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Abstract This paper introduces a new priority mechanism in discrete-
time queueing systems that compromises between first-come-first-served
(FCFS) and head-of-line (HoL) priority. In this scheduling discipline - which
we dubbed slot-bound priority - customers of different priority classes en-
tering the system during the same time-slot are served in order of their re-
spective priority class. Customers entering during different slots are served
on a FCFS basis. In this paper we study the delay in an N -class discrete-
time queueing system under slot-bound priority. General independent ar-
rivals and class-specific general service time distributions are assumed. Ex-
pressions for the probability generating function of the delay of a random
type-j customer are derived, from which the respective moments are easily
obtained. The tail behaviour of these distributions is analyzed as well, and
some numerical examples show the effect slot-bound priority can have on
the performance measures.

Keywords: Queueing Theory, Priority Systems, Discrete Time, Generat-
ing Function, Delay

1 Introduction

Multiclass queueing systems, or queueing systems buffering multiple types
of customers, have been widely adopted in queueing theory, since they en-
able the modelling of non-identical behaviour of different types of customers
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that enter the same system. In a multiclass environment, virtually any com-
bination of features with respect to the arrival characteristics, service re-
quirements, buffer management rules that pertain to individual classes of
customers can be considered (see f.i. D. Fiems et al. (2007) for an example
of very class specific queueing behaviour).

In this paper we study an N -class discrete-time queueing system with
infinite waiting room, under the so-called slot-bound priority rule (SBP).
That is to say, type-1 customers receive preferential treatment over type-2
customers that have arrived during the same slot. In the same way, type-2
customers receive preferential treatment over type-3 customers and so on
up until type-N customers, which represent the lowest priority class. In this
sense, the higher-priority classes have limited priority over the lower-priority
ones. In addition, customers that enter the system during consecutive slots
are served on a first-come-first-served (FCFS) basis, regardless of the class
they belong to.

Many papers investigate the well know priority scheduling in which pri-
ority class customers receive preferential treatment over non-priority class
customers of which R.P. Miller Jr. (1960), P.G. Harrison et al. (2005) (in
continuous time) and S. Ndreca et al. (2008), J. Walraevens et al. (2002)
(in discrete-time) are but some examples. Considering multiple classes of
customers is often combined with assigning some kind of priority to either
of the classes, but it is not a must. It can be preferable that customers
pertaining to different classes are served FCFS. T. Takine (2001) studied
such a system in continuous time. In a discrete-time model, when we de-
mand that during a slot only customers pertaining to one class can enter
the system, a pure multiclass FCFS policy is the result. However one has
the problem of what to do with batches containing customers of different
types that arrive during a single slot. The fairest policy could for instance
be to serve all customers in a batch in random order regardless of the class
they belong to. If however, we prioritize some customer in that batch ac-
cording to type, we effectively introduce an intermediate priority rule which
we dubbed slot-bound priority.

Slot-bound priority can be used to model any system in which batches of
for example customers, packets, or tasks arrive which have to be addressed
or serviced in a specific order for whatever reason, while the batches them-
selves need to be served FCFS. For instance a batch of customers may be
the traffic that accumulates before a trafficlight. When the light turns green,
the faster drivers (high priority customers) will gain an edge and arrive at
the next lights sooner, where they will be ’served’ once those lights turn
green. Moreover SBP can be seen as a polling mechanism where N queues
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Fig. 1.1. A loop system. The server takes of tour of N stations by which the first station
has priority over subsequent stations.

are visited by the server in a cyclic order, and where after each slot, a gate
is placed between the arrivals in each of the N queues (see f.i. H. Takagi
(1986), O. Boxma et al. (2009)). Also, in a loop system, in the sense ex-
plained in Konheim et al. (1972) (see Fig.1.1) where the server takes a tour
of N stations each slot and its capacity is unbounded, then the main station
behaves as described in our proposed slot-bound priority discipline; Kon-
heim analyzed the N input stations instead of the main station. When the
server takes a tour each slot, the interesting queueing phenomena occur at
the main station. Finally, by adjusting the slot size, and thus the number of
arrivals per slot, one can make slot-bound priority resemble a more general
delay differentiating service policy. These observations show that the SBP
service mechanism, which to the best of our knowledge has not yet been
studied before, potentially has a wide applicability.

The remainder of the paper is organized as follows. In the next section
we present the mathematical model of our queueing system. Next, we derive
a steady-state expression for the probability generating functions (pgf) of
the delay of an arbitrary type-j customer j ∈ [1, N ]. Should the reader not
be familiar with generating functions, we refer to H.S. Wilf (1994). From
this main result, we subsequently derive expressions for the mean values of
these random variables as well as their tail probabilities. Finally, for some
specific scenarios we see the effect slot-bound priority has on the average
delay of high and low-priority customers.

2 Mathematical Model

The discrete-time single server queueing system analyzed hereafter serves
arriving customers without interrupting the order in which they enter the
system. If two or more customers enter the system during the same slot
then the order is arbitrary unless they belong to different customer classes
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- N customer classes are assumed. The customers pertaining to the high-
est priority class are served first after which those pertaining to the second
highest priority class and so on, until all customers of the tagged batch are
served. Because the priority only has an effect on customers that arrived
during the same slot, we call this server policy slot-bound priority.

Let aj,n represent the number of type-j customers (j ∈ [1, N ]) entering
the system during the slot with index n. In our analysis we assume a general
independent and identically distributed (i.i.d.) arrival process such that the
joint pgf An(z) , E[

∏N
j=1 z

aj,n
j ] is independent of the slot index (we used

z to represent the vector with j’th element equal to zj). Therefore we will
omit the index for this pgf in the rest of this paper. On a not unimportant
sidenote, this model allows that aj,n and aj′,n are correlated (j 6= j′). We
will abbreviate the first and second moments of these discrete random vari-
ables (drv’s) as

λj ,
∂

∂zj
A(z)

∣∣
z=1

λT ,
N∑
j=1

λj

λij ,
∂2

∂zi∂zj
A(z)

∣∣
z=1

λTT ,
d2

dz2
A(z1)

∣∣
z=1

, (2.1)

in which the t’th element of the vector 1 is 1. Furthermore, let sj,k represent
the service time of the k-th type-j customer entering the system. We as-
sume that service times can only start and end at slot-bounds, making sj,k
a discrete random variable. We consider the case that the service times of
all type-j customers are mutually independent and follow the same distri-
bution, and the pgf of this distribution will be given by Sj(z) , E[zsj ] (with
mean µj , E[sj ]), in which we omitted the index k, for sj to represent the
service time of an arbitrary type-j customer. Additionally different types of
customers can have different service-time distributions.

Lastly, we will call ρj , λjµj the load offered by type-j customers. When
considering an infinite buffer, as we will here, the equilibrium condition re-
quires that the total load ρ ,

∑
j ρj be less than 1.

3 Delay Analysis

When an arbitrary type-j customer, hereafter referred to as customer c,
enters our system to obtain service, it will spend some time in it before it
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leaves. It will at least have to sit out its own service time, which is given
by sj . The rest of its delay is spent waiting on the departures of other cus-
tomers that are scheduled to be served before it. This waiting time starts at
the slot mark following customer c’s arrival and ends when the its service
is initiated. Hence we can write (with wj representing the waiting time of
customer c)

dj = wj + sj , (3.1)

in which we introduce the notation dj for the delay of an arbitrary type-j
customer. Relating Dj(z) , E[zdj ], the pgf of dj to Sj(z) and A(z) is the
purpose of this analysis.

The waiting time of customer c consists of two distinct parts. A first is
the waiting time caused by customers already in the system at the begin-
ning of customer c’s arrival slot. The second is due to customers entering the
system during the same slot as customer c but scheduled before it, which we
will denote by the drv pj . We define the unfinished work of the system as
the number of slots it takes to serve all customers present in the system at
a certain point in time. Since the arrival of batches of customers is governed
by a Bernoulli process (with parameter 1 − A(0, 0)), the unfinished work
at the beginning of a random slot (which we’ll denote by the drv l) has
the same distribution as the unfinished work at the beginning of a random
type-j’s arrival slot (i.e. customer c), as dictated by the BASTA-property
(see S. Halfin (1983)). Because customer c’s arrival slot is not included in
its delay, we must subtract 1 from l (in case the system was not idle), to
account for the first part of customer c’s delay. We thus have

dj = pj + (l − 1)+ + sj , (3.2)

in which (l − 1)+ is shorthand for max(l − 1, 0). The three drv’s in the
right-hand side are independent of one another: pj and l are independent
because of the i.i.d. property of the arrival process. The independence of
these two drv’s and sj can be readily deduced from the i.i.d. nature of the
service process.

If we address each unit of work as a typeless customer with service time 1,
our system behaves as a GI−D−1 queue with an arrival process character-
ized by the pgf A(S(z)) - we’ll abbreviate the parameterlist S1(z), . . . , SN (z)
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to S(z). Hence, determining the amount of unfinished work in the system is
a straightforward application of the result found in e.g. H. Bruneel (1993).
We thus obtain for the pgf L(z) of l

L(z) , E[zl] = (1− ρ)
(z − 1)A(S(z))
z −A(S(z))

, (3.3)

and consequently

L−(z) , E[z(l−1)+ ] = (1− ρ)
z − 1

z −A(S(z))
. (3.4)

Let a∗t denote the number of type-t customers entering the system in the
same batch as customer c - we choose to omit j, the type of customer c, for
notational convenience; the value of j will become clear from the context.
Since we selected a random type-j customer and not a random slot we can’t
a priori conclude that (a∗1, . . . , a

∗
N ) and (a1, . . . , aN ) have the same joint

distribution function. In fact, the more type-j customers a batch contains,
the more probable it is for it to contain a random type-j customer. This is
a well-defined problem known as ’the renewal paradox’ (see f.i. L. Kleinrock
(1975) or I. Mitrani (1987)) and the relation between the distributions of
the two sets of drv’s becomes

Pr[a∗1 = k1, . . . , a
∗
N = kN ] =

kj
λj

Pr[a1 = k1, . . . aN = kN ]. (3.5)

We can obtain pj , the delay caused by customers entering the system
during the same slot as customer c but queued before it in terms of the
number of each type of such customers. Let rt represent the number of such
type-t customers - where again we choose to omit j for notational conve-
nience. The sum of the service times of all these customers then gives us
pj . Let Rj(x) , E[

∏N
t=1 x

rt
t ] be the joint pgf of r1 through rN , given that

customer c’s type is j - the t’th element of x is xt. We can then write

Pj(z) , E[zpj ] = Rj(S(z)) . (3.6)
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The slot-bound priority rule dictates that pj will consist of the service
times of all type-t customers with t < j in the selected batch, and some
type-j customers service times. Because customer c can be each of the a∗j
type-j customers in the selected batch with equal probability, we can write

Pr[r1 = i1, . . . ,rN = iN |a∗1 = k1, . . . , a
∗
N = kN ] = k−1

j ,

if ij < kj , it = 0 for t > j, and it = kt for t < j. (3.7)

and 0 in all other cases. The joint pgf Rj(x) can now be calculated as follows
from (3.5) and (3.7)

Rj(x) =
∑

i1,...,iN ,
k1,...,kN≥0

Pr[r1 = i1, . . . , rN = iN , a
∗
1 = k1, . . . , a

∗
N = kN ]

N∏
t=1

xitt

=
∑

k1,...,kN≥0

Pr[a1 = k1, . . . , aN = kN ]

(
j−1∏
t=1

xitt

) ∑
0≤ij<kj

x
ij
j

λj

=
∑

k1,...,kN≥0

Pr[a1 = k1, . . . , aN = kN ]

(
j−1∏
t=1

xitt

)
x
kj
j − 1

λj(xj − 1)
.

When we adopt the shorthand notation

Cj(x) = A(x1, . . . , xj−1, xj , 1, . . . , 1)−A(x1, . . . , xj−1, 1, 1, . . . , 1) , (3.8)

we arrive at the following expression for Rj(x).

Rj(x) =
Cj(x)

λj(xj − 1)
. (3.9)

Not surprisingly Rj(x) is not a function of xt, t > j - as rt = 0 if t > j.
Because of the independence of the random variables in the right hand side
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of equation (3.2), Dj(z) can be obtained rather easily as

Dj(z) = Pj(z)L−(z)Sj(z). (3.10)

Substitution of (3.6) and (3.4) into (3.10) rewards us with an explicit
formula for the pgf of dj in our slot-bound priority system.

Dj(z) = (1− ρ)
(z − 1)Sj(z)
z −A(S(z))

Cj(S(z))
λj(Sj(z)− 1)

. (3.11)

The asymmetry in Cj(S(z)) is a direct consequence of slot-bound prior-
ity scheduling. This can be illustrated by considering the case where A(z)
satisfies

A(z) =
N∑
j=1

E[zajj ]− (N − 1)A(0, . . . , 0). (3.12)

By substitution one can easily verify that the asymmetry in (3.11) vanishes.
Indeed, slot-bound priority has no reordering effect if it is impossible that
during the same slot customers of different types enter the system, which is
exactly what (3.12) enforces.

Evidently, since λj/λT represents the probability that an arbitrary cus-
tomer is of type j, the pgf D(z) of an arbitrary customer’s delay can be
calculated as

D(z) =
N∑
j=1

λj
λT

Dj(z) = (1− ρ)
z − 1

λT (z −A(S(z)))

N∑
j=1

Cj(S(z))
1− Sj(z)−1

. (3.13)

When service times of the different priority classes are identically dis-
tributed (S1(z) = S2(z) = . . . ), not entirely unexpected we have that (3.13)
is congruent with the results found in H. Bruneel (1993). When the delay
distribution of the last customer in each batch is of particular interest, a
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simple trick might be to add a customer type (type-N + 1) with lowest pri-
ority type and constant service time equal to zero. The pgf DN+1(z) then
represents this delay distribution, if and only if a type-(N + 1) customer
enters the system only during a slot featuring other arrivals, and only one
type-(N + 1) customer joins the queue that slot. Of course delay distribu-
tions of the last type-1 customer, or the first customer of a batch can be
calculated in this way using service times equal to zero as well.

One problem with zero service times is the denominator of Pj(z). It is
easy to calculate that the joint pgf of the number of other customers enter-
ing the system during the same slot as customer c is given by 1

λj
∂
∂xj

A(x).
Only the customers pertaining to higher priority classes will contribute their
service time to pj (those of equal priority have service time zero if any). Sum-
marizing we find that

Pj(z) =
1
λj

δ

δxj
A(x1, . . . , xj−1, 1, . . . , 1)

∣∣∣
x=S(z)

, if Sj(z) = 1. (3.14)

3.1 Mean Delay

Among others, the first moment of the class-j customer delay can be derived
from the obtained respective pgf’s as follows:

E[dj ] = µj + E[(l − 1)+] + E[pj ] (3.15)

E[d] =
ρ

λT
+ E[(l − 1)+] +

N∑
j=1

λj
λT

E[pj ], (3.16)

where E[d] represents the mean delay of an arbitrary customer. We can
therefore find the first moment of dj and d by differentiating (3.4), (3.6),
resulting in

E[dj ] = µj +
d2

dz2A(S(z))|z=1

2(1− ρ)
+
λjjµj + 2

∑j−1
i=1 λijµi

2λj
(3.17)

E[d] =
ρ

λT
+

d2

dz2A(S(z))|z=1

2(1− ρ)
+
λTT ρ

2λ2
T

, (3.18)
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in which the asymmetry, instigated by the slight priority of higher prior-
ity classes, limits itself to the last term in E[dj ], being E[pj ]. Higher-order
moments of the class-j customer delay, such as the variance, can be calcu-
lated in a similar way, albeit that the expressions become more complicated.

3.2 Tail Distribution

In this section we derive the tail probabilities using the dominant pole ap-
proximation technique (see f.i. Van Mieghem (1996)).

When the delay of a customer of whatever type becomes exceptionally
large, there can be three reasons for this. First, its own service time may
be exceptionally large. Second, it can be of low priority and the batch of
customers in which it arrived featured a lot of high priority customers. And
third, the queue size was already very high when it entered. We will see
that, not surprisingly, this last scenario is the most probable. Concrete, we
will prove that generally speaking, the dominant singularity of Dj(z) is the
dominant singularity of L−(z), and not of Sj(z) or Pj(z). It will also be-
come clear that the dominant singularity is independent of the type of the
customer.

We assume that the dominant singularities of all single-variate pgf’s un-
der consideration are poles. That way, from Vivanti’s theorem, we know
they are real and positive. Furthermore, because pgf’s are always analytic
inside and well defined on the unit disk, these singularities must have a
modulus larger than 1. Note that zas, dominant pole of A(S(z)), is smaller
than or equal to the dominant pole of Sj(z) unless there are no type-j
arrivals (A(z) is independent of its j’th argument), a situation that we ex-
clude from these considerations. The same is true for the dominant pole
of A(S1(z), . . . , Sj(z), 1, . . . , 1), which we’ll denote zasj . Also zasj ≤ zasj−1

simply because Sj(z) ≥ 1 when z ≥ 1.

Possible candidates for the dominant pole of Dj(z), denoted by zdj , are
the dominant pole of Sj(z), that of z − 1 (which is ∞), or Cj(S(z)), be-
ing zasj which we already reasoned to be smaller than that of Sj(z). The
other candidates are zeroes of the denominators of Dj(z), z −A(S(z)) and
Sj(z)− 1. The latter function has no zeros greater than 1 within its radius
of convergence unless Sj(z) = 1 in which case Dj(z) does not have Sj(z)−1
in its denominator (see (3.14)). The former function has a zero smaller than
zas, and is thus the zdj we searched for. Since zdj does not depend on the
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specific value of j, we set zdj ≡ zd. Indeed, one can show that under the
circumstances previously described, there is a zero for z − A(S(z)) greater
than 1 and smaller than zas, provided that ρ < 1, where ρ represents the
first derivative of A(S(z)) in 1. Summarizing, we find

zd = A(S(zd)), zd > 1

Pr[dj = n] ≈ −θjz−n−1
d , (3.19)

where θj is the residue of Dj(z) at z = zd (= limz→zd(z− zd)Dj(z)), which
can be easily calculated from (3.11).

4 Numerical Examples

To help understand the implications of the slot-bound priority model, we
present some numerical examples. The number of parameters the average
delay of a random customer is dependent on is quite large, and so we illus-
trate the effects of some of the more important ones. One key parameter, the
workload ρ, will have a profound effect on the delay differentiation between
customers of different types. Specifically, we will see that a larger delay dif-
ferentiation is obtained for low workloads, whereas for higher workloads, a
more fair queueing delay is obtained (since the second term in (3.17) be-
comes dominant).

For sake of simplicity we will assume N = 2 and see what parameters
affect differences in average delays more than others. Previously, we stated
that adjusting the slot size, and thus the number of arrivals per slot, one
can make slot-bound priority resemble a more general delay differentiating
service policy. Let therefore t be the slot size in for instance seconds. Our
proposed arrival and service processes are then characterized by the follow-
ing pgf’s:

A(z1, z2) = eαt(
z1+z2

2 −1)

Sj(z) =
t

t+ µ(1− z)
. (4.1)
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Fig. 4.1. Relative delay (a), and absolute delay (b) against slot-size t. The parameters
α and µ from (4.1) were chosen to be 0.4 and ρ/α. Both graphs contain curves for
ρ = 0.25, 0.50, 0.75.

In this first example, service times (in number of slots) are geometrically
distributed with mean µ/t, independent of j, with µ the mean service time
(in seconds per customer). The arrival process is composed of two indepen-
dent Poisson arrival streams with mean αt/2 (customers per slot). Hence,
ρ = αµ represents the load of the system, which is independent of t. By in-
creasing t, we effectively increase the average number of arrivals per slot and
reduce the average service time in slots. However the average service time in
seconds stays the same, as well as the average number of arrivals per second.

Since slot-bound priority has an effect on the slot-level, we obtain more
delay differentiation when t is higher. This is illustrated for three different
workloads in Fig.4.1a where E[dj ]/E[d] is plotted against t. In Fig.4.1b,
the absolute value of the delay of a random customer in seconds is plotted
against t. The increasing nature of E[d] as a function of t is due to the
variance on sj and all aj - note that E[d] does not ascend as fast as t. An-
other important observation is that the delay differentiation is limited, in
the sense that E[dj ]/E[d] has an asymptote for t→∞. When the slot-size
is very short (the scale on the abscissa goes down to 100 ms), then delay
differentiation goes to a minimum. In our example, E[dj ] → E[d], but only
because λ12 → 0 for t→ 0.

Next, we will show that delay differentiation is limited even for very
bursty arrivals. If customers enter the queue typically in very large batches,
a lot of reordering is going to take place, and hence the effect of slot-bound
priority is going to be maximal. However, for increasingly burstier arrivals,
an increasingly larger queue will be formed prior to a newly arriving batch,
due to the variance on the arrival process, which is an effect that increases
the delay regardless of the class that a customer belongs to. These two ef-
fects counteract eachother, so it is interesting to see their combined effect.
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Fig. 4.2. Relative delay (a), and absolute delay (b) against the burstiness factor p (see
text). The parameters α and µ from (4.2) were chosen to be 0.4 and ρ/α. Both graphs
contain curves for ρ = 0.25, 0.50, 0.75.

A nice way of introducing burstiness into the arrival process is for instance
reflected by the following pgf’s:

A(z1, z2) = (1− p)e
α

1−p (
z1+z2

2 −1) + p

Sj(z) =
1

1 + µ(1− z)
. (4.2)

For p = 0 we have two independent ordinary Poisson arrival streams for
each of our customer classes. The larger p becomes, the less batch arrivals
we have, but the bigger the batches themselves become to keep the workload
a constant. When p approaches 1, arrivals will be very sparsely distributed
in time, but once they do occur, a gigantic batch will occupy the queue
meaning that the variance of the number of arrivals per slot (i.e., the batch
size) becomes infinitely large. In Fig.4.2a we plotted E[dj ]/E[d] against p
for three different workloads. On this graph we see that delay differentiation
grows as p, our burstiness factor, increases but is clearly limited even for
p→ 1. When looking at (3.17) one can see that increasing the burstiness of
the arrival process by increasing all λij while keeping all λj constant - as we
do by increasing p - in general indeed has this effect on the delay differen-
tiation between the different customer classes. Moreover Fig.4.2 shows that
by increasing the variance of the arrival process (as we do by increasing p),
E[d]→∞, as insinuated by (3.18).

Furthermore, allowing the service times of the different customer classes
to have different distributions can also have a tremendous impact on the
queueing delay. One way of seeing this is realizing that introducing more
variation in the service process is effectively increasing the queueing delay.
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When priorities get into the mix however some interesting things may oc-
cur. For the next graph, we introduce the following pgf’s of the arrival and
service processes:

A(z1, z2) = eα(
z1+z2

2 −1)

Sj(z) =
α

α+ 2ρj(1− z)
. (4.3)

In Fig.4.3 we plotted log10 Pr[dj > 20] on a log-scale against ρ1/ρ, keep-
ing the workload ρ = ρ1+ρ2 constant (and hence decreasing ρ2 when ρ1 gets
larger). We can see that Pr[d1 > 20] decreases for increasing ρ1 (until about
ρ1 = 0.46), which is a somewhat counterintuitive result and has to do with
the dominant pole extracted from z − A(S(z)). For the above mentioned
service time distributions, this decrease can be explained by the reduction
in overall service-time variability on which E[dj ] and conversely Pr[dj > 20]
is dependent. When service times of type-1 keep increasing, there comes a
point at which Pr[d1 > 20] > Pr[d2 > 20]. Whether or not this point exists
for a general independent arrival process during consecutive slots, is largely
dependent on the degree of correlation between the number of arrivals of
the different types of customers that arrive during the same slot. Since zd is
the dominant pole of D1(z) and D2(z), the existence of this turnover point
can be checked by using only the residue of both functions at zd.

Up until now we have considered a system in which only two types of
customers enter. When we make the number of customer types a variable
while keeping the total workload ρ constant, we may consider pgfs A(z1, z2)
and Sj(z) that take the following form:

A(z) = e
α
N (

QN
j=1 zj−1)

Sj(z) =
1

1 + µ(1− z)
. (4.4)

We observe from Fig.4.4 that for N →∞, E[d1] evolves to a minimum,
and on the other end E[dN ] evolves to a maximum for a fixed value of ρ.
Nonetheless, Fig.4.4 shows that the difference between E[dN ] and E d1 re-
mains bounded for increasing N . This can be understood as follows. When
N → ∞, and the compound Poisson process produces a type-j customer,
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Fig. 4.3. Tail probabilities log10 Pr[dj > 20] plotted against ρ1
ρ

. The parameter α in

(4.3) is kept constant at 0.4 and hence ρ1
ρ

is altered by adjusting µ1 and µ2 while keeping

the load ρ constant. Both graphs contain curves for ρ = 0.25, 0.50, 0.75.

because of the fixed workload, it will most likely not produce a second type-
j customer. However the average arrival rate remains unaltered when we
increase N . This means that in the limit E[d1] is the average delay of the
first customer in a batch given that at least one type-1 customer is in it. The
average delay of the last customer in a batch given that at least one type-N
customer is in it, is then given by E[dN ]. On a final note, the paragraph
following (3.13) explains why D(z) is independent of N as long as Sj(z)
and A(S(z)) are independent of j and N respectively. Because of this, E[d]
is constant, and we have therefore omitted E[d] from Fig.4.4.

5 Conclusions

This paper introduced a new priority mechanism and dubbed it slot-bound
priority, which allows us to assign a limited amount of priority to a particular
customer class. We proceeded to study the delay in an N -class discrete-time
queueing system with i.i.d. arrivals and class-dependent distributions for the
service times under the slot-bound priority rule. We found expressions for
the probability distributions of the delay of a random type-j customers
(j ∈ [1, N ]) in the form of their respective probability generating functions,



16 S. De Clercq, B. Steyaert and H. Bruneel

Fig. 4.4. Average relative delay of the highest and lowest priority classes in an N -class
SBP system against the number of priority classes N . The parameters α and µ from (4.4)
were chosen to be 0.4 and ρ/α. Both graphs contain curves for ρ = 0.25, 0.50, 0.75

and we derived their first moments, as well as calculated the associated tail
probabilities. In a couple of numerical examples, we studied the effects of
various parameters of the arrival process and service times of customers. We
found it instructing to compare the average delays for a type-1 customer and
type-N customer for various values of the workload. Most interesting was the
observation that for low loads delay differentiation is very stressed, whereas
for high loads the average delays tend to approximate the average delay of
a random customer regardless of type. Other parameter dependencies were
evaluated as well, such as actual the length of the slot-size, and burstiness
of the arrival process.
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