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In this paper we study Chaplygin’s Reducibility Theorem and extend its applicability to nonholonomic
systems with symmetry described by the Hamilton-Poincaré-d’Alembert equations in arbitrary degrees of
freedom. As special cases we extract the extension of the Theorem to nonholonomic Chaplygin systems
with nonabelian symmetry groups as well as Euler-Poincaré-Suslov systems in arbitrary degrees of free-
dom. In the latter case, we also extend the Hamiltonization Theorem to nonholonomic systems which do
not possess an invariant measure. Lastly, we extend previous work on conditionally variational systems
using the results above. We illustrate the results through various examples of well-known nonholonomic
systems.

Introduction

Although it is well known that nonholonomic mechanical systems are not variational [2]
and thus their mechanics cannot be expressed in terms of canonical Hamilton equations,
nevertheless several authors (dating back at least as early as S.A. Chaplygin [14, 15]
and Appell [1]) have attempted to express the mechanics of nonholonomic systems in
Hamilton-like forms through several methods. Perhaps the most well-known of these
methods is Chaplygin’s own Reducibility Theorem, whose first part states that for non-
holonomic systems in two generalized coordinates (q1, q2) possessing an invariant measure
with density N(q1, q2), the equations of motion can be written in Hamiltonian form after
the time reparameterization dτ = Ndt (in this context N is known as the reducing mul-
tiplier, or simply the multiplier). The second part of the Theorem (see [19]) says that
if a nonholonomic system can be written in Hamiltonian form after the time reparame-
terization dτ = f(q)dt, then the original system has an invariant measure with density
fm−1(q), where m is the degrees of freedom and the function f is again called the reduc-
ing multiplier, or simply the multiplier. Since both components of the theorem involve a
reparameterization of a nonholonomic system into a Hamiltonian one, one often refers to
this as the Hamiltonization of a nonholonomic system, although we shall refer to it here
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as the Chaplygin Hamiltonization instead1.

Chaplygin’s original motivation for such a Hamiltonization of nonholonomic systems seems
to have been rooted in his interest in the explicit integrability of nonholonomic systems.
Indeed, in [15] Chaplygin applies his method to integrate what would later become known
as the Chaplygin sleigh (see Section 4.5), and remarks that his general procedure (using
the reducing multiplier) for integrating certain two degree of freedom nonholonomic sys-
tems is “interesting from a theoretical standpoint as a direct extension of the Jacobi
method to simple nonholonomic systems.” Chaplygin further applied his theorem to inte-
grate other nonholonomic systems by quadrature [16], as did Kharlamova later [29]. Thus,
the reducing multiplier method has historically been interesting and important from the
standpoint of the integrability of nonholonomic systems (for more historical notes on the
origin of the theorem, see [37], or [18] for a more geometric viewpoint, and [8]). This mo-
tivation led us to investigate extensions of the theorem in this work in the hope of further
expanding its applications to the integrability of nonholonomic systems. One would like
a more straightforward procedure which eliminates such guesswork.

After the introduction of Chaplygin’s theorem, subsequent research on the theorem has
resulted in, among other things, an extension to the quasicoordinate context [34], a study
of the geometry behind the theorem [18, 24, 25], discoveries of isomorphisms between
nonholonomic systems through the use of the theorem [7], an example of a system in
higher dimensions Hamiltonizable through a similar time reparameterization [21], an in-
vestigation of the necessary conditions for Hamiltonization for abelian Chaplygin systems
[27] (see Section 1.1 for a definition), Poisson structures for rolling bodies without slip-
ping [9, 12], and an investigation of rank two Poisson structures in nonholonomic systems
[35]. In addition, the survey paper [8] presents, among other things, many of the known
examples to which Chaplygin’s theorem is applicable. However, two important aspects
yet to be resolved are the extension of the theorem to general nonholonomic systems with
symmetry of arbitrary degrees of freedom and, since the theorem rests on the availability
of an invariant measure, we are also interested in applying a time reparameterization to
“Hamiltonize” a nonholonomic system not possessing an invariant measure, where dif-
ferent dynamical effects may arise [6, 9, 10]. We note that in this case our resulting
“Hamiltonization” of a system not possessing an invariant measure should perhaps more
properly be called a “Poissonization,” since it will in general result in a degenerate Poisson
bracket satisfying the Jacobi identity (see Section 4.5 below), in addition to the continued
non-existence of the invariant measure (however, we will continue to refer to this process
as “Hamiltonization,” keeping in mind this discussion). Moreover, the theorem is com-
monly used in a rather guess-and-check manner, where one considers systems with known
invariant measures and then guesses at the reducing multiplier based on the degrees of
freedom.

In this paper we consider the aforementioned questions for a general nonholonomic system
with symmetry governed by the Hamilton-Poincaré-d’Alembert equations. In Section 1
we briefly discuss the mechanics of these systems, as well as for two special cases of them
(nonabelian Chaplygin systems and Euler-Poincaré-Suslov systems), and present results
in Sections 2.1, 2.2 and 2.3 which generalize the first part of Chaplygin’s Theorem to

1We introduce this term because there are other ways of writing the reduced, constrained mechanics of a
nonholonomic system as a Hamiltonian system that do not involve a time reparameterization, for example as was
done in [4, 23].
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these higher dimensional systems with symmetry, deriving the necessary conditions (in-
dependent of the existence of an invariant measure) for Chaplygin Hamiltonization as a
coupled set of first-order partial differential equations in f . These equations eliminate
the guesswork discussed above, and in the special case of Euler-Poincaré-Suslov systems,
we present results in Section 2.3 which allow Chaplygin Hamiltonization even when the
system does not posses an invariant measure. In Section 3 we use the previous results
to extend the idea of conditionally variational systems introduced in [23] and apply it to
Chaplygin Hamiltonize the entire nonholonomic system (reduced constrained equations
plus the nonholonomic constraints). Lastly, we devote Section 4 to illustrating these
results and showing how special cases of the results presented lead to some of the re-
sults found in the works cited above, and discuss some relevant future directions in the
Conclusion.

1 Nonholonomic Systems with Symmetry

Consider a nonholonomic system with an n dimensional configuration manifold Q and
mechanical Lagrangian L which is subject to k linear nonholonomic constraints described
by the distribution D (moreover, we shall restrict our attention to mechanical Lagrangians
for the remainder of the paper). Suppose that we have a Lie group G which acts freely
and properly on the configuration space Q, with the Lagrangian L and constraints D
invariant with respect to the induced action of G on TQ. For simplicity, assume also that
the constraints and the orbit directions span the entire tangent space to the configuration
space:

Dq + TqOrb(q) = TqQ,

sometimes known as the dimension assumption [2].

With sufficient regularity we can use the Legendre transform to pass to the constraint
phase spaceM = FL(D). The quotient spaceM =M/G is a smooth quotient manifold
with projection map ρ :M→M, and all intrinsically defined vector fields then push down
to M, allowing one to write the equations of motion for the reduced constrained Hamil-
tonian mechanics using a reduced almost-Poisson (in general) bracket onM. The result-
ing nonholonomic equations of motion are known as the Hamilton-Poincaré-d’Alembert
(HPD) equations and split into a coupled set of second-order equations on the shape
space M := Q/G and first-order nonholonomic momentum equations on g∗ [2, 31], whose
number equals s := dim Sq, where Sq := Dq ∩ TqOrb(q).

Following [2] we will now give some of the details, however before doing so let us fix the
following index conventions. The indices a, b, c, . . . will range from 1 to k := dim(g) and
correspond to the symmetry directions, i, j, . . . will range from 1 to s (s < k is the number
of momentum equations) and correspond to the symmetry directions along the constraint
space, and α, β, . . . will represent the indices for the shape variable r ∈ M := Q/G and
range from 1 to m := n−k = dim(M) (the dimension of the shape space). Also, here and
for the remainder the of the paper we shall enforce the Einstein summation convention,
unless otherwise indicated.
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Begin by constructing a body fixed basis eb(g, r) = Adgeb(r) as in [2], where g ∈ G and
r ∈M , such that the infinitesimal generators (ei(g, r))Q of its first s elements at a point q
span Sq. Assuming G is a matrix group and edi is the component of ei(r) with respect to
a fixed basis {ba} of the Lie algebra g, we can then represent the constraint distribution
D as

D = span{gadedi ∂ga ,−gabAbα∂ga + ∂rα},
where we will denote by Ωi the body angular velocity components of the constrained
vertical space.

Defining the induced coordinates (ga, rα, p̃i, p̃α) on M by

p̃i = gadpae
d
i = µde

d
i , p̃α = pα − µbAbα,

where µ ∈ g∗ and µa are its components with respect to a fixed dual basis, pa = ∂L/∂ġa

and pα = ∂L/∂ṙα, the Hamilton-Poincaré-d’Alembert equations onM are given by [2, 5]:

˙̃pi = −µaCa
bde

b
ie
d
j

∂hM
∂p̃j

+ µaF
a
iβ

∂hM
∂p̃β

, (1)

ṙα =
∂hM
∂p̃α

, (2)

˙̃pα = −∂hM
∂rα

− µaF a
jα

∂hM
∂p̃j

− µaBaαβ
∂hM
∂p̃β

, (3)

along with the constraints

ξb = −Abβ
∂hM
∂p̃β

+ ebj
∂hM
∂p̃j

. (4)

Here hM(r,Ω, p̃) = p̃iΩ
i + p̃αṙ

α − lc is the constrained reduced Hamiltonian (where
lc(r, ṙ,Ω) = l(r, ṙ, ξ = −Aṙ + Ωe) is the constrained reduced Lagrangian), Baαβ are the
coefficients of the curvature of the nonholonomic connection:

Baαβ =
∂Aaα
∂rβ

−
∂Aaβ
∂rα

+ Ca
bcAbαAcβ,

where Ca
bc are the structure constants of the Lie algebra g, ξb = (g−1)baġ

a, and finally the
F a
iβ are given by

F a
iβ =

∂eai
∂rβ

+ Ca
bce

b
iAcβ.

Moreover, in equations (1)-(3) the quantities µa = ∂l/∂ξa should be restricted to M by
substituting in the constraints (4). Hereafter we shall denote any expression into which
the constraints have been substituted with a subscript c, as in (µa)c.
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Now, the equations (1)-(3) can be written with respect to an almost-Poisson (AP) bracket
{·, ·}M given by [2]

{g, k}M = {p̃i, p̃j}
∂g

∂p̃i

∂k

∂p̃j
+ {p̃i, p̃α}

(
∂g

∂p̃i

∂k

∂p̃α
− ∂g

∂p̃α

∂k

∂p̃i

)
+ {rα, p̃β}

(
∂g

∂rα
∂k

∂p̃β
− ∂g

∂p̃β

∂k

∂rα

)
+ {p̃α, p̃β}

∂g

∂p̃α

∂k

∂p̃β
, (5)

where

{p̃i, p̃j} = −(µa)cC
a
bde

b
ie
d
j , (6)

{p̃i, p̃α} = (µa)cF
a
iα, (7)

{rα, p̃β} = δαβ ,

{p̃α, p̃β} = −(µa)cBaαβ. (8)

In Section 2.1 we will derive the necessary and sufficient conditions for the AP bracket (5)
to become a Poisson bracket after an appropriate choice of quasivelocities (see Section 2).
For the rest of Section 2 we will concentrate on achieving that same goal by considering
two special cases of the HPD equations (1)-(3): (1) where Sq = {0}, known as the
purely kinematic or nonabelian Chaplygin case, and (2) the case where Q = G, where the
resulting equations represent a generalization of the Euler-Poincaré-Suslov equations [2].
Let us now briefly give the details of these two special cases.

1.1 Nonholonomic Chaplygin Systems

Consider the subclass of nonholonomic systems with symmetry corresponding to Sq = {0},
known as the purely kinematic case [2, 30], where the group orbits exactly complement
the constraints and suppose that Q 6= G. These systems are the special case of the HPD
equations corresponding to s = 0 (i.e. dim Sq = 0, when there are no nonholonomic
momentum equations) and are also known as nonabelian Chaplygin systems [2, 17]. In
the special case when Q = Rs×Sr and G is either a torus action Tm or acts by translations
R2m, they are called abelian Chaplygin systems and correspond to the classical exposition
of Chaplygin systems [34] where there exist local coordinates (rα, sa), α = 1, . . . , n −
2m, a = n − 2m + 1, . . . , n such that the Lagrangian L does not depend on the sa

coordinates, and where the constraints can be written as ṡa = −Aaα(r)ṙα.

Now, from the HPD equations (1)-(3) we can extract the equations of motion for non-
abelian Chaplygin systems as follows. Since s = 0, we have that lc = l(rα, ṙα,−Aaβ ṙβ),
and (assuming sufficient regularity) hM(r, p̃) = p̃αṙ

α − lc . Then, equations (2)-(3) and
the constraints (4) reduce to:

5



ṙα =
∂hM
∂p̃α

, (9)

˙̃pα = −∂hM
∂rα

− (µa)cBaαβ
∂hM
∂p̃β

, , (10)

ξa = −Aaα(r)ṙα, (11)

respectively. For easy reference later on, we also define the semi-basic two-form [13] Λ on
T ∗M with components

Λαβ(r, p̃) := (µa)cBaβα, (12)

so that the last term on the right hand side of (10) can also be expressed as Λαβ(∂hM/∂p̃β).
Moreover, the equations of motion can be written with respect to an AP bracket:

ṙα = {rα, hM}AP , ˙̃pα = {p̃α, hM}AP , (13)

where the AP bracket is the special case of (5) when (6) and (7) vanish:

{g, k}ChapAP (r, p̃) = {g, k}can(r, p̃) + Λαβ
∂g

∂p̃α

∂k

∂p̃β
, (14)

for any two functions g, k : T ∗M → R, where {g, k}can(r, p̃) is the canonical Poisson
bracket,

{g, k}can(r, p̃) :=

(
∂g

∂rα

∂k

∂p̃α
− ∂g

∂rα

∂k

∂p̃α

)
.

1.2 Nonholonomic Systems on Lie Groups

Consider now another special case of the HPD equations corresponding to the setting
where the configuration space is the Lie group G, so that there is no shape space (m =
dim M = 0). The reduced Lagrangian becomes l = 1

2
〈Iξ, ξ〉, where ξ = g−1ġ ∈ g as

before, and I : g 7→ g∗ is the inertia tensor. Substituting in the constraints ξb = ebjΩ
j we

arrive at the reduced constrained Lagrangian lc(Ω), and assuming sufficient regularity we
can define the reduced constrained Hamiltonian hc(Ω, p̃) = p̃iΩ

i − lc. From (1) and (4)
the equations of motion and constraints then become:

˙̃pi = −(µa)cC
a
bde

b
ie
d
j

∂hc
∂p̃j

, (15)

ξb = ebj
∂hc
∂p̃j

, (16)

respectively. These equations are a generalization of the Euler-Poincaré-Suslov equations
[2, 31].

6



We can also write the equations of motion (15) as:

˙̃pi = {p̃i, hc}EPSAP , (17)

where {·, ·}EPSAP is the AP bracket:

{g, k}EPSAP = {p̃i, p̃j}
∂g

∂p̃i

∂k

∂p̃j
, (18)

for any two functions g, k : (gc)∗ → R, where gc = {ξ ∈ g|ξb = ebjΩ
j}, and where the

bracket on the right hand side of (18) is computed by using the canonical bracket on T ∗G
and then restricting to gc (see [2], Section 5.8 for more details). We note in passing that
this bracket is merely (5) with (7)-(8) vanishing (since m = 0).

2 Chaplygin Hamiltonization

To begin the generalization of Chaplygin’s Theorem, we note that one can view Chap-
lygin’s time reparameterization dτ = N(q)dt from the Introduction in a different way as
follows: we have q̇ = dq/dt = N(q)(dq/dτ) =: N(q)ω, which defines the quasivelocities
ω on Q (For a recent discussion of quasivelocities in nonholonomic mechanics see [6, 8]).
Thus, instead of considering which time reparameterization Hamiltonizes our system, we
can rephrase the problem as one of finding a particular set of quasivelocities for which the
almost-Poisson bracket (5) satisfies the Jacobi identity2. To that end, we need to express
the AP bracket (5) in terms of the quasivelocities ω, to which we now turn.

2.1 Chaplygin Hamiltonization of the Hamilton-Poincaré-d’Alembert Equa-
tions

Let j be the map j : (q, ωr, ωΩ) 7→ (q, ṙ,Ω) and define P̃ = j∗p̃. Then locally we have
Lc(r, ω) = j∗lc(r, ṙ,Ω) = lc(r, ṙ

α = fωα,Ωi = fωi), P̃α = ∂Lc/∂ωrα = (∂lc/∂ṙ
β)(∂ṙβ/∂ωrα)

= fp̃α and similarly P̃i = fp̃i. Moreover, define the quasivelocities ω through ṙ = f(r, g)ωr
and Ω = f(r, g)ωΩ, where f ∈ C1 is nonzero on its domain. Then we have the following
transformation of the bracket (5).

Proposition 1. Consider a nonholonomic system with symmetry governed by the HPD
equations (1)-(4). Further, suppose that the matrix Gαβ := ∂2lc/∂ṙ

α∂ṙβ is invertible.
Then the AP bracket (5) becomes the bracket {·, ·}′M := (1/f)j∗{·, ·}M given by:

{G,K}′M = {P̃i, P̃j}′M
∂G

∂P̃i
∂K

∂P̃j
+ {P̃i, P̃α}′M

(
∂G

∂P̃i
∂K

∂P̃α
− ∂G

∂P̃α
∂K

∂P̃i

)
+ {rα, P̃β}′M

(
∂G

∂rα
∂K

∂P̃β
− ∂G

∂P̃β
∂K

∂rα

)
+ {P̃α, P̃β}′M

∂G

∂P̃α
∂K

∂P̃β
, (19)

2If this is successful, then some authors will also call the nonholonomic system conformally Hamiltonian (see
Section 3.3 in [8]).
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where

f{P̃i, P̃j}′M = ÂkijP̃k + B̂γ
ijP̃γ, (20)

f{P̃i, P̃β}′M = Ĉk
iβP̃k + D̂γ

iβP̃γ, (21)

f{P̃α, P̃β}′M = Êk
αβP̃k + F̂ γ

αβP̃γ, (22)

f{rα, P̃β}′M = fδαβ , (23)

and the components above are given in the Appendix by (58)-(67).

Proof. From the reduced Lagrangian l(r, ṙ, ξ),

l =
1

2
gαβ ṙ

αṙβ + gaαṙ
αξa +

1

2
gabξ

aξb − V (r),

we can form the constrained reduced Lagrangian lc(r, ṙ,Ω) by substituting in the con-
straints (4) in the form ξb = −Abβ ṙβ + ebjΩ

j. We then have p̃α = ∂lc/∂ṙ
α = Gαβ ṙ

β +Gi
αp̃i,

where Gαβ = gαβ − 2gaαAaβ + gabAaαAbβ, Gi
α = (gbα − gabAaα) Γbi and we have used ebjΩ

j =

Γbip̃i, where Γai = eajG
ji, with Gij the inverse of the matrix Gij = gabe

a
i e
b
j. Since Gαβ is

invertible by assumption (denote its inverse by Gαβ), this leads to ṙγ = Gγαp̃α−GγαGi
αp̃i.

Thus, we have:

(µa)c =

(
∂l

∂ξa

)
c

= Maγ ṙ
γ + gabΓ

bip̃i

= Maγ

(
Gγαp̃α −GγαGi

αp̃i
)

+ gabΓ
bip̃i

= MaγG
γαp̃α +

(
gabΓ

bi −MaγG
γαGi

α

)
p̃i,

=⇒ j∗(µa)c =
1

f

[
MaγG

γαP̃α +
(
gabΓ

bi −MaγG
γαGi

α

)
P̃i
]

(24)

where we have used the definition of the P̃ . Then, using the general relation

f{P̃I , P̃J}′M = f{f, p̃J}Mp̃I − f{f, p̃I}Mp̃J + f 2{p̃I , p̃J}M, (25)

which holds for all I, J = i and I, J = α, and (6)-(7) along with (8) and (24), we get the
transformations in (20)-(22). Let us illustrate this for (20).

From (25) we have:

f{P̃i, P̃j}′M = f

[
∂f

∂gσ
∂p̃j
∂pσ

p̃i −
∂f

∂gσ
∂p̃i
∂pσ

p̃j

]
+ f 2

(
−j∗(µa)cCa

bde
b
ie
d
j

)
=

∂f

∂gσ
gσd

(
edj P̃i − edi P̃j

)
− f 2j∗(µa)cC

a
bde

b
ie
d
j

= C
k

ijP̃k +
(
fCa

bde
b
ie
d
jMaγG

γαGk
α − fKk

ji

)
P̃k + B̂α

ijP̃α, (26)

8



where we’ve used (24) in the last line of (26). Indeed, this produces (20) and (58)-
(59). The remaining transformations (21)-(22) and equations (60)-(63) follow from similar
computations.

Lastly, we compute j∗{rα, p̃β}M = f{rα, P̃β}′M as:

f{rα, P̃β}′M = {rα, f p̃β} =
∂rα

∂rγ
∂(fp̃β)

∂pγ
− ∂rα

∂pγ

∂(fp̃β)

∂rγ
= fδαβ,

which gives (23).

Proposition 1 gives the explicit form for the AP bracket of the HPD equations in terms of
the quasivelocities. Now, as stated at the beginning of this section, the idea is to derive
the conditions under which the multiplier f makes (5) into a Poisson bracket. To that
end, we have the first main result.

Theorem 2. Suppose that we have a nonholonomic system with symmetry satisfying
the assumptions of Proposition 1 and let f(r, g) ∈ C1 be a function which is nonzero
everywhere on its domain. Then the almost-Poisson bracket (5) is Poisson iff f satisfies:

B̂γ
ij = 0, D̂γ

iβ = 0, F̂ γ
αβ = 0, (27)

Âmil Â
l
jk + ÂmklÂ

l
ij + Âmjl Â

l
ki, (28)

Ĉi
jγÊ

j
αβ + Ĉi

jβÊ
j
γα + Ĉi

jαÊ
j
βγ = 0, (29)

ÂiklÊ
l
αβ + Ĉi

lαĈ
l
kβ − Ĉi

lβĈ
l
kα = 0, (30)

ÂlikĈ
k
jα − Ĉ l

kαÂ
k
ij − ÂljkĈk

iα = 0. (31)

Moreover, the Hamiltonized equations (1)-(3) become, in this new Poisson bracket {·, ·}PM:

ṙα = f{rα,HM}PM,
˙̃Pα = f{P̃α,HM}PM,

˙̃P i = f{P̃i,HM}PM, (32)

where HM = j∗hM.

Proof. In order for (19) to become a Poisson bracket it must satisfy the Jacobi identity.
We can compute the results of this restriction, which then leads to the conditions (27)-(31)
that f must satisfy. For better readability of this paper, we have left these computations
to the second section of the Appendix. As for the second half of the Theorem, we simply
note that since j∗r = r, j∗p̃ = P̃ and j∗hM = HM, then the AP bracket representation
of the equations of motion (1)-(3) becomes j∗(rα−{rα, hM}M) = 0, which gives the first
equation in (32) since j∗{·, ·}M = f{·, ·}PM, and similarly for the remaining.

Theorem 2 represents the necessary conditions under which a given nonholonomic system
with symmetry admitting a representation within the HPD framework can be Chaplygin
Hamiltonized into (32). It is a generalization of Chaplygin’s Theorem not only to higher
dimensional nonholonomic systems with symmetry, but also in that it does not presup-
pose the existence of an invariant measure. Indeed, although the conditions (27)-(31)
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seem rather involved they are no more than a coupled set of first-order partial differen-
tial equations in f which can be solved using any of the popular mathematical software
packages. Thus, contrary to the traditional usage of Chaplygin’s Theorem found in the
literature (where the reducing multiplier is typically guessed at by knowing the system’s
invariant measure and degrees of freedom), Theorem 2 does not require the invariant
measure and eliminates the guesswork. In fact, as we will show below, for nonabelian
Chaplygin systems we will recover the second part of Chaplygin’s Theorem from the
analogous f conditions in that case, showing that for these types of nonholonomic sys-
tems it is more advantageous to solve the corresponding f conditions instead of guessing
at the multiplier using the invariant measure density, since if a solution exists then we
will get the invariant measure density for free. Moreover, as we will also show below
and have already mentioned above, one can now also apply Chaplygin Hamiltonization to
systems for which both Chaplygin’s Theorem and the guesswork above are inapplicable:
nonholonomic systems which do not possess an invariant measure density. The Chaplygin
sleigh (which we discuss in Section 4.5) is perhaps the best illustration.

Let us now turn to the Chaplygin Hamiltonization of the two special cases considered in
Sections 1.1 and 1.2 above. Indeed, consider now the special cases of the HPD equations
given by the nonabelian Chaplygin nonholonomic systems, as in Section 1.1, and the
Euler-Poincaré-Suslov case of Section 1.2, where there is no shape space. From Theorem
1, in these cases the quasivelocity transformations read ṙα = f(r)ωrα (we shall write
this simply as ṙ = f(r)ω henceforth) and Ωi = f(g)ωΩi (we shall write this simply as
Ω = f(g)ω henceforth), respectively, where f ∈ C1 is nonzero on its domain. Moreover,
defining the maps jr : (q, ω) 7→ (q, ṙ) and jΩ : (ω) 7→ (Ω) we have the following Corollary
of Theorem 2.

Corollary 3. (1) For a nonabelian Chaplygin nonholonomic system (L,G,D) described by
(9)-(11) with almost-Poisson formulation (13)-(14) satisfying the assumptions of Propo-
sition 1, the necessary and sufficient conditions for Chaplygin Hamiltonization (using
dτ = fdt) on j∗rM are that f satisfy

j∗r{g, k}
Chap
AP (r, p) = f{G,K}can(r, P̃), (33)

for all α, ν, δ = 1, . . . ,m (recall from Section 1 that m = n − k = dim(M)), and where
{·, ·}can is the canonical bracket on j∗rM .

(2) For an Euler-Poincaré-Suslov nonholonomic system described by (15)-(16) with almost-
Poisson formulation (17)-(18) satisfying the assumptions of Proposition 1, the necessary
and sufficient conditions for Chaplygin Hamiltonization (using dτ = fdt) on j∗Ω(gc)∗ are
that f satisfy

j∗Ω{g, k}EPSAP = f{G,K}j
∗
Ω(gc)∗

− , (34)

where {·, ·}j
∗
Ω(gc)∗

− is the (minus) Lie-Poisson bracket on j∗Ω(gc)∗.

Equivalently, in local form conditions (33) and (34) read
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∂f

∂rδ
Gαν +

∂f

∂rν
Gαδ − 2

∂f

∂rα
Gδν = f (Kµ

αδGµν +Kµ
ανGµδ) , (35)

SlkmS
m
ij + SljmS

m
ki + SlimS

m
jk = 0, ∀i, j, k, l = 1, . . . , n− k, (36)

respectively, where Slkm := −
(
K l
mk − C

l

km

)
.

Proof. (1) Let us consider the nonabelian Chaplygin case first. Since this case corresponds
to the situation in which s = dim Sq = 0, then only Greek indices survive in Theorem
2. Moreover, using that in this case gab = gaα = 0 for all a, α and f is independent
of g, we can extract the relevant Hamiltonization conditions from (27)-(31). The only

non-vacuous condition amongst those in Theorem 2 is then F̂ γ
αβ = 0. From (63) this leads

to the condition (33), and its local form in (35).

(2) For the Euler-Poincaré-Suslov case, since this corresponds to the special case of the
HPD equations in which m = dim M = 0, then only the Latin indices survive in Theorem
2. Thus, gαβ = gaα = 0 for all a, α, β, and since f is independent of r, the only non-vacuous
condition amongst those in Theorem 2 is condition (28). However, note that because of
the fact that m = 0, the first term in (58) vanishes, giving the condition (34), and its
local form in (36).

For completeness, we should note that based on the results of Corollary 3 we can write
the reduced constrained mechanics of a nonabelian Chaplygin and Euler-Poincaré-Suslov
nonholonomic system from (32) as

ṙα = f{rα,HM}can and ˙̃Pβ = f{P̃β,HM}can, (37)

˙̃P i = f{P̃i,HM}
j∗ω(gc)∗

− , (38)

respectively. The reader familiar with the usual treatment of Chaplygin’s theorem will
note the absence of the reparameterized time τ in (37). In fact, in the context of Chap-
lygin’s work, as well as to compare directly with [7], we note that the quasi-Hamiltonian
forms (37)-(38) are the “t-time” analogues of the Hamiltonian forms stated in the classical
Chaplygin Reducibility Theorem in “τ -time,” and the two are related through ṙ = fr′,
˙̃P = f P̃ ′, where r′ = dr/dτ and P̃ ′ = dP̃/dτ .

Now, given the more general conditions in Corollary 3 (which are valid for nonabelian
Chaplygin and Euler-Poincaré-Suslov systems in arbitrary degrees of freedom), let us
proceed to extract both parts of Chaplygin’s Reducing Multiplier Theorem as special
cases.

2.2 Chaplygin’s Reducing Multiplier Theorem

We now specialize to the case when m = dim M = 2 (the two degree of freedom case) to
extract the first part of Chaplygin’s Theorem.

11



Corollary 4. The necessary and sufficient condition for a Chaplygin nonholonomic sys-
tem (L,G,D) in two degrees of freedom (m = 2) to be Chaplygin Hamiltonizable is that

∂K1
12

∂r1
= −∂K

2
12

∂r2
, (39)

or equivalently that the system (9)-(10) possess a nonzero invariant measure density

N(r) ∈ C1. The multiplier is then given by f(r) = e
R
K1

12dr
2

= N .

Proof. From Corollary 3, the only independent conditions in (33) in the two degree of
freedom case are:

(
∂f

∂r2
− fK1

12

)
G11 −

(
∂f

∂r1
+ fK2

12

)
G12 = 0,(

∂f

∂r2
− fK1

12

)
G21 −

(
∂f

∂r1
+ fK2

12

)
G22 = 0.

Since we have assumed that Gαβ is invertible, the necessary and sufficient condition for
the satisfaction of these equations is that the parenthetical terms vanish. The resulting
set of equations is soluble iff (39) is satisfied, in which case f is given in explicit form as
in the Corollary. However, as we showed in [23], if the the constrained reduced system
(9)-(10) has an invariant measure, then its density N (for m = 2) satisfies:

K1
12 =

1

N

∂N

∂r2
, K2

12 = − 1

N

∂N

∂r1
.

One sees immediately that this satisfies (39), and hence f = N is a multiplier.

Moving on to the second part of Chaplygin’s Theorem, the Proposition below shows that
it too follows from the Hamiltonization condition (33).

Proposition 5. Suppose f satisfies the conditions of Corollary 3. Then the original
system (9)-(10) has an invariant measure with density fm−1.

Proof. Suppose f satisfies (35). Multiplying by ṙδ and ṙν and adding results in:

1

f

(
∂f

∂rβ
pα −

∂f

∂rα
pβ

)
ṙβ =

(
∂l

∂ξa

)
c

Baαβ ṙβ.

Comparing the ṙβ coefficients yields:

Λβα =
1

f

(
∂f

∂rβ
pα −

∂f

∂rα
pβ

)
, (40)

where we remind the reader of the definition of Λ from (12), and have used pα = ∂lc/∂ṙ
α

(we will drop the tildes in p here). We also note that the relationship (40) was also

12



presented as a sufficient condition for the existence of an invariant measure by [36] (see
also [17]), but here is derived from the conditions of Corollary 3. Thus, for a Chaplygin
Hamiltonizable system the second term on the right hand side of (10) can be written in
terms of f as in (40).

Now, suppose Xnh = ṙα∂rα + ṗα∂pα is the nonholonomic vector field solution to the system
(9)-(11). We will show that fm−1 is an invariant measure density by showing that the
vector field fm−1Xnh has zero divergence. A straightforward calculation yields

div (fm−1Xnh) =
∂(fm−1ṙα)

∂rα
+
∂(fm−1ṗα)

∂pα
= fm−2ṙα

(
(m− 1)

∂f

∂rα
+ f

∂Λβα

∂pβ

)
, (41)

and a simple calculation of the last term in (41) using (40) then shows that the divergence
does indeed vanish and completes the proof.

Corollary 3 yields the necessary conditions for the Chaplygin Hamiltonization of the
nonabelian Chaplygin system (9)-(11), which locally are the first-order partial differential
equations (35) in r. Proposition 5 then completes the generalization by providing us with
the invariant measure density given a solution to (33). We should stress, however, that
the converse of Proposition 5 is not true in general. That is, given an m > 2 degree of
freedom nonholonomic system with an invariant measure, its Chaplygin multiplier f may
or may not coincide with the invariant measure density (or any other smooth function of
it). This is most easily seen by first assuming that the m degree of freedom Chaplygin
system has an invariant measure with density fm−1, so that the right hand side of (41)
vanishes. Inserting the resulting equation for ∂f/∂rα into (35) yields

2GδνK
β
αβ −

(
GανK

β
δβ +GαδK

β
νβ

)
= (m− 1) (Kµ

αδGµν +Kµ
ανGµδ) . (42)

The conditions in (42) are, for m > 2, conditions solely arising from the nonholonomic
system itself, as (42) depends only on the metric of the Lagrangian and the curvature
of the connection (for m = 2 (42) is vacuous, a manifestation of Corollary 4)3. Thus, if
the metric and curvature of the connection of a Chaplygin nonholonomic system interact
precisely as in (42) then the converse of Proposition 5 holds. However, given the rarity of
such an event, we believe that the ordering of the Hamiltonization process for nonabelian
Chaplygin systems that first begins by attempting to solve the conditions (35) and then
extracting the invariant measure density from Proposition 5 is best4.

In another direction, it may be the case, however, that (35) does not have a solution. This
does not mean that the system is not Chaplygin Hamiltonizable though, since it may still
possess more symmetries which further reduce the degrees of freedom, and which allow
one to seek such a solution on the second reduced phase space. We illustrate such a
situation in the next section, making use of the classical Routhian [2] to explore the effect
of additional simple symmetries in (9)-(10) on its Chaplygin Hamiltonizability.

3Moreover, it should also be clear that for m > 2, using any smooth function F (f ; m) will also lead to conditions
similar to (42).

4Nonetheless, it is impressive that some authors [19, 20, 21] have effectively found nonholonomic systems for
which (42) is satisfied.
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2.3 Momentum Conservation and Chaplygin Hamiltonization

Suppose that (35) has no solutions, but that the nonholonomic system possesses momen-
tum conservation laws that we have yet to account for. With the aid of these conservation
laws, we can apply the reduction process to further reduce the degrees of freedom of the
system and re-attempt a Hamiltonization on the second reduced space.

In order to illustrate this in a simple manner, we restrict ourselves in this section to
Chaplygin systems which we will call nonholonomic cylic. By this we mean that we have
an abelian Lie group H acting on M = Q/G by M 3 rα = (wα

′
, vi) 7→ (wα

′
, vi + hi),

h ∈ H, where i = 1, . . . l = dim(H) and α′ = 1, . . . ,m − l and such that Λα′i = 0 ∀i, α′
(we shall hereafter denote the nonconserved conjugate variable indices w with a prime)
and such that the action leaves the Lagrangian and constraints invariant. Under these
assumptions the vi equations in (10) lead to the momentum conservation laws5 and we can
thus set pi = λi = constant and perform a partial Legendre transform in the vi variables
to form, analogous to the classical Routhian [32, 33], the constrained Routhian Rc(w, ẇ)
defined by

Rc(w, ẇ) :=
[
lc(w, ẇ, v̇)− λiv̇i

]
pi=λi

. (43)

Now, using the well-known fact [32] that the Euler-Lagrange expressions of the noncon-
served variables of lc are equivalent to the Euler-Lagrange expressions of the nonconserved
variables of Rc, we can write the Lagrange-d’Alembert equations for Rc as

d

dt

∂Rc

∂ẇα′
− ∂Rc

∂wα′
= −

(
∂l

∂ξa

)
c

Baα′β′ẇβ
′
, (44)

along with the conservation equations ṗi = 0. Furthermore, the last term on the right
hand side of (44) can be rewritten in terms of the Routhian:

(
∂l

∂ξa

)
c

Baα′β′ = MaαG
αβ ∂lc
∂ṙβ
Baα′β′ =

[
MaαG

αε′ ∂lc
∂ẇε′

+MaαG
αiλi

]
Baα′β′ ,

=

[(
MaαG

αε′ ∂Rc

∂ẇε′

)
+MaαG

′αiλi

]
Baα′β′ , (45)

= Kε′

α′β′
∂Rc

∂ẇε′
+Ki

α′β′λi, (46)

where G′αi = Gαi−Gαε′G
ij
Gjε′ , assuming the invertibility of G

ij
:= (∂2lc/∂v

i∂vj) as well
as that of the kinetic energy matrix of lc (we also remind the reader of the definition of
the Kε

αβ in (64)). Moreover, we shall henceforth denote the parenthetical term in (45) by
(FRc)

′.

5Since the H-invariance implies that lc does not depend explicitly on the vi, these variables are cyclic and
produce momentum conservation laws in unconstrained systems. However, due to the presence of the Λαβ ,
cyclic variables are not enough to produce the conservation laws, hence the introduction of the terminology
“nonholonomic cyclic.”
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Then, since Rc can now be interpreted as a function on T (M/H), we can now attempt
to Hamiltonize (44) on this second reduced space. To that end, defining the maps j :
(w, ω) 7→ (w, ẇ) and jp : (r, λi) 7→ (r, pi), we have the second main result.

Theorem 6. Suppose that the nonabelian Chaplygin nonholonomic system given by (9)-
(11) is not Hamiltonizable by Corollary 3 but is nonholonomic cyclic. Further, suppose

that the kinetic energy matrix of lc and the sub-matrix G
ij

:= (∂2lc/∂v
i∂vj) are invertible.

Then if there exists a multiplier f(w), nonzero everywhere on its domain with f(w) ∈ C1,
satisfying [

ω,
∂Rc

∂ω

]∗
= 〈(FRc)

′,B(ω, f∂w)〉, (47)

where Rc(w, ω) = j
∗
Rc and (FRc)

′ = j
∗
(FRc)

′, the reduced system is Chaplygin Hamil-
tonizable on M ′ = M/H under the choice of quasivelocity ẇ = fω. Furthermore, assum-
ing sufficient regularity its dynamics on T (M/H) can be written in the quasi-Hamiltonian
form

ẇα
′
= f{wα′ ,HM ′}AP ,

˙̃ ′Pβ′ = f{P̃ ′β′ ,HM ′}AP , (48)

where P̃ ′α′ = ∂Rc/∂ω
α′ and HM ′ = ωα

′P̃ ′α′ −R′c|ω→P̃ ′ is the Hamiltonian and the almost-
Poisson bracket is defined by:

{G,K}AP (w′, P̃ ′) = {G,K}can(w′, P̃ ′)− fKi
α′β′λi

∂G

∂P̃ ′α′
∂K

∂P̃ ′β′
, (49)

where {·, ·}can is the canonical bracket on T (M/H). Moreover, the bracket automatically
satisfies the Jacobi identity for dim(M ′) = 2.

Proof. Under the quasivelocity transformation ẇ = f(w)ω the constrained reduced equa-
tions (44) become (taking into account (46)):

d

dt

∂Rc

∂ωα′
− f ∂Rc

∂wα′
=

(
W ε′

α′β′
∂Rc

∂ωε′
ωβ
′
)
− f 2Ki

α′β′λiω
β′ , (50)

where W ε′

α′β′ := fKε′

β′α′ −Cε′

α′β′ . Now, if f is chosen to satisfy (47), then the parenthetical
term in (50) vanishes. By defining the Hamiltonian HM ′ as in the statement of the
Theorem, the equations of motion can then be written as in (48) with the almost-Poisson
bracket (49). Lastly, a straightforward computation shows that the Jacobi identity is
automatically satisfied for dim(M ′) = 2, owing to the fact that the non-canonical part in
(49), {Pα′ ,Pβ′}AP , is independent of the momenta.

Theorem 6 will be used below when discussing the Chaplygin sphere (a classic example of
how the apparent failure of Hamiltonizability can be reversed in the presence of momentum
conservation laws) and the Snakeboard as well. However, let us remark here that in [7]
the authors consider an extension of the Chaplygin method to the case where gyroscopic
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forces are involved, analyzing the Hamiltonization of nonholonomic systems in two degrees
of freedom. In their subsequent bracket description of the Hamiltonized mechanics there
appear non-canonical parts which in this paper manifest themselves as the second term
in (49), resulting from the second reduction to M/H. Indeed, we can compare the results
of Theorem 6 to the exposition in [7] by first noting that the non-canonical part of the
bracket (49) is the many degree of freedom analogue of S in equation (3) of [7]. This is
best seen by defining Sα′β′ := −fKi

α′β′λi along with the 2-form Ω := Sα′β′dw
α′ ∧ dwβ′ .

The two-form Ω is exact when dim M = 2, and in that case (or any other case when it is
exact), one can then locally write Ω = dβ, where β = Wα′(w)dwα

′
, and as the authors in

[7] point out, the constrained reduced equations (48) can then be rewritten as

d

dt

∂RW

∂ωα′
− f ∂RW

∂wα′
= 0, (51)

where RW (w, ω) = Rc(w, ω) +Wα′(w)ωα
′
.

As a preliminary application of the results above, we shall now use Corollary 3 to extend
prior Hamiltonization results from [23] of a class of nonholonomic systems known as con-
ditionally variational systems, which are nonholonomic systems that can be Hamiltonized
in full subject to the imposition of initial conditions that satisfy the constraints.

3 Conditionally Variational Systems in the Quasivelocity Con-
text

In [23] we discussed the notion of a conditionally variational nonholonomic system.
Briefly, these systems have the property that the constrained Euler-Lagrange equations are
Lagrangian, hence making it possible to express the constrained dynamics in a variational
manner. However, we showed that under certain additional requirements for the original
system’s Lagrangian one can construct the “variational” Lagrangian LV whose Euler-
Lagrange equations reproduce the nonholonomic equations when the initial conditions
are chosen to satisfy the constraints (as they must anyway). Hence, such nonholonomic
systems can be realized as variational systems provided the initial conditions satisfy the
constraints and that the original Lagrangian satisfies certain requirements.

In that paper we showed that such a realization was possible only in the cases when the
nonholonomic system possessed an invariant measure with constant density N(r) (the
vertical rolling disk of Section 4.1 is such a system). However, using Corollary 3 we
can now extend the results in [23] to a more general setting if we instead focus on the
Chaplygin Hamiltonized system. To that end we have the following result:

Theorem 7. Suppose that for a given abelian Chaplygin nonholonomic system (L,G,D)
with constraints given by

φa(q, q̇) = ṡa + Aaα(r)ṙα, a = 1, . . . , k < n,

where q = (r, s), we have found an f as in Corollary 3 above and let L(q, ω) := L(q, ṙ =
fω, ṡ = fω) and φa(q, ω) = φa(q, ṙ = fω, ṡ = fω). Then if the matrix g̃ab := (∂2L/∂ωa∂ωb)
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is invertible, the nonholonomic mechanics of the original system can be derived from the
(almost) Euler-Lagrange equations

d

dt

∂LV
∂ωI

− f ∂LV
∂qI

= 0, I = 1, . . . , n, (52)

by using the Lagrangian LV (q, ω) defined by

LV (q, ω) = L(q, ω)− 1

f

∂L
∂ωa

φa(q, ω), (53)

and imposing the nonholonomic constraints initially.

Proof. The existence of an f which Hamiltonizes the system guarantees, by part (2) of
Proposition 3 in [23], that the system (L(q, ω), φ(q, ω)) is conditionally variational after
the reparameterization dτ = f(r)dt. Then, the Theorem follows by Proposition 5 of [23]
again.

Theorem 7 extends Chaplygin’s Theorem in a different direction. Unlike Corollary 3, it
gives one a method to Hamiltonize the entire system (similar to some of our earlier work
[4]) after a time reparameterization. Although it is impossible for a nonholonomic system
to be Hamiltonian [2], Theorem 7 begins to answer the open problem briefly discussed
in [8] and elsewhere of lifting the Hamiltonization of the reduced problem to the whole
system. We illustrate this and our other results below by applying these ideas to some
common and well-known nonholonomic systems.

4 Examples

The simplest illustrations of the above results can be found in low dimensions, specifically
the two degree of freedom case. Although this is the original setting for Chaplygin’s
Reducibility Theorem, we will discuss the Chaplygin sleigh (which, due to its lack of an
invariant measure, cannot be handled by Chaplygin’s Theorem), among other things, and
also take this opportunity to illustrate Theorem 7 as well.

4.1 The Vertical Rolling Disk

Consider the nonholonomic vertical rolling disk pictured in Figure 1 below with configu-
ration space Q = R2 × S1 × S1 and parameterized by the coordinates (x, y, θ, ϕ), where
(x, y) is the position of the center of mass of the disk, θ is the angle that a point fixed on
the disk makes with respect to the vertical, and ϕ is measured from the positive x-axis.
This system has Lagrangian and constraints given by:

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2,

φ1 = ẋ−Rcos ϕθ̇ = 0,

φ2 = ẏ −Rsin ϕθ̇ = 0, (54)

17



where m is the mass of the disk, R is its radius, and I, J are the moments of inertia about
the axis perpendicular to the plane of the disk, and about the axis in the plane of the
disk, respectively.

x

z

y

(x, y)

θ

P0

ϕ

P

Figure 1: The Vertically Rolling Disk.

This system has an invariant measure with constant density N , which we can take without
loss of generality to be unity. Corollary 4 applies and since f = N = const, then we can
simply take q̇ = ω so that the new quasivelocities are merely the original q̇’s. A short
computation then shows that the system (54) satisfies Theorem 7, and the variational
Lagrangian is computed through (53) to be

LV (q, q̇) = −1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2 +mRθ̇(ẋcos ϕ+ ẏsin ϕ). (55)

The Lagrangian (55) first appeared in [23], and a short computation shows that apply-
ing the initial conditions φ1(0) = 0, φ2(0) = 0 to the Euler-Lagrange equations for LV
reproduces the nonholonomic equations for the system (54).

This simple example illustrates the case when Hamiltonization is automatic (i.e. f =
const) and thus the system is conditionally variational as well.

4.2 The Nonholonomic Free Particle

Consider a nonholonomically constrained free particle with unit mass (more details can
be found in [2]), and Lagrangian and constraint given by

L = 1
2

(ẋ2 + ẏ2 + ż2) ,

φ(q, q̇) = ż + xẏ = 0. (56)

The system possesses an invariant measure with density N(x) = (1 + x2)−1/2, and thus
by Corollary 4 the system is Chaplygin Hamiltonizable with f(x) = (1 + x2)−1/2 and
quasivelocities defined by ω =

√
1 + x2ṙ, where r = (x, y).

To illustrate Theorem 7, note that L(q, ω) = (1/2)f 2(ω2
x + ω2

y + ω2
z) and that since g̃zz =

(1/2)f 2, Theorem 7 applies and we have LV given by:
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LV (q, ω) =
1

2(1 + x2)

(
ω2
x + ω2

y − ω2
z − 2xωxωy

)
,

Then, computing equations (52) gives:

ω̇x =
xω2

x

(1 + x2)3/2
,

ω̇y = 0,

d

dt

(
f 2(ωz + xωy)

)
= 0. (57)

Now, the last line of (57) reads (d/dt)(fφ(q, ω)) = 0, which gives the conservation law
f(q(t))φ(q(t), ω(t)) = f(q(0))φ(q(0), ω(0)). Thus, if the constraints are satisfied initially,
then φ(q(0), ω(0)) = 0, and hence φ(q(t), ω(t)) = 0 for all t. Recalling that q̇ = fω, this
then expresses the conservation in time of the original constraint equation (56). After
imposing the constraints initially, one can then use the quasivelocity definitions to then
transform ω̇ → r̈ and recover the original nonholonomic mechanics that results from the
application of the Lagrange-d’Alembert principle to the system (56). Thus, although (52)
is not Hamiltonian, as has been the theme in this paper, it is after Chaplygin’s time
reparameterization (and the imposition of initial conditions satisfying the constraints).
Thus the nonholonomic free particle, like the vertical disk, is Hamiltonizable but since
f 6= const it is only conditionally variational after a reparameterization of time.

4.3 The Chaplygin Sphere

The Chaplygin sphere is a sphere rolling without slipping on a horizontal plane (see [2, 7])
whose center of mass is at the geometric center, but the principal moments of inertia are
distinct. In Euler angles (θ, ϕ, ψ) the Lagrangian and constraints are:

L =
I1

2

(
θ̇ cos ϕ+ ψ̇ sin ϕ sin θ

)2

+
I2

2

(
−θ̇ sin ϕ+ ψ̇ cos ϕ sin θ

)2

+
I3

2

(
ϕ̇+ ψ̇ cos θ

)2

+
1

2

(
ẋ2 + ẏ2

)
,

φ1 = ẋ− θ̇ sin ψ + ϕ̇ cos ψ sin θ = 0,

φ2 = ẏ + θ̇ cos ψ + ϕ̇ sin ψ sin θ = 0.

where Ii are the moments of inertia about the center and where we have assumed the ball
to have unit radius and mass.

Since q = (x, y, θ, ψ, ϕ) and the constraints and Lagrangian are cyclic in x, y, we can
consider this to be an abelian Chaplygin system. The system has an invariant measure
whose density N(θ, ϕ) is in general non-constant [7].
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Applying Corollary 3 shows that there does not exist an f which Hamiltonizes the three
degree of freedom base dynamics given by (9)-(10) when viewed as an abelian Chaplygin
system. However, it is easily seen that ψ is a nonholonomic cyclic variable and leads to
the momentum conservation law pψ = λψ. Thus we can form the constrained Routhian
as in (43) and further reduce the dynamics to M ′ = S1 × S1. We can then Hamiltonize
on M ′ through Theorem 6, from which (47) shows that f = N(θ, ϕ). The non-canonical
part of the almost-Poisson bracket (49) is then computed to be

{P ′1,P ′2} = −λψ(I3 + 1)f 3 sin θ(I1 cos2 ϕ+ I2 sin2 ϕ+ 1),

and by the same Theorem since dim M ′ = 2 we know that this bracket satisfies the Jacobi
identity and hence is indeed a Poisson bracket. This matches the result obtained in [7]
and is an example of a system that although is not Hamiltonizable at when viewed as a
three degree of freedom abelian Chaplygin system is in fact Hamiltonizable on the second
reduced space M ′ of dimension 2. Moreover, it also serves to illustrate the discussion at
the end of Section 2.3.

4.4 The Snakeboard

Another example of Theorem 6, whose greater importance we will discuss in the Conclu-
sion, is the Snakeboard [2, 31]. This system is modeled as a rigid body (the board) with
two sets of independent actuated wheels, one on each end of the board. The human rider
is modeled as a momentum wheel which sits in the middle of the board and is allowed to
spin about the vertical axis, see Figure 2.

φ

θ
ψ

(x,y) θ
ψ

φ

Figure 2: The Snakeboard.

The configuration space is Q = SE(2) × S1 × S1 and the Lagrangian L : TQ → R and
constraints are given by:

L =
1

2

(
ẋ2 + ẏ2 + θ̇2 + ψ̇2 + 2ψ̇θ̇ + 2φ̇2

)
,

ẋ = − cotφ cos θθ̇,

ẏ = − cotφ sin θθ̇,
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where we have set the mass m, moments of inertia, and the distance r from the center of
the board to its wheels equal to unity. Here (x, y, θ) represent the position and orientation
of the center of the board, ψ the angle of the momentum wheel relative to the board and
φ1 and φ2 the angles of the back and front wheels relative to the board. Here we’ve made
the simplification that φ1 = −φ2, as in [2, 31].

As stated, we can view this system as an abelian Chaplygin nonholonomic system with
three degrees of freedom. Its equations of motion are given in [31] as:

ṗθ = −1

2
secφ cscφ(pθ − pψ)pφ, θ̇ = tan2 φ(pθ − pψ),

ṗφ = 0, φ̇ =
1

2
pφ,

ṗψ = 0, ψ̇ =
pψ − sin2 φpθ

cos2 φ
.

Since this system satisfies the conditions of Theorem 6 we can set pψ = λψ = const.
and focus on Hamiltonizing the reduced system. Given that this reduced system has the
invariant measure N(φ) = tanφ, which is independent of ψ, by Corollary 4 f = N . The
non-canonical part of the almost-Poisson bracket (49) is then computed to be:

{P ′1,P ′2} = sec2 φλψ,

and by the same Theorem we know that this bracket satisfies the Jacobi identity (since
the reduced system has two degrees of freedom) and is thus a Poisson bracket.

4.5 The Chaplygin Sleigh

The Chaplygin Sleigh [2, 3, 11, 14, 15, 34] consists of a rigid body in the plane which is
supported at three points, two of which slide freely without friction while the third is a
knife edge, a constraint that allows no motion perpendicular to its edge. The configuration
manifold Q = R2×S1, where (x, y) are the coordinates of the contact point while θ is the
angle the knife edge makes with the x-axis, see Figure 3 below. Moreover, we suppose
here that the center of mass of the system C is not on top of the knife edge (if it is, then
one can show [2] that the sleigh reduces to another nonholonomic system known as the
knife edge, which possesses an invariant measure).

The Lagrangian L and constraints are given by:

L =
1

2

(
ẋ2 + ẏ2 + 2θ̇2 − 2(ẋ sin θ + ẏ cos θ)θ̇

)
,

ẏ cos θ − ẋ sin θ = 0,

where for simplicity we have set all parameters to unity. Since the Lagrangian and con-
straint are left invariant on the Lie group G = SE(2) we can treat the problem within the
Euler-Poincaré-Suslov framework. Defining ξ = g−1ġ, where g = (x, y, θ), we can write
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Figure 3: The Chaplygin Sleigh.

the Lagrangian L in terms of ξ as l(ξ) = ξ2
3 + (1/2)(ξ2

1 + ξ2
2) + ξ2ξ3, and the constraint as

ξ2 = 0.

With the structure constants given by C2
13 = −1 = −C1

23 and all other zero we see that
f = const. satisfies Corollary 3, which agrees with the recent result of [25].

This system is of critical importance in the study of Hamiltonization since unlike Propo-
sition 5, the Chaplygin sleigh shows that just because a system is Hamiltonizable does
not imply that it possesses an invariant measure. Indeed, although it is well-known the
Chaplygin sleigh does not possess an invariant measure [2, 25], as we’ve seen above this
system is nonetheless Hamiltonizable. Thus, unlike for the nonabelian Chaplygin case, the
Hamiltonizability of Euler-Poincaré-Suslov systems does not automatically imply that the
system possesses an invariant measure, and thus Chaplygin’s Reducibility Theorem be-
comes inapplicable (due to the non-existence of an invariant measure)6. However, thanks
to the results of Corollary 3, we may still be able to Hamiltonize, or, more properly,
“Poissonize” (which would be the better term here since there isn’t an invariant measure,
as discussed in the Introduction).

4.6 A Mathematical Example

Consider the following mathematical example due to Iliyev [27]. The Lagrangian and
constraints are given by:

L =
1

2

(
(q̇1)2 + (q̇2)2 + (q̇3)2 + (q̇4)2 + (q̇5)2

)
,

q̇4 = q̇2 tan(q1),

q̇5 = q̇3 tan(q1).

This is a nonholonomic system with three degrees of freedom (m = 3), and thus Chaply-
gin’s Theorem is inapplicable. Within our framework, it can most easily be treated as an

6However, it is interesting to note that Chaplygin did apply his reducing multiplier method to the Chaplygin
sleigh in [15], but only after introducing “quasicoordinates.”
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abelian Chaplygin system. Solving the conditions in (35) in MAPLE yields f = cos(q1).
Moreover, as a check of Proposition 5, one can show that the system’s invariant measure
density is N = cos2(q1), which indeed is equal to fm−1, as the Proposition suggests.

5 Conclusion and Future Directions

Chaplygin’s Reducing Multiplier Theorem has long allowed an interesting investigation
of some nonholonomic systems in terms of the quasi-periodic orbits that result from
the consideration of the time reparameterization dτ = fdt and the Hamiltonian-like
structure it produces. Perhaps because of this, and its success in studying nonholonomic
systems using methods from unconstrained mechanics, it has attracted much attention
in the recent decades as interest in nonholonomic systems has grown. However, as we
have mentioned, the use of Chaplygin’s results, and much of the subsequent research
that has followed it, has been confined to systems possessing an invariant measure and,
typically, also in two degrees of freedom. In addition, and partly due to these confines,
Hamiltonizability of nonholonomic systems with symmetry in arbitrary dimensions has
remained untouched (with the only results [21] and [28] known to the authors arising by
construction).

The present work addresses these two main aspects of Chaplygin’s work, extending the
results to nonholonomic systems in arbitrary degrees of freedom not necessarily possessing
an invariant measure (a central assumption of the research on Chaplygin’s work to date).
As such, this latter result alone represents a possibly new direction for the study of the
integrability of nonholonomic systems, with a Hamilton-Jacobi theory based on it now
possible (it would be interesting to develop this and compare it to the Hamilton-Jacobi
theory of nonholonomic systems recently presented in [26]. In fact, as we have mentioned,
Chaplygin’s Theorem was used in conjunction with the Hamilton-Jacobi method implicitly
in [15, 34], albeit in “quasicoordinates.”). The local conditions (27)-(31), or their special
cases (35) and (36), also enable the search for Hamiltonizable nonholonomic systems to be
converted into the search for solutions to certain partial differential equations, a task which
can be considerably simplified by making use of any of today’s mathematical software
packages and which eliminates the guesswork involved in current uses of Chaplygin’s
Theorem.

We should also point out the interesting role that symmetry plays in Chaplygin Hamil-
tonization. For example, considering the Chaplygin sleigh as an abelian Chaplygin system
it is immediately seen to be impossible to Chaplygin Hamiltonize (the equations (35) have
no solution), yet as we showed in Section 4.5 it is Chaplygin Hamiltonizable when consid-
ered as an Euler-Poincaré-Suslov system. This suggests to us that the choice of symmetry
group affects the Hamiltonizability of the system in question. We expect to pursue these
issues in future research.

Finally, we note that the multi-dimensional Veselova system and multi-dimensional Chap-
lygin sphere have recently been Hamiltonized in [21] and [28], respectively. However,
the methods and conditions for Hamiltonization presented here are inapplicable to those
Hamiltonizations due to the particular Hamiltonization methods used by the authors.
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In the former, the authors constructed redundant coordinates and showed that the so-
lutions of the multi-dimensional Veselova system can be mapped isomorphically into the
solutions of an associated different Hamiltonian system known as the Neumann system.
Within the framework of the methods presented here and in our previous research [4], this
would be equivalent to the statement that after an appropriate time reparameterization,
applying the inverse problem of the calculus of variations to the resulting system would
yield the Neumann Lagrangian as a solution.

In the latter case, the author Hamiltonizes the multi-dimensional Chaplygin sphere by
constructing redundant coordinates and effecting a time-reparameterization. It is then
shown that the reduced mechanics of the higher dimensional nonholonomic Chaplygin
sphere emerge as the restriction to the invariant submanifolds of the Hamiltonian system
resulting from the time reparameterization. In our previous research [4] we called these
type of systems associated second-order systems. However, the main difference between
our work there and the construction in [28] is that we constructed associated second-order
systems for the original nonholonomic system (not the time reparameterized one).

Given the above discussion, we therefore expect that the aforementioned multi-dimensional
Hamiltonizations can be realized as special cases of a synthesis of the general (yet mostly
disjoint) methods presented here and in earlier work [4] (see also [22]).

6 Acknowledgments

The research of OEF and AMB was supported in part by the Rackham Graduate School
of the University of Michigan, through the Rackham Science award and the AGEP Fel-
lowship, and through NSF grants DMS-0604307 and DMS-0907949 respectively. TM
acknowledges a Marie Curie Fellowship within the 6th European Community Framework
Programme and a Postdoctoral Fellowship of the Research Foundation - Flanders (FWO).
We would also like to thank the reviewer for many useful comments.

7 Appendix

7.1 The Components of the Quasivelocity AP Bracket

The components of (20)-(22) are given by:
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Âkij = fCa
bde

b
ie
d
jMaγG

γαGk
α −

(
fKk

ji − C
k

ij

)
, (58)

B̂α
ij = −fCa

cde
c
ie
d
jMaγG

γα, (59)

Ĉk
iα = δki

(
∂f

∂rα
− ∂f

∂gσ
gσdA

d
α

)
+ fF a

iα

(
gabΓ

bk −MaγG
γβGk

β

)
, (60)

D̂β
iα = fF a

iαMaγG
γβ − ∂f

∂gσ
gσd e

d
i δ
β
α, (61)

Êk
αβ = fBbαβ

(
MbγG

γεGk
ε − gbdΓdk

)
, (62)

F̂ γ
αβ =

∂f

∂gσ
gσb
(
Abαδ

γ
β −A

b
βδ

γ
α

)
+
(
fKγ

βα − C
γ
αβ

)
, (63)

where

Kγ
βα = MbεG

εγBbβα, (64)

Kk
ji = gabC

a
cde

c
ie
d
jΓ

bk, (65)

Cγ
αβ = δγβ

∂f

∂rα
− δγα

∂f

∂rβ
, (66)

C
k

ij =
∂f

∂gσ
gσd
(
edjδ

k
i − edi δkj

)
, (67)

with Maα = gaα − gabAbα.

7.2 Calculation of the Jacobi Identity for the Quasivelocity AP Bracket

Here we illustrate the calculation of the Jacobi identity for the bracket (19). Since it
is well-known [2] that the Jacobi identity is satisfied iff it is satisfied for the component
functions, we need only calculate it for all combinations of x = (rγ,Pi,Pα), i.e. we require
{xI , {xJ , xK}′

M
}′
M

+ cyclic = 0 for all I, J,K = (a, i, α).

As an example, consider x = (rγ,Pα,Pβ). Then we have:

{rγ, {Pα,Pβ}′M}
′
M

+ cylic = 0,

=⇒ {rγ, 1
f
F̂ ε
αβPε}′M = 0,

=⇒ 1
f2 δ

γ
ε F̂

ε
αβ = 0,

which gives the third equation in (27). Similarly, considering x = (rγ,Pi,Pβ) gives:

{rγ, {Pi,Pβ}′M}
′
M

+ cylic = 0,

=⇒ {rγ, 1
f
D̂ε
iβPε}′M = 0,

=⇒ 1
f2 δ

γ
ε D̂

ε
iβ = 0,
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which gives the second equation in (27). Similar computations lead to the remaining
conditions in (27).
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