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Abstract—Several generalizations of the Choquet integral have
been applied in the Fuzzy Reasoning Method (FRM) of Fuzzy
Rule-Based Classification Systems (FRBCS’s) to improve its
performance. Additionally, to achieve that goal, researchers
have searched for new ways to provide more flexibility to
those generalizations, by restricting the requirements of the
functions being used in their constructions and relaxing the
monotonicity of the integral. This is the case of CT-integrals,
CC-integrals, CF-integrals, CF1F2-integrals and dCF-integrals,
which obtained good performance in classification algorithms,
more specifically, in the fuzzy association rule-based classification
method for high-dimensional problems (FARC-HD). Thereafter,
with the introduction of Choquet integrals based on restricted
dissimilarity functions (RDFs) in place of the standard difference,
a new generalization was made possible: the d-XChoquet (d-XC)
integrals, which are ordered directional increasing functions and,
depending on the adopted RDF, may also be a pre-aggregation
function. Those integrals were applied in multi-criteria decision
making problems and also in a motor-imagery brain computer
interface framework. In the present paper, we introduce a
new FRM based on the d-XC integral family, analyzing its
performance by applying it to 33 different datasets from the
literature.

Index Terms—d-XChoquet integral, pre-aggregation functions,
OD-increasing functions, Fuzzy Rule-Based Classification System

I. INTRODUCTION

There are many techniques to solve classification prob-
lems [1]. It is possible to mention as examples: Support Vector
Machines (SVM) [2], Decision Trees [3], Neural Networks
(NNs) [4] and Fuzzy Rule-Based Classification Systems (FR-
BCS’s) [5]. The last are considered in this paper and have been
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applied in different situations, such as, big data [6], image
segmentation [7], health [8], anomaly detection [9] and many
others.

An important point of an FRBCS is the Fuzzy Reasoning
Method (FRM) [10], [11]. The FRM is composed by four
different steps, where one of them is responsible to aggregate
the information, per class, of the fired rules of the system. To
do so, it is applied an aggregation function [12], [13]. Thus,
depending on the considered function, the system will perform
the final classification in different ways.

The Choquet integral [14] is a well know operator in the
field of aggregation functions [12], which was already applied
in FRM, as the work by Barrenechea et al. [15], which
presented a new FRM that accounts the usage of all given
information by the fired fuzzy rules when classifying a new
instance. This was achieved by applying the standard Choquet
integral as aggregation operator in the process. Following
this approach, Lucca et al. [16] introduced the concept of
pre-aggregation functions, which lead to the development of
several generalizations of the Choquet integral [17], e.g., CT−,
CC-, CF -, CF1,F2 - and gCF1,F2 -integrals [16], [18]–[23].
These advances in generalizing the standard Choquet integral,
aiming at restricting the requirements of the functions being
used in their constructions and also relaxing the monotonicity
of the integral, were applied with success in the FRM of FR-
BCS. CT - and CC-integral were also applied to multi-criteria
decision making problems [24], [25] and image processing
[26].

Then, Bustince et al. [27] introduced a generalization of the
Choquet integral by restricted dissimilarity functions (RDF)
[28] in place of the standard difference, in order to provide
more flexibility and also to allow its use in cases where
the difference may not be the best choice. Then, Wieczynski

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.



et al. [29] introduced the dCF -integrals, a generalization of
the Choquet integral by means of two functions, F and
RDFs. More recently, Wieczynski et al. [30] have proposed a
generalization of the expanded form of the standard Choquet
integral using RDFs, called d-XC integrals, with application to
multi-criteria decision making problems and also in a motor-
imagery brain computer interface framework.

In this work, we aim to study the behavior of d-XC
integrals when applied in the FRM of FRBCS, by using
6 different d-XC integrals, analyzing their performance and
making a comparison of the results. This is done to improve
the performance of the FRBCS when compared to it using
CC-integrals.

This work is organized as follows. Section II presents the
background theory in respect to the following sections. Section
III reviews the definition of the d-XC integral and its main
properties. In Section IV, we present the new framework of
FRBCS. Then, Section V presents and discuss the results of
using 6 different d-XC integrals in the process. Lastly, Section
VI is the conclusion thoughts of the work.

II. BACKGROUND THEORY

This section is dedicated to present the preliminary concepts
and notations necessary to develop the paper.

A fuzzy set (FS) [31] F on a universe U is given
by a membership function µF : U → [0, 1], as F =
{⟨x, µF (x)⟩ | x ∈ U} .

A function A : [0, 1]n → [0, 1] is an aggregation function
(AF) [32] if:

(A1) A is increasing in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then

A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions:
(i) A(0, . . . , 0) = 0 and (ii) A(1, . . . , 1) = 1.

A function F : [0, 1]n → [0, 1] is averaging if and only if
(AV) ∀(x1, . . . , xn) ∈ [0, 1]n it holds

min{x1, . . . , xn} ≤ F (x1, . . . , xn) ≤ max{x1, . . . , xn}.

Now, we recall the concept of directional monotonicity [33].
Let r = (r1, . . . , rn) be a real n-dimensional vector such that
r ̸= 0 = (0, . . . , 0). A function F : [0, 1]n → [0, 1] is said to
be r-increasing if, for all x = (x1, . . . , xn) ∈ [0, 1]n and c > 0
such that x+ cr = (x1+ cr1, . . . , xn+ crn) ∈ [0, 1]n, it holds
F (x + cr) ≥ F (x). Similarly, one defines an r-decreasing
function.

The idea of directional monotonicity induced Lucca et al.
[16] to develop the theory of pre-aggregation functions (see
also [33]), that is, a function PA : [0, 1]n → [0, 1] is said to be
a pre-aggregation function (PAF) if the following conditions
hold:

(PA1) PA is directional increasing, for some r =
(r1, . . . , rn) ∈ [0, 1]n, r ̸= 0;

(PA2) PA satisfies the boundary conditions:
(i) PA(0, . . . , 0) = 0 and (ii) PA(1, . . . , 1) = 1.

We call F an r-PAF whenever it is a PAF with respect to a
vector r.

Another way of thinking in monotonicity of a function is by
using the ordered directionally (OD) functions [34]. Consider
a function F : [0, 1]n → [0, 1] and let r = (r1, . . . , rn) be
a real n-dimensional vector, r ̸= 0. F is said to be ordered
directionally (OD) r-increasing if, for each x ∈ [0, 1]n, any
permutation σ : {1, . . . , n} → {1, . . . , n} with xσ(1) ≥
. . . ≥ xσ(n), and c > 0 such that 1 ≥ xσ(1) + cr1 ≥
. . . ≥ xσ(n) + crn, it holds that F (x + crσ−1) ≥ F (x),
where rσ−1 = (rσ−1(1), . . . , rσ−1(n)). Similarly, one defines
an ordered directionally (OD) r-decreasing function.

Given that we will be working with integrals we must have
a measure, in this case a fuzzy measure, that is, a function
m : 2N → [0, 1] that, for all X,Y ⊆ N , have these two
properties:

(m1) m is increasing, that is, if X ⊆ Y , then m(X) ≤
m(Y );

(m2) m satisfies the boundary conditions, m(∅) = 0,
m(N) = 1.

This measure is a non additive measure, that is, it is not
required to hold the additive property, only an increasing one
[35].

The fuzzy measure is the responsible for assigning a rela-
tionship value among the elements in the aggregation process
performed by the Choquet integral, definition is written now.

Definition 1: [14] Let m : 2N → [0, 1] be a FM. The
discrete Choquet integral (CI) is the function Cm : [0, 1]n →
[0, 1], defined, for all of x ∈ [0, 1]n, by

Cm(x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
, (1)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the

input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n) ≤ 1, with x(0) = 0, and
A(i) = {(i), . . . , (n)} is the subset of indices corresponding
to the n− i+ 1 largest components of x.

One may notice that when the product operation is dis-
tributed in Eq. (1), we have the expanded form of the CI
(X-CI), which is given by

Cm(x) =

n∑
i=1

(
x(i) ·m

(
A(i)

)
− x(i−1) ·m

(
A(i)

))
. (2)

Other important functions are the restricted dissimilarity
functions, introduced by Bustince et al. [36]. A restricted
dissimilarity function (RDF) δ : [0, 1]2 → [0, 1] is a function
such that, for all x, y ∈ [0, 1], the following conditions hold:

(d1) δ(x, y) = δ(y, x);
(d2) δ(x, y) = 1 if and only if {x, y} = {0, 1};
(d3) δ(x, y) = 0 if and only if x = y;
(d4) if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤

δ(x, z).
From these functions (RDFs), Bustince et al. [27] recently

generalized the standard Choquet integral by substituting the
difference operator by an RDF, introducing the d-Choquet
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TABLE I
RDFS AND RESPECTIVE d-XCHOQUET INTEGRALS [30].

δ RDF d-XC

δ0 |x− y| x(1) +
∑n

i=2 m
(
A(i)

)
(x(i) − x(i−1))

δ1 (x− y)2 x(1) +
∑n

i=2 m
(
A(i)

)2 (
x(i) − x(i−1)

)2
δ2

√
|x− y| x(1) +

∑n
i=2

√
m

(
A(i)

)√
x(i) − x(i−1)

δ3 |
√
x−√

y| x(1) +
∑n

i=2

√
m

(
A(i)

) (√
x(i) −

√
x(i−1)

)
δ4 |x2 − y2| x(1) +

∑n
i=2 m

(
A(i)

)2 (
x2
(i)

− x2
(i−1)

)
δ5

(√
x−√

y
)2

x(1) +
∑n

i=2 m
(
A(i)

) (√
x(i) −

√
x(i−1)

)2

integral (d-CI). The discrete d-Choquet integral with respect
to a FM m : 2N → [0, 1] and an RDF δ : [0, 1]2 → [0, 1] is a
mapping Cm,δ : [0, 1]n → [0, n], defined, for all x ∈ [0, 1]n,
by

Cm,δ(x) =

n∑
i=1

δ
(
x(i), x(i−1)

)
·m

(
A(i)

)
where x(i), A(i), with 0 ≤ i ≤ n, were stated in Def. 1.

The usage of RDFs to generalize the standard Choquet
integral overcomes certain drawbacks that the standard dif-
ference has, like not being correctly defined in the application
domain [27] or even width estimation “errors” when working
with interval-valued data [37], [38], which may result in non
meaningful information [39].

Some examples of RDFs are presented in Table I. Those
are the ones that will be applied to the FRM in the next half
of this paper. For construction methods and properties of the
RDFs see [28].

III. d-XCHOQUET INTEGRALS

From the expanded standard Choquet integral and the d-
Choquet integral, Wieczynski et al. [30] introduced the d-
XChoquet integral as in the following definition.

Definition 2: The generalization of the expanded form of
the CI by RDFs δ : [0, 1]2 → [0, 1] with respect to a FM
m : 2N → [0, 1], named d-XChoquet integral (d-XC), is a
mapping XCδ,m : [0, 1]2 → [0, n], defined, for all x ∈ [0, 1]n,
by

XCδ,m(x) = x(1)+

n∑
i=2

δ
(
x(i)·m

(
A(i)

)
, x(i−1)·m

(
A(i)

))
,

(3)

where x(i), m
(
A(i)

)
, with 0 ≤ i ≤ n, were stated in Def. 1.

The d-XChoquet integral properties were studied in [30]. In
that work the authors have showed the properties for each of
the d-XChoquet integrals in Table I.

Notice from [30] that all studied integrals are OD-increasing
and greater than the minimum, although only when using δ0
and δ1 they are averaging. This is not a drawback for the
development of this work, since, in the literature, it was shown
that non averaging functions performed better in FRBCS than
the averaging ones [22].

Additionally, all of d-XC-integrals of Table I satisfy the
0, 1-conditions (PA2). Four of them (based on δ0, δ1, δ3 and
δ5) are 1-increasing, but only with δ0 and δ1 they are pre-
aggregation functions, since the other two do not present the
range in the unit interval.

Lastly, notice that only the d-XChoquet composed by the δ0,
that the standard difference, is increasing and an aggregation
function.

IV. ANALYZING THE BEHAVIOR OF THE D-XCHOQUET
INTEGRAL IN AN APPLICATION TO FRBCS’S

The d-XChoquet integral was recently applied, with success,
in two decision-making problems [30]. The first was in a
multi-criteria decision making method that modifies the Group
Modular Choquet Random Technical Order by Preference to
Ideal Solution (GMC-RTOPSIS) [40] in the aggregation step.
The former was in a Brain Computer Interface (BCI) Motor
Imagery-based (MI) framework [41], where the d-XChoquet
integral was applied in the decision making phase of the
algorithm.

In this section, we present the application of the d-XC
integral in a classification problem in a Fuzzy Rule-Based
Classification System [5]. We start presenting the new Fuzzy
Reasoning Method that considers the usage of the new oper-
ator. After that, we describe the experimental framework. At
the end, the obtained results are described.

A. The new Fuzzy Reasoning Method

In this paper, we consider as fuzzy classifier the Fuzzy
Association Rule-based Classification model for High Dimen-
sional Problems (FARC-HD) [42]. This fuzzy classifier is
considered a state-of-the-art FRBCS.

The rules used by FARC-HD follows this structure:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class is Cj with RWj ,

where Rj is the label of the j-th rule, Aji is a fuzzy set
representing a linguistic term modeled by a triangular shaped
membership function, Cj is the class label, and RWj ∈ [0, 1]
is the rule weight [43], which in this case is computed as
the confidence of the fuzzy rule (also known as Certainty
Factor) [11] defined by Eq. 4.

RWj = CFj =

∑
xp∈ Class Cj

µAj (xp)∑N
p=1 µAj

(xp)
, (4)

where N is the number of training patterns xp =
(xp1, . . . , xpm), p = 1, 2, . . . , N..

Once the fuzzy rules composing the system have been
created, the FRM is responsible for classifying new examples.
Specifically, let xp = (xp1, . . . , xpn) be a new example to be
classified, L being the number of rules in the rule base, and M
being the number of classes of the problem. The new FRM,
where the generalizations of the extended Choquet integral are
used, consist of 4 different steps:
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1) To compute the matching degree, that is, the strength of
the activation of the if-part of the rules for the example
xp, which is computed using a t-norm T ′ : [0, 1]n →
[0, 1] with the equation

µAj
(xp) = T ′(µAj1

(xp1), . . . , µAjn
(xpn)),

with j = 1, . . . , L.

2) Association degree computation, that is, for the class
of each rule the matching degree is weighted with the
corresponding rule weight, given by

bkj (xp) =µAj
(xp) ·RW k

j ,

with k = Class(Rj), j = 1, . . . , L.

3) The example classification soundness degree for all
classes in this step that the aggregation functions are
applied to combine the association degrees obtained in
the previous step, as follows

Yk(xp) =XCδ,m

(
bk1(xp), . . . , b

k
L(xp)

)
, (5)

with k = 1, . . . ,M,

where XCδ,m is the obtained d-XC integral.
Since, whenever bkj (xp) = 0, it holds that

XCδ,m

(
bk1(xp), . . . , b

k
L(xp)

)
= XCδ,m

(
bk1(xp), . . . , b

k
j−1(xp),

bkj+1(xp), . . . , b
k
L(xp)

)
then, for practical reasons, only those bkj > 0 are
considered in Equation (5). Moreover, in relation to the
fuzzy measure, m, we consider the usage of the Power
Measure that is defined, for a set A, as follows

m(A) =

(
|A|
n

)q

, with q > 0. (6)

4) A Classification decision function F : [0, 1]M →
{1, . . . ,M} is applied over the example classification
soundness degrees of all classes and thus, the class
corresponding to the maximum soundness degree is
determined.

F (Y1, . . . , YM ) = min
k=1,...,M

k s.t. Yk = max
w=1,...,M

(Yw).

In practical applications, it is sufficient to consider

F (Y1, . . . , YM ) = arg max
k=1,...,M

(Yk).

As it can be observed, in the third step of the FRM we
propose to use d-XC integrals, which are associated with
a fuzzy measure. According to the results obtained in [15]
and [44] we have selected the power measure (PM) where the
exponent q is genetically learned.1

1For more information about the learning process consider [16], [18]
and [22].

TABLE II
SUMMARY OF THE DATASETS USED IN THE STUDY.

Id. Dataset #Inst. #Atts. #Class

App Appendicitis 106 7 2
Bal Balance 625 4 3
Ban Banana 5,300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Con Contraceptive 1,473 9 3
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Hay Hayes-Roth 160 4 3
Ion Ionosphere 351 33 2
Iri Iris 150 4 3
Led led7digit 500 7 10
Mag Magic 1,902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5,472 10 5
Pen Penbased 10,992 16 10
Pho Phoneme 5,404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sah Saheart 462 9 2
Sat Satimage 6,435 36 7
Seg Segment 2,310 19 7
Shu Shuttle 58,000 9 7
Son Sonar 208 60 2
Spe Spectfheart 267 44 2
Tit Titanic 2,201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Win Wine 178 13 3
Wis Wisconsin 683 11 2
Yea Yeast 1,484 8 10

B. Experimental Framework

To demonstrate the efficiency and the quality of the pro-
posal, we have conducted a study using 33 different datasets.
We highlight that these datasets were selected from KEEL
dataset repository [45]. Also, these datasets are the same used
in previous studies (see [20], [22] and [44]).

The datasets used in the study are summarized in Table II.
Per dataset, we present the corresponding identification (Id),
the number of instances (#Inst), attributes (#Atts), and classes
(#Class).

Following the idea of previous generalizations, the results
are presented taking into account a 5-fold cross-validation
procedure [46]. To analyze the classifier performance, we use
the accuracy [46]. Consequently, the results presented in this
study are related to the average accuracy obtained in the five
different folds.

As mentioned before, the fuzzy classifier used in this paper
is the FARC-HD, therefore, the configuration of this classifier
follows the original author’s suggestion. That is, the product
t-norm as conjunction operator, the certainty factor is the
RW, with 0.05 as minimum support, the threshold for the
confidence as 0.8, the depth of the tree is 3, and kt is 2.

In relation to the parameters used by the genetic algorithm
to the q exponent (used by the Power Measure), we have a
population composed by 50 individuals, the gray codification
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consider 30 bits per gen and the maximum number of evalu-
ations is 20.000.

V. EXPERIMENTAL RESULTS

In this section, we present the obtained results in training
and test in relation to the extended standard Choquet integral
(with respect to δ0) and the d-XC integrals (see Table I).
After that, a statistical study is conducted to perform a deeper
analysis on the achieved results.

In Table III, the results obtained by the FRM in which the
generalizations were applied are presented. In this table, the
rows are related with different datasets, the columns show the
results obtained in Training (Tra.) and Testing (Tst.) related to
different generalizations, and each cell of this table is related
to the accuracy mean.

In order to ease the comprehension of the obtained results,
we highlight the highest and lowest achieved results for each
set (Tra. and Tst). Precisely, considering the results obtained
exclusively in training, we highlight with + the cases that the
accuracy is superior among all training results for a determined
dataset. On the other hand, we highlight with − the cases
where the accuracy presents the lowest performance. Similarly,
we perform this analysis to the test set. If the generalization
achieves the highest mean for a dataset, we highlight it in
boldface, and we underline it if it has the lowest mean.

At the end of the table, we provide for training and test the
obtained mean (among the 33 datasets) for each dissimilarity.
Moreover, for training and test, the count of the highest
achieved results is presented in #nMax, while the count of
lowest performance is shown in #nMin.

Analyzing the results of training in Table III, its noticeable
that the model obtained a similar mean (around 89% of
accuracy) for the dissimilarities δ0, δ2, δ3 and δ5. Furthermore,
the generalizations considering the δ1 and δ4 achieved the
lowest mean.

The largest performance mean is obtained by the δ3 ap-
proach, but the number of datasets where the generalizations
achieved the highest performance is bigger when is considered
the δ5. On the other hand, considering the cases where the
trained model had a low performance, the δ4 have just 4
datasets, while δ5 have 6.

Taking into consideration the results obtained in the test,
it is noticeable that the generalization presenting the highest
performance is the δ5. In fact, this approach obtained the
highest general mean and the largest number of datasets
(12 cases). Only in 4 datasets this model did not achieve a
good performance. Thus, it is noticeable that results for this
generalization can be considered as a good alternative to other
approaches, like the CC-integrals [18], since it presents a good
number of high performance, just a few bad cases, and also
presented stable results, neither high nor low.

A similar analysis can be made with δ2. By using it,
the method achieved the second-highest mean and also good
results in 9 different datasets, presenting the same number of
bad results as δ2. The extended Choquet integral (δ0) and the
generalization δ3 present the same number of cases where the

results are superior (5 times), however the δ3 have a bigger
mean and in just 2 cases presented a low performance (3 times
in the δ0). The remaining generalizations, δ1 and δ4 were the
ones presenting an unsatisfactory performance in testing.

Just analyzing the obtained mean of the different gener-
alizations and the cases where these functions present good
or bad performance may not be enough to conclude if the
generalizations could be an alternative to the extended Choquet
integral. Thus, we have conducted a statistical test to directly
compare the δ0 against the generalizations and provide a more
robust analysis.

Knowing that the conditions of parametric tests are not
satisfied, we consider the usage of non-parametric tests [47]–
[49]. Precisely, we have performed a pair-wise comparison
using the Wilcoxon signed-rank test [50].

The results of the statistical test are available in Table IV.
In this table, R+ represents the rank obtained by the method
δ0 (which forms the expanded standard Choquet integral), R−

is the rank related with the five different generalizations by
dissimilarities. In the last row, we present the obtained p-
value. When considering a confidence level of 90%, that is, the
methods are considered statistically different if the obtained p-
value is lower than 0.10.

The result obtained in the statistical test demonstrates that
for three different generalizations of the extended Choquet
integral, δ2, δ3 and δ5 the results are statistically superior to
the usage of the original approach. This reinforces that the
usage of these generalizations can be considered as a good
alternative to aggregate the information in the FRM and deal
with classification problems.

VI. CONCLUSION

In this paper we presented an application of the d-XChoquet
integral, which is a new generalization of the expanded
standard Choquet integral by using restricted dissimilarity
functions, to the Fuzzy Reasoning Method of the Fuzzy Rule-
Based Classification System.

The new FRM was applied in 33 different datasets from
the literature, that resulted in the d-XChoquet integral with
better performance being the one composed by the RDF δ5.
Thereafter, the statistical test have shown that 3 out of the 6
d-XChoquet integrals, namely the ones using δ2, δ3 and δ5
RDFs are statically superior to using the standard Choquet
integral (with δ0).

Therefore, the d-XChoquet integral can be a good aggre-
gation function to use in the FRM and with classification
problems.

Lastly, for future works we intend to comparison to other
generalizations of the Choquet integral.
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TABLE III
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