The valuations of the near polygon \mathbb{G}_{n}

Bart De Bruyn*
Department of Pure Mathematics and Computer Algebra
Ghent University, Gent, Belgium
bdb@cage. ugent.be

Submitted: Aug 7, 2009; Accepted: Nov 4, 2009; Published: XX
Mathematics Subject Classifications: 51A50, 05B25, 51A45, 51E12

Abstract

We show that every valuation of the near $2 n$-gon $\mathbb{G}_{n}, n \geq 2$, is induced by a unique classical valuation of the dual polar space $D H(2 n-1,4)$ into which \mathbb{G}_{n} is isometrically embeddable.

1 Basic definitions and main results

A near polygon is a connected partial linear space $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I}), \mathrm{I} \subseteq \mathcal{P} \times \mathcal{L}$, with the property that for every point x and every line L, there exists a unique point on L nearest to x. Here, distances $\mathrm{d}(\cdot, \cdot)$ are measured in the collinearity graph Γ of \mathcal{S}. If d is the diameter of Γ, then the near polygon is called a near $2 d$-gon. A near 0 -gon is a point and a near 2 -gon is a line. Near quadrangles are usually called generalized quadrangles. If X_{1} and X_{2} are two nonempty sets of points of \mathcal{S}, then $\mathrm{d}\left(X_{1}, X_{2}\right)$ denotes the smallest distance between a point of X_{1} and a point of X_{2}. If X_{1} is a singleton $\{x\}$, then we will also write $\mathrm{d}\left(x, X_{2}\right)$ instead of $\mathrm{d}\left(\{x\}, X_{2}\right)$. For every $i \in \mathbb{N}$ and every nonempty set X of points of $\mathcal{S}, \Gamma_{i}(X)$ denotes the set of all points $x \in X$ for which $\mathrm{d}(x, X)=i$. If X is a singleton $\{x\}$, then we will also write $\Gamma_{i}(x)$ instead of $\Gamma_{i}(\{x\})$.

Let \mathcal{S} be a near polygon. A set X of points of \mathcal{S} is called a subspace if every line of \mathcal{S} having two of its points in X has all its points in X. If X is a subspace, then we denote by \widetilde{X} the subgeometry of \mathcal{S} induced on the point set X by those lines of \mathcal{S} which have all their points in X. A set X of points of \mathcal{S} is called convex if every point on a shortest path between two points of X is also contained in X. If X is a non-empty convex subspace of \mathcal{S}, then \widetilde{X} is also a near polygon. Clearly, the intersection of any number of (convex) subspaces is again a (convex) subspace. If $*_{1}, *_{2}, \ldots, *_{k}$ are $k \geq 1$ objects (i.e., points or nonempty sets of points) of \mathcal{S}, then $\left\langle *_{1}, *_{2}, \ldots, *_{k}\right\rangle$ denotes the smallest convex subspace

[^0]of \mathcal{S} containing $*_{1}, *_{2}, \ldots, *_{k}$. The set $\left\langle *_{1}, *_{2}, \ldots, *_{k}\right\rangle$ is well-defined since it equals the intersection of all convex subspaces containing $*_{1}, *_{2}, \ldots, *_{k}$.

A near polygon \mathcal{S} is called dense if every line is incident with at least three points and if every two points at distance 2 have at least two common neighbors. If x and y are two points of a dense near polygon \mathcal{S} at distance δ from each other, then by Brouwer and Wilbrink [6, Theorem 4], $\langle x, y\rangle$ is the unique convex subspace of diameter δ containing x and y. The convex subspace $\langle x, y\rangle$ is called a quad if $\delta=2$, a hex if $\delta=3$ and a max if $\delta=n-1$. We will now describe two classes of dense near polygons.
(I) Let $n \geq 2$, let \mathbb{K}^{\prime} be a field with involutory automorphism ψ and let \mathbb{K} denote the fix field of ψ. Let V be a $2 n$-dimensional vector space over \mathbb{K}^{\prime} equipped with a nondegenerate skew- ψ-Hermitian form f_{V} of maximal Witt index n. The subspaces of V which are totally isotropic with respect to f_{V} define a Hermitian polar space $H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$. We denote the corresponding Hermitian dual polar space by $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$. So, $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ is the point-line geometry whose points, respectively lines, are the n dimensional, respectively $(n-1)$-dimensional, subspaces of V which are totally isotropic with respect to f_{V}, with incidence being reverse containment. The dual polar space $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ is a dense near $2 n$-gon. In the finite case, we have $\mathbb{K} \cong \mathbb{F}_{q}$ and $\mathbb{K}^{\prime} \cong \mathbb{F}_{q^{2}}$ for some prime power q. In this case, we will denote $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ also by $D H\left(2 n-1, q^{2}\right)$. The dual polar space $D H\left(3, q^{2}\right)$ is isomorphic to the generalized quadrangle $Q^{-}(5, q)$ described in Payne and Thas [24, Section 3.1].
(II) Let $n \geq 2$, let V be a $2 n$-dimensional vector space over \mathbb{F}_{4} with basis $B=$ $\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{2 n}\right\}$. The support of a vector $\bar{x}=\sum_{i=1}^{2 n} \lambda_{i} \bar{e}_{i}$ of V is the set of all $i \in\{1, \ldots, 2 n\}$ satisfying $\lambda_{i} \neq 0$; the cardinality of the support of \bar{x} is called the weight of \bar{x}. Now, we can define the following point-line geometry $\mathbb{G}_{n}(V, B)$. The points of $\mathbb{G}_{n}(V, B)$ are the n dimensional subspaces of V which are generated by n vectors of weight 2 whose supports are two by two disjoint. The lines of $\mathbb{G}_{n}(V, B)$ are of two types:
(a) Special lines: these are $(n-1)$-dimensional subspaces of V which are generated by $n-1$ vectors of weight 2 whose supports are two by two disjoint.
(b) Ordinary lines: these are $(n-1)$-dimensional subspaces of V which are generated by $n-2$ vectors of weight 2 and 1 vector of weight 4 such that the $n-1$ supports associated with these vectors are mutually disjoint.

Incidence is reverse containment. By De Bruyn [10] (see also [11, Section 6.3]), the geometry $\mathbb{G}_{n}(V, B)$ is a dense near $2 n$-gon with three points on each line. The isomorphism class of the geometry $\mathbb{G}_{n}(V, B)$ is independent from the vector space V and the basis B of V. We will denote by \mathbb{G}_{n} any suitable element of this isomorphism class. The near polygon \mathbb{G}_{2} is isomorphic to the generalized quadrangle $Q^{-}(5,2)$.

Now, endow the vector space V with the (skew-)Hermitian form f_{V} which is linear in the first argument, semi-linear in the second argument and which satisfies $f_{V}\left(\bar{e}_{i}, \bar{e}_{j}\right)=\delta_{i j}$ for all $i, j \in\{1, \ldots, 2 n\}$. With the pair $\left(V, f_{V}\right)$, there is associated a Hermitian dual polar space $D H(V, B) \cong D H(2 n-1,4)$, and every point of $\mathbb{G}_{n}(V, B)$ is also a point of $D H(V, B)$. By [10] or [11, Section 6.3], the set X of points of $\mathbb{G}_{n}(V, B)$ is a subspace of $D H(V, B)$ and the following two properties hold:
(1) $\widetilde{X}=\mathbb{G}_{n}(V, B)$;
(2) If x and y are two points of X, then the distance between x and y in \widetilde{X} equals the distance between x and y in $D H(V, B)$.

Properties (1) and (2) imply that the near polygon \mathbb{G}_{n} admits a full and isometric embedding into the dual polar space $D H(2 n-1,4)$. It can be shown that there exists up to isomorphism a unique such isometric embedding, see De Bruyn [16].

Suppose $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a dense near polygon. A function $f: \mathcal{P} \rightarrow \mathbb{N}$ is called a valuation of \mathcal{S} if it satisfies the following properties:
(V1) $f^{-1}(0) \neq \emptyset$.
(V2) Every line L contains a unique point x_{L} with smallest f-value and $f(x)=f\left(x_{L}\right)+1$ for every point $x \in L \backslash\left\{x_{L}\right\}$.
(V3) Through every point x of \mathcal{S}, there exists a (necessarily unique) convex subspace F_{x} such that the following holds for any point y of F_{x} : (i) $f(y) \leq f(x)$; (ii) if z is a point collinear with y such that $f(z)=f(y)-1$, then $z \in F_{x}$.

Valuations of dense near polygons were introduced in De Bruyn and Vandecasteele [18] and are a very important tool for classifying dense near polygons. For several classes of dense near polygons, see De Bruyn [14, Corollary 1.4], it can be shown that Property (V3) is a consequence of Property (V2). This is also the case for the Hermitian dual polar space $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ and the dense near polygon $\mathbb{G}_{n}(n \geq 2)$. We now describe two classes of valuations of a dense near polygon $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ which were also mentioned in [18].
(1) For every point x of \mathcal{S}, the map $\mathcal{P} \rightarrow \mathbb{N} ; y \mapsto \mathrm{~d}(x, y)$ is a valuation of \mathcal{S}. This valuation is called the classical valuation of \mathcal{S} with center x.
(2) Suppose F is a (not necessarily convex) subspace of \mathcal{S} satisfying the following properties: (i) \widetilde{F} is a dense near polygon; (ii) if x and y are two points of F, then the distance between x and y in \widetilde{F} equals the distance between x and y in \mathcal{S}. If f is a valuation of \mathcal{S} and if $m=\min \{f(y) \mid y \in F\}$, then the map $F \rightarrow \mathbb{N} ; x \mapsto f(x)-m$ is a valuation of \widetilde{F}. This valuation is called the valuation of \widetilde{F} induced by f.

By Theorem 6.8 of De Bruyn [11], every valuation of the dual polar space $D H(2 n-1,4)$, $n \geq 2$, is classical. What about valuations of the near polygon \mathbb{G}_{n} ? If we regard \mathbb{G}_{n} as a subgeometry of $D H(2 n-1,4)$ which is isometricaly embedded into $D H(2 n-1,4)$, then we know by the above discussion that every (classical) valuation of $D H(2 n-1,4)$ will induce a valuation of \mathbb{G}_{n}. Is the converse also true: is every valuation of \mathbb{G}_{n} induced by some valuation of $D H(2 n-1,4)$? The main result of this paper gives a positive answer to this question.

Theorem 1.1 Regard $\mathbb{G}_{n}, n \geq 2$, as a subgeometry of $\operatorname{DH}(2 n-1,4)$ which is isometrically embedded into $D H(2 n-1,4)$. Then every valuation of \mathbb{G}_{n} is induced by a unique (classical) valuation of $\mathrm{DH}(2 n-1,4)$.

We will prove Theorem 1.1 by induction on n. The case $n=2$ is trivial since $\mathbb{G}_{2} \cong$ $Q^{-}(5,2) \cong D H(3,4)$. The cases $n=3$ and $n=4$ were respectively treated in De Bruyn \& Vandecasteele [19, Proposition 7.7] and [21, Proposition 6.13]. We will make use of the results of [21] to obtain a proof of Theorem 1.1 for any $n \geq 5$.

Definition. Two valuations f_{1} and f_{2} of a dense near polygon \mathcal{S} are called neighboring valuations if there exists an $\epsilon \in \mathbb{Z}$ such that $\left|f_{1}(x)-f_{2}(x)+\epsilon\right| \leq 1$ for every point x of \mathcal{S}. If this condition holds, then we necessarily have $\epsilon \in\{-1,0,1\}$, see Proposition 2.6.

We will also prove the following.
Theorem 1.2 Regard $\mathbb{G}_{n}, n \geq 2$, as a subgeometry of $\operatorname{DH}(2 n-1,4)$ which is isometrically embedded into $D H(2 n-1,4)$. Let f_{1} and f_{2} be two distinct valuations of \mathbb{G}_{n} and let $x_{i}, i \in\{1,2\}$, denote the unique point of $D H(2 n-1,4)$ such that the valuation f_{i} of \mathbb{G}_{n} is induced by the classical valuation of $\operatorname{DH}(2 n-1,4)$ with center x_{i}. Then the following are equivalent:
(1) f_{1} and f_{2} are neighboring valuations of \mathbb{G}_{n};
(2) x_{1} and x_{2} are collinear.

2 (Semi-)Valuations

2.1 Semi-valuations of general point-line geometries

Throughout this subsection, we suppose that $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a connected partial linear space.

Definitions. (1) A semi-valuation of \mathcal{S} is a map $f: \mathcal{P} \rightarrow \mathbb{Z}$ such that for every line L of \mathcal{S}, there exists a unique point x_{L} on L such that $f(x)=f\left(x_{L}\right)+1$ for every point x of L distinct from x_{L}.
(2) It is possible to define an equivalence relation on the set of all semi-valuations of \mathcal{S} : two semi-valuations f_{1}, f_{2} of \mathcal{S} are called equivalent if there exists an $\epsilon \in \mathbb{Z}$ such that $f_{2}(x)=f_{1}(x)+\epsilon$ for every point x of \mathcal{S}. The equivalence class containing the semi-valuation f of \mathcal{S} will be denoted by $[f]$.
(3) A hyperplane of \mathcal{S} is a proper subspace meeting each line of \mathcal{S}. If f is a semivaluation of \mathcal{S} attaining a maximal value, then the set of points of \mathcal{S} with non-maximal f-value is a hyperplane H_{f} of \mathcal{S}. If f_{1} and f_{2} are two equivalent semi-valuations of \mathcal{S} attaining a maximal value, then $H_{f_{1}}=H_{f_{2}}$.
(4) Two semi-valuations f_{1} and f_{2} of \mathcal{S} are called neighboring semi-valuations if there exists an $\epsilon \in \mathbb{Z}$ such that $\left|f_{1}(x)-f_{2}(x)+\epsilon\right| \leq 1$ for every point x of \mathcal{S}.

Lemma 2.1 Suppose f_{1} and f_{2} are two neighboring semi-valuations of \mathcal{S} and let $\epsilon \in \mathbb{Z}$ such that $\left|f_{1}(x)-f_{2}(x)+\epsilon\right| \leq 1$ for every point x of \mathcal{S}. Then the following holds:
(1) If the set $\left\{f_{1}(x) \mid x \in \mathcal{P}\right\}$ has a minimal element m_{1}, then the set $\left\{f_{2}(x) \mid x \in \mathcal{P}\right\}$ has a minimal element m_{2} and $\left|m_{1}-m_{2}+\epsilon\right| \leq 1$.
(2) If the set $\left\{f_{1}(x) \mid x \in \mathcal{P}\right\}$ has a maximal element M_{1}, then the set $\left\{f_{2}(x) \mid x \in \mathcal{P}\right\}$ has a maximal element M_{2} and $\left|M_{1}-M_{2}+\epsilon\right| \leq 1$.
(3) If L is a line of \mathcal{S} such that the unique point x_{1} of L with smallest f_{1}-value is distinct from the unique point x_{2} of L with smallest f_{2}-value, then $\epsilon=f_{2}\left(x_{2}\right)-f_{1}\left(x_{1}\right)$.
Proof. Clearly, $f_{1}(x)+\epsilon-1 \leq f_{2}(x) \leq f_{1}(x)+\epsilon+1$ for every point x of \mathcal{S}. So, if the set $\left\{f_{1}(x) \mid x \in \mathcal{P}\right\}$ has a minimal (respectively maximal) element, then also the set $\left\{f_{2}(x) \mid x \in \mathcal{P}\right\}$ has a minimal (respectively maximal) element.
(1) If $m_{1}-m_{2}+\epsilon \leq-2$, then for every point x with f_{1}-value m_{1}, we have $f_{1}(x)-f_{2}(x)+$ $\epsilon=m_{1}-f_{2}(x)+\epsilon \leq m_{1}-m_{2}+\epsilon \leq-2$, a contradiction. If $m_{1}-m_{2}+\epsilon \geq 2$, then for every point x with f_{2}-value m_{2}, we have $f_{1}(x)-f_{2}(x)+\epsilon=f_{1}(x)-m_{2}+\epsilon \geq m_{1}-m_{2}+\epsilon \geq 2$, a contradiction. Hence, $\left|m_{1}-m_{2}+\epsilon\right| \leq 1$.
(2) If $M_{1}-M_{2}+\epsilon \geq 2$, then for every point x with f_{1}-value M_{1}, we have $f_{1}(x)-f_{2}(x)+$ $\epsilon=M_{1}-f_{2}(x)+\epsilon \geq M_{1}-M_{2}+\epsilon \geq 2$, a contradiction. If $M_{1}-M_{2}+\epsilon \leq-2$, then for every point x with f_{2}-value M_{2}, we have $f_{1}(x)-f_{2}(x)+\epsilon=f_{1}(x)-M_{2}+\epsilon \leq M_{1}-M_{2}+\epsilon \leq-2$, a contradiction. Hence, $\left|M_{1}-M_{2}+\epsilon\right| \leq 1$.
(3) Since $f_{1}\left(x_{1}\right)-f_{2}\left(x_{1}\right)=f_{1}\left(x_{1}\right)-f_{2}\left(x_{2}\right)-1$ and $f_{1}\left(x_{2}\right)-f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)-f_{2}\left(x_{2}\right)+1$, we necessarily have that $\epsilon=f_{2}\left(x_{2}\right)-f_{1}\left(x_{1}\right)$.

Lemma 2.2 Let f_{1} and f_{2} be two semi-valuations of \mathcal{S} satisfying the following property:
(*) For every line L of \mathcal{S}, the unique point of L with smallest f_{1}-value coincides with the unique point of L with smallest f_{2}-value.

Then f_{1} and f_{2} are equivalent.
Proof. Let x^{*} be an arbitrary point of \mathcal{S} and put $\epsilon:=f_{2}\left(x^{*}\right)-f_{1}\left(x^{*}\right)$. We prove by induction on the distance $\mathrm{d}\left(x^{*}, x\right)$ that $f_{2}(x)=f_{1}(x)+\epsilon$ for every point x of \mathcal{S}. Obviously, this holds if $x=x^{*}$. So, suppose $\mathrm{d}\left(x^{*}, x\right) \geq 1$ and let y be a point collinear with x at distance $\mathrm{d}\left(x^{*}, x\right)-1$ from x^{*}. By the induction hypothesis, $f_{2}(y)=f_{1}(y)+\epsilon$. Applying property $(*)$ to the line $x y$, we find that $f_{2}(x)=f_{1}(x)+\epsilon$.

The following is an immediate corollary of Lemma 2.1(3) and Lemma 2.2.
Corollary 2.3 The following holds for two neighboring semi-valuations f_{1} and f_{2} of \mathcal{S}.
(1) If f_{1} and f_{2} are equivalent, then there exist precisely three $\epsilon \in \mathbb{Z}$ such that $\mid f_{1}(x)-$ $f_{2}(x)+\epsilon \mid \leq 1$ for every point x of \mathcal{S}. These three possible values of ϵ are consecutive integers.
(2) Suppose f_{1} and f_{2} are not equivalent. Then there exists a unique $\epsilon \in \mathbb{Z}$ such that $\left|f_{1}(x)-f_{2}(x)+\epsilon\right| \leq 1$ for every point x of \mathcal{S}. There also exists a line L of \mathcal{S} such that the unique point x_{1} of L with smallest f_{1}-value is distinct from the unique point x_{2} of L with smallest f_{2}-value. Moreover, $\epsilon=f_{2}\left(x_{2}\right)-f_{1}\left(x_{1}\right)$.

For the remainder of this subsection, we suppose that every line of $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is incident with precisely 3 points.

Definition. Suppose $f_{1}: \mathcal{P} \rightarrow \mathbb{Z}$ and $f_{2}: \mathcal{P} \rightarrow \mathbb{Z}$ are two maps such that $\left|f_{1}(x)-f_{2}(x)\right| \leq$ 1 for every point $x \in \mathcal{P}$. If $f_{1}(x)=f_{2}(x)$, then we define $f_{1} \diamond f_{2}(x):=f_{1}(x)-1=f_{2}(x)-1$. If $\left|f_{1}(x)-f_{2}(x)\right|=1$, then we define $f_{1} \diamond f_{2}(x):=\max \left\{f_{1}(x), f_{2}(x)\right\}$. Clearly, $f_{2} \diamond f_{1}=$ $f_{1} \diamond f_{2}$. Notice also that $\left|f_{1}(x)-f_{1} \diamond f_{2}(x)\right|,\left|f_{2}(x)-f_{1} \diamond f_{2}(x)\right| \leq 1$ for every point x of \mathcal{S}. Moreover $\left(f_{1} \diamond f_{2}\right) \diamond f_{1}=f_{2}$ and $\left(f_{1} \diamond f_{2}\right) \diamond f_{2}=f_{1}$.

Proposition 2.4 If f_{1} and f_{2} are two semi-valuations of \mathcal{S} such that $\left|f_{1}(u)-f_{2}(u)\right| \leq 1$ for every point u of \mathcal{S}, then also $f_{3}:=f_{1} \diamond f_{2}$ is a semi-valuation of \mathcal{S}. If two semivaluations of the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ are equivalent, then all of them are equivalent. If this occurs, then two of them, say $f_{i_{1}}$ and $f_{i_{2}}$, are equal and the third one $f_{i_{3}}$ satisfies $f_{i_{3}}(x)=$ $f_{i_{1}}(x)-1=f_{i_{2}}(x)-1$ for every point x of \mathcal{S}.
Proof. Let $L=\{x, y, z\}$ be an arbitrary line of \mathcal{S}. Without loss of generality, we may suppose that one of the following cases occurs:
(1) x is the unique point of L with smallest f_{1}-value and smallest f_{2}-value. If $f_{1}(x)=$ $f_{2}(x)$, then $f_{3}(x)=f_{1}(x)-1$ and $f_{3}(y)=f_{3}(z)=f_{1}(x)$. If $f_{1}(x) \neq f_{2}(x)$, then $f_{3}(x)=$ $\max \left\{f_{1}(x), f_{2}(x)\right\}$ and $f_{3}(y)=f_{3}(z)=\max \left\{f_{1}(x)+1, f_{2}(x)+1\right\}=f_{3}(x)+1$.
(2) x is the unique point of L with smallest f_{1}-value and y is the unique point of L with smallest f_{2}-value. The fact that $\left|f_{1}(u)-f_{2}(u)\right| \leq 1$ for every $u \in L$ implies that $f_{1}(x)=f_{2}(y)$. Since $f_{2}(x)=f_{2}(y)+1=f_{1}(x)+1$, we have $f_{3}(x)=f_{1}(x)+1$. Since $f_{1}(y)=f_{1}(x)+1$ and $f_{2}(y)=f_{1}(x)$, we have $f_{3}(y)=f_{1}(x)+1$. Since $f_{1}(z)=f_{1}(x)+1$ and $f_{2}(z)=f_{2}(y)+1=f_{1}(x)+1$, we have $f_{3}(z)=f_{1}(x)$.
In both cases, L contains a unique point with smallest f_{3}-value. So, f_{3} is a semi-valuation. From the definition of the map $f_{1} \diamond f_{2}$, it follows that if f_{1} and f_{2} are equivalent, then $f_{3}=f_{1} \diamond f_{2}$ is equivalent with f_{1} and f_{2}. So, if f_{1} and f_{3} are equivalent, then $f_{3} \diamond f_{1}=$ $\left(f_{1} \diamond f_{2}\right) \diamond f_{1}=f_{2}$ is equivalent with f_{1} and f_{3}, and if f_{2} and f_{3} are equivalent, then $f_{3} \diamond f_{2}=\left(f_{1} \diamond f_{2}\right) \diamond f_{2}=f_{1}$ is equivalent with f_{2} and f_{3}.

Definition. Suppose f_{1} and f_{2} are two neighboring semi-valuations of \mathcal{S}. Then we define $\left[f_{1}\right] *\left[f_{2}\right]:=\left[g_{1} \diamond g_{2}\right]$ where $g_{1} \in\left[f_{1}\right]$ and $g_{2} \in\left[f_{2}\right]$ are chosen such that $\left|g_{1}(x)-g_{2}(x)\right| \leq 1$ for every point x of \mathcal{S}. Using Corollary 2.3, it is straightforward to verify that $\left[g_{1} \diamond g_{2}\right]$ is independent from the chosen $g_{1} \in\left[f_{1}\right]$ and $g_{2} \in\left[f_{2}\right]$ satisfying $\left|g_{1}(x)-g_{2}(x)\right| \leq 1, \forall x \in \mathcal{P}$. Notice also that f_{1}, f_{2} and $g_{1} \diamond g_{2}$ are three mutually neighboring semi-valuations of \mathcal{S}. For every semi-valuation f of \mathcal{S}, we have $[f] *[f]=[f]$.

Notice that if H_{1} and H_{2} are two distinct hyperplanes of \mathcal{S}, then the complement of the symmetric difference of H_{1} and H_{2} is again a hyperplane of \mathcal{S}.

Proposition 2.5 Suppose f_{1}, f_{2} and f_{3} are three mutually neighboring semi-valuations of \mathcal{S} such that $\left[f_{3}\right]=\left[f_{1}\right] *\left[f_{2}\right]$. Suppose also that at least one (and hence all) of f_{1}, f_{2}, f_{3} attains a maximal value. Then precisely one of the following cases occurs:
(1) $H_{f_{1}} \neq H_{f_{2}}$ and $H_{f_{3}}$ is the complement of the symmetric difference $H_{f_{1}} \Delta H_{f_{2}}$ of $H_{f_{1}}$ and $H_{f_{2}}$.
(2) One of $H_{f_{1}}, H_{f_{2}}$ is properly contained in the other, and $H_{f_{3}}$ is the larger of the two.
(3) $H_{f_{3}}$ is (properly or improperly) contained in $H_{f_{1}}=H_{f_{2}}$.

Proof. Without loss of generality, we may suppose that $\left|f_{1}(x)-f_{2}(x)\right| \leq 1$ for every point x of \mathcal{S} and $f_{3}=f_{1} \diamond f_{2}$. Let $M_{i}, i \in\{1,2,3\}$, denote the maximal value attained by f_{i}. By Lemma 2.1(2), $\left|M_{1}-M_{2}\right| \leq 1$. Without loss of generality, we may suppose that $M_{2} \geq M_{1}$.
(a) Suppose that $M_{1}=M_{2}$. If $x \in H_{f_{1}} \cap H_{f_{2}}$, then since $f_{1}(x), f_{2}(x) \leq M_{1}-1$, we have $f_{3}(x) \leq M_{1}-1$. If $x \in H_{f_{1}} \backslash H_{f_{2}}$, then since $f_{1}(x) \leq M_{1}-1$ and $f_{2}(x)=M_{1}$, we have $f_{1}(x)=M_{1}-1$ and $f_{3}(x)=M_{1}$. Similarly, if $x \in H_{f_{2}} \backslash H_{f_{1}}$, then $f_{3}(x)=M_{1}$. Finally, if $x \notin H_{f_{1}} \cup H_{f_{2}}$, then since $f_{1}(x)=f_{2}(x)=M_{1}$, we have $f_{3}(x)=M_{1}$ - 1. If $H_{f_{1}} \neq H_{f_{2}}$, then $M_{3}=M_{1}$ and $H_{f_{3}}$ is the complement of the symmetric difference of $H_{f_{1}}$ and $H_{f_{2}}$. If $H_{f_{1}}=H_{f_{2}}$, then $M_{3}=M_{1}-1$ and $H_{f_{3}}$ is contained in $H_{f_{1}}=H_{f_{2}}$.
(b) Suppose that $M_{2}=M_{1}+1$. Then $H_{f_{1}} \subseteq H_{f_{2}}$ since every point of $H_{f_{1}}$ has f_{1}-value at most $M_{1}-1$ and hence f_{2}-value at most $M_{1}<M_{2}$. If $x \in H_{f_{2}}$, then since $f_{1}(x), f_{2}(x) \leq$ M_{1}, we have $f_{3}(x) \leq M_{1}$. If $x \notin H_{f_{2}}$, then since $f_{1}(x)=M_{1}$ and $f_{2}(x)=M_{2}=M_{1}+1$, we have $f_{3}(x)=M_{1}+1$. So, $M_{3}=M_{1}+1$ and $H_{f_{3}}=H_{f_{2}}$. If $H_{f_{1}} \neq H_{f_{2}}$, then case (2) of the proposition occurs. If $H_{f_{1}}=H_{f_{2}}$, then case (3) occurs.

2.2 Valuations of dense near polygons

In this section, we suppose that $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a dense near $2 n$-gon. Since every valuation of \mathcal{S} is also a semi-valuation, the definitions and results of Section 2.1 also apply to valuations of \mathcal{S}.

Proposition 2.6 If f_{1} and f_{2} are two neighboring valuations of \mathcal{S} and if $\epsilon \in \mathbb{Z}$ such that $\left|f_{1}(x)-f_{2}(x)+\epsilon\right| \leq 1$ for every point x of \mathcal{S}, then $\epsilon \in\{-1,0,1\}$.

Proof. This is a special case of Lemma 2.1(1).
Proposition 2.7 If f_{1} and f_{2} are two valuations of \mathcal{S}, then $f_{1}=f_{2}$ if and only if $H_{f_{1}}=$ $H_{f_{2}}$.

Proof. Obviously, $H_{f_{1}}=H_{f_{2}}$ if $f_{1}=f_{2}$. We will now also prove that $f_{1}=f_{2}$ if $H_{f_{1}}=H_{f_{2}}$.
Let $i \in\{1,2\}$. Let M_{i} denote the maximal value attained by f_{i}. Then the complement $\overline{H_{f_{i}}}$ of $H_{f_{i}}$ consists of those points of \mathcal{S} with f_{i}-value M_{i}. By Property (V2), d $\left(x, \overline{H_{f_{i}}}\right) \geq$ $M_{i}-f_{i}(x)$ for every point x of \mathcal{S} (consider a shortest path between x and $\overline{H_{f_{i}}}$). We will now prove by induction on $M_{i}-f_{i}(x)$ that $\mathrm{d}\left(x, \overline{H_{f_{i}}}\right)=M_{i}-f_{i}(x)$ for every point x of \mathcal{S}. Obviously, this holds if $M_{i}-f_{i}(x)=0$ since $x \in \overline{H_{f_{i}}}$ in this case. So, suppose that $M_{i}-f_{i}(x)>0$. Let F_{x} denote the convex subspace through x as mentioned in Property (V3). Then $f_{i}(y) \leq f_{i}(x) \leq M_{i}-1$ for every point y of F_{x}. So, $F_{x} \neq \mathcal{S}$ and there exists a line L through x not contained in F_{x}. By Property (V3), L contains a point x^{\prime} with f_{i}-value $f_{i}(x)+1$. By the induction hypothesis, $\mathrm{d}\left(x^{\prime}, \overline{H_{f_{i}}}\right)=M_{i}-f_{i}\left(x^{\prime}\right)=M_{i}-f_{i}(x)-1$. Hence, $\mathrm{d}\left(x, \overline{H_{f_{i}}}\right) \leq M_{i}-f_{i}(x)$. Together with $\mathrm{d}\left(x, \overline{H_{f_{i}}}\right) \geq M_{i}-f_{i}(x)$, this implies that $\mathrm{d}\left(x, \overline{H_{f_{i}}}\right)=M_{i}-f_{i}(x)$.

Now, suppose $H_{f_{1}}=H_{f_{2}}$. Then $M_{1}=\max \left\{\mathrm{d}\left(\underline{y, \overline{H_{f_{1}}}}\right) \mid y \in \mathcal{P}\right\}=\max \left\{\mathrm{d}\left(y, \overline{H_{f_{2}}}\right) \mid y \in\right.$ $\mathcal{P}\}=M_{2}$ and $f_{1}(x)=M_{1}-\mathrm{d}\left(x, \overline{H_{f_{1}}}\right)=M_{2}-\mathrm{d}\left(x, \overline{H_{f_{2}}}\right)=f_{2}(x)$ for every point x of \mathcal{S}.

The proof of the following proposition is straightforward.
Proposition 2.8 Let F be a subspace of \mathcal{S}, isometrically embedded in \mathcal{S}, such that \widetilde{F} is a dense near polygon. Let f_{1} and f_{2} be two neighboring valuations of \mathcal{S} and let $f_{i}^{\prime}, i \in\{1,2\}$, denote the valuation of \widetilde{F} induced by f_{i}. Then f_{1}^{\prime} and f_{2}^{\prime} are neighboring valuations of \widetilde{F}.

Definitions. (1) If F is a convex subspace of \mathcal{S}, then for every point x of \mathcal{S} satisfying $\mathrm{d}(x, F) \leq 1$, there exists a unique point in F nearest to x. We will denote this point by $\pi_{F}(x)$. By Theorem 1.5 of [11], if $\mathrm{d}(x, F) \leq 1$, then $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), y\right)$ for every point $y \in F$.
(2) Two convex subspaces F_{1} and F_{2} of \mathcal{S} are called parallel if for every $i \in\{1,2\}$ and every point $x \in F_{i}$, there exists a unique point $x^{\prime} \in F_{3-i}$ at distance $\mathrm{d}\left(F_{1}, F_{2}\right)$ from x and $\mathrm{d}(x, y)=\mathrm{d}\left(x, x^{\prime}\right)+\mathrm{d}\left(x^{\prime}, y\right)=\mathrm{d}\left(F_{1}, F_{2}\right)+\mathrm{d}\left(x^{\prime}, y\right)$ for every point y of F_{3-i}. The following proposition is precisely Theorem 1.10 of De Bruyn [11].

Proposition 2.9 Let F_{1} and F_{2} be two parallel convex subspaces of \mathcal{S}. Then the map $\pi_{i, 3-i}: F_{i} \rightarrow F_{3-i}, i \in\{1,2\}$, which maps a point x of F_{i} to the unique point of F_{3-i} nearest to x, is an isomorphism from \widetilde{F}_{i} to $\widetilde{F_{3-i}}$. Moreover, $\pi_{2,1}=\pi_{1,2}^{-1}$.

Proposition 2.10 Let f be a valuation of \mathcal{S}, let F_{1} and F_{2} be two parallel convex subspaces at distance 1 from each other, and let $f_{i}, i \in\{1,2\}$, denote the valuation of \widetilde{F}_{i} induced by f. For every point x of F_{1}, put $f_{1}^{\prime}(x):=f_{2}\left(\pi_{F_{2}}(x)\right)$. Then f_{1} and f_{1}^{\prime} are neighboring valuations of $\stackrel{\rightharpoonup}{F_{1}}$.

Proof. Observe first that f_{1}^{\prime} is a valuation of $\widetilde{F_{1}}$ by Proposition 2.9. Let $\delta_{i}, i \in\{1,2\}$, be the unique element of \mathbb{N} such that $f(x)=f_{i}(x)+\delta_{i}$ for every $x \in F_{i}$. For every point x of F_{1}, we have $\left|f_{1}(x)-f_{1}^{\prime}(x)+\delta_{1}-\delta_{2}\right|=\left|f(x)-f_{2}\left(\pi_{F_{2}}(x)\right)-\delta_{2}\right|=\left|f(x)-f\left(\pi_{F_{2}}(x)\right)\right| \leq 1$. So, f_{1} and f_{1}^{\prime} are neighboring valuations of $\widetilde{F_{1}}$.

Definition. (1) Let O be an ovoid of \mathcal{S}, i.e. a set of points of \mathcal{S} intersecting each line of \mathcal{S} in a singleton. For a point x of \mathcal{S}, define $f(x):=0$ if $x \in O$ and $f(x):=1$ if $x \notin O$. Then f is a so-called ovoidal valuation of \mathcal{S}.
(2) Let $\delta \in\{0, \ldots, n-1\}$, let x be a point of \mathcal{S} and let O be a set of points of \mathcal{S} at distance at least $\delta+2$ from x such that every line at distance at least $\delta+1$ from x has a unique point in common with O. For a point y of \mathcal{S}, we define

$$
\left\{\begin{array}{lll}
f(y) & :=\mathrm{d}(x, y) & \text { if } \mathrm{d}(x, y) \leq \delta+1 \\
f(y) & :=\delta+1 & \text { if } \mathrm{d}(x, y) \geq \delta+2 \text { and } y \notin O \\
f(y) & :=\delta & \text { if } \mathrm{d}(x, y) \geq \delta+2 \text { and } y \in O
\end{array}\right.
$$

By [18, Section 3.1] or [11, Section 5.6.1], f is a (so-called hybrid) valuation of \mathcal{S}. We denote f also by $f_{x, \delta, O}$. If $\delta=0$, then f is an ovoidal valuation of \mathcal{S} with associated ovoid $O \cup\{x\}$. If $\delta=n-1$, then f is a classical valuation of \mathcal{S}. If $\delta=n-2$, then f is called a semi-classical valuation of \mathcal{S}.

Proposition 2.11 Let $\delta \in\{0, \ldots, n-1\}$, let L be a line of \mathcal{S}, let x_{1} and x_{2} be two (not necessarily distinct) points of L and let $O_{i}, i \in\{1,2\}$, be a set of points of \mathcal{S} at distance at least $\delta+2$ from x_{i} such that every line at distance at least $\delta+1$ from x_{i} has a unique point in common with O_{i}. Then $f_{1}:=f_{x_{1}, \delta, O_{1}}$ and $f_{2}:=f_{x_{2}, \delta, O_{2}}$ are neighboring valuations of \mathcal{S}.

Proof. Let y be an arbitrary point of \mathcal{S}.
If $\mathrm{d}(y, L) \leq \delta$, then $\mathrm{d}\left(x_{1}, y\right), \mathrm{d}\left(x_{2}, y\right) \leq \delta+1$ and $\left|f_{1}(y)-f_{2}(y)\right|=\left|\mathrm{d}\left(x_{1}, y\right)-\mathrm{d}\left(x_{2}, y\right)\right| \leq$ $\mathrm{d}\left(x_{1}, x_{2}\right) \leq 1$ by the triangle inequality.

Suppose $\mathrm{d}(y, L) \geq \delta+1$. Then $\mathrm{d}\left(y, x_{1}\right), \mathrm{d}\left(y, x_{2}\right) \geq \delta+1$. It follows that $f_{1}(y), f_{2}(y) \in$ $\{\delta, \delta+1\}$ and $\left|f_{1}(y)-f_{2}(y)\right| \leq 1$.

In the following corollary, we collect two special cases of Proposition 2.11.
Corollary 2.12 (1) Every two ovoidal valuations of \mathcal{S} are neighboring valuations.
(2) If f_{1} and f_{2} are two classical valuations whose centers lie at distance at most 1 from each other, then f_{1} and f_{2} are neighboring valuations.

Definition. Suppose that every line of \mathcal{S} is incident with precisely three points. If f_{1} and f_{2} are two neighboring valuations of \mathcal{S}, then we denote by $f_{1} * f_{2}$ the unique element of $\left[f_{1}\right] *\left[f_{2}\right]$ whose minimal value is equal to 0 . By Proposition 2.4 , we know that $f_{1} * f_{2}$ is a semi-valuation of \mathcal{S}.

Proposition 2.13 Suppose every line of \mathcal{S} is incident with precisely three points. Let F_{1} and F_{2} be two parallel convex subspaces at distance 1 from each other and let F_{3} denote the set of all points of \mathcal{S} not contained in $F_{1} \cup F_{2}$ which are contained in a line joining a point of F_{1} with a point of F_{2}. Suppose moreover that F_{3} is also a convex subspace of \mathcal{S}. Let f be a valuation of \mathcal{S} and let $f_{i}, i \in\{1,2,3\}$, denote the valuation of \widetilde{F}_{i} induced by f. For every point x of F_{1}, we define $f_{1}^{\prime}(x)=f_{2}\left(\pi_{F_{2}}(x)\right)$ and $f_{1}^{\prime \prime}(x)=f_{3}\left(\pi_{F_{3}}(x)\right)$. Then $f_{1}^{\prime \prime}=f_{1} * f_{1}^{\prime}$.

Proof. Notice first that f_{1} and f_{1}^{\prime} are neighboring valuations of $\widetilde{F_{1}}$ by Proposition 2.10. For every point x of F_{1}, we put $g_{1}(x):=f(x), g_{2}(x):=f\left(\pi_{F_{2}}(x)\right)$ and $g_{3}(x):=f\left(\pi_{F_{3}}(x)\right)$. Then g_{1}, g_{2} and g_{3} are semi-valuations of \bar{F}_{1}. Since every line meeting F_{1}, F_{2} and F_{3} contains a unique point with smallest f-value (recall (V2)), we necessarily have $g_{3}=g_{1} \diamond g_{2}$. It follows that $f_{1}^{\prime \prime}=f_{1} * f_{1}^{\prime}$.

Proposition 2.14 Suppose that every line of \mathcal{S} is incident with precisely three points. If f_{1} and f_{2} are distinct neighboring valuations of \mathcal{S}, then $H_{f_{1} * f_{2}}$ is the complement of the symmetric difference of $H_{f_{1}}$ and $H_{f_{2}}$.
Proof. By Proposition 2.7, $H_{f_{1}} \neq H_{f_{2}}$. By Blok and Brouwer [1, Theorem 7.3] or Shult [26, Lemma 6.1], every hyperplane of a dense near polygon is also a maximal subspace. In particular, $H_{f_{1}}, H_{f_{2}}$ and $H_{f_{1} * f_{2}}$ are maximal subspaces of \mathcal{S}. It is now clear that case (1)
of Proposition 2.5 must occur. So, $H_{f_{1} * f_{2}}$ is the complement of the symmetric difference of $H_{f_{1}}$ and $H_{f_{2}}$.

Suppose again that every line of \mathcal{S} is incident with precisely three points. If f_{1} and f_{2} are distinct neighboring valuations of \mathcal{S}, then $f_{1} * f_{2}$ satisfies properties (V1) and (V2) in the definition of valuation. The following question can now be considered: does $f_{1} * f_{2}$ also satisfy Property (V 3)? If this is the case, then $f_{1} * f_{2}$ is a valuation of \mathcal{S}. We will demonstrate below that the claim that $f_{1} * f_{2}$ is a valuation is false in general, but true for a large class of dense near polygons. We will construct counter examples with the aid of the following lemma. Recall that by Corollary $2.12(1)$ any two ovoidal valuations of a given dense near polygon are neighboring valuations.

Lemma 2.15 Suppose every line of \mathcal{S} is incident with precisely three points and that f_{1} and f_{2} are two distinct ovoidal valuations of \mathcal{S} for which $\left|H_{f_{1}} \cap H_{f_{2}}\right| \geq 2$ (so, $n \geq 3$). If $f_{1} * f_{2}$ is a valuation of \mathcal{S}, then $f_{1} * f_{2}$ is neither classical nor ovoidal.
Proof. Since $H_{f_{1}}$ and $H_{f_{2}}$ are two distinct maximal subspaces of $\mathcal{S}, H_{f_{1}} \backslash H_{f_{2}} \neq \emptyset \neq$ $H_{f_{2}} \backslash H_{f_{1}}$. So, $H_{f_{1}} \Delta H_{f_{2}} \neq \emptyset$.

Put $f_{3}:=f_{1} \diamond f_{2}$. If $x \in H_{f_{1}} \cap H_{f_{2}}$, then $f_{3}(x)=-1$. If $x \in H_{f_{1}} \Delta H_{f_{2}}$, then $f_{3}(x)=1$. If $x \notin H_{f_{1}} \cup H_{f_{2}}$, then $f_{3}(x)=0$. So, $f_{1} * f_{2}(x)$ is equal to 0 if $x \in H_{f_{1}} \cap H_{f_{2}}$, equal to 2 if $x \in H_{f_{1}} \Delta H_{f_{2}}$ and equal to 1 if $x \notin H_{f_{1}} \cup H_{f_{2}}$. Since $\left|H_{f_{1}} \cap H_{f_{2}}\right| \geq 2, f_{1} * f_{2}$ is not a classical valuation of \mathcal{S}. Since $f_{1} * f_{2}$ can take the value 2 , it cannot be an ovoidal valuation of \mathcal{S}.

We will now apply Lemma 2.15 to two particular cases.
Example 1. By Brouwer [2], there exists up to isomorphism a unique dense near hexagon \mathcal{S} which satisfies the following properties: (1) every line of \mathcal{S} is incident with precisely 3 points; (2) every point of \mathcal{S} is incident with precisely 12 lines; (3) every quad of \mathcal{S} is a (3×3)-grid. This near hexagon is related to the extended ternary Golay code, see Shult and Yanushka [27, p. 30]. Using the notation of [11] we will denote this near hexagon by \mathbb{E}_{1}. The ovoids of the near hexagon \mathbb{E}_{1} have been classified in De Bruyn [9, Theorem 4.2]. There are 36 distinct ovoids (all of size 243) and any two distinct ovoids intersect in either 0 or 81 points. The valuations of the near hexagon \mathbb{E}_{1} have been classified in De Bruyn and Vandecasteele [20]. Every valuation of \mathbb{E}_{1} is either classical or ovoidal. Now, suppose f_{1} and f_{2} are two ovoidal valuations of \mathbb{E}_{1} for which $\left|H_{f_{1}} \cap H_{f_{2}}\right|=81$. Then Lemma 2.15 implies that $f_{1} * f_{2}$ is not a valuation of \mathbb{E}_{1}. So, the map $f_{1} * f_{2}$ satisfies properties (V1) and (V2), but not (V3). Such maps (for \mathbb{E}_{1}) were already constructed in De Bruyn [14, Section 4.1].
Example 2. By Brouwer [3], there exists up to isomorphism a unique dense near hexagon \mathcal{S} which satisfies the following properties: (1) every line of \mathcal{S} is incident with precisely 3 points; (2) every point of \mathcal{S} is incident with precisely 15 lines; (3) every quad of \mathcal{S} is isomorphic to the symplectic generalized quadrangle $W(2)$. This near hexagon is related to the Steiner system $S(5,8,24)$, see Shult and Yanushka [27, p. 40]. Using the notation of $[11]$ we will denote this near hexagon by \mathbb{E}_{2}. The ovoids of the near hexagon \mathbb{E}_{2} have
been classified by Brouwer and Lambeck [5, p. 105], see also De Bruyn [11, Section 6.6.2] for an alternative proof. There are 24 distinct ovoids (all of size 253) and any two distinct ovoids intersect in precisely 77 points. The valuations of the near hexagon \mathbb{E}_{2} have been classified in De Bruyn and Vandecasteele [20]. Every valuation of \mathbb{E}_{2} is either classical or ovoidal. Now, suppose f_{1} and f_{2} are two distinct ovoidal valuations of \mathbb{E}_{2}. Then Lemma 2.15 implies that $f_{1} * f_{2}$ is not a valuation of \mathbb{E}_{2}. So, the map $f_{1} * f_{2}$ satisfies properties (V1) and (V2), but not (V3). Such maps (for \mathbb{E}_{2}) were already constructed in De Bruyn [14, Section 4.2].

The above two examples allow is to draw the following conclusion.
If f_{1} and f_{2} are two distinct neighboring valuations of a general dense near polygon \mathcal{S} with three points per line, then $f_{1} * f_{2}$ is not necessarily a valuation of \mathcal{S}.

Definition. For every point x of \mathcal{S}, the following point-line geometry $\mathcal{L}(\mathcal{S}, x)$ can be defined. The points of $\mathcal{L}(\mathcal{S}, x)$ are the lines of \mathcal{S} through x, the lines of $\mathcal{L}(\mathcal{S}, x)$ are the quads of \mathcal{S} through x, and incidence is containment. The point-line geometry $\mathcal{L}(\mathcal{S}, x)$ is a linear space and is called the local space at x. If F is a convex subspace through x, then the set of all lines of F through x is a subspace of $\mathcal{L}(\mathcal{S}, x)$. The local space $\mathcal{L}(\mathcal{S}, x)$ is called regular if every subspace of $\mathcal{L}(\mathcal{S}, x)$ arises from a convex subspace through x in the above-described way.

In De Bruyn [14, Theorem $1.3+$ Corollary 1.4], we proved the following:
Proposition 2.16 (1) If $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a dense near polygon, every local space of which is regular, then every map $f: \mathcal{P} \rightarrow \mathbb{N}$ which satisfies properties (V1) and (V2) also satisfies property (V3).
(2) If \mathcal{S} is a thick dual polar space, then every local space of \mathcal{S} is regular.
(3) If \mathcal{S} is a known dense near polygon without hexes isomorphic to \mathbb{E}_{1} or \mathbb{E}_{2}, then every local space of \mathcal{S} is regular.

By Propositions 2.4 and 2.16, we have
Corollary 2.17 Let \mathcal{S} be a dense near polygon with three points on each line, every local space of which is regular. If f_{1} and f_{2} are two neighboring valuations of \mathcal{S}, then $f_{1} * f_{2}$ is also a valuation of \mathcal{S}. In particular, this holds if \mathcal{S} is a known dense near hexagon with three points on each line which does not contain hexes isomorphic to \mathbb{E}_{1} or \mathbb{E}_{2}.

The following special case of Corollary 2.17 will be of importance in this paper. (The regularity of the local spaces of \mathbb{G}_{n} was demonstrated in [14, Section 3 (IV)]; also, no hex of \mathbb{G}_{n} is isomorphic to \mathbb{E}_{1} or \mathbb{E}_{2}, see [11, Section 6.3.2]).

Corollary 2.18 If f_{1} and f_{2} are two neighboring valuations of the near polygon \mathbb{G}_{n}, $n \geq 2$, then also $f_{1} * f_{2}$ is a valuation of \mathbb{G}_{n}.

3 Projective embeddings

3.1 Embeddings of general point-line geometries

A full (projective) embedding of a partial linear space $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ into a projective space Σ is an injective mapping e from \mathcal{P} to the point-set of Σ satisfying: (i) $\langle e(\mathcal{P})\rangle_{\Sigma}=\Sigma$; (ii) $e(L):=\{e(x) \mid x \in L\}$ is a line of Σ for every line L of \mathcal{S}. The dimensions $\operatorname{dim}(\Sigma)$ and $\operatorname{dim}(\Sigma)+1$ are respectively called the projective dimension and the vector dimension of e. If $e: \mathcal{S} \rightarrow \Sigma$ is a full embedding of \mathcal{S} into the projective space Σ, then for every hyperplane α of $\Sigma, H(\alpha):=e^{-1}(\alpha \cap e(\mathcal{P}))$ is a hyperplane of \mathcal{S}. We say that the hyperplane $H(\alpha)$ of \mathcal{S} arises from the embedding e. If H is a hyperplane of \mathcal{S} which is also a maximal subspace of \mathcal{S} (as it is always the case if \mathcal{S} is a dense near polygon), then $\langle e(H)\rangle_{\Sigma}$ is either Σ or a hyperplane of Σ. Moreover, if $\langle e(H)\rangle_{\Sigma}$ is a hyperplane of Σ, then $H=e^{-1}\left(\langle e(H)\rangle_{\Sigma} \cap e(\mathcal{P})\right)$, i.e. H arises from the embedding e.

Two full embeddings $e_{1}: \mathcal{S} \rightarrow \Sigma_{1}$ and $e_{2}: \mathcal{S} \rightarrow \Sigma_{2}$ of \mathcal{S} are called isomorphic ($e_{1} \cong e_{2}$) if there exists an isomorphism $f: \Sigma_{1} \rightarrow \Sigma_{2}$ such that $e_{2}=f \circ e_{1}$. If $e: \mathcal{S} \rightarrow \Sigma$ is a full embedding of \mathcal{S} and if U is a subspace of Σ satisfying (C1): $\langle U, e(p)\rangle_{\Sigma} \neq U$ for every point p of $\mathcal{S},(\mathrm{C} 2):\left\langle U, e\left(p_{1}\right)\right\rangle_{\Sigma} \neq\left\langle U, e\left(p_{2}\right)\right\rangle_{\Sigma}$ for any two distinct points p_{1} and p_{2} of \mathcal{S}, then there exists a full embedding e / U of \mathcal{S} into the quotient space Σ / U mapping each point p of \mathcal{S} to $\langle U, e(p)\rangle_{\Sigma}$. If $e_{1}: \mathcal{S} \rightarrow \Sigma_{1}$ and $e_{2}: \mathcal{S} \rightarrow \Sigma_{2}$ are two full embeddings of \mathcal{S}, then we say that $e_{1} \geq e_{2}$ if there exists a subspace U in Σ_{1} satisfying (C 1), (C 2) and $e_{1} / U \cong e_{2}$. If $e: \mathcal{S} \rightarrow \Sigma$ is a full embedding of \mathcal{S}, then by Ronan [25], there exists (up to isomorphism) a unique full embedding $\widetilde{e}: \mathcal{S} \rightarrow \widetilde{\Sigma}$ satisfying (i) $\widetilde{e} \geq e$, (ii) if $e^{\prime} \geq e$ for some embedding e^{\prime} of \mathcal{S}, then $\widetilde{e} \geq e^{\prime}$. We say that \widetilde{e} is universal relative to e. If $\widetilde{e} \cong e$ for some full embedding e of \mathcal{S}, then we say that e is relatively universal. A full embedding e of \mathcal{S} is called absolutely universal if it is universal relative to any full embedding of \mathcal{S} defined over the same division ring as e.

Suppose $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a fully embeddable point-line geometry with three points on each line. Then by Ronan [25], \mathcal{S} admits the absolutely universal embedding and every hyperplane of \mathcal{S} arises from this embedding. We now give a description of the absolutely universal embedding of \mathcal{S}. Let V be a vector space over the field \mathbb{F}_{2} with a basis B whose vectors are indexed by the elements of \mathcal{P}, e.g. $B=\left\{\bar{v}_{p} \mid p \in \mathcal{P}\right\}$. Let W denote the subspace of V generated by all vectors $\bar{v}_{p_{1}}+\bar{v}_{p_{2}}+\bar{v}_{p_{3}}$ where $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a line of \mathcal{S}. Then the map $p \in \mathcal{P} \mapsto\left\{\bar{v}_{p}+W, W\right\}$ defines a full embedding of \mathcal{S} into the projective space $\operatorname{PG}(V / W)$ which is isomorphic to the absolutely universal embedding of \mathcal{S}.

3.2 The Grassmann embedding of the Hermitian dual polar space $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$

Let $n \geq 2$, let \mathbb{K}^{\prime} be a field with involutory automorphism ψ and let \mathbb{K} denote the fix field of ψ. Then \mathbb{K}^{\prime} can be regarded as a two-dimensional vector space over \mathbb{K}. Let V be a $2 n$-dimensional vector space over \mathbb{K}^{\prime} equipped with a nondegenerate skew- ψ-Hermitian form f_{V} of maximal Witt index n. With the pair $\left(V, f_{V}\right)$, there is associated a Hermitian
dual polar space $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$.
For every point $p=\left\langle\bar{f}_{1}, \bar{f}_{2}, \ldots, \bar{f}_{n}\right\rangle$ of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$, let $e_{1}(p)$ denote the point $\left\langle\bar{f}_{1} \wedge \bar{f}_{2} \wedge \cdots \wedge \bar{f}_{n}\right\rangle$ of $\operatorname{PG}\left(\bigwedge^{n} V\right)$. By Cooperstein [8] and De Bruyn [13], there exists a (necessarily unique) Baer- \mathbb{K}-subgeometry Σ of $\mathrm{PG}\left(\bigwedge^{n} V\right)$ containing the image of e_{1}. Moreover, e_{1} defines a full embedding of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ into Σ. This embedding is called the Grassmann embedding of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$. By results of Cooperstein [8], De Bruyn \& Pasini [17], Kasikova \& Shult [22] and Tits [28], we know that the Grassmann embedding of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ is absolutely universal if $n=2$ or $\left|\mathbb{K}^{\prime}\right|>4$. The same conclusion cannot be drawn in the case $n \geq 3, \mathbb{K} \cong \mathbb{F}_{2}$ and $\mathbb{K}^{\prime} \cong \mathbb{F}_{4}$. Li [23] proved that the absolutely universal embedding of $D H(2 n-1,2)$ has vector dimension $\frac{4^{n}+2}{3}$ (which is bigger than $\binom{2 n}{n}$ if $n \geq 3$).

Now, let B be a set of $\binom{2 n}{n}$ vectors of $\bigwedge^{n} V$ such that $\Sigma=\operatorname{PG}(W)$, where W is the $\binom{2 n}{n}$-dimensional vector space over \mathbb{K} whose vectors consist of all \mathbb{K}-linear combinations of the elements of B. By De Bruyn [15, Section 4], there exists a nondegenerate bilinear form f_{W} on W satisfying the following properties:
(1) f_{W} is symplectic (or alternating) if either n is odd or $\operatorname{char}(\mathbb{K})=2$ and orthogonal if n is even and $\operatorname{char}(\mathbb{K}) \neq 2$.
(2) If ζ is the polarity of $\Sigma=\operatorname{PG}(W)$ associated with f_{W}, then for every point x of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right), e_{1}(x)^{\zeta}=\left\langle e_{1}\left(H_{x}\right)\right\rangle_{\Sigma}$, where H_{x} is the hyperplane of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ consisting of all points of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$ at distance at most $n-1$ from x.

Lemma 3.1 Let $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\}$ be a set of n linearly independent vectors of V. Let A denote the set of all vectors $\bar{v} \in V$ for which $\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n} \wedge \bar{v}=0$. Then $A=$ $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\rangle$. As a consequence, A has dimension n.

Proof. Clearly, $\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n} \wedge \bar{v}=0$ if and only if $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}, \bar{v}\right\}$ is linearly dependent, i.e. if and only if $\bar{v} \in\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\rangle$.

Lemma 3.2 Let $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\}$ and $\left\{\bar{v}_{1}^{\prime}, \bar{v}_{2}^{\prime}, \ldots, \bar{v}_{n}^{\prime}\right\}$ be two sets of n linearly independent vectors of V such that $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\rangle \neq\left\langle\bar{v}_{1}^{\prime}, \bar{v}_{2}^{\prime}, \ldots, \bar{v}_{n}^{\prime}\right\rangle$. Let $\delta \in \mathbb{K}^{\prime} \backslash\{0\}$ and put $\chi:=$ $\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n}+\delta \cdot \bar{v}_{1}^{\prime} \wedge \bar{v}_{2}^{\prime} \wedge \cdots \wedge \bar{v}_{n}^{\prime}$. Let A denote the set of all $\bar{v} \in V$ for which $\chi \wedge \bar{v}=0$. Then A is an n-dimensional subspace of V if and only if the subspace $I:=$ $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\rangle \cap\left\langle\bar{v}_{1}^{\prime}, \bar{v}_{2}^{\prime}, \ldots, \bar{v}_{n}^{\prime}\right\rangle$ has dimension $n-1$. Moreover, if $\operatorname{dim}(I)=n-1$, then $\chi=\bar{v}_{1}^{\prime \prime} \wedge \bar{v}_{2}^{\prime \prime} \wedge \cdots \wedge \bar{v}_{n}^{\prime \prime}$ where $\bar{v}_{1}^{\prime \prime}, \bar{v}_{2}^{\prime \prime}, \ldots, \bar{v}_{n}^{\prime \prime}$ are n linearly independent vectors of V such that $\left\langle\bar{v}_{1}^{\prime \prime}, \bar{v}_{2}^{\prime \prime}, \ldots, \bar{v}_{n}^{\prime \prime}\right\rangle$ is an n-dimensional subspace of V through I distinct from $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\rangle$ and $\left\langle\bar{v}_{1}^{\prime}, \bar{v}_{2}^{\prime}, \ldots, \bar{v}_{n}^{\prime}\right\rangle$.

Proof. Put $k:=\operatorname{dim}(I)$. Without loss of generality, we may suppose that $\bar{v}_{i}=\bar{v}_{i}^{\prime}$ for every $i \in\{1, \ldots, k\}$. Extend $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\}$ to a basis $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{2 n}\right\}$ of V such that $\bar{v}_{n+i}=\bar{v}_{k+i}^{\prime}$ for every $i \in\{1, \ldots, n-k\}$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 n} \in \mathbb{K}$. Then $\chi \wedge\left(\lambda_{1} \bar{v}_{1}+\lambda_{2} \bar{v}_{2}+\right.$ $\cdots+\lambda_{2 n} \bar{v}_{2 n}$) is equal to

$$
\begin{gathered}
\left(\lambda_{n+1} \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n} \wedge \bar{v}_{n+1}\right)+\left(\lambda_{n+2} \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n} \wedge \bar{v}_{n+2}\right)+\cdots+ \\
\left(\lambda_{2 n} \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n} \wedge \bar{v}_{2 n}\right)+\left((-1)^{n-k} \lambda_{k+1} \delta \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k} \wedge \bar{v}_{k+1} \wedge \bar{v}_{n+1} \wedge \bar{v}_{n+2} \wedge \cdots\right.
\end{gathered}
$$

$$
\begin{aligned}
& \left.\wedge \bar{v}_{2 n-k}\right)+\left((-1)^{n-k} \lambda_{k+2} \delta \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k} \wedge \bar{v}_{k+2} \wedge \bar{v}_{n+1} \wedge \bar{v}_{n+2} \wedge \cdots \wedge \bar{v}_{2 n-k}\right) \\
& +\cdots+\left((-1)^{n-k} \lambda_{n} \delta \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k} \wedge \bar{v}_{n} \wedge \bar{v}_{n+1} \wedge \bar{v}_{n+2} \wedge \cdots \wedge \bar{v}_{2 n-k}\right) \\
& \quad+\left(\lambda_{2 n-k+1} \delta \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k} \wedge \bar{v}_{n+1} \wedge \bar{v}_{n+2} \wedge \cdots \wedge \bar{v}_{2 n-k} \wedge \bar{v}_{2 n-k+1}\right) \\
& \quad+\left(\lambda_{2 n-k+2} \delta \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k} \wedge \bar{v}_{n+1} \wedge \bar{v}_{n+2} \wedge \cdots \wedge \bar{v}_{2 n-k} \wedge \bar{v}_{2 n-k+2}\right) \\
& \quad+\cdots+\left(\lambda_{2 n} \delta \cdot \bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k} \wedge \bar{v}_{n+1} \wedge \bar{v}_{n+2} \wedge \cdots \wedge \bar{v}_{2 n-k} \wedge \bar{v}_{2 n}\right) .
\end{aligned}
$$

If $k \leq n-2$, then the $2 n$ vectors of the form $\bar{v}_{i_{1}} \wedge \bar{v}_{i_{2}} \wedge \cdots \wedge \bar{v}_{i_{n+1}}$ occurring in the above sum are distinct and linearly independent. So, in this case $\chi \wedge\left(\lambda_{1} \bar{v}_{1}+\cdots+\lambda_{2 n} \bar{v}_{2 n}\right)=0$ if and only if $\lambda_{k+1}=\lambda_{k+2}=\cdots=\lambda_{2 n}=0$. It follows that $\operatorname{dim}(A)=k<n$.

If $k=n-1$, then $\chi=\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n-1} \wedge\left(\bar{v}_{n}+\delta \bar{v}_{n}^{\prime}\right)$. By Lemma 3.1, it then follows that $\operatorname{dim}(A)=n$. Notice also that $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n-1}, \bar{v}_{n}+\delta \bar{v}_{n}^{\prime}\right\rangle$ is an n dimensional subspace of V through $I=\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n-1}\right\rangle$ distinct from $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n-1}, \bar{v}_{n}\right\rangle$ and $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n-1}, \bar{v}_{n}^{\prime}\right\rangle=\left\langle\bar{v}_{1}^{\prime}, \bar{v}_{2}^{\prime}, \ldots, \bar{v}_{n-1}^{\prime}, \bar{v}_{n}^{\prime}\right\rangle$.

The following corollary to Lemmas 3.1 and 3.2 will be useful later.
Corollary 3.3 Any line of Σ containing at least three points of the image of e_{1} is of the form $e_{1}(L)$ for some line L of $D H\left(2 n-1, \mathbb{K}^{\prime} / \mathbb{K}\right)$.

3.3 Embeddings of the dense near $2 n$-gon \mathbb{G}_{n}

Let $n \geq 2$. In Section 1, we mentioned that there exists a subspace X of $D H(2 n-1,4)$ satisfying: (i) $\widetilde{X} \cong \mathbb{G}_{n}$; (ii) if $x_{1}, x_{2} \in X$, then the distance between x_{1} and x_{2} in the geometry \tilde{X} is equal to the distance between x_{1} and x_{2} in the dual polar space $D H(2 n-1,4)$. It can be proved, see De Bruyn [16], that there exists up to isomorphism a unique set of points of $D H(2 n-1,4)$ satisfying (i) and (ii).

Since X is a subspace in $D H(2 n-1,4)$, the Grassmann embedding $e_{1}: D H(2 n-$ $1,4) \rightarrow \Sigma$ of $D H(2 n-1,4)$ will induce an embedding e_{2} of $\widetilde{X} \cong \mathbb{G}_{n}$ into a subspace Σ^{\prime} of Σ. In De Bruyn [12], we proved that $\Sigma^{\prime}=\Sigma$ and that e_{2} is the absolutely universal embedding of $\widetilde{X} \cong \mathbb{G}_{n}$. The latter implies (recall Ronan [25]) that every hyperplane of \widetilde{X} arises from the embedding e_{2}. Since every hyperplane of $\widetilde{X} \cong \mathbb{G}_{n}$ is also a maximal subspace of \widetilde{X}, we can say more: if H is a hyperplane of \widetilde{X}, then $\Pi=\left\langle e_{2}(H)\right\rangle_{\Sigma}$ is a hyperplane of Σ and $H=e_{2}^{-1}\left(e_{2}(X) \cap \Pi\right)$. The embedding e_{1} is not absolutely universal if $n \geq 3^{1}$. However, since every hyperplane of $D H(2 n-1,4)$ is a maximal subspace of $D H(2 n-1,4)$, a similar property as above holds: if H is a hyperplane of $D H(2 n-1,4)$ arising from e_{1}, then $\Pi=\left\langle e_{1}(H)\right\rangle_{\Sigma}$ is a hyperplane of Σ and $H=e_{1}^{-1}\left(e_{1}(\mathcal{P}) \cap \Pi\right)$, where \mathcal{P} denotes the point-set of $D H(2 n-1,4)$.

Let ζ denote the polarity of Σ as defined in Section 3.2. Recall that for every point $x \in \mathcal{P}, H_{x}$ denotes the hyperplane of $D H(2 n-1,4)$ consisting of all points of $D H(2 n-1,4)$

[^1]at distance at most $n-1$ from x. For every point x of $D H(2 n-1,4)$, we have $\left\langle e_{1}\left(H_{x}\right)\right\rangle_{\Sigma}=$ $e_{1}(x)^{\zeta}$.

Lemma 3.4 Let x be a point of $D H(2 n-1,4)$ and let f denote the valuation of $\widetilde{X} \cong \mathbb{G}_{n}$ induced by the classical valuation of $D H(2 n-1,4)$ with center x. Then $\left\langle e_{2}\left(H_{f}\right)\right\rangle_{\Sigma}=$ $\left\langle e_{1}\left(H_{x}\right)\right\rangle_{\Sigma}$. Hence, $e_{1}(x)=\left\langle e_{1}\left(H_{x}\right)\right\rangle_{\Sigma}^{\zeta}=\left\langle e_{2}\left(H_{f}\right)\right\rangle_{\Sigma}^{\zeta}$.
Proof. Since both $\left\langle e_{2}\left(H_{f}\right)\right\rangle_{\Sigma}=\left\langle e_{1}\left(H_{f}\right)\right\rangle_{\Sigma}$ and $\left\langle e_{1}\left(H_{x}\right)\right\rangle_{\Sigma}=e_{1}(x)^{\zeta}$ are hyperplanes of Σ and $H_{f} \subseteq H_{x}$, we necessarily have $\left\langle e_{2}\left(H_{f}\right)\right\rangle_{\Sigma}=\left\langle e_{1}\left(H_{x}\right)\right\rangle_{\Sigma}$.

The last claim of Lemma 3.4 says that the point x is uniquely determined by the hyperplane H_{f} of \mathbb{G}_{n}. So, we have:

Corollary 3.5 For every valuation f of $\widetilde{X} \cong \mathbb{G}_{n}$, there exists at most one point x of DH $(2 n-1,4)$ such that f is induced by the classical valuation of $\operatorname{DH}(2 n-1,4)$ with center x.

Lemma 3.6 Let f_{1} and f_{2} be two distinct neighboring valuations of $\widetilde{X} \cong \mathbb{G}_{n}$ and let f_{3} be the valuation $f_{1} * f_{2}$ of X. Suppose that for every $i \in\{1,2,3\}$, there exists a (necessarily unique) point x_{i} of $D H(2 n-1,4)$ such that the valuation f_{i} of \widetilde{X} is induced by the classical valuation of $\operatorname{DH}(2 n-1,4)$ with center x_{i}. Then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a line of $\operatorname{DH}(2 n-1,4)$.

Proof. By Proposition 2.14, $H_{f_{3}}$ is the complement of the symmetric difference of $H_{f_{1}}$ and $H_{f_{2}}$. This implies that $\left\langle e_{2}\left(H_{f_{1}}\right)\right\rangle_{\Sigma},\left\langle e_{2}\left(H_{f_{2}}\right)\right\rangle_{\Sigma}$ and $\left\langle e_{2}\left(H_{f_{3}}\right)\right\rangle_{\Sigma}$ are the three hyperplanes of Σ through a given subspace of Σ of co-dimension 2. It follows that $e_{1}\left(x_{1}\right)=\left\langle e_{2}\left(H_{f_{1}}\right)\right\rangle_{\Sigma}^{\zeta}$, $e_{1}\left(x_{2}\right)=\left\langle e_{2}\left(H_{f_{2}}\right)\right\rangle_{\Sigma}^{\zeta}$ and $e_{1}\left(x_{3}\right)=\left\langle e_{2}\left(H_{f_{3}}\right)\right\rangle_{\Sigma}^{\zeta}$ determine a line of Σ. By Corollary 3.3, $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a line of $\operatorname{DH}(2 n-1,4)$.

4 Several useful lemmas

A max M of a dense near polygon \mathcal{S} is called big if every point of \mathcal{S} has distance at most 1 from M. If M is a $\operatorname{big} \max$ of \mathcal{S}, then by Theorem 2.30 of [11], every quad of \mathcal{S} which meets M is either contained in M or intersects M in a line.

If M_{1} and M_{2} are two disjoint big maxes of a dense near polygon \mathcal{S}, then M_{1} and M_{2} are parallel convex subspaces at distance 1 from each other. Proposition 2.9 tells us that there exist a natural isomorphism between \widetilde{M}_{1} and \widetilde{M}_{2}. If F is a convex subspace of diameter δ of M_{1}, then $\left\langle F, \pi_{M_{2}}(F)\right\rangle$ is a convex subspace of diameter $\delta+1$ of \mathcal{S}.

Suppose \mathcal{S} is a dense near polygon with three points on each line and that M is a big \max of \mathcal{S}. For every point x of M, we define $\mathcal{R}_{M}(x):=x$. For every point x of \mathcal{S} not contained in M, let $\mathcal{R}_{M}(x)$ denote the unique point of the line $x \pi_{M}(x)$ distinct from x and $\pi_{M}(x)$. By Theorem 1.11 of [11], \mathcal{R}_{M} is an automorphism of \mathcal{S}. So, if M^{\prime} is a (big) max of \mathcal{S}, then $\mathcal{R}_{M}\left(M^{\prime}\right)$ is also a (big) max of \mathcal{S}.

Every max of the dual polar space $D H(2 n-1,4), n \geq 2$, is big. If F is a convex subspace of the dual polar space $D H(2 n-1,4), n \geq 2$, then for every point x of $D H(2 n-$
$1,4)$, there exists a unique point $\pi_{F}(x) \in F$ nearest to x. Moreover, $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{F}(x)\right)+$ $\mathrm{d}\left(\pi_{F}(x), y\right)$ for every $y \in F$. If F has diameter $\delta \in\{2, \ldots, n\}$, then $\widetilde{F} \cong D H(2 \delta-1,4)$.

Let V be a $2 n$-dimensional vector space $(n \geq 2)$ with basis B. We will now collect several properties of the near polygon $\mathbb{G}_{n}:=\mathbb{G}_{n}(V, B)$. We refer to [11, Section 6.3] for proofs.

If \bar{x} is a vector of weight 2 of V, then the set of all points of \mathbb{G}_{n} which, regarded as n-dimensional subspaces of V, contain the vector \bar{x} is a big max of \mathbb{G}_{n}. In the sequel, we will say that M is the big max of \mathbb{G}_{n} corresponding to \bar{x}. If $n \geq 3$, then every big \max of \mathbb{G}_{n} arises from a vector of weight 2 of V. If M is a big max of $\mathbb{G}_{n}, n \geq 3$, then $\widetilde{M} \cong \mathbb{G}_{n-1}$. Suppose M is a big max of \mathbb{G}_{n} corresponding to a vector \bar{x} of weight 2 of V. The set of points of $D H(V, B) \cong D H(2 n-1,4)$ which, regarded as n-dimensional subspaces of V, contain the vector \bar{x} is a $\max \bar{M}$ of $D H(V, B) . \bar{M}$ is the unique max of $D H(V, B)$ containing M.

Let \bar{x}_{1} and \bar{x}_{2} be two linearly independent vectors of weight 2 of V and let M_{i}, $i \in\{1,2\}$, denote the big max of \mathbb{G}_{n} corresponding to \bar{x}_{i}. If \bar{x}_{1} and \bar{x}_{2} have disjoint supports, then M_{1} and M_{2} meet. If the supports of \bar{x}_{1} and \bar{x}_{2} are not disjoint, then M_{1} and M_{2} are disjoint.

Suppose the supports of \bar{x}_{1} and \bar{x}_{2} are not disjoint. Then the two-space $\left\langle\bar{x}_{1}, \bar{x}_{2}\right\rangle$ contains a unique vector \bar{x}_{3} of weight 2 distinct from \bar{x}_{1} and \bar{x}_{2}, and we denote by M_{3} the big max of \mathbb{G}_{n} corresponding to \bar{x}_{3}. We have $M_{3}=\mathcal{R}_{M_{1}}\left(M_{2}\right)=\mathcal{R}_{M_{2}}\left(M_{1}\right)$. If $\overline{M_{i}}$, $i \in\{1,2,3\}$, denotes the unique max of $D H(V, B)$ containing M_{i}, then $\overline{M_{3}}=\mathcal{R}_{\overline{M_{1}}}\left(\overline{M_{2}}\right)=$ $\mathcal{R}_{\overline{M_{2}}}\left(\overline{M_{1}}\right)$. So, every line meeting $M_{1}\left(\overline{M_{1}}\right)$ and $M_{2}\left(\overline{M_{2}}\right)$ also meets $M_{3}\left(\overline{M_{3}}\right)$. If the supports of \bar{x}_{1} and \bar{x}_{2} are equal, then every line meeting M_{1}, M_{2} (and M_{3}) is special. If the supports of \bar{x}_{1} and \bar{x}_{2} intersect in a singleton, then every line meeting M_{1}, M_{2} (and M_{3}) is an ordinary line.

Every quad of $\mathbb{G}_{n}, n \geq 3$, is isomorphic to either the (3×3)-grid, the generalized quadrangle $W(2)$ or the generalized quadrangle $Q^{-}(5,2)$.

If $n \geq 3$, then the automorphism group of \mathbb{G}_{n} has two orbits on the set of lines of \mathbb{G}_{n}, namely the set of ordinary lines and the set of special lines. A line of $\mathbb{G}_{n}, n \geq 3$, is an ordinary line if and only if it is contained in a $W(2)$-quad. An ordinary line of \mathbb{G}_{n}, $n \geq 3$, is contained in a unique $Q^{-}(5,2)$-quad. The automorphism group of $\mathbb{G}_{n}, n \geq 3$, acts transitively on the set of $W(2)$-quads of \mathbb{G}_{n} and the set of $Q^{-}(5,2)$-quads of \mathbb{G}_{n}. A grid-quad of $\mathbb{G}_{n}, n \geq 3$, is said to be of Type I if it contains a special line, otherwise it is called a grid-quad of Type II. Every grid-quad of \mathbb{G}_{3} has Type I and the automorphism group of \mathbb{G}_{3} acts transitively on the set of its grid-quads. The automorphism group of $\mathbb{G}_{n}, n \geq 4$, has two orbits on the set of grid-quads of \mathbb{G}_{n}, namely the set of grid-quads of Type I and the set of grid-quads of Type II.

Every point of $\mathbb{G}_{n}, n \geq 3$, is contained in precisely n special lines. If L_{1}, \ldots, L_{k} are $k \geq 2$ special lines through a given point of \mathbb{G}_{n}, then $\left\langle L_{1}, \ldots, L_{k}\right\rangle \cong \mathbb{G}_{k}$. Conversely, if F is a convex subspace of $\mathbb{G}_{n}, n \geq 3$, such that $\widetilde{F} \cong \mathbb{G}_{k}$ for some $k \geq 2$, then through every point of F, there are precisely k special lines of \mathbb{G}_{n} which are contained in F. If F is a convex subspace of $\mathbb{G}_{n}, n \geq 3$, such that $\widetilde{F} \cong \mathbb{G}_{k}$ for some $k \geq 3$, then a line contained in F is a special line of \widetilde{F} if and only if it is a special line of \mathbb{G}_{n}.

The following lemma was proved in De Bruyn [11, Section 6.3.3].
Lemma 4.1 Let Q be a quad of $\mathbb{G}_{n}, n \geq 3$, containing a special line. Then there are two possibilities:
(1) Q is a grid-quad of Type I. Then Q contains precisely three special lines. These three lines partition the point-set of Q.
(2) Q is a $Q^{-}(5,2)$-quad of \mathbb{G}_{n}. Then Q can be partitioned into three subgrids G_{1}, G_{2}, G_{3}. A line of Q is special if and only if it is contained in one of the grids G_{1}, G_{2} and G_{3}.

Lemma 4.2 (1) Every grid-quad Q of Type I of $\mathbb{G}_{n}, n \geq 3$, is contained in a unique hex isomorphic to \mathbb{G}_{3}.
(2) Every $Q^{-}(5,2)$-quad Q of $\mathbb{G}_{n}, n \geq 3$, is contained in precisely $n-2$ hexes isomorphic to \mathbb{G}_{3}.
(3) Let M_{1} and M_{2} be two disjoint maxes of $\mathbb{G}_{n}, n \geq 3$, such that every line meeting M_{1} and M_{2} is special. Let F be a convex subspace of M_{1} such that $\widetilde{F} \cong \mathbb{G}_{k}$ for some $k \geq 2$. Then $\left\langle F, \pi_{M_{2}}(F)\right\rangle \cong \mathbb{G}_{k+1}$.

Proof. (1) Let x be an arbitrary point of Q, let L_{1} denote the unique special line of Q through x and let M denote the unique ordinary line of Q through x. Then M is contained in a unique $Q^{-}(5,2)$-quad R of \mathbb{G}_{n}. Let L_{2} and L_{3} denote the unique special lines of R through x. Then $\left\langle L_{1}, L_{2}, L_{3}\right\rangle=\langle Q, R\rangle$ is a \mathbb{G}_{3}-hex containing Q. Conversely, if F is a \mathbb{G}_{3}-hex through Q, then there exists a $Q^{-}(5,2)$-quad of \widetilde{F} containing the line M. This $Q^{-}(5,2)$-quad necessarily coincides with R. So, $F=\langle Q, R\rangle$.
(2) Let x be an arbitrary point of Q, and let L_{1} and L_{2} be the two special lines of Q through x. If F is a \mathbb{G}_{3}-hex through Q, then there exists a unique special line $L_{3} \notin\left\{L_{1}, L_{2}\right\}$ through x contained in F. Conversely, if L_{3} is one of the $n-2$ special lines of \mathbb{G}_{n} through x distinct from L_{1} and L_{2}, then $\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ is a \mathbb{G}_{3}-hex containing Q. It follows that there are precisely $n-2 \mathbb{G}_{3}$-hexes containing Q.
(3) Recall that since F has diameter δ, the convex subspace $\left\langle F, \pi_{M_{2}}(F)\right\rangle$ has diameter $\delta+1$. Let x be an arbitrary point of F and let L_{1}, \ldots, L_{k} denote the k special lines of F through x. Let L_{k+1} denote the unique line through x meeting M_{2}. Then L_{k+1} is a special line. So, $\left\langle F, \widetilde{\pi_{M_{2}}(F)}\right\rangle=\left\langle\widetilde{F, L_{k+1}}\right\rangle=\left\langle L_{1}, L_{2}, \ldots, L_{k+1}\right\rangle \cong \mathbb{G}_{k+1}$.

Lemma 4.1 implies the following.
Corollary 4.3 Let L_{1} and L_{2} be two disjoint special lines of $\mathbb{G}_{n}, n \geq 3$, which are contained in a quad Q, let G denote the unique (3×3)-subgrid of Q containing L_{1}, L_{2} and let L_{3} denote the unique line of G disjoint from L_{1} and L_{2}. Then also L_{3} is a special line of \mathbb{G}_{n}.

Let $\mathcal{S}_{n}, n \geq 3$, be the following point-line geometry:

- The points of \mathcal{S}_{n} are the special lines of \mathbb{G}_{n};
- The lines of \mathcal{S}_{n} are all the triples $\left\{L_{1}, L_{2}, L_{3}\right\}$, where L_{1}, L_{2} and L_{3} are three mutually disjoint special lines which are contained in some (3×3)-subgrid of \mathbb{G}_{n}.
- Incidence is containment.

Lemma 4.4 The complement of a proper subspace of $\mathcal{S}_{n}, n \geq 3$, is connected.
Proof. Let S be a subspace of \mathcal{S}_{n} and let L_{1}, L_{2} be two distinct special lines contained in the complement of S. We will prove by induction on $\mathrm{d}\left(L_{1}, L_{2}\right)$ that L_{1} and L_{2} are connected by a path which entirely consists of points of \mathcal{S}_{n} not contained in S. Here, $\mathrm{d}\left(L_{1}, L_{2}\right)$ denotes the distance between L_{1} and L_{2} in the near polygon \mathbb{G}_{n}.

First, suppose that $\mathrm{d}\left(L_{1}, L_{2}\right)=0$. Then L_{1} and L_{2} are contained in a unique $Q^{-}(5,2)-$ quad Q. By Lemma 4.1(2), there exist special lines L_{1}^{\prime} and $L_{1}^{\prime \prime}$ of Q such that: (i) $\left\{L_{1}, L_{1}^{\prime}, L_{1}^{\prime \prime}\right\}$ is a line of \mathcal{S}_{n}; (ii) the unique (3×3)-subgrid of Q containing L_{1}, L_{1}^{\prime} and $L_{1}^{\prime \prime}$ does not contain L_{2}. Since $L_{1} \notin S$, at least one of $L_{1}^{\prime}, L_{1}^{\prime \prime}$ does not belong to S. Hence, $L_{1}, L_{1}^{\prime}, L_{2}$ or $L_{1}, L_{1}^{\prime \prime}, L_{2}$ is a path of \mathcal{S}_{n} contained in the complement of S.

Suppose now that $\mathrm{d}\left(L_{1}, L_{2}\right)>0$. Let $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$ be points such that $\mathrm{d}\left(x_{1}, x_{2}\right)=\mathrm{d}\left(L_{1}, L_{2}\right)$. Let M_{1} denote a line through x_{1} containing a unique point y_{1} at distance $\mathrm{d}\left(x_{1}, x_{2}\right)-1$ from x_{2} and let M_{2} denote a line of $\left\langle x_{1}, x_{2}\right\rangle$ through x_{2} which is not contained in $\left\langle x_{2}, y_{1}\right\rangle$. Then M_{2} contains a unique point y_{2} at distance $\mathrm{d}\left(x_{1}, x_{2}\right)-1$ from x_{1}. Let $z_{i}, i \in\{1,2\}$, denote the unique point of M_{i} distinct from x_{i} and y_{i}.

Since $\mathrm{d}\left(x_{2}, y_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)-1$, we have $\mathrm{d}\left(x_{2}, z_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)$. Since the line $x_{2} y_{2}$ is not contained in $\left\langle x_{2}, y_{1}\right\rangle$, we have $\mathrm{d}\left(y_{2}, y_{1}\right)=\mathrm{d}\left(y_{2}, x_{2}\right)+\mathrm{d}\left(x_{2}, y_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)$. Together with $\mathrm{d}\left(y_{2}, x_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)-1$, this implies that $\mathrm{d}\left(y_{2}, z_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)$. Since the line $x_{2} z_{2}$ is not contained in $\left\langle x_{2}, y_{1}\right\rangle$, we have $\mathrm{d}\left(z_{2}, y_{1}\right)=\mathrm{d}\left(z_{2}, x_{2}\right)+\mathrm{d}\left(x_{2}, y_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)$. Since $\mathrm{d}\left(x_{1}, y_{2}\right)=$ $\mathrm{d}\left(x_{1}, x_{2}\right)-1$, we have $\mathrm{d}\left(z_{2}, x_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)$. Finally, since $\mathrm{d}\left(z_{2}, x_{1}\right)=\mathrm{d}\left(z_{2}, y_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)$, we have $\mathrm{d}\left(z_{2}, z_{1}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)-1$. We can conclude that for every point u_{i} of $M_{i}, i \in\{1,2\}$, there exists a unique point of M_{3-i} at distance $\mathrm{d}\left(x_{1}, x_{2}\right)-1$ from u_{i}.

Notice that $L_{1} \neq M_{1}$ and $L_{2} \neq M_{2}$. So, $\left\langle L_{1}, M_{1}\right\rangle$ and $\left\langle L_{2}, M_{2}\right\rangle$ are quads. We will now define a special line L_{i}^{\prime} of $\left\langle L_{i}, M_{i}\right\rangle$ through y_{i} disjoint from $L_{i}(i \in\{1,2\})$. Since L_{1} and L_{2} are special lines, we can distinguish two cases by Lemma 4.1.
(i) Suppose $\left\langle L_{i}, M_{i}\right\rangle$ is a grid-quad of Type I. Then let L_{i}^{\prime} denote the unique line of $\left\langle L_{i}, M_{i}\right\rangle$ through y_{i} disjoint from L_{i}. Then L_{i}^{\prime} is special.
(ii) Suppose $\left\langle L_{i}, M_{i}\right\rangle$ is a $Q^{-}(5,2)$-quad. Then there are precisely two special lines of $\left\langle L_{i}, M_{i}\right\rangle$ through y_{i}. Let L_{i}^{\prime} denote any special line of $\left\langle L_{i}, M_{i}\right\rangle$ through y_{i} not meeting L_{i}. The lines L_{i} and L_{i}^{\prime} are contained in a unique (3×3)-subgrid of $\left\langle L_{i}, M_{i}\right\rangle$. We denote by $L_{i}^{\prime \prime}$ the unique line of this subgrid which is disjoint from L_{i} and L_{i}^{\prime}. Then also $L_{i}^{\prime \prime}$ is special and $z_{i} \in L_{i}^{\prime \prime}$. Since $L_{i} \notin S$, at most one of $L_{i}, L_{i}^{\prime}, L_{i}^{\prime \prime}$ belongs to S. Since $\left|M_{1}\right|=\left|M_{2}\right|=3$, there exist points $u_{1} \in M_{1}$ and $u_{2} \in M_{2}$ such that (i) $\mathrm{d}\left(u_{1}, u_{2}\right)=\mathrm{d}\left(x_{1}, x_{2}\right)-1=\mathrm{d}\left(L_{1}, L_{2}\right)-1$; (ii) for every $i \in\{1,2\}$, the unique line $U_{i} \in\left\{L_{i}, L_{i}^{\prime}, L_{i}^{\prime \prime}\right\}$ containing u_{i} does not belong to S.

By the induction hypothesis, U_{1} and U_{2} are connected by a path which entirely consists of points of \mathcal{S}_{n} which are contained in the complement of S. Hence, also L_{1} and L_{2} are connected by a path of \mathcal{S}_{n} which entirely consists of points of \mathcal{S}_{n} which are contained in the complement of S.

Lemma 4.5 Let M_{1} and M_{2} be two disjoint big maxes of $\mathbb{G}_{n}, n \geq 4$, such that every line meeting M_{1} and M_{2} is special. Let $\mathcal{S}_{n-1}\left(M_{1}\right)$ denote the geometry isomorphic to \mathcal{S}_{n-1} defined on the set of special lines of M_{1} (recall $\widetilde{M}_{1} \cong \mathbb{G}_{n-1}$). Let f be a semi-valuation of \mathbb{G}_{n} and let S denote the set of special lines L of M_{1} such that the unique points of the lines L and $\pi_{M_{2}}(L)$ with smallest f-values are collinear. Then S is a subspace of $\mathcal{S}_{n-1}\left(M_{1}\right)$.

Proof. Let $\left\{K_{1}, L_{1}, N_{1}\right\}$ be an arbitrary line of $\mathcal{S}_{n-1}\left(M_{1}\right)$ such that $K_{1}, L_{1} \in S$. We need to prove that $N_{1} \in S$. Put $K_{2}=\pi_{M_{2}}\left(K_{1}\right), L_{2}=\pi_{M_{2}}\left(L_{1}\right)$ and $N_{2}=\pi_{M_{2}}\left(N_{1}\right)$.

Case I. Suppose the unique point u of K_{1} with smallest f-value is collinear with the unique point v of L_{1} with smallest f-value. In the following picture we sketch this situation and indicate the values of the points of K_{1} and L_{1}.

If $\gamma=\delta$, then using the fact that every line meeting K_{1} and L_{1} contains a unique point with smallest value, we obtain that $f(x)=\gamma-1, f(y)=\gamma$ and $f(z)=\gamma$. So, x is the unique point of N_{1} with smallest f-value.

If $\gamma \neq \delta$, then using the fact that every line meeting K_{1} and L_{1} contains a unique point with smallest value, we obtain $f(x)=\max \{\gamma, \delta\}$ and $f(y)=f(z)=\max \{\gamma+1, \delta+1\}=$ $f(x)+1$. So, again x is the unique point of N_{1} with smallest f-value.

Now, since $K_{1}, L_{1} \in S, \pi_{M_{2}}(u)$ is the unique point of K_{2} with smallest f-value and $\pi_{M_{2}}(v)$ is the unique point of L_{2} with smallest f-value. Since u and v are collinear, also $\pi_{M_{2}}(u)$ and $\pi_{M_{2}}(v)$ are collinear. Repeating the above reasoning for the lines K_{2}, L_{2}, N_{2} instead of K_{1}, L_{1}, N_{1}, we find that $\pi_{M_{2}}(x)$ is the unique point of N_{2} with smallest f-value. Since x is collinear with $\pi_{M_{2}}(x)$, we have $N_{1} \in S$ as we needed to prove.

Case II. The unique point u of K_{1} with smallest f-value is not collinear with the unique point v of L_{1} with smallest f-value. This situation is sketched in the following picture, where the values of the points of K_{1} and L_{1} are mentioned.

Since the f-values of two collinear points differ by at most 1 , we have $|(\gamma+1)-\delta| \leq 1$ and $|\gamma-(\delta+1)| \leq 1$. It follows that $\gamma=\delta$. Since every line meeting K_{1} and L_{1} contains a unique point with smallest f-value, we have $f(x)=\gamma+1, f(y)=\gamma+1$ and $f(z)=\gamma$. So, z is the unique point of N_{1} with smallest f-value.

Now, since $K_{1}, L_{1} \in S, \pi_{M_{2}}(u)$ is the unique point of K_{2} with smallest f-value and $\pi_{M_{2}}(v)$ is the unique point of L_{2} with smallest f-value. Since u and v are not collinear, also $\pi_{M_{2}}(u)$ and $\pi_{M_{2}}(v)$ are not collinear. Repeating the above reasoning for the lines K_{2}, L_{2}, N_{2} instead of K_{1}, L_{1}, N_{1}, we find that $\pi_{M_{2}}(z)$ is the unique point of N_{2} with smallest f-value. Since z is collinear with $\pi_{M_{2}}(z)$, we have $N_{1} \in S$ as we needed to prove.

Lemma 4.6 (1) Let M_{1} and M_{2} be two disjoint big maxes of $\mathbb{G}_{n}, n \geq 3$, such that every line meeting M_{1} and M_{2} is special. Put $M_{3}:=\mathcal{R}_{M_{1}}\left(M_{2}\right)=\mathcal{R}_{M_{2}}\left(M_{1}\right)$. Then every quad meeting M_{1}, M_{2} (and M_{3}) is either a grid-quad of Type I or a $Q^{-}(5,2)$-quad.
(2) Every point x of \mathbb{G}_{n} not contained in $M_{1} \cup M_{2} \cup M_{3}$ is contained in a unique quad Q_{x} which intersect M_{1}, M_{2} (and M_{3}) in lines. This quad Q_{x} is a $Q^{-}(5,2)$-quad.
(3) Let L be a line if M_{1}. Then $\left\langle L, \pi_{M_{2}}(L)\right\rangle$ is a grid-quad of Type I if L is an ordinary line and a $Q^{-}(5,2)$-quad if L is a special line.

Proof. (1) Suppose Q is a quad meeting M_{1} in a line L_{1} and M_{2} in a line L_{2}. Let $x \in L_{1}$. Since Q contains the points x and $\pi_{M_{2}}(x) \in L_{2}$, it contains the special line $x \pi_{M_{2}}(x)$. Hence, Q is either a grid-quad of Type I or a $Q^{-}(5,2)$-quad by Lemma 4.1.
(2) Suppose x is a point of \mathbb{G}_{n} not contained in $M_{1} \cup M_{2} \cup M_{3}$. If Q is a quad through x meeting M_{1} and M_{2} in lines, then Q necessarily contains the points $\pi_{M_{1}}(x)$ and $\pi_{M_{2}}(x)$. If $x \pi_{M_{1}}(x)=x \pi_{M_{2}}(x)$, then $\left\{x, \pi_{M_{1}}(x), \pi_{M_{2}}(x)\right\}$ is a line meeting M_{1} and M_{2}, a contradiction, since $x \notin M_{3}$. Hence, $x \pi_{M_{1}}(x) \neq x \pi_{M_{2}}(x)$ and Q necessarily coincides with the quad $Q_{x}:=\left\langle x \pi_{M_{1}}(x), x \pi_{M_{2}}(x)\right\rangle$. Since Q_{x} meets M_{1} and M_{2} in lines it is either a grid-quad or a $Q^{-}(5,2)$-quad by part (1). Since $Q_{x} \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)$ is a subgrid of Q_{x} and $x \notin M_{1} \cup M_{2} \cup M_{3}, Q_{x}$ necessarily is a $Q^{-}(5,2)$-quad.
(3) Let $x \in L$ and let L^{\prime} denote the unique line through x meeting M_{2}. Then $\left\langle L, \pi_{M_{2}}(L)\right\rangle=\left\langle L, L^{\prime}\right\rangle$. If L is special, then $\left\langle L, L^{\prime}\right\rangle$ is a $Q^{-}(5,2)$-quad since L and L^{\prime} are two distinct special lines through x.

Conversely, suppose that $\left\langle L, L^{\prime}\right\rangle$ is a $Q^{-}(5,2)$-quad. There are precisely n special lines through x, two of these special lines are contained in $\left\langle L, L^{\prime}\right\rangle$ and $n-1$ of these special lines are contained in M_{1} (recall $\widetilde{M}_{1} \cong \mathbb{G}_{n-1}$). It follows that $L=\left\langle L, L^{\prime}\right\rangle \cap M_{1}$ is a special line.

Lemma 4.7 Let M_{1} and M_{2} be two disjoint (big) maxes of $D H(2 n-1,4), n \geq 2$, and put $M_{3}:=\mathcal{R}_{M_{1}}\left(M_{2}\right)=\mathcal{R}_{M_{2}}\left(M_{1}\right)$. Then every point x of $D H(2 n-1,4)$ not contained in $M_{1} \cup M_{2} \cup M_{3}$ is contained in a unique quad Q_{x} which intersects M_{1}, M_{2} (and M_{3}) in lines.

Proof. Similarly as in the proof of Lemma 4.6(2), we have that $x \pi_{M_{1}}(x) \neq x \pi_{M_{2}}(x)$ and that Q_{x} is the unique quad of $D H(2 n-1,4)$ containing the lines $x \pi_{M_{1}}(x)$ and $x \pi_{M_{2}}(x)$.

As already mentioned in Section 1, the following lemma was proved in [19, Proposition 7.7] in the case $n=3$ and in [21, Proposition 6.13] in the case $n=4$.

Lemma 4.8 Regard $\mathbb{G}_{n}, n \in\{3,4\}$, as a subgeometry of $\operatorname{DH}(2 n-1,4)$ which is isometrically embedded into $D H(2 n-1,4)$. Then every valuation of \mathbb{G}_{n} is induced by a unique (classical) valuation of $D H(2 n-1,4)$.

Lemma 4.9 Let M_{1} and M_{2} be two disjoint big maxes of the near polygon \mathbb{G}_{3} such that every line meeting M_{1} and M_{2} is special. Let f be a valuation of \mathbb{G}_{3} having the property that there exists a line K of M_{1} such that the unique point of K with smallest f-value is not collinear with the unique point of $\pi_{M_{2}}(K)$ with smallest f-value. Then there exists a special line L of M_{1} such that the unique point of L with smallest f-value is not collinear with the unique point of $\pi_{M_{2}}(L)$ with smallest f-value.

Proof. We regard \mathbb{G}_{3} as a subgeometry of $\operatorname{DH}(5,4)$ which is isometrically embedded into $D H(5,4)$. Then by Lemma 4.8, there exists a unique point x of $D H(5,4)$ such that f is induced by the classical valuation of $\operatorname{DH}(5,4)$ with center x. Put $M_{3}:=\mathcal{R}_{M_{1}}\left(M_{2}\right)=$ $\mathcal{R}_{M_{2}}\left(M_{1}\right)$. We have $\widetilde{M}_{1} \cong \widetilde{M}_{2} \cong \widetilde{M}_{3} \cong Q^{-}(5,2)$. So, M_{1}, M_{2} and M_{3} are quads of both \mathbb{G}_{3} and $D H(5,4)$.

We prove that $x \notin M_{1} \cup M_{2} \cup M_{3}$. Suppose to the contrary that $x \in M_{i}$ for a certain $i \in\{1,2,3\}$. Let $u_{j}, j \in\{1,2,3\}$, denote the unique point of $\pi_{M_{j}}(K)$ nearest to x. Then u_{j} is the unique point of $\pi_{M_{j}}(K)$ with smallest f-value. Since $\mathrm{d}(x, y)=$ $\mathrm{d}\left(x, \pi_{M_{i}}(y)\right)+\mathrm{d}\left(\pi_{M_{i}}(y), y\right)$ for every $j \in\{1,2,3\}$ and every point $y \in \pi_{M_{j}}(K)$, we have $u_{j}=\pi_{M_{j}}\left(u_{i}\right)$. So, $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a line meeting M_{1}, M_{2} and M_{3}. This contradicts the fact that the unique point of K with smallest f-value is not collinear with the unique point of $\pi_{M_{2}}(K)$ with smallest f-value.

So, $x \notin M_{1} \cup M_{2} \cup M_{3}$. By Lemma 4.7, there exists a unique quad Q_{x} of $D H(5,4)$ through x intersecting M_{1}, M_{2} and M_{3} in lines. By Lemma 4.1(2), there exists a special line L in M_{1} disjoint from the line $Q_{x} \cap M_{1}$. Let $x_{i}, i \in\{1,2\}$, denote the unique point of M_{i} collinear with x and let y_{i} denote the unique point of $\pi_{M_{i}}(L)$ collinear with x_{i}. Since $x \notin M_{1} \cup M_{2} \cup M_{3}, x_{1}$ and x_{2} are not collinear. Hence, also y_{1} and y_{2} are not collinear.

Now, for every $i \in\{1,2\}$ and every point z of $\pi_{M_{i}}(L)$, we have $\mathrm{d}(x, z)=\mathrm{d}\left(x, x_{i}\right)+\mathrm{d}\left(x_{i}, z\right)$. So, $y_{i}, i \in\{1,2\}$, is the unique point of $\pi_{M_{i}}(L)$ nearest to x, or equivalently, the unique point of $\pi_{M_{i}}(L)$ with smallest f-value.

Summarizing, we have that the unique point of the special line L with smallest f-value is not collinear with the unique point of $\pi_{M_{2}}(L)$ with smallest f-value.

Lemma 4.10 Let f be a semi-valuation of the near polygon $\mathbb{G}_{n}, n \geq 2$, and let Q be a $Q^{-}(5,2)$-quad of \mathbb{G}_{n}. Then Q contains a unique point x^{*} with smallest f-value and $f(x)=f\left(x^{*}\right)+d\left(x^{*}, x\right)$ for every point x of Q.

Proof. It is easy to show (see e.g. De Bruyn [14, Lemma 2.2]) that every semi-valuation of a thick generalized quadrangle is equivalent to either a classical valuation or an ovoidal valuation. Since the generalized quadrangle $Q^{-}(5,2)$ has no ovoids (see e.g. Payne and Thas $[24,3.4 .1]), f$ is equivalent with a classical valuation of $Q^{-}(5,2)$. The lemma follows.

If K and L are two lines of a near polygon, then by Theorem 1.3 of [11] precisely one of the following two cases occurs: (a) there exists a unique point $k^{*} \in K$ and a unique point $l^{*} \in L$ such that $\mathrm{d}(k, l)=\mathrm{d}\left(k, k^{*}\right)+\mathrm{d}\left(k^{*}, l^{*}\right)+\mathrm{d}\left(l^{*}, l\right)$ for every point $k \in K$ and every point $l \in L$; (b) for every point k in K, there exists a unique point $l \in L$ such that $\mathrm{d}(k, l)=\mathrm{d}(K, L)$. If case (b) occurs, then K and L are parallel.

Lemma 4.11 Let M_{1} and M_{2} be two disjoint maxes of the dual polar space $D H(2 n-1,4)$, $n \geq 3$, and let $M_{3}=\mathcal{R}_{M_{1}}\left(M_{2}\right)=\mathcal{R}_{M_{2}}\left(M_{1}\right)$. Let Q and R be two quads of $D H(2 n-1,4)$ which intersect M_{1} and M_{2} in lines. If x is a point of R such that the unique points of $Q \cap M_{1}$ and $Q \cap M_{2}$ nearest to x are not collinear, then
(1) $K:=Q \cap M_{1}$ and $L:=R \cap M_{1}$ are parallel lines;
(2) Q and R are parallel quads;
(3) $x \in R \backslash\left(M_{1} \cup M_{2} \cup M_{3}\right)$.

Proof. (1) Suppose to the contrary that K and L are not parallel and let $k^{*} \in K$ and $l^{*} \in L$ denote the unique points such that $\mathrm{d}(k, l)=\mathrm{d}\left(k, k^{*}\right)+\mathrm{d}\left(k^{*}, l^{*}\right)+\mathrm{d}\left(l^{*}, l\right)$ for all $k \in K$ and all $l \in L$. Since the map $M_{1} \rightarrow M_{2} ; x \mapsto \pi_{M_{2}}(x)$ is an isomorphism between $\widetilde{M_{1}}$ and \widetilde{M}_{2}, the lines $\pi_{M_{2}}(K)$ and $\pi_{M_{2}}(L)$ are not parallel and $\mathrm{d}(k, l)=\mathrm{d}\left(k, \pi_{M_{2}}\left(k^{*}\right)\right)+$ $\mathrm{d}\left(\pi_{M_{2}}\left(k^{*}\right), \pi_{M_{2}}\left(l^{*}\right)\right)+\mathrm{d}\left(\pi_{M_{2}}\left(l^{*}\right), l\right)$ for all $k \in \pi_{M_{2}}(K)$ and $l \in \pi_{M_{2}}(L)$. For every $i \in\{1,2\}$ and every $y \in Q \cap M_{i}=\pi_{M_{i}}(K)$, we have $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{M_{i}}(x)\right)+\mathrm{d}\left(\pi_{M_{i}}(x), y\right)=$ $\mathrm{d}\left(x, \pi_{M_{i}}(x)\right)+\mathrm{d}\left(\pi_{M_{i}}(x), \pi_{M_{i}}\left(l^{*}\right)\right)+\mathrm{d}\left(\pi_{M_{i}}\left(l^{*}\right), \pi_{M_{i}}\left(k^{*}\right)\right)+\mathrm{d}\left(\pi_{M_{i}}\left(k^{*}\right), y\right)$. So, k^{*} is the unique point of $K=Q \cap M_{1}$ nearest to x and $\pi_{M_{2}}\left(k^{*}\right)$ is the unique point of $\pi_{M_{2}}(K)=Q \cap M_{2}$ nearest to x. This contradicts the fact that the unique points of $Q \cap M_{1}$ and $Q \cap M_{2}$ nearest to x are not collinear.
(2) By part (1), K and L are parallel. Put $\delta:=\mathrm{d}(K, L)$. For every point u of R, there exists a unique point $\pi_{Q}(u) \in Q$ nearest to u and $\mathrm{d}(u, v)=\mathrm{d}\left(u, \pi_{Q}(u)\right)+\mathrm{d}\left(\pi_{Q}(u), v\right)$ for every $v \in Q$. We prove that $\pi_{Q}(u)$ has distance δ from u. It suffices to prove the following things:
(a) If $u \in R \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)$, then $\left\{\mathrm{d}(u, v) \mid v \in Q \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)\right\}=\{\delta, \delta+1, \delta+2\}$.
(b) If $u \in R \backslash\left(M_{1} \cup M_{2} \cup M_{3}\right)$, then $\left\{\mathrm{d}(u, v) \mid v \in Q \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)\right\}=\{\delta+1, \delta+2\}$. Moreover, there is more than one $v \in Q \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)$ for which $\mathrm{d}(u, v)=\delta+1$.
(a) Suppose $u \in R \cap M_{i}$ for some $i \in\{1,2,3\}$. Let u^{\prime} denote the unique point of $Q \cap M_{i}$ nearest to u. Then $\mathrm{d}\left(u, u^{\prime}\right)=\delta$ and $\mathrm{d}(u, v)=\delta+1$ for every $v \in\left(Q \cap M_{i}\right) \backslash\left\{u^{\prime}\right\}$. Now, let $j \in\{1,2,3\} \backslash\{i\}$. Then $\mathrm{d}\left(u, \pi_{M_{j}}\left(u^{\prime}\right)\right)=\mathrm{d}\left(u, u^{\prime}\right)+\mathrm{d}\left(u^{\prime}, \pi_{M_{j}}\left(u^{\prime}\right)\right)=\delta+1$. If $v \in\left(Q \cap M_{i}\right) \backslash\left\{u^{\prime}\right\}$, then $\mathrm{d}\left(u, \pi_{M_{j}}(v)\right)=\mathrm{d}(u, v)+\mathrm{d}\left(v, \pi_{M_{j}}(v)\right)=\delta+2$. This proves (a).
(b) Suppose $u \in R \backslash\left(M_{1} \cup M_{2} \cup M_{3}\right)$. Let $u_{i}, i \in\{1,2,3\}$, denote the unique point of $M_{i} \cap R$ collinear with u and let u_{i}^{\prime} denote the unique point of $M_{i} \cap Q$ nearest to u. Then $\mathrm{d}\left(u, u_{i}^{\prime}\right)=\mathrm{d}\left(u, u_{i}\right)+\mathrm{d}\left(u_{i}, u_{i}^{\prime}\right)=\delta+1$ and for every $v \in\left(Q \cap M_{i}\right) \backslash\left\{u_{i}^{\prime}\right\}$, we have $\mathrm{d}(u, v)=\mathrm{d}\left(u, u_{i}\right)+\mathrm{d}\left(u_{i}, v\right)=\delta+2$. This proves (b).

Similarly, for every point u of Q, there exists a unique point $\pi_{R}(u) \in R$ nearest to u and $\mathrm{d}(u, v)=\mathrm{d}\left(u, \pi_{R}(u)\right)+\mathrm{d}\left(\pi_{R}(u), v\right)$ for every $v \in R$. With a similar reasoning as above, one can show that $\pi_{R}(u)$ has distance δ from u. It follows that Q and R are parallel quads.
(3) Suppose to the contrary that $x \in R \cap M_{i}$ for some $i \in\{1,2,3\}$. Let $x_{j}, j \in\{1,2,3\}$, denote the unique point of $Q \cap M_{j}$ nearest to x. For every $y \in Q \cap M_{i}$ and $j \in\{1,2,3\}$, we have $\mathrm{d}\left(x, \pi_{M_{j}}(y)\right)=\mathrm{d}(x, y)+\mathrm{d}\left(y, \pi_{M_{j}}(y)\right)$. So, $x_{j}=\pi_{M_{j}}\left(x_{i}\right)$ for every $j \in\{1,2,3\}$. This would imply that x_{1} and x_{2} are collinear, a contradiction. It follows that $x \in$ $R \backslash\left(M_{1} \cup M_{2} \cup M_{3}\right)$.

Lemma 4.12 Regard \mathbb{G}_{4} as a subgeometry of $\operatorname{DH}(7,4)$ which is isometrically embedded into $D H(7,4)$. Let f be a semi-valuation of \mathbb{G}_{4}. Let M_{1} and M_{2} be two disjoint big maxes of \mathbb{G}_{4} such that every line meeting M_{1} and M_{2} is special and let Q be a $Q^{-}(5,2)$-quad of \mathbb{G}_{4} which intersect M_{1} and M_{2} in lines such that the unique points of $Q \cap M_{1}$ and $Q \cap M_{2}$ with smallest f-values are not collinear. Then f is uniquely determined by the values that it takes on the set $M_{1} \cup M_{2} \cup Q$.

Proof. By Proposition 2.16, the semi-valuation f of \mathbb{G}_{4} is equivalent with a unique valuation f^{\prime} of \mathbb{G}_{4}. By Lemma 4.8, the valuation f^{\prime} of \mathbb{G}_{4} is induced by a unique classical valuation $f^{\prime \prime}$ of $D H(7,4)$. It suffices to prove that the center x of $f^{\prime \prime}$ is uniquely determined by the values that f takes on the set $M_{1} \cup M_{2} \cup Q$.

Put $M_{3}=\mathcal{R}_{M_{1}}\left(M_{2}\right)=\mathcal{R}_{M_{2}}\left(M_{1}\right)$ and let $\overline{M_{i}}, i \in\{1,2,3\}$, denote the unique max of $D H(7,4)$ containing M_{i}. By Lemma 4.7, there exists a quad Q_{x} of $D H(7,4)$ through x intersecting $\overline{M_{1}}, \overline{M_{2}}$ and $\overline{M_{3}}$ in lines. (Clearly, this is also valid if x would be contained in $\overline{M_{1}} \cup \overline{M_{2}} \cup \overline{M_{3}}$.) Now, the unique points of $Q \cap M_{1}$ and $Q \cap M_{2}$ with smallest f-value are not collinear, or equivalently, the unique points of $Q \cap M_{1}$ and $Q \cap M_{2}$ nearest to x are not collinear. By Lemma 4.11(2), Q and Q_{x} are parallel quads and $x \in Q_{x} \backslash\left(\overline{M_{1}} \cup \overline{M_{2}} \cup \overline{M_{3}}\right)$. Let $x_{i}, i \in\{1,2,3\}$, denote the unique point of $\overline{M_{i}}$ collinear with x. Then x_{1}, x_{2} and x_{3} are mutually noncollinear. Since $\mathrm{d}(x, y)=\mathrm{d}\left(x, x_{i}\right)+\mathrm{d}\left(x_{i}, y\right)=1+\mathrm{d}\left(x_{i}, y\right)$ for every $i \in\{1,2,3\}$ and every $y \in \overline{M_{i}}$, the valuation of \widetilde{M}_{i} induced by f is also induced by the valuation of $\widetilde{M_{i}}$ with center x_{i}. We also know that the valuation of Q induced by f is
classical (recall Lemma 4.10) and that the center of this classical valuation is the unique point of Q nearest to x.

The above discussion allows us to construct x from the values that f takes on the set $M_{1} \cup M_{2} \cup Q$. Let $f_{i}, i \in\{1,2\}$, denote the valuation of \widetilde{M}_{i} induced by f. Then by Lemma 4.8, f_{i} is induced by a unique classical valuation of $\widetilde{M_{i}}$. We denote by x_{i}^{*} the center of this classical valuation of $\widetilde{\bar{M}}$. By the above, x_{1}^{*} and x_{2}^{*} lie at distance 2 from each other. So, they determine a unique quad Q^{*} which is parallel with Q. If y^{*} denotes the unique point of Q with smallest f-value, then x necessarily is the unique point of Q^{*} nearest to y^{*}.

Lemma 4.13 Regard $\mathbb{G}_{n}, n \geq 4$, as a subgeometry of $D H(2 n-1,4)$ which is isometrically embedded into $D H(2 n-1,4)$. Let f be a semi-valuation of \mathbb{G}_{n}. Let M_{1} and M_{2} be two disjoint big maxes of \mathbb{G}_{n} such that every line meeting M_{1} and M_{2} is special, and let Q be a $Q^{-}(5,2)$-quad of \mathbb{G}_{n} which intersects M_{1} and M_{2} in lines such that the unique points of $Q \cap M_{1}$ and $Q \cap M_{2}$ with smallest f-values are not collinear. Then f is uniquely determined by the values that it takes on the set $M_{1} \cup M_{2} \cup Q$.

Proof. Notice first that contrary to the situation in the proof of Lemma 4.12, we do not know (yet) whether the valuation of \mathbb{G}_{n} which is equivalent with f is induced by a classical valuation of $\operatorname{DH}(2 n-1,4)$. Put $M_{3}=\mathcal{R}_{M_{1}}\left(M_{2}\right)=\mathcal{R}_{M_{2}}\left(M_{1}\right)$ and let $\overline{M_{i}}, i \in\{1,2,3\}$, denote the unique max of $D H(2 n-1,4)$ containing M_{i}. Let x be an arbitrary point of \mathbb{G}_{n} not contained in $M_{1} \cup M_{2}$.

Suppose first that $x \in M_{3}$. Then there exists a unique line L through x meeting M_{1} in a point x_{1} and M_{2} in a point x_{2}. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $f(x)=f\left(x_{1}\right)-1=f\left(x_{2}\right)-1$. If $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, then $f(x)=\max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$. So, $f(x)$ is uniquely determined by the values that f takes on the set $M_{1} \cup M_{2} \cup Q$.

By the previous paragraph, we may suppose that $x \notin M_{1} \cup M_{2} \cup M_{3}$. Then by Lemma 4.6(2) there exists a unique $Q^{-}(5,2)$-quad Q_{x} through x which intersect M_{1}, M_{2} and M_{3} in (special) lines.

Suppose first that the unique point u_{1} of $M_{1} \cap Q_{x}$ with smallest f-value is collinear with the unique point u_{2} of $M_{2} \cap Q_{x}$ with smallest f-value. Let u denote the point of the line $u_{1} u_{2}$ with smallest f-value. Now, f takes three values on the subgrid $Q_{x} \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)$ of Q_{x}, namely $f(u), f(u)+1$ and $f(u)+2$. It follows that the valuation of Q_{x} induced by f is classical with center u (recall also Lemma 4.10). So, the f-values of the points of Q_{x} (in particular, of x) are uniquely determined by the values that f takes on the set $M_{1} \cup M_{2} \cup Q$.

Suppose next that the unique point of $M_{1} \cap Q_{x}$ with smallest f-value is not collinear with the unique point of $M_{2} \cap Q_{x}$ with smallest f-value. Let $\mathcal{S}_{n-1}\left(M_{1}\right)$ denote the geometry isomorphic to \mathcal{S}_{n-1} defined on the set of special lines of \widetilde{M}_{1}. Let S denote the set of special lines L of \widetilde{M}_{1} such that the unique points of L and $\pi_{M_{2}}(L)$ with smallest f-values are collinear. Then S is a subspace of $\mathcal{S}_{n-1}\left(M_{1}\right)$ by Lemma 4.5. It is a proper subspace since $Q \cap M_{1} \notin S$. So, the complement of S is connected by Lemma 4.4. It follows that there exists a sequence $Q=Q_{1}, Q_{2}, \ldots, Q_{k}=Q_{x}$ of $k \geq 1 Q^{-}(5,2)$-quads which intersect
M_{1} and M_{2} in lines and which satisfy: (1) for every $i \in\{1, \ldots, k\}, Q_{i} \cap M_{1}$ is a special line not belonging to S; (2) for every $i \in\{1, \ldots, k-1\}, Q_{i} \cap M_{1}$ and $Q_{i+1} \cap M_{1}$ are collinear points of $\mathcal{S}_{n-1}\left(M_{1}\right)$. It suffices to prove that for every $i \in\{1, \ldots, k-1\}$, the values $f(x), x \in Q_{i+1}$, are uniquely determined by the values that f takes on the set $M_{1} \cup M_{2} \cup Q_{i}$. By Lemma 4.1 there are two possibilities for $\left\langle Q_{i} \cap M_{1}, Q_{i+1} \cap M_{1}\right\rangle$. Either $\left\langle Q_{i} \cap M_{1}, Q_{i+1} \cap M_{1}\right\rangle$ is a special grid-quad of Type I or a $Q^{-}(5,2)$-quad. In any case, $\left\langle Q_{i} \cap M_{1}, Q_{i+1} \cap M_{1}\right\rangle$ is contained in a \mathbb{G}_{3}-hex $F \subseteq M_{1}$ by Lemma 4.2(1)+(2). The convex sub-octagon $\left\langle F, \pi_{M_{2}}(F)\right\rangle$ contains $Q_{i} \cup Q_{i+1}$ and is isomorphic to \mathbb{G}_{4} by Lemma 4.2(3). By Lemma 4.12, the values $f(x), x \in Q_{i+1}$, are uniquely determined by the values that f takes on the set $F \cup \pi_{M_{2}}(F) \cup Q_{i}$ and hence (a fortiori) also by the values that f takes on the set $M_{1} \cup M_{2} \cup Q_{i}$. This was precisely what we needed to show.

5 Proof of Theorem 1.1

We regard $\mathbb{G}_{n}, n \geq 2$, as a subgeometry of $D H(2 n-1,4)$ which is isometrically embedded into $D H(2 n-1,4)$. Recall that by De Bruyn [16], there exists up to isomorphism a unique isometric embedding of \mathbb{G}_{n} into $D H(2 n-1,4)$.

Let f be a valuation of the near polygon \mathbb{G}_{n}. We will prove by induction on n that f is induced by a unique (classical) valuation of $D H(2 n-1,4)$. This trivially holds if $n=2$. By Lemma 4.8, this claim also holds if $n \in\{3,4\}$. So, in the sequel we will suppose that $n \geq 5$. Let M_{1} and M_{2} be two disjoint big maxes of \mathbb{G}_{n} such that every line meeting M_{1} and M_{2} is special. Recall that $\widetilde{M_{1}} \cong \widetilde{M}_{2} \cong \mathbb{G}_{n-1}$. Put $M_{3}:=\mathcal{R}_{M_{1}}\left(M_{2}\right)=\mathcal{R}_{M_{2}}\left(M_{1}\right)$. Let $\overline{M_{i}}, i \in\{1,2,3\}$, denote the unique max of $\operatorname{DH}(2 n-1,4)$ containing M_{i}. Then $\overline{M_{3}}:=\mathcal{R}_{\overline{M_{1}}}\left(\overline{M_{2}}\right)=\mathcal{R}_{\overline{M_{2}}}\left(\overline{M_{1}}\right)$. By Proposition 2.9, there exists for any two distinct $i, j \in\{1,2,3\}$ a natural isomorphism between $\widetilde{M_{i}}$ and $\widetilde{M_{j}}$. This isomorphism induces an isomorphism between \widetilde{M}_{i} and \widetilde{M}_{j}. Let $f_{i}, i \in\{1,2,3\}$, denote the valuation of \widetilde{M}_{i} induced by f. For every point x of M_{1}, we define $f_{1}^{\prime}(x):=f_{2}\left(\pi_{M_{2}}(x)\right)$ and $f_{1}^{\prime \prime}(x):=f_{3}\left(\pi_{M_{3}}(x)\right)$. By Propositions 2.10 and 2.13, f_{1}, f_{1}^{\prime} and $f_{1}^{\prime \prime}$ are two by two neighboring valuations of \bar{M}_{1} and $f_{1}^{\prime \prime}=f_{1} * f_{1}^{\prime}$. We distinguish two cases.

Case I: f_{1} and f_{1}^{\prime} are equal.

In this case, $f_{1}=f_{1}^{\prime}=f_{1}^{\prime \prime}$. Let x^{*} denote a point of $M_{1} \cup M_{2} \cup M_{3}$ such that $f(x) \geq f\left(x^{*}\right)$ for every point $x \in M_{1} \cup M_{2} \cup M_{3}$. Let $i^{*} \in\{1,2,3\}$ such that $x^{*} \in M_{i^{*}}$. Considering the unique line through x^{*} meeting M_{1}, M_{2} and M_{3}, we see that $f\left(\pi_{M_{i}}\left(x^{*}\right)\right)=f\left(x^{*}\right)+1$ for every $i \in\{1,2,3\} \backslash\left\{i^{*}\right\}$. Since $f_{1}=f_{1}^{\prime}=f_{1}^{\prime \prime}$, we necessarily have that $f\left(\pi_{M_{i}}(x)\right)=f(x)+1$ for every point x of $M_{i^{*}}$ and every $i \in\{1,2,3\} \backslash\left\{i^{*}\right\}$. For every $i \in\{1,2,3\}$ there exists by the induction hypothesis a unique point $x_{i}^{*} \in \bar{M}_{i}$ such that the valuation f_{i} of \widetilde{M}_{i} is induced by the classical valuation of $\stackrel{\overline{M_{i}}}{ }$ with center x_{i}^{*}. Taking into account the natural isomorphisms between the near polygons $\widetilde{M_{1}}, \widetilde{M_{2}}$ and $\widetilde{M_{3}}$, we see that $\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right\}$ must be a line of $D H(2 n-1,4)$ meeting $\overline{M_{1}}, \overline{M_{2}}$ and $\overline{M_{3}}$. Put $y^{*}:=x_{i^{*}}^{*}$ and let f^{*} be the
valuation of \mathbb{G}_{n} induced by the classical valuation of $D H(2 n-1,4)$ with center y^{*}. Since $\mathrm{d}\left(y^{*}, x\right)=\mathrm{d}\left(y^{*}, \pi_{M_{i}}\left(y^{*}\right)\right)+\mathrm{d}\left(\pi_{M_{i}}\left(y^{*}\right), x\right)=\mathrm{d}\left(y^{*}, x_{i}^{*}\right)+\mathrm{d}\left(x_{i}^{*}, x\right)$ for every $i \in\{1,2,3\}$ and every point $x \in \overline{M_{i}}$, the valuation of \widetilde{M}_{i} induced by f^{*} is equal to the valuation of \widetilde{M}_{i} induced by the classical valuation of $\widetilde{M_{i}}$ with center x_{i}^{*}, i.e. is equal to f_{i}.
Claim. We prove that if f^{\prime} is a valuation of \mathbb{G}_{n} and $\epsilon \in \mathbb{Z}$ such that $f^{\prime}(x)=f(x)+\epsilon$ for every point $x \in M_{1} \cup M_{2}$, then $\epsilon=0$ and $f^{\prime}=f$.
Proof. (i) Let x_{3} be an arbitrary point of M_{3} and let L be the unique line through x_{3} intersecting M_{1} in a point x_{1} and M_{2} in a point x_{2}. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $f\left(x_{3}\right)=$ $f\left(x_{1}\right)-1=f\left(x_{2}\right)-1$. If $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, then $f\left(x_{3}\right)=\max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$. Similarly, if $f^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{2}\right)$, then $f^{\prime}\left(x_{3}\right)=f^{\prime}\left(x_{1}\right)-1=f^{\prime}\left(x_{2}\right)-1$ and if $f^{\prime}\left(x_{1}\right) \neq f^{\prime}\left(x_{2}\right)$, then $f^{\prime}\left(x_{3}\right)=\max \left\{f^{\prime}\left(x_{1}\right), f^{\prime}\left(x_{2}\right)\right\}$. Since $f^{\prime}\left(x_{1}\right)=f\left(x_{1}\right)+\epsilon$ and $f^{\prime}\left(x_{2}\right)=f\left(x_{2}\right)+\epsilon$, we have $f^{\prime}\left(x_{3}\right)=f\left(x_{3}\right)+\epsilon$.
(ii) Let x be an arbitrary point of \mathbb{G}_{n} not contained in $M_{1} \cup M_{2} \cup M_{3}$. Then by Lemma 4.6(2), there exists a unique $Q^{-}(5,2)$-quad Q_{x} through x which intersects M_{1}, M_{2} and M_{3} in lines. So, $G:=Q_{x} \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)$ is a (3×3)-grid. Since $f_{1}=f_{1}^{\prime}=f_{1}^{\prime \prime}$, the grid G is easily seen to contain a unique point u with smallest f-value. Moreover, $f(v)=$ $f(u)+\mathrm{d}(u, v)$ for every point $v \in G$. By (i) we then also know that $f^{\prime}(v)=f^{\prime}(u)+\mathrm{d}(u, v)$ for every point $v \in G$. Hence, the valuations of Q_{x} induced by f and f^{\prime} coincide with the classical valuation of Q_{x} with center u. This implies that $f^{\prime}(y)=f(y)+\epsilon$ for every $y \in Q_{x}$. In particular, $f^{\prime}(x)=f(x)+\epsilon$.
By (i) and (ii), f and f^{\prime} differ by a constant ϵ. Since f and f^{\prime} have minimal value 0 , we have $\epsilon=0$ and $f=f^{\prime}$. (qed)

Since f_{1} is the valuation of \widetilde{M}_{1} induced by f and also the valuation of \widetilde{M}_{1} induced by f^{*}, there exists an $\epsilon \in \mathbb{Z}$ such that $f^{*}(x)=f(x)+\epsilon$ for every $x \in M_{1}$.

If $y^{*}=x_{1}^{*}$, then $i^{*}=1$ and $f\left(\pi_{M_{2}}(x)\right)=f(x)+1$ for every $x \in M_{1}$. Since $\mathrm{d}\left(y^{*}, \pi_{M_{2}}(x)\right)=\mathrm{d}\left(y^{*}, x\right)+1$, we also have $f^{*}\left(\pi_{M_{2}}(x)\right)=f^{*}(x)+1$ for every $x \in M_{1}$.

If $y^{*}=x_{2}^{*}$, then $i^{*}=2$ and $f\left(\pi_{M_{2}}(x)\right)=f(x)-1$ for every $x \in M_{1}$. Since $\mathrm{d}\left(y^{*}, \pi_{M_{2}}(x)\right)=\mathrm{d}\left(y^{*}, x\right)-1$, we also have $f^{*}\left(\pi_{M_{2}}(x)\right)=f^{*}(x)-1$ for every $x \in M_{1}$.

If $y^{*}=x_{3}^{*}$, then $i^{*}=3$ and $f\left(\pi_{M_{2}}(x)\right)=f(x)$ for every $x \in M_{1}$. Since $\mathrm{d}\left(y^{*}, \pi_{M_{2}}(x)\right)=$ $\mathrm{d}\left(y^{*}, x\right)$, we also have $f^{*}\left(\pi_{M_{2}}(x)\right)=f^{*}(x)$ for every $x \in M_{1}$.

It follows that $f^{*}(x)=f(x)+\epsilon$ for every $x \in M_{1} \cup M_{2}$. By the above Claim we then have that $f^{*}=f$. So, f is induced by a classical valuation of $D H(2 n-1,4)$. Corollary 3.5 then implies that f is induced by a unique classical valuation of $D H(2 n-1,4)$.

Case II: f_{1} and f_{1}^{\prime} are not equal.

By the induction hypothesis, there exists for every $i \in\{1,2,3\}$ a unique point $x_{i} \in \overline{M_{i}}$ such that the valuation f_{i} of \widetilde{M}_{i} is induced by the classical valuation of $\widetilde{M_{i}}$ with center x_{i}. Since the map $\overline{M_{j}} \rightarrow \overline{M_{1}} ; x \mapsto \pi_{\overline{M_{1}}}(x), j \in\{2,3\}$, is an isomorphism between $\widetilde{M_{j}}$ and $\widetilde{M_{1}}$, the valuation f_{1}^{\prime} of \widetilde{M}_{1} is induced by the classical valuation of $\widetilde{M_{1}}$ with center $\pi_{\overline{M_{1}}}\left(x_{2}\right)$ and
the valuation $f_{1}^{\prime \prime}$ of $\widetilde{M_{1}}$ is induced by the classical valuation of $\widetilde{M_{1}}$ with center $\pi_{\overline{M_{1}}}\left(x_{3}\right)$. By Lemma 3.6, $L:=\left\{x_{1}, \pi_{\overline{M_{1}}}\left(x_{2}\right), \pi_{\overline{M_{1}}}\left(x_{3}\right)\right\}$ is a line of $\overline{M_{1}}$. Now, let R denote the unique quad of $D H(2 n-1,4)$ containing L and $\pi_{\overline{M_{2}}}(L)$. Then $G_{R}:=R \cap\left(\overline{M_{1}} \cup \overline{M_{2}} \cup \overline{M_{3}}\right)$ is a (3×3)-subgrid of R and $\left\{x_{1}, x_{2}, x_{3}\right\}$ is an ovoid of G_{R}.

Since $f_{1} \neq f_{1}^{\prime}$, there exists by Corollary $2.3(2)$ a line K of M_{1} such that the unique point of K with smallest f_{1}-value is distinct from the unique point of K with smallest f_{1}^{\prime}-value, or equivalently, such that the unique point u_{1} of K with smallest f-value is not collinear with the unique point u_{2} of $\pi_{M_{2}}(K)$ with smallest f-value. Here, $u_{i}, i \in\{1,2\}$, is the unique point of $\pi_{M_{i}}(K)$ nearest to x_{i}. Let u_{3} denote the unique point of $\pi_{M_{3}}(K)$ nearest to x_{3}.

Now, consider an arbitrary $Q^{-}(5,2)$-quad T of M_{1} through the line K. By Lemma $4.2(3),\left\langle T, \pi_{M_{2}}(T)\right\rangle$ is a \mathbb{G}_{3}-hex. Applying Lemma 4.9 to the near polygon $\left\langle T, \widetilde{\left.\pi_{M_{2}}(T)\right\rangle \cong}\right.$ \mathbb{G}_{3}, the big maxes T and $\pi_{M_{2}}(T)$ of $\left\langle T, \widetilde{\pi_{M_{2}}(T)}\right\rangle$ and the valuation of $\left\langle T, \widetilde{\pi_{M_{2}}(T)}\right\rangle$ induced by f, we see that we may without loss of generality suppose that the line K which we introduced in the previous paragraph is a special line of \mathbb{G}_{n}.

Let Q be the quad $\left\langle K, \pi_{M_{2}}(K)\right\rangle$. Since K is a special line, Q is a $Q^{-}(5,2)$-quad of both \mathbb{G}_{n} and $D H(2 n-1,4)$ (recall Lemma 4.6(3)). Let y be one of the three points of $R \backslash G_{R}$ such that $\Gamma_{1}(y) \cap G_{R}=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then $\mathrm{d}(y, x)=\mathrm{d}\left(y, x_{1}\right)+\mathrm{d}\left(x_{1}, x\right)=1+\mathrm{d}\left(x_{1}, x\right)$ for every point x of $\overline{M_{1}}$. It follows that u_{1} is the unique point of K nearest to y. In a similar way, one proves that u_{2} is the unique point of $\pi_{M_{2}}(K)$ nearest to y. Since u_{1} and u_{2} are not collinear, Lemma 4.11 tells us that K and L are parallel lines and that Q and R are parallel quads.

We claim that $u_{i}, i \in\{1,2,3\}$, is the unique point of Q nearest to x_{i}. Suppose that this would not be the case. Then $\pi_{Q}\left(x_{i}\right) \notin M_{i}$. But then the unique point of $Q \cap M_{i}$ collinear with $\pi_{Q}\left(x_{i}\right)$ would lie closer to x_{i} than $\pi_{Q}\left(x_{i}\right)$ itself, clearly a contradiction.

Since $u_{1} \neq u_{2}, f$ can take two distinct values on the (3×3)-subgrid $G_{Q}:=Q \cap\left(M_{1} \cup\right.$ $M_{2} \cup M_{3}$) of Q. The points of G_{Q} with smallest f-value form the ovoid $\left\{u_{1}, u_{2}, u_{3}\right\}$ of G_{Q}. So, the unique point u^{*} of Q with smallest f-value (recall Lemma 4.10) is collinear with u_{1}, u_{2} and u_{3}. Now, let x^{*} denote the unique point of R nearest to u^{*}. Since x_{i}, $i \in\{1,2,3\}$, is the unique point of R nearest to u_{i}, the point x^{*} is one the the three points of $R \backslash G_{R}$ collinear with x_{1}, x_{2} and x_{3}. Now, let f^{*} denote the valuation of \mathbb{G}_{n} induced by the classical valuation of $D H(2 n-1,4)$ with center x^{*} and let $\epsilon \in \mathbb{Z}$ be such that $f^{*}\left(u^{*}\right)+\epsilon=f\left(u^{*}\right)$. We prove that $f^{*}(x)+\epsilon=f(x)$ for every point x of $M_{1} \cup M_{2} \cup Q$.

Since u^{*} is the unique point of Q nearest to x^{*}, we have $f^{*}(x)+\epsilon=f^{*}\left(u^{*}\right)+\epsilon+$ $\mathrm{d}\left(u^{*}, x\right)=f\left(u^{*}\right)+\mathrm{d}\left(u^{*}, x\right)=f(x)$ for every point x of Q.

Let $i \in\{1,2\}$. Since $\mathrm{d}\left(x^{*}, y\right)=\mathrm{d}\left(x^{*}, x_{i}\right)+\mathrm{d}\left(x_{i}, y\right)$ for every $y \in \overline{M_{i}}$, the valuation of \widetilde{M}_{i} induced by f^{*} coincides with the valuation of \widetilde{M}_{i} induced by the classical valuation of $\widetilde{M_{i}}$ with center x_{i}, i.e. with the valuation f_{i} of \widetilde{M}_{i} induced by f. It follows that $f(x)-f^{*}(x)$ is independent from the point $x \in M_{i}$. By the previous paragraph, $f(x)-f^{*}(x)=$ $f\left(u_{i}\right)-f^{*}\left(u_{i}\right)=\epsilon$.

By the two previous paragraphs, $f^{*}(x)+\epsilon=f(x)$ for every point x of $M_{1} \cup M_{2} \cup Q$. Lemma 4.13 then implies that $f^{*}(x)+\epsilon=f(x)$ for every point x of \mathbb{G}_{n}. Since the minimal
values attained by f and f^{*} are equal to 0 , we have $\epsilon=0$ and $f=f^{*}$. So, f is induced by the classical valuation of $D H(2 n-1,4)$ with center x^{*}. By Corollary 3.5, f is induced by a unique classical valuation of $D H(2 n-1,4)$.

6 Proof of Theorem 1.2

We devote this short section to the proof of Theorem 1.2.
We regard $\mathbb{G}_{n}, n \geq 2$, as a subgeometry of $D H(2 n-1,4)$ which is isometrically embedded into $D H(2 n-1,4)$. Let f_{1} and f_{2} be two distinct valuations of \mathbb{G}_{n}. Then by Theorem 1.1 there exists a unique point $x_{i}, i \in\{1,2\}$, of $D H(2 n-1,4)$ such that the valuation f_{i} of \mathbb{G}_{n} is induced by the classical valuation f_{i}^{\prime} of $D H(2 n-1,4)$ with center x_{i}.

Suppose x_{1} and x_{2} are collinear. Then f_{1}^{\prime} and f_{2}^{\prime} are two neighboring valuations of DH $2 n-1,4$) by Corollary 2.12(2). Proposition 2.8 then implies that f_{1} and f_{2} are neighboring valuations of \mathbb{G}_{n}.

Conversely, if f_{1} and f_{2} are neighboring valuations of \mathbb{G}_{n}, then by Lemma 3.6, x_{1} and x_{2} are collinear.

References

[1] R. J. Blok and A. E. Brouwer. The geometry far from a residue. Groups and geometries (Siena, 1996), 29-38, Trends Math., Birkhäuser, Basel, 1998.
[2] A. E. Brouwer. The uniqueness of the near hexagon on 729 points. Combinatorica 2 (1982), 333-340.
[3] A. E. Brouwer. The uniqueness of the near hexagon on 759 points. Finite geometries, pp. 47-60, Lecture Notes in Pure and Appl. Math. 82, Dekker, New York, 1983.
[4] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and Fischer spaces. Geom. Dedicata 49 (1994), 349-368.
[5] A. E. Brouwer and E. W. Lambeck. An inequality on the parameters of distance regular graphs and the uniqueness of a graph related to M_{23}. Ann. Discrete Math. 34 (1987), 101-106.
[6] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. Geom. Dedicata 14 (1983), 145-176.
[7] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75-85.
[8] B. N. Cooperstein. On the generation of dual polar spaces of unitary type over finite fields. European J. Combin. 18 (1997), 849-856.
[9] B. De Bruyn. On near-polygons and the Coxeter cap in PG(5, 3). J. Geom. 68 (2000), 23-33.
[10] B. De Bruyn. New near polygons from Hermitian varieties. Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 561-577.
[11] B. De Bruyn. Near polygons. Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[12] B. De Bruyn. The universal embedding of the near polygon \mathbb{G}_{n}. Electron. J. Combin. 14 (2007), Research paper 39, 12pp.
[13] B. De Bruyn. On the Grassmann-embeddings of the hermitian dual polar spaces. Linear Multilinear Algebra 56 (2008), 665-677.
[14] B. De Bruyn. An alternative definition of the notion valuation in the theory of near polygons. Electron. J. Combin. 16 (2009), Research paper 16, 14pp.
[15] B. De Bruyn. On the Grassmann modules for the unitary groups. Linear and Multilinear Algebra, to appear.
[16] B. De Bruyn. Isometric embeddings between dense near polygons. Preprint.
[17] B. De Bruyn and A. Pasini. Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to \mathbb{F}_{2}. Electron. J. Combin. 14 (2007), Research Paper 54, 17 pp.
[18] B. De Bruyn and P. Vandecasteele. Valuations of near polygons. Glasg. Math. J. 47 (2005), 347-361.
[19] B. De Bruyn and P. Vandecasteele. The distance-2-sets of the slim dense near hexagons. Ann. Comb. 10 (2006), 193-210.
[20] B. De Bruyn and P. Vandecasteele. The valuations of the near hexagons related to the Witt designs $S(5,6,12)$ and $S(5,8,24)$. J. Combin. Des. 14 (2006), 214-228.
[21] B. De Bruyn and P. Vandecasteele. The valuations of the near octagon \mathbb{G}_{4}. Discrete Math., to appear.
[22] A. Kasikova and E. E. Shult. Absolute embeddings of point-line geometries. J. Algebra 238 (2001), 265-291.
[23] P. Li. On the universal embedding of the $U_{2 n}(2)$ dual polar space. J. Combin. Theory Ser. A 98 (2002), 235-252.
[24] S. E. Payne and J. A. Thas. Finite generalized quadrangles. Research Notes in Mathematics 110. Pitman, Boston, 1984.
[25] M. A. Ronan. Embeddings and hyperplanes of discrete geometries. European J. Combin. 8 (1987), 179-185.
[26] E. E. Shult. On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299316.
[27] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1-72.
[28] J. Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics 386. Springer-Verlag, Berlin-New York, 1974.

[^0]: *Postdoctoral Fellow of the Research Foundation - Flanders

[^1]: ${ }^{1}$ The reader might be puzzled by the fact that e_{2} is absolutely universal, while e_{1} is not. This happens because, when you lift e_{1} to the absolutely universal embedding $\widetilde{e_{1}}$ of $D H(2 n-1,4)$, the image of \mathbb{G}_{n} lifts to a set of points that spans a complement of the kernel of the projection of $\widetilde{e_{1}}$ onto e_{1}.

