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Abstract

The evolution towards “Software as a Service”, facilitated by various web
service technologies, has led to applications composed of a number of ser-
vice building blocks. These applications are dynamically composed by web
service brokers, but rely critically on proper functioning of each of the com-
posing subparts which is not entirely under control of the applications them-
selves. The problem at hand for the provider of the service is to guarantee
non-functional requirements such as service access and performance to each
customer. To this end, the service provider typically divides the load of
incoming service requests across the available server infrastructure. In this
paper we describe an adaptive load balancing strategy called SALSA (Sim-
ulated Annealing Load Spreading Algorithm), which is able to guarantee for
different customer priorities, such as default and premium customers, that
the services are handled in a given time and this without the need to adapt
the servers executing the service logic themselves. It will be shown that
by using SALSA, web service brokers are able to autonomously meet SLAs,
without a priori over-dimensioning resources. This will be done by taking
into account a real time view of the requests by measuring the Poisson ar-
rival rates at that moment and selectively drop some requests from default
customers. This way the web servers’ load is reduced in order to guarantee
the service time for premium customers and provide best effort to default
customers. We compared the results of SALSA with weighted round-robin
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(WRR), nowadays the most used load balancing strategy, and it was shown
that the SALSA algorithm requires slightly more processing than WRR but
is able to offer guarantees -contrary to WRR- by dynamically adapting its
load balancing strategy.

Keywords: Load balancing, weighted round-robin, autonomous system,
service brokering, simulated annealing, high throughput.

1. Introduction

Nowadays, many newly conceived applications are constructed through
integration of already available service components. The approach is made
possible through the Service Oriented Architecture (SOA) and “Software
as a Service” paradigm, typically using web service technologies to publish,
discover and integrate service components. This technology also allows to
replicate web services on new servers to scale in response to the needed de-
mands. SOA structures large applications as collections of web services from
inside and outside the company, resulting in greater flexibility and unifor-
mity. As a result customers no longer buy software for permanent in-house
installation but only buy services as needed. Since an increasing number
of third-party software companies are offering web services on a commercial
basis, SOA systems may consist of such third-party services combined with
others created in-house.

Instead of hard coding service calls in the customer’s source code, bro-
kers provide dynamic service selection to automatically select and seamlessly
link the services in order to meet the business system requirement, optimize
response times or reduce the costs. By using web service brokers, customers
only have to interact with the service broker, hiding the complexity of se-
lecting the appropriate service. These web service brokers keep the services
available for every user and fulfill their requests as quickly as possible.

In a commercial application typically a Service Level Agreement (SLAs)
can be mediated between the customers and the service providers defining
the functional and non-functional requirements such as the levels of avail-
ability, performance, billing and even penalties in case of violation of the
SLA. Often, a service provider also wants to service a class of customers on a
best effort basis. In the case of performance, the SLA usually specifies con-
straints on the response time. If no special precautions are taken, unexpected
request patterns can drive a web server into overload, leading to poor perfor-
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mance since the server is unable to keep up with the demands, resulting in
increased response times. Service providers can solve this problem by over-
dimensioning their resources and provide dedicated servers for premium cus-
tomers to meet their SLAs. Due to the diversity, size and non-intrusiveness
of service-oriented architectures, stress-test evaluations are not possible to
predict behavior under load, leaving the brokering somewhat speculative.
Consequently, without dedicated servers for premium customers, intelligent
autonomous service brokering is needed in order not to penalize the premium
customers of the services and guarantee their SLAs, while at the same time
providing best effort to the default customers.

Broker

QoS-aware

QoS-unaware

Figure 1: Objective of the Simulated Annealing Load Spreading Algorithm

Within this paper, two requirements for service brokers will be fulfilled:
on one hand, the broker should be able to autonomously guarantee con-
straints on the response time by fulfilling a n-percentile on the response
time, i.e. the value for which at most n% of the response times are fulfilled
in less than that value. On the other hand, brokering should be transparent
for the actual servers executing the service. The latter makes sure that the
load balancing logic needs only to be implemented in the broker, and stan-
dard server software can be used on the servers. This way, no requirements
have to be imposed to the (external) service providers within distributed
service-oriented architectures.

In order to fulfill these requirements, the Simulated Annealing Load
Spreading Algorithm (SALSA) presented in this paper can load balance re-
quests, and selectively drop some requests from the default users to reduce
the web servers’ load in order to guarantee SLA to premium customers and
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provide best effort to default customers (see Figure 1). SALSA provides
QoS-aware load balancing for autonomous service brokering since the SLAs
are only mediated between the customers and the QoS-aware broker. As a
result, customers don’t have to mediate SLAs with the increasing number of
service providers and service providers can be QoS unaware and are released
from mediating SLAs.

The presented algorithm can be applied in a wide range of application ar-
eas. For example multimedia content delivery can benefit from autonomous
service brokering in order to meet premium guarantees (for e.g. subscribed
customers). The service broker can dynamically select the needed services
(e.g. services for broadcasting, streaming, payment and security) in order
to set up a video-on-demand stream meeting the request (e.g. high qual-
ity, no delay or limited output device) of subscribed customers while the
non-subscribed customers will have a best effort stream. Another case can
be found in eCommerce, where a call center for example negotiates with
multiple credit checkers, in order to acquire payment validation. Based on
the call center load, the service broker can divide the requests over multiple
credit checkers in order not to lose or displease premium clients. Ehealth,
where multiple care providers are integrated, is another case that can benefit
from SALSA service selection since emergency services and alarm processing
services should receive higher priority and guaranteed execution times.

The remainder of this paper is structured as follows: Section II describes
the related work, while in section III the theoretical discussion and a crite-
rion to check for optimality is presented. Section IV describes the SALSA
algorithm in more detail. The evaluation results are presented in section V.
Finally, in section VI, we will highlight the main conclusions and identify
future work.

2. Related Work

Web service brokers dynamically select services to fulfill requests based
on the user’s QoS requirements. In [1] a QoS broker model is described for
general distributed systems. However, this broker does not support flexible
service selection. In [2], a Web service architecture supporting QoS is pre-
sented. However, once the services are selected and the link is established,
the client communicates with the server directly without any broker interven-
tion during the actual service process. In [3], the Web Service Management
Layer (WSML) is presented using Aspect-Oriented Programming (AOP) as
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a mediation layer between the client and the services. Amongst other, these
broker platforms select services based on known quality criteria such as av-
erage latency time, execution cost or repudiation [4], using Multiple Choice
Knapsack (MCK) [2] or m-dimensional QoS vectors [5]. When QoS param-
eters, such as response time, can not be guaranteed by the service providers
themselves, the current solutions can not be used to dynamically select the
correct service in order to guarantee QoS constraints since neither of these
broker solutions is able to adapt to the dynamic server load.

In these cases, web service brokers typically use load balancing [6, 7, 8] to
improve web servers’ performance [9, 10]. In [11] a survey of load balancing
algorithms is presented. Currently, round-robin is the most used load balanc-
ing solution, alternating in a deterministic way between the different service
endpoints. This algorithm is successfully applied in DNS servers, peer-to-
peer networks, and many other multiple-node clusters/networks. Since all
servers are treated equally, all the service endpoints will be invoked an equal
number of times, regardless of the response times of the servers. Round-
robin is especially suited for brokering when the different service endpoints
have (almost) the same response times. If the service endpoints have dif-
ferent response times, weighted round-robin can be used to compensate for
these differences. There, servers are presented client requests in proportion
to their weighting resulting in fairly distributing the requests amongst service
endpoints, instead of equally distributing the requests.

More successful and accurate load balancing requires the web service bro-
ker to have some notion of the server load [12] in order to adapt the load
balancing weight to the current load. This can be done by either time based
polling the servers or monitoring their behavior. A round-trip load balancing
algorithm monitors the time elapsed between request to the server and re-
sponse to the client. The average elapsed time of all requests during a sliding
window is calculated and the server with lowest calculated average load is
selected.

When most requests on the web service broker are of the same kind,
round-trip time based load balancing algorithms will not outperform (weighted)
round-robin. If however the round-trip algorithm can accurately predict the
current load on the servers, this algorithm will be able to distribute the
load better when requests are heterogeneous and handle high-load condi-
tions. Both (weighted) round-robin, and round-trip load balancing provide
best-effort and can not handle priorities, nor guarantee SLAs. Current solu-
tions for priority based load balancing consists of two types of queues, one
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for default requests and one for premium requests. Requests from the default
queue are only handled when there are no premium requests queued or when
a certain time is passed (preventing the default requests from starvation
if there are always premium requests queued). A combination of priority
queueuing and weighted round-robin is priority weighted round-robin pre-
sented in [13]. These priority queuing load balancing strategies however do
not ensure total response time guarantees to premium customers.

For premium customers best effort is however not good enough. There is
a need for service brokers taking into account QoS in order to ensure total
response time and prioritize premium customers. In order to meet SLAs for
premium customers, dedicated servers can be used. Over-dimensioning the
resources can enable a high QoS, but is an expensive option and leads to a
waste of capacity.

Web service brokers must support adaptivity to implement autonomous
load balancing [14, 15, 16] in order to handle dynamic request loads without
a priori over-dimensioning the service provider’s resources. Therefore in this
paper, we study how autonomous load distribution can adapt to unexpected
traffic and sudden load peaks, and compare the results with weighted round-
robin.

3. Theoretical model

In this section, the theoretical background and objective are given for
the SALSA load balancing algorithm, which is described in more detail in
Section 4. We consider the system as depicted in figure 2. The broker acts as
a statistical switch that randomly forwards client requests to a server with
a given probability (similar to WRR); the SALSA algorithm dynamically
updates these probabilities to adapt to changing loads. The broker can also
selectively drop some requests from the default users to reduce the servers’
load in order to guarantee the SLA to premium customers and provide best
effort to default customers.

3.1. Problem statement

According to [17, 18, 19], the web servers are modeled as M/M/1 queue-
ing systems [20] to compute response times of the Web service requests. A
Poisson arrival process is assumed. As illustrated in [21], the Poisson pro-
cess is a very good approximation for the arrival process of service requests
within a distributed broker platform where the number of service requests
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Figure 2: The SALSA theoretical model

is very large, a single requests requires only a very small percentage of the
provider’s resources and all requests are independent. In [22] it is also argued
that, while IP packet arrivals can not be accurately modeled as a Poisson
process, the arrival of flows on the Internet can generally be approximated
as a Poisson process.

The broker is modeled as a statistical switch that randomly forwards
client requests to a server with a given probability. This ensures that, if the
arrival process towards the broker is a Poisson process, the arrival processes
to the web services are also Poisson processes.

The inputs of the problem are defined as follows:

• k: number of web services

• µi: processing intensity for web service i. This parameter can be esti-
mated by measuring the average delay for a call to the web service

• λd: arrival intensity of the default clients. This parameter can be
estimated by the average arrivals per unit of time of default clients.

• λp: arrival intensity of premium clients

• t: threshold on waiting time for premium clients
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• n: fraction of premium clients that should be serviced with a waiting
time smaller than t.

The required outputs are the forwarding probabilities of the broker:

• pi: the forwarding probability to web server i for a default client

• pdrop: the probability of dropping a request from a default client.∑
i pi + pdrop = 1

• qi: the forwarding probability to web server i for a premium client. No
premium client requests will be dropped, since the number of premium
clients and the limit on premium client requests per second will be
known from the SLAs; the servers should be dimensioned to take at
least these limits into account.∑

i qi = 1

The algorithm is subject to the following SLA constraints:

• Ensuring no server is overloaded:

λi < µi (1)

• Ensuring the n-percentile, i.e. the probability of the waiting time for
a premium client being smaller than the threshold t should be greater
than n (with Wi the cumulative distribution function for the waiting
time on server i): ∑

i

(qiWi(t)) ≥ n (2)

• Broker forwarding probabilities:

0 ≤ pi ≤ 1, 0 ≤ qi ≤ 1, 0 ≤ pdrop ≤ 1 (3)

3.2. Modeling the SALSA objective

In order to model the different user profiles, two kinds of requests are con-
sidered. Premium clients require a SLA guaranteeing that the total waiting
time for a request is less than a certain threshold, for a certain fraction of the
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requests (e.g. 95%). Premium requests should never be dropped. Default
clients on the other hand do not require statistical guarantees and are served
on a best effort basis. In order to ensure that premium requests are served
within the threshold waiting time, default requests may be dropped. As a
consequence, a trade-off needs to be made between dropping default client
requests and exceeding the premium threshold for more than the allowable
fraction.
As a result, the objective of the SALSA broker algorithm is to minimize
the average waiting time for all clients as well as the fraction of dropped
requests, while upholding the contract for premium clients by guaranteeing
the n-percentile, and ensuring no server is overloaded.
Since every server is modeled as a M/M/1 queueing system, Figure 2 presents
the effective arrival intensity for server i, assuming an arrival intensity λ:

λi = piλd + qiλp (4)

The following formulae for the average waiting time, and the n-percentile
per server i can be easily derived through application of standard queueing
theory:

• The cumulative distribution function for the waiting time on server i:

Wi(x) = 1− e−(µi−λi)x (5)

• The average waiting time (including the service time):

w̄i = 1/(µi − λi) (6)

• n-percentile waiting time:

wni = ln(1− n)/(λi − µi) (7)

The average waiting time for the total system, neglecting the delay in the
broker itself, can then be found from:

w̄ =
∑
i

(λi ∗ w̄i)/
∑
i

λi (8)

The minimum for the SALSA objective can either be a local minimum
inside the region of the solution space defined by the constraints or it can be
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found on the edge of the solution space. Both the expression for the average
waiting time (equation 6) and the constraint on the n-percentile (equation 2)
are non-linear, making theoretical treatment of the optimum difficult. If
a local minimum is found in the inner region of the solution space, this
minimum is guaranteed to be the minimum of the system. The derivatives
of the average waiting time are, with p1 substituted with 1− pdrop−

∑k
i=2 pi:

∂w̄

∂pi
=
−λdµ1

(µ1 − λ1)2
+

λdµi
(µi − λi)2

(9)

∂w̄

∂qi
=
−λpµ1

(µ1 − λ1)2
+

λpµi
(µi − λi)2

(10)

A local extremum is found when:

µi − λi√
µi

=
µ1 − λi√

µ1

(11)

By using these equations, the SALSA objective can be tested for efficiency
in the case the minimum is found in the inner region of the solution space.
However, it is possible that the actual global minimum is on the bounds of
the solution space; this should be checked using other means.

4. SALSA: Simulated Annealing based Load Spreading Algorithm

This section discusses the SALSA algorithm, implementing the above
defined objective. The strategy of the broker is to use forwarding probabilities
in such a way that the average waiting time for each client is minimized, while
at the same time ensuring that the n-percentile waiting time for premium
clients is below the given threshold t, and avoiding dropped calls for default
clients. In order to explore the solution space and find an optimum solution
for the SALSA objective, Simulated Annealing is used.

4.1. Basic algorithm

Simulated annealing (SA) [23, 24] is a generic probabilistic meta-algorithm
for locating a good approximation to the global optimum of a given function
in a large search space. Analogously to annealing in metallurgy, each step
within the SA algorithm updates the current state to a random nearby state.
During the SA algorithm a temperature parameter is gradually decreased
and the next random state is chosen with a probability depending on the
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difference between the corresponding optimization function values, and the
temperature parameter. The optimization function value of a state is analo-
gous to the internal energy of a material in a certain state. The optimization
function is therefore called the Internal Energy Function. The current state
changes almost randomly when the temperature parameter is high (high tem-
perature), but increasingly stabilizes as the temperature parameter goes to
zero. The goal is to bring the system, from an arbitrary initial state, to a
state with the minimum possible energy.

To evaluate a given set of forwarding probabilities, an Internal Energy Func-
tion is used to give a score, which is to be minimized. For each server, the
actual arrival intensity is calculated, based on the forwarding probabilities.
From the arrival intensity and processing intensity for the server, the average
waiting time can be calculated using equation 6.

If the processing intensity is not larger then the arrival intensity (µi ≤ λi),
the server will of course not be able to handle the load. Since this is unac-
ceptable, the score is increased by a large constant (106), and additionally
increased by the same large constant multiplied with a percentage of how
severely the web service is overloaded. The latter helps the Simulated An-
nealing algorithm by differentiating between several undesirable solutions
based on the quality of the resulting solution. If the server is not over-
loaded, the score is increased with the average waiting time (w̄) divided by
the threshold t, proportionally to the fraction of arrivals to this server, in
order to minimize the average waiting time.
If less than a fraction n of the premium requests are serviced with a waiting
time smaller than t, i.e.

∑
i(qiWi(t)) < n, a second component is added

to the score, consisting of the fraction of requests which are not serviced in
time multiplied with a constant penaltyThreshold. This accounts for the
constraint in equation 2. Finally, a penalty is added to the score, propor-
tional with the percentage of dropped calls.

score =
∑
i

serverscorei + thresholdscore

+penaltyDrop× pdrop
(12)

serverscorei =

106 ×
(

1 + (λi−µi)
µi

)
µi ≤ λi

λi

(1−pdrop)λd+λp

w̄i

t
otherwise

(13)
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thresholdscore =

{
penaltyThreshold× (n−

∑
i fraci)

∑
i fraci < n

0 otherwise

(14)

fraci =

{
0 µi ≤ λi

qiWi(t) otherwise
(15)

The algorithm starts with random values for all pi and qi. From there,
neighbor states are selected by choosing two random indices from either the
p- or the q-array. The probability indexed by the first one is increased with
a given step size, and the probability indexed by the latter one is decreased
with it. The step size is linearly dependent of the temperature, and thus
decreases exponentially with the iteration number.

succes = false
while succes = false do

stepSize = 0.1× T/Tstart
randomly choose r = p or q
randomly choose indexes i and j (i 6= j)
if ri ≥ stepSize then

ri -= stepSize
rj += stepSize
success = true

end
Algorithm 1: Random step function

4.2. Tuning the algorithm

Number of iterations. A simulated annealing algorithm can run endlessly.
However we assume that the algorithm converges after a number of iterations
and stop after a fixed amount of iterations. This amount, and the convergence
of the algorithm, is investigated in section 5.3.4.

Penalty factors. The ability of the algorithm to successfully identify constraint-
meeting solutions depends on the penalty factors. Two configurable pa-
rameters are present in the algorithm: penaltyThreshold and penaltyDrop.
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penaltyThreshold controls the penalty associated with exceeding the n-percentile
threshold for premium clients. penaltyDrop controls the penalty associated
with dropping calls from default clients. Since dropping more calls will leave
more headroom for meeting the threshold requirements, and relaxing the
threshold requirements will enable the algorithm to find solutions with less
dropped calls, these penalties provide a trade off between dropping default
clients and exceeding thresholds. Choosing an appropriate value for these
penalties will depend on the application.

5. Evaluation Results

The simulated annealing load balancing algorithm (see Section 4) is im-
plemented to evaluate its correctness and its performance. In the first eval-
uation, we compare the applicability of the SALSA algorithm with several
other load balancing algorithms for a number of server setups. The second
evaluation is set in a highly controlled simulation environment, where es-
pecially the correctness of the mechanism is evaluated. The last evaluation
is an experimental evaluation which uses several generated request patterns
to stress-test a web service broker that can use a variety of load balancing
algorithms. This experiment is especially set up to evaluate the differences
between the SALSA 95%-priority-algorithm and weighted round robin, and
whether the algorithms can fulfill the goals set in the Introduction.

5.1. Applicability evaluation of SALSA

In the first set of evaluations we analytically calculate the response times
given a particular load balancing algorithm and a particular server setup. In
this evaluation, we require 95% of the response times of premium requests
to be lower than 100 ms. The throughputs of both the premium and the
default requests are discretely varied between 0 and 150 requests/second.
By interpolating these calculated results, we can determine the area where
the 95-percentile of the response times of the premium requests is lower
than the threshold - we call this the applicability of that particular load
balancing algorithms for that particular server setup. These calculations are
done for three different server setups: (i) two very fast servers (10 ms and 20
ms); (ii) two distinct servers, but with their response times well under the
threshold (9 ms and 28 ms); and (iii) three very different servers with one
server close to the threshold (10 ms, 50 ms and 90 ms). The results are shown
in Figure 3 for the following load balancing algorithms: SALSA, weighted
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round robin (WRR), dedicated server (Ded) and priority queue (PQ). We
notice that the applicability of our SALSA load balancing algorithm is in
most cases better or as good as the applicability of the other algorithms.
Only the priority queue algorithm can outperform SALSA. However, in the
trivial case with at least one extremely slow server (cf. server setup (iii)), the
priority queue algorithm is no match for our SALSA algorithm - not even
for the other evaluated load balancing algorithms. The applicability of the
dedicated server solution and weighted round robin is much stricter than that
of the SALSA algorithm. As can be see from Figure 3, weighted round robin
provides on average good results with a wide variation in throughputs (for
premium and default requests). That is why, in the following sections, we will
describe an in-depth comparison of the performance of the SALSA algorithm
to the weighted round robin load balancing algorithm using simulation and
testbed evaluation.

(a) Two very fast servers (10
ms and 20 ms)

(b) Two distinct servers, but
with their response times well
under the threshold (9 ms and
28 ms)

(c) Three very different
servers with one server close
to the threshold (10 ms, 50
ms and 90 ms)

Figure 3: Applicability of the SALSA algorithm compared to weighted round robin
(WRR), dedicated server (Ded) and priority queue (PQ) load balancing for three cases

5.2. Performance evaluation of SALSA

Within the simulation evaluation, the theoretical performance of SALSA
is evaluated and the optimality of the solutions that the SALSA algorithm
returns, is validated using the optimality criterion of section 3.2. A Poisson
arrival process is assumed for both default and premium clients, for which
both λd and λp respectively are known.
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Within the simulation, the SALSA algorithm is run for given λd and λp,
and based on the resulting pi,qi and λi, multiple performance attributes are
calculated.

5.2.1. Inputs

In order to easily validate the results of the testbed experiment in sec-
tion 5.3 to the simulation results, the average service times in the simulation
are chosen accordingly to the average service times of the web services used in
the experimental evaluation. The experiment consists of two servers offering
average service times of 9 ms and 28 ms, corresponding to µ1 = 111.11req/s
and µ2 = 35.71req/s respectively. As a consequence, the maximum through-
put this system can handle is 146.82req/s. As a result, λd and λp are varied
in the simulation between 0 and this maximum. The threshold value t is set
to 100 ms, and the percentile n set to 0.95.

5.2.2. Optimality of the returned SALSA results

First, a test was run to determine the optimality of the results returned by
the SALSA algorithm. For this, the optimality criterion obtained in section
3.2 was used. Figure 4 shows the value of |µ2−λ2√

µ2
− µ1−λi√

µ1
|, which should be

zero if an optimum is found in the inner region of the problem’s solution
space, as a local extremum will satisfy µi−λi√

µi
= µ1−λi√

µ1
.

For small values of λd and λp, i.e. λd + λp < 50, the optimality measure
differs from zero. Inspection of the returned pi and qi for these values shows
that pi = 0 or qi = 0 for one of the servers i. An exhaustive search was
conducted in this area, and no local extrema were found inside the solution
space. This means that the optimum has to be found on the edge of the
solution space (were the optimality criterion derived in section 3.2 is different
from zero). The SALSA algorithm found the optimum on the edge of the
solution space and forwarded all requests to the same server.

For large values of λd and λp, i.e. λd + λp > 90, the optimality mea-
sure again differs from zero; here the algorithm finds an optimum on the
boundaries that model the constraints on server load or exceeding thresh-
olds. There are no solutions that fit the optimality criterion and that also
fall within these constraints.

In between these regions, the optimality measure is close to zero, con-
firming the optimality of the results from the SALSA algorithm.

In order to further evaluate the optimality of the returned SALSA re-
sults, the same simulation was run with the penalties for dropping clients
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Figure 4: Optimality measure for the SALSA algorithm. For small values of λd and λp

(λd + λp < 50), and large values of λd and λp (λd + λp > 90), the optimality measure
is different from zero; here the SALSA algorithm found a better solution on one of the
boundaries of the solution space. For the values in between, the optimality measure is
close to zero, which proves the optimality of the solution in this region.

and exceeding priority thresholds set to zero. This effectively eliminates the
corresponding boundaries on the solution space. The results are shown in
Figure 5. In this test, the optimality measure stays also close to zero for
large values of λd and λp. For the area with small values of λd and λp, only
an exhaustive search could confirm the optimality of the results.

From these results, we can conclude that our Simulated Annealing based
algorithm is indeed able to find optimal results.

5.2.3. Performance of SALSA compared to weighted round-robin
(WRR)

Another simulation was done to compare the performance of the SALSA
algorithm with weighted round-robin. The weighted round-robin algorithm
was run for the same given λp, λd. The arrival intensity for server i is
calculated:
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Figure 5: Optimality measure for the SALSA algorithm, where the penalties for dropping
clients and exceeding priority thresholds are set to 0. Here, the optimality measure is also
close to zero for large values of λd and λp.

λi = (λp + λd) ∗ µiP
i µi

.

For this test, the fraction of clients serviced with a service time below the
threshold t was calculated. Figure 6 and Figure 7 show the results for the
SALSA algorithm and weighted round-robin respectively. In both graphs, a
contour line is plotted for the n-percentile value of 0.95. As can be seen on
Figure 6, the SALSA algorithm can guarantee the 95-percentile for λp < 90,
irrespective of the value for λd. Using the weighted round-robin algorithm
(Figure 7), the system fails to meet the 95-percentile for much smaller values
of λp and λd. Both λp and λd have an influence on this, so that a high amount
of default clients can deny QoS to the premium clients. Furthermore, if no
special precautions are taken, the system gets overloaded when λd + λp ≥
147.82.

5.2.4. Fraction of dropped default requests

Figure 8 shows the fraction of dropped calls for the SALSA algorithm for
varying λp and λd.
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Figure 6: Fraction of premium clients whose service time is below t, using the SALSA
algorithm. The 95-percentile can be guaranteed for λp < 90, irrespective of the value for
λd.

5.3. Testbed Evaluation of SALSA

For this experiment, a prototype web service broker has been imple-
mented. The testbed configuration and results are discussed in this section.

5.3.1. Testbed Configuration

The test setup for the experimental evaluation, shown in Figure 9, consists
of three important components: a load generator, two web servers and the
web service broker.
The load generator simulates real user behavior as Poisson processes realizing
different request patterns for the two classes of users (premium and default
customers).
The web servers both expose one Axis2 [25] web service, with an average
service time of respectively 9 ms and 28 ms.

The web services exposed by the web servers are purely computational
services. As a consequence, their execution time is directly proportional to
the amount of service requests (see Figure 10). This behavior is in agreement
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Figure 7: Fraction of premium clients whose service time is below t, using the WRR
algorithm. The system fails to meet the 95-percentile for smaller values of λp and λd than
with SALSA.

with the modeling approach taken in section 3.1. For not purely computa-
tional web services, for example services doing I/O as well, the assumption
of an M/M/1 queueing system will be an overestimation, resulting in slightly
over-dimensioning the load using SALSA. The web service broker is imple-
mented using Apache Synapse [26], a lightweight and high performance En-
terprise Service Bus (ESB). The Synapse engine comes with a set of trans-
ports, mediators and standard brokering capabilities, such as round-robin
load balancing and fail-over. Some additional mediators are implemented
to support different load balancing algorithms such as weighted round-robin
and QoS monitoring. In order for the 95%-priority load balancing algorithm
to work properly the optimization component used in the simulations of the
previous subsection is also incorporated in the web services broker. This
component will provide the optimized load distribution to the broker for use
in its load balancing strategy. In order to minimize the possible system im-
pact of both the ESB core functionality and the optimization component,
running the presented SALSA algorithm, they execute at the top level in
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Figure 8: Fraction of dropped calls with the SALSA algorithm
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Figure 9: Test setup for evaluation

separate threads. To further avoid potential resource constraints, the web
service broker is deployed on an extremely powerful Linux server with a
multi-core AMD OpteronTM processor designed for optimum multi-threaded
application performance.
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Figure 10: Stress-testing both computational web services

5.3.2. Confidence intervals

The throughput of premium and default requests is needed as an input to
the SALSA algorithm. Contrary to simulation, in real world scenario’s these
throughputs are unknown. Since Poisson arrival processes can have fluctuat-
ing arrival intensities, confidence intervals are used to estimate these arrival
intensities and indicate the reliability of the estimates [27]. The confidence
level sets the boundaries of a confidence interval. In order to guarantee a
95th percentile to premium users, the confidence level for the arrival inten-
sity needs to be 97.5% as well as the optimizing threshold within SALSA.
Combining both estimates, a 95th percentile can be guaranteed to premium
users. The 97.5% confidence level, with 0% area in the lower tail and 2.5%
area in the upper tail, can be constructed using the χ2-distribution with risk
level α = 0.025 (i.e. 97.5 = 100∗ (1−α)). Based on a 97.5% confidence level,
a sample rate of 100 incoming messages is at least needed. Whenever the
algorithm needs an estimate of the current throughput, the throughput over
the last 100 arrivals is calculated and used as input for the SALSA algorithm.

5.3.3. Input Request Patterns

Since a commonly used model for random, mutually independent message
arrivals is the Poisson process, the first input request pattern are two Pois-
son processes, one for the default requests and one for the premium requests,
with variable arrival rate λd and λp respectively.
Using Poisson arrival processes, extreme conditions such as a particular time
period exhibiting an abnormally large number of events (Poisson burst), or
contrary no events at all, are possible. Although within Poisson processes
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bursts can appear, a second input request pattern is used to explicitly evalu-
ate the capabilities of the load balancing algorithm to handle request bursts
on top of the Poisson bursts. Within a burst both λd and λp are increased
at once. The period of the burst varies in the configured request pattern.

5.3.4. Number of iterations

In order to know after how many iterations on average the algorithm will
show no improvements on the forwarding probabilities, a simulation has been
conducted that uses different setups with an increasing number of iterations.
Four setups were chosen, using 2 to 5 servers. Figure 11 shows the scores for
the solutions obtained for the different setups. From the results it is shown
that after 100000 iterations, the algorithm converges, and shows no more
improvements on the resulting QoS. In our experimental setup, this takes
about 2 seconds.

Figure 11: Scores of different setups, in logarithmic scale. After 100000 iterations, the
algorithm shows no more improvements.
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5.3.5. Penalty Factors

To guide the simulated algorithm into the direction of constraint meeting
solutions, penalty factors are applied to solutions that does not meet the
constraints. A proper setting of these penalty factors is important, because a
large penalty factor sorts out non-constraint meeting solutions very quickly
while a low penalty can result in non-constraint meeting solutions to be
the result at the end. The penalties provide a trade off between dropping
default clients and exceeding thresholds. In the algorithm, the penalties are
applied to the fraction of dropped clients, and the fraction of premium clients
who exceed the threshold waiting time, respectively. For this experiment,
exceeding the threshold is penalized 10 times more than dropping default
clients. Since the penalties have to be considerably higher than the expected
penalties for the waiting time, i.e. λi

(1−pdrop)λd+λp

w̄i

t
, and considerably lower

than the penalty for overloading the server (106) in order to never chose a
solution with overloaded servers above a bad solution which does not overload
the servers, the penalties in this experiment were chosen:

penaltyDrop = 1000
penaltyThreshold = 10000

5.3.6. Comparison to weighted round-robin

In order to compare the performance of our simulated annealing algo-
rithm, the weighted round-robin algorithm (WRR) is run in the same exper-
iment setup. As can be seen in Figure 12, within these tests, some of the λd
and λp were chosen such that the optimum is found in the inner region of
the solution space, while others where chosen such that the optimum is on
the boundaries. In both cases however, SALSA is able to guarantee the 95th
percentile.

The detailed results are shown in Table 1.
As can be seen in this table the weighted round-robin slightly outper-

forms the SALSA algorithm in underloaded circumstances. This is normal
since all requests on the web service broker are of the same kind. As a
result, weighted round-robin performs very well, while the SALSA load bal-
ancing algorithm requires more processing resulting in lower responsiveness.
Since SALSA allows for autonomous brokering, the real arrival intensities
are estimated using a confidence interval, resulting in the SALSA algorithm
slightly over-dimensioning and being outperformed by WRR in underloaded
circumstances. If however many prior requests need to be handled and the
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Figure 12: Optimality measure for the SALSA algorithm showing the chosen samples for
comparing SALSA and WRR in Table 1

platform gets overloaded, the SALSA algorithm is able to guarantee the 95%
to the prior requests while weighted round-robin crosses the threshold for
more than 5% of the requests. Both SALSA and WRR can handle bursts.
However, for long-term bursts, SALSA notices the higher arrival rates and
immediately adjusts the load balancing in order to guarantee the QoS re-
quirements, contrary to WRR. As a result, we can conclude that SALSA is
able to dynamically adapt its load balancing strategie to handle dynamic re-
quest patterns without a priori over-dimensioning the web servers’ resources
in order to guarantee the SLAs to premium customers.

6. Conclusion and Future Work

By using the SALSA algorithm, requiring slightly more processing than
weighted round-robin, brokers can guarantee a n-th percentile response time
to their premium users, while providing best effort to the default customers.
As service-oriented architectures have largely distributed topologies, SOA
broker architectures can benefit from our SALSA algorithm as the service
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providers can be QoS unaware, released from mediating SLAs, and don’t
have to be a priori over-dimensioned. SALSA provides QoS-aware load bal-
ancing for autonomous service brokering since the SLAs are only mediated
between the customers and the QoS-aware broker. To this end, the SALSA
algorithm divides the load taking into account a real time view of the re-
quests by measuring the arrival rates at that moment. If needed, requests
from the default users will be dropped to reduce the web servers’ load in
order to guarantee the SLA to premium customers. By using Business Ac-
tivity Monitoring, providing real time information about the status of service
processes and transactions, the decision-making process within SALSA can
be improved by using the derived intelligence to analyze and improve the
efficiency of the load balancing. Business Activity Monitoring provides bro-
kers with the ability to instrument their services to monitor events, correlate
these events with each other and to understand their impact on the Key Per-
formance Indicators. We will continue the design of advanced load balancing
algorithms, fulfilling QoS requirements and optimize the decision making
within the SALSA algorithm by using Business Activity Monitoring.
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Input Crossing
pattern λd λp Algorithm 95% (ms) threshold (%)
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Table 1: Comparing SALSA to WRR. Notice that in several tests the 95th percentile is
lower for WRR. But the main goal, at least 95% of the requests needs to be served within
the threshold, is always met by the SALSA algorithm in contrast to WRR.
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