+05 1.65E+05 9.23E-02 8.59E-02 9.41E+03 3.44E+01

MVNS

P3 3 5 —–
5.27E+01 7.59E+01

—–
1.77E+00 9.73E-02

—–
8.19E+03 5.29E+01

1.14E+01 4.41E-01 9.11E-01 5.04E-02 6.35E+02 2.07E+01

P3 5 5 —–
1.25E+04 1.76E+04

—–
2.73E+00 1.43E-01

—–
1.34E+04 8.68E+01

2.04E+03 3.03E+02 1.13E+00 1.49E-01 7.96E+02 4.14E+01

P3 7 5 —–
6.55E+06 9.26E+06

—–
3.75E+00 9.81E-02

—–
1.87E+04 1.91E+02

1.05E+06 1.18E+05 1.45E+00 1.36E-01 2.24E+03 7.59E+01

50000 samples.

For a smaller sample size one may choose full GPRs because they give the best per-
formance in hypervolume and RMSE. However, full GPRs become almost impossible
to build due to their high computational cost when the sample size is large. One can
use TGPR-MO surrogates for larger sample sizes because they perform better in hy-
pervolume and RMSE and excellently in computation time compared to sparse GPRs.
However, for non-uniform sampling strategies, e.g. MVNS, TGPR-MO surrogates suf-
fer slightly in RMSE compared to sparse GPR surrogates. Sparse GPR surrogates have
better RMSE than TGPR-MO surrogates because the variational parameters are selected
by minimizing the KL divergence. Thus, the inducing inputs selected are not skewed
even if the provided dataset is e.g., in MVNS sampling.

The performances of a few selected instances are shown in Table 3. The table shows
the median and the standard deviation of hypervolume, RMSE, and time taken to build
the surrogates for the three different approaches for 31 runs. The instances shown in the
table were chosen based on the maximum difference between the median hypervolume
of the best and the second best performing surrogates. One instance was selected from
each sample size, sampling strategy and number of objective functions. The figures in
bold represent the best performing approaches. It can be observed that the proposed
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TGPR-MO surrogates performed the best in building time in the instances shown. It
can also be observed that TGPR-MO surrogates produce solutions with an improved
hypervolume and RMSE for sample sizes of 10000 and 50000 compared to sparse GPR
surrogates. It can be observed that the building times of TGPR-MO surrogates are lesser
than sparse GPR by an order of about 102 and 103 for samples size of 10000 and 50000
respectively. The building time also increases with the number of objective functions
for sparse GPR surrogates.

The total number of samples utilized to build TGPR-MO surrogates with the num-
ber of iterations for six different problem instances with sample sizes of 2000, 10000,
and 50000 is shown in Figure 6. The solid line shows the mean number of samples
used, and the shaded region denotes the 95% confidence interval of the runs for each
treed GPR surrogate (for each objective). The plots have been extended in the itera-
tion axis to the maximum allowed iterations, Imax = N

10n . The iteration axis is broken
when Imax is large to reduce the width of the plots. It can be observed that the number
of samples utilized converges before the maximum iterations and varies with the ob-
jective. Certain problem instances required more samples during the building process
than others, especially due to the number of decision variables and the characteristics
of the problem. If the tradeoff region is located in a smaller region of the decision space,
the building process converges quickly and therefore consumes less samples.

The quantity of data available at the tradeoff region affects the accuracy and hy-
pervolume of the solutions obtained that is a general challenge while solving offline
data-driven MOPs. The proposed TGPR-MO surrogates split the decision space into
sub-regions and approximate the underlying objective functions at the tradeoff region.
It is best suitable when the Pareto set is located in a smaller region of the decision space.
When the Pareto set is in a larger region, the prediction of TGPR-MO surrogates is from
multiple leaf node GPRs and has discontinuities near the splits of the regression trees.
Therefore the approximated Pareto front has some discontinuities compared to sparse
GPRs or full GPRs. Further tests with the DTLZ (Deb et al., 2005) benchmark problems
are given in the supplementary material.

5 Conclusions

This paper proposed tailored surrogate models that can be built with a lower compu-
tational cost compared to sparse GPRs and full GPRs for solving offline data-driven
MOPs when dealing with large datasets. The proposed TGPR-MO surrogates per-
formed significantly better than sparse GPR surrogates in hypervolume, RMSE, and
computation time for most of the instances of the DBMOPP problems. The full GPR
surrogates failed to complete the runs for larger sample sizes due to memory restric-
tions. Thus, it can be concluded that the proposed TGPR-MO surrogates are best suited
for solving offline data-driven MOPs with a large size dataset.

A GPR at a leaf node of a tree approximates certain regions of the decision space.
This feature can be exploited while solving offline data-driven MOPs with preferences
from the decision maker in an a priori or interactive fashion. The provided preferences
for objective functions can be utilized to build GPRs at the leaf nodes, and only the
solutions that follow the preferences can be approximated. Developing an interactive
framework utilizing the TGPR-MO surrogates will be one of the future works.

Utilizing the correlation between the objective functions using multi-target regres-
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Figure 6: The median and 95% confidence interval of the total number of samples uti-
lized (or the sum of the samples available at the leaf nodes that are considered for
building GPRs) with iterations for three different DBMOPP problem instances as dis-
played according to the following format (N , sampling strategy, problem, K, n). The
iteration axis is extended to the maximum possible iteration N

10n . The iteration axes for
plots 6c-6f are broken to accommodate the plots.

sion trees (Osojnik et al., 2018) and multi-output GPRs (Borchani et al., 2015) is an in-
teresting future research direction. Tests and comparisons of the uncertainty prediction
provided by the proposed TGPR-MO surrogates will be conducted for solving offline
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data-driven MOPs. Selecting a suitable kernel for a given dataset is an active research
topic. Integrating automatic kernel selection into the TGPR-MO surrogates will be quite
beneficial. One of the major drawbacks of the TGPR-MO surrogates is the discontinuity
between the leaf node GPRs. Tackling discontinuity in the prediction (van Stein et al.,
2015; Wang et al., 2017) at the partition of the decision space (as provided by the tree)
will be a future task. Further improvements can be made in the way the trees partition
the decision space. Instead of using a traditional loss function, a nonlinear tradeoff
criterion can be formulated to split the nodes. Such splitting criteria will enable the
TGPR-MO surrogates to approximate the tradeoff region with fewer samples. Testing
the TGPR-MO surrogates for solving real life offline data-driven MOPs will be a future
task.
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number 311877) and is related to the thematic research area DEMO (Decision Analytics utilizing
Causal Models and Multiobjective Optimization, http://www.jyu.fi/demo) of the Univer-
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