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Abstract

In the modelling process of cardiovascular diseases, one often comes across the
numerical simulation of the blood vessel wall. When the vessel geometry is
patient-specific and obtained in vivo via medical imaging, the stress distribution
throughout the vessel wall is unknown. However, simulating the full physiolog-
ical pressure load inside the blood vessel without incorporating in vivo stresses
will result in an inaccurate stress distribution and an incorrect deformation of the
vessel wall. In this work a computational method is formulated to restore the
zero-pressure geometry of patient-specific blood vessels, and to recover the in
vivo stress field of the loaded structures at the moment of imaging. The proposed
backward displacement method is able to solve the inverse problem iteratively
using fixed point iterations. As only an update of the mesh is required, the formu-
lation of this method allows for a straightforward implementation in combination
with existing structural solvers, even if the structural solver is a black box.
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1. Introduction

Numerical analyses of the cardiovascular system are able to provide medical
researchers with information that cannot (easily) be measured in a clinical setting
and may contribute to a better comprehension and insight into the pathophys-
iology of cardiovascular diseases. In addition, numerical models offer a com-
putational environment in which both new and existing medical procedures and
devices can be tested and optimized, which is both cost-effective and patient-
friendly. The continuous improvement of computational methods, computational
power and medical imaging techniques encourages the general belief that compu-
tational models will eventually be used in clinical practice, with a trend toward
more realistic, patient-specific models. These models cannot do without non-
invasive medical imaging techniques such as X-ray computed tomography (CT),
magnetic resonance imaging (MRI) and ultrasound imaging which not only al-
low for accurate in vivo visualization of 3D patient-specific geometries, but also
provide information about wall thickness and wall motion. The in vivo data can
be used to generate and validate the computational structural dynamics (CSD)
model and to fit material parameters of a constitutive law to mimic the patient-
specific behavior of the aortic wall [1]. When the interaction between the blood
flow and the arterial wall is taken into account, MRI and ultrasound provide valu-
able information for patient-specific boundary conditions of the fluid domain in a
fluid-structure interaction (FSI) simulation.

It is important to realize that, at the moment of medical image acquisition,
a physiological pressure load is present in the arterial system. When using the
in vivo obtained patient-specific geometry to model the arterial wall, this arterial
structure therefore does not correspond to the unloaded configuration and there is
an in vivo stress and strain field present in the vessel wall. Neglecting their pres-
ence results in incorrect values for the stress and the deformation when simulating
the internal pressure load inside cardiovascular structures in general and inside
cerebral and aortic aneurysms in particular [2, 3, 4, 5, 6].

It is not possible to measure (in vivo) the unloaded configuration of the blood
vessel or the stress distribution throughout the arterial wall. However, when the
in vivo measured geometry and the corresponding blood pressure at the moment
of imaging are known, an inverse problem can be defined to solve for the zero-
pressure geometry or the in vivo stress field. Note that this inverse problem and its
solution methods to reveal the load free configuration are not limited to the field
of biomechanics. For example in mechanical production and design applications,
the desired shape of manufacturing tools, gaskets, rubber seals and even turbine
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blades has to be reached under loading conditions [7, 8, 9].
In this paper a fixed point method is presented to solve for the zero-pressure

geometry by iteratively updating the nodal coordinates of the geometry towards
the unknown unloaded configuration. As only an update of the nodal coordinates
is required, the method in section 2 allows for a straightforward implementation in
combination with existing finite element solvers, even if the solver is a black box
and there is no access to the source code. In section 3 the zero-pressure geometry
is calculated for two different models. Applying the measured arterial pressure
in a forward analysis fully recovers their in vivo measured geometry and restores
their in vivo present stress state.

2. Methods

2.1. Problem description

Before defining the inverse problem, a general forward problem is formulated.
Therefore, we define a stress free reference configuration by

Ω(X,0) (1)

in whichX denotes the material coordinates of the undeformed reference geome-
try, and where the second argument of the configuration Ω refers to the zero stress
state that corresponds to this unloaded reference configuration. Then, a forward
analysis can be defined as the calculation of the equilibrium configuration

Ω(x,σ) (2)

with x the coordinates of the deformed geometry and σ the second-order stress
tensor. As shown in Figure 1, this deformed configuration results from a pressure
load p, applied at the inner surface of the undeformed blood vessel wall,

p = −τ .n = −(σ.n).n

with n the outward unit normal vector, and a zero traction vector (τ = 0) at the
outer surface of this undeformed reference state (1). Furthermore, the nodes at the
ending cross sections are only allowed to move in radial direction with respect to
the local centerline {

Uθ = 0

Uz = 0
(3)
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Figure 1: Schematic representation and notations.

To be in equilibrium, the equilibrium conditions, the compatibility require-
ments and the presence of an appropriate material model, which sets the relation
between the stress field and the strain field, are satisfied. The equilibrium config-
uration (2) can be computed by a structural solver, which we denote by S. Using
these definitions, we define the forward analysis by

Ω(x,σ) = S(Ω(X,0), p) (4)

The deformation can be defined by the forward mapping Φ : X 7→ x and the
deformation gradient tensor F

x = Φ(X) (5a)

F =
∂x

∂X
=
∂Φ(X)

∂X
(5b)

The inverse or backward problem calculates the undeformed reference geom-
etry that corresponds to a given geometry, which is deformed due to a pressure
load. Therefore, in Figure 1, we now assume

{
X = X∗

σ = σ∗
,

{
x = xm

p = pm

where X∗ and σ∗ are the zero-pressure geometry present in the undeformed ref-
erence configuration and the stress state present in the in vivo configuration, i.e.
the unknown variables of this inverse problem. The in vivo geometry xm and the
internal pressure load pm are the known input parameters for the inverse problem,
where the subscript m refers to (in vivo) measurements.
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Then, the backward problem can be formulated as follows:
Find the in vivo configuration

Ω(xm,σ
∗) (6)

which is yet unknown as only xm is known and σ∗ is not, and which is in equilib-
rium with the measured internal pressure load pm, the zero traction at the outside
and the kinematic Dirichlet boundary conditions (3). Therefore, find the corre-
sponding undeformed reference configuration

Ω(X∗,0) (7)

so that the in vivo equilibrium configuration (6) can be found by imposing the in
vivo measured pressure pm onto the zero-pressure reference configuration (7) in a
forward analysis (4)

Ω(xm,σ
∗) = S(Ω(X∗,0), pm) (8)

Equation (8) results in the stress tensor field σ∗ which is defined as the prestress
introduced by the forward analysis or the in vivo stress accompanying the in vivo
image-based geometry. The unloaded reference geometry can be written as

X∗ = φ(xm) = Φ−1(xm)

in which φ : x 7→ X denotes the inverse deformation mapping. This allows to
obtain the original in vivo geometry at the moment of imaging xm using the in
(5a) proposed forward deformation of the zero-pressure geometryX∗

Φ(X∗) = Φ(φ(xm)) = Φ(Φ−1(xm)) = xm

2.2. Backward displacement method

This paper proposes a method to solve for the zero-pressure geometry and the
in vivo stress state by means of fixed point iterations. The algorithm makes use
of a forward analysis to update the approximate zero-pressure geometry, while
evaluating the residual as the maximum distance that is still present between the
image-based geometry and the geometry resulting from this forward problem.
When convergence is reached (i) a zero-pressure geometry is found and (ii) the
resulting in vivo measured geometry is recovered and in equilibrium with an in
vivo stress field and the in vivo load. Furthermore, only the nodal coordinates of
the mesh need to be updated before every iteration, allowing for a straightforward
implementation in combination with existing structural solvers, even if the solver
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Algorithm 1 FIXED POINT ALGORITHM TO RECOVER THE ZERO-PRESSURE

GEOMETRY AND THE IN VIVO STRESS TENSOR FIELD

1: i = 0
2: X1 = xm
3: while i = 0 or rimax ≥ ε do
4: i = i+ 1
5: Ω(xi,σi) = S(Ω(X i,0), pm)
6: U i = xi −X i

7: X i+1 = xm −U i

8: end while
9: Zero-pressure reference geometryX∗ = X i

10: In vivo stress tensor σ∗ = σi

is a black box and no access is granted to the source code (as is the case with most
commercial packages).

The fixed point algorithm to recover this zero-pressure geometry and the in
vivo stress tensor field is shown in Algorithm 1. It starts by initializing an ap-
proximation for the zero-pressure geometry X i=1. As initial guess, the original
image-based geometry xm is chosen. Then, a fixed point based iterative procedure
is performed until convergence is reached. First, the structural solver calculates
an equilibrium configuration Ω(xi,σi) from the intermediate reference configura-
tion Ω(X i,0) loaded with the full in vivo pressure load pm. The displacements of
the material points in the forward analysis are denoted byU i. Finally, the approx-
imation of the zero-pressure geometry (X i) is updated by subtracting the nodal
displacements U i from the original image-based coordinates xm. This procedure
leads to an update of the mesh X i+1 (step 7 in Algorithm 1) which is used in the
next iteration or, if convergence is reached, to the zero-pressure geometry X∗.
Furthermore, the forward analysis calculates the stress state σi (step 5 in Algo-
rithm 1) which is left unused throughout the algorithm but represents the in vivo
stress tensor σ∗ present in the in vivo measured geometry upon convergence. A
residual

rij = ‖xm,j − xij‖2 , ∀j ∈ [1, N ] (9)

is defined as the distance between the coordinates of the jth node in the ith de-
formed geometry xij and in the original image based geometry xm,j . Where ‖.‖2
stand for the L2-norm and N represents the total number of nodes in the model.
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Convergence is reached when the maximum residual

rimax = max
j∈[1,N ]

{rij} (10)

is lower than the convergence criterion ε.

2.3. Existing solution methods

Besides the method proposed in this paper, there exist other techniques to
incorporate in vivo stress into computational models of the cardiovascular system,
given the in vivo image-based geometry xm and internal pressure load pm.

Raghavan et al. were the first to take into account a non-invasively determined
zero-pressure geometry in the numerical modelling process of an abdominal aortic
aneurysm (AAA) [10]. Therefore, they developed an optimization framework for
the parameter k such that the coordinates of the unknown zero-pressure reference
geometryX∗ can be approximated by (xm− kU ), where U represents the nodal
displacements that result from a single forward calculation in which the lumen
pressure load is applied onto the in vivo measured reference geometry xm.

Lu et al. introduced the inverse elastostatic method, originally described by
Govindjee and Mihalic [7, 8], to the field of cardiovascular biomechanics as an-
other way to calculate the zero-pressure geometry [2]. The implementation, how-
ever, requires access to the finite element code what can be seen as a drawback.

Gee et al. implemented previous strategy as the Inverse Design (ID) method,
and compared this prestressing technique with another method, the so called Mod-
ified Updated Lagrangian Formulation (MULF) [4, 11]. The methodology used,
is similar to the Backward Incremental (BI) method introduced by de Putter et
al. [3]. In contrast to the backward displacement method, described in this paper,
the zero-pressure geometry is not calculated directly but the equilibrium configu-
ration Ω(xm,σ

∗) is computed instead. By incrementally increasing the pressure
load towards the full in vivo pressure pm while discarding the corresponding de-
formations (xi = xm) a prestressed (σ∗) and prestrained configuration is gener-
ated. The procedure calculates the new stress tensor field σi that will be used at
the next increment by loading the ith non-equilibrium configuration Ω(xm,σ

i−1)
with the incrementally increased internal pressure (pi = pi−1 + δpi). As such, the
stress tensor gets updated towards the in vivo stress tensor and the strain tensor
gets implicitly updated by a multiplicative split of the deformation gradient ten-
sor F 0,i = F 0,i−1.F i−1,i [5, 12]. Afterwards, the zero-pressure geometry can be
constructed by reducing the luminal pressure to 0 Pa [13]. According to [3] the
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last pressure increment has to be chosen extremely small to return a final equilib-
rium configuration. The method allows the use of a black box structural solver
if the finite element code is able to update the initial stress tensor field with each
iteration. A similar approach of prestressing was used earlier by Pinsky et al. to
include the internal stress state in the cornea under the presence of the full intraoc-
ular pressure load through a fixed point iteration instead of increasing the pressure
incrementally [14].

As the effect of viscous forces would be small, the zero-pressure geometry or
the in vivo stress state resulting from one of the above methods, which only in-
volve a structural model of the cardiovascular region of interest, can also be used
in FSI models. Bazilevs et al., however, report that the viscous effect is not negli-
gible and account for the viscous traction caused by the blood flow when solving
the balance of linear momentum for the solid [15]. Therefore, a separate steady
flow CFD simulation with rigid walls is performed to obtain the fluid traction vec-
tor. After the iterative calculation of the prestress component S0 of the additive
decomposition (S + S0) of the second Piola-Kirchhoff stress tensor it is used as
initial stress in their in vivo geometry based FSI model [16].

3. Examples

This section focuses on two examples. In the first example a simplified model
of a small artery is used for validation purpose and to evaluate the importance
of the correct stress incorporation in the in vivo measured geometry. The sec-
ond example concerns a mouse-specific abdominal aorta with four side branches
to explore the ability of the backward displacement method to restore a more
complex cardiovascular structure at its zero-pressure state. In both examples the
calculations were performed using the commercial finite element analysis soft-
ware Abaqus/Standard (Simulia). However, as stated earlier, any other structural
mechanics solver can be used using any discretisation method, element types and
shape functions.

3.1. Example 1: in vivo stress incorporation in a thick-walled cylinder

A small unloaded artery is modelled using a straight cylindrical tube with
a length of 10 mm, an inner radius of 0.5 mm and a wall thickness to diameter
ratio of 0.15. The boundary conditions only allow a radial displacement at the
ending cross sections. The geometrical model is discretized using 64× 32× 4
quadratic hexahedral elements with reduced integration and a hybrid formulation.
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The vessel wall behaviour is modelled by an incompressible isotropic hyperelastic
material using the polynomial strain energy density function

W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C11(I1 − 3)(I2 − 3) (11)

where I1 and I2 are the first and the second invariant of the left Cauchy-Green
deformation tensor, and where Cij are empirically determined material constants
for a human artery according to [17].

3.1.1. Numerical validation of the backward displacement method
To validate the backward displacement method a zero-pressure geometry is

pressurized in a forward analysis by applying a uniformly distributed pressure
load of 80 mmHg to the inner surface of the vessel wall. The resulting geometry
is taken as the in vivo measured geometry at the diastolic phase and serves as a
starting point for the backward problem. This inverse problem is then solved using
the backward displacement method in order to restore a zero-pressure geometry
which is eventually compared to the original zero-pressure geometry. Upon con-
vergence (i = n) the maximum nodal deviation between the original (X) and the
restored (Xn = X∗) zero-pressure geometry is of the same order of magnitude
as the maximum residual rnmax.

As defined by (9) and (10) in section 2.2, the maximum residual represents
the maximal distance between a node at the originally in vivo measured geometry
xm and the corresponding node resulting from a forward analysis xi started from
the ith approximation of the restored zero-pressure geometry X i. Its evolution
throughout the iterative process is shown in Figure 2 in order to evaluate the rate
of convergence when solving for the zero-pressure geometry using the backward
displacement method. The logarithm of the maximum residual decreases linearly
during subsequent iterations until it reaches the machine accuracy.

3.1.2. Evaluation of the effect of in vivo stress incorporation
To evaluate the effect of in vivo stress incorporation, a simulation is performed

in which the internal pressure is first set to the end-diastolic pressure (80 mmHg)
and subsequently increased to the end-systolic pressure (120 mmHg). This is done
for three different setups:

1. The in vivo measured geometry is assumed to be the unloaded geometry.
In the forward simulation the in vivo measured geometry is inflated using
the physiological pressure values (80 mmHg diastolic pressure; 120 mmHg
systolic pressure). The results are visualized in quadrant I.
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Figure 2: Rate of convergence when solving for the zero-pressure geometry of a thick-walled
cylinder (example 1) using the backward displacement method.

2. The in vivo measured geometry is assumed to be the geometry at end-
diastole, but neglects the existence of prestress at the diastolic phase. In
the forward simulation the in vivo measured geometry is only inflated to
40 mmHg, the end-systolic minus end-diastolic pressure difference. To al-
low for a fair comparison of the calculated stresses with the other two cases,
the stress tensor field was corrected, adding an approximation of the stress
field at diastole. The latter resulted from a simulation in which 80 mmHg
was applied onto the diastolic geometry. The results are visualized in quad-
rant IV.

3. The proposed strategy in which the forward simulation towards the phys-
iological pressure values starts from the restored zero-pressure geometry
(pm= 80 mmHg). This results in a prestressed in vivo geometry at diastole.
The results are visualized in both quadrant II and III.

Figure 3(a) presents the maximum principal or circumferential stress at end-
systole (120 mmHg). The contour plots are shown on the corresponding geom-
etry. Figure 3(b) visualizes the grid of the undeformed reference geometry, to-
gether with inner and outer contours of the zero-pressure (black), the end-diastolic
(blue dotted line) and the peak-systolic (red dashed line) geometries. Next to
the figure the inner radii, the peak-systolic minus end-diastolic radial displace-
ment, and the ratio of the inner radii to the inner radius of the measured geometry
(rm= 0.547 mm) are tabulated for each of the three setups. By definition, note
that the measured geometry equals the zero-pressure geometry in setup 1, and the
end-diastolic geometry in setup 2 and 3.
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(a) (b)

Figure 3: (a) Contours of the max. principal stress [Pa] at peak-systole. (b) Grid of the undeformed
reference geometry, together with inner and outer contours of the zero-pressure (black), the end-
diastolic (blue dotted line) and the peak-systolic (red dashed line) geometries. The inner radii
of the corresponding contours, the radial end-diastolic to peak-systolic distension and the ratio
of the different contours to the measured inner radius (rm= 0.547 mm) are tabulated. For more
information about the different quadrants, the reader is referred to the text in section 3.1.2.

Compared to setup 3, the results in Figure 3 clearly show the overestimation
of the maximum principal stress when the in vivo measured geometry is assumed
to be the unloaded geometry (setup 1). Furthermore, the outer contours of the
cross sectional areas at end-diastole and peak-systole are a better approximation
when the in vivo geometry is assumed to be the diastolic geometry (setup 2).
However, the peak-systolic minus end-diastolic radial displacement in setup 2 is
overestimated by a factor of 4.3 due to the nonlinear material law and the absence
of prestress/prestrain at the start of the inflation process.

3.2. Example 2: in vivo stress incorporation in a mouse-specific abdominal aorta
In a second example, a more complex cardiovascular structure was created

based on contrast-enhanced micro-CT images of the abdominal aorta of an in-
house bred male ApoE -/- mouse on a C57BL/6 background (age: 5 months, body
weight: 29 g). A mouse-specific 3D geometry of the aortic lumen containing
four side branches was obtained in vivo, by segmentation of micro-CT (Triumph,
Gamma Medica) images in Mimics (Materialise). In order to obtain sufficient
contrast during the imaging process the mouse was intravenously injected with
Aurovist (Nanoprobes), a contrast agent which provided satisfying results in ear-
lier studies [18]. Using pyFormex [19] a structured grid was projected onto the
outer surface resulting from segmentation yielding a hexahedral mesh for the aor-
tic wall, Figure 4(a), according to the method of De Santis et al. [20]. The mesh
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for the aortic wall consists of 80640 elements with 5 elements to represent the
wall thickness, 48 elements in the circumferential direction and local refinements
in the bifurcation regions, Figure 4(b). The wall thickness was assumed to be 20
percent of the local radius and thus varies throughout the structure.

The element type, the free radial displacement boundary condition at the end-
ing cross sections (3) and the polynomial hyperelastic material model (11) were
adopted from the first example (section 3.1). For example purpose only, identical
material parameters as in the example of the human vessel were used for the con-
stitutive material law, what can be justified by the fact that the basic constituents
of the arterial wall are similar in all mammals.

(a) (b)

Figure 4: Hexaedral mesh for the arterial wall of the abdominal aorta of a mouse (length sample
about 20 mm) and its side branches (a), and a detail of the mesh at the trifurcation region (b).

To further evaluate the backward displacement method this more complex ge-
ometry was brought to its zero-pressure state, assuming the internal pressure load
at the moment of medical imaging to be 80 mmHg. Afterwards, in vivo stress was
computed by reapplying this pressure load in a forward calculation.

The rate of convergence (Figure 5) is plotted for a backward displacement
simulation with a convergence criterion set at 0.01% of the mean arterial diam-
eter. Similarly to the convergence rate of the simplified artery in example 1, the
logarithm of the maximum residual follows a linear decline after the second iter-
ation. Although the geometry is much more complicated, only a three times less
steep slope was found. Remark that the wall clock time of the overall calculation
varies linearly with the number of iterations. The proportionality constant is the
time required to perform one forward calculation. For this specific case and for a
structural solver calculating in parallel on all 12 cores of a Dell PowerEdge R610
server with 2 six-core Intel Xeon X5680 3.33GHz processors and 96GB RAM,
the computation time per iteration takes approximately 1270 s.
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Figure 5: Rate of convergence when solving for the zero-pressure geometry of a mouse-specific
abdominal aorta (example 2) using the backward displacement method.

Figure 6 depicts the contour plots of the stress field and the displacement field
present in the in vivo measured geometry at the moment of medical imaging. This
is the result of applying the end-diastolic pressure on the restored zero-pressure
geometry of the more complex cardiovascular structure.

(a) (b)

Figure 6: Contours of (a) the max. principal stress [Pa], and (b) the displacement [m]. Both after
applying the internal pressure load, present at the moment of medical imaging, onto the restored
zero-pressure geometry.

4. Conclusion

In conclusion, this paper presents a method to restore the original geometry
of a structure in absence of its loading state, and to recover the in vivo stress
field of the final, loaded structure. Therefore, a given final geometry and a given
load are used in a fixed point algorithm in which an iteratively updated displace-
ment field is subtracted from the final reference geometry. The proposed method
allows to restore the zero-pressure geometry of in vivo measured cardiovascular
structures. To emphasize the importance of prestress in this field of research, the
example in section 3.1 shows that the incorporation of in vivo stress in numeri-
cal models of arteries is necessary to properly estimate stress and displacement in
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the physiological blood pressure range. Furthermore, the convergence rate of the
proposed technique is high and decreases only slightly for a much more complex
structure using the same constitutive material law. Finally and most importantly,
the backward displacement method allows for a straightforward implementation
of the algorithm in combination with existing structural solvers as only an update
of the mesh coordinates needs to be performed.
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