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Abstract

A good prediction of the future enables companies and governments to plan their investments, production and other needs. The

demand for good forecasting techniques motivates many researchers coming from a wide variety of fields to develop methods for

time series prediction. Many of these techniques are very complex to apply and demand lots of computational effort to execute.

As an answer to this, we propose the use of Reservoir Computing, a recently developed technique for efficient training of recurrent

neural networks, for monthly time series prediction. We will explain how Reservoir Computing in its basic form can be applied to

time series prediction. Additionally we will extend this approach with different Reservoir Computing strategies such as seasonal

adjustment or a Reservoir Computing based voting collective approach. We will investigate the performance of all the proposed

strategies and compare its prediction accuracy with the linear forecasting procedure build in the Census Bureau’s X-12-ARIMA

program and a Nonlinear Autoregressive model using Least-Squares Support Vector Machines.
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1. Introduction

The ability to make a good prediction of the future is ad-

vantageous in a broad range of applications. Companies and

government organizations use medium- to short-term predic-

tions for planning and operation of their businesses. Because

of this great interest in time series prediction, a large number

of researchers are working on time series prediction. These re-

searchers come from a wide variety of fields and try to model

the underlying process using linear techniques such as Box-

Jenkins [1] and exponential smoothing [2] or non-linear tech-

niques such as support vector machines [3] and neural net-

works [4]. Most of these techniques demand high-level user

experience and a lot of computational effort.

If the user has no experience in the field, it is hard to select the

right predictionmethodology for a certain prediction task due to

the number of available techniques and optimizations one can

do. Thus there is the necessity to select a prediction methodol-

ogy which can perform the task. In that spirit researchers started

to organize time series prediction competitions which enables

the comparison of prediction accuracy and computational ef-

forts on different kinds of time series in the famous Santa Fe

competition [5] or in other competitions such as the prediction

of chaotic time series in the K.U. Leuven prediction competi-

tion [6], daily and monthly financial time series in the NN3 and

NN5 competition 1, the CATS benchmark in the IJCNN2004

time series prediction competition [7], industrial time series in

the ESTSP2007 competition [8] and time series from various
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sources in the ESTSP2008 competition [9].

Monthly time series often exhibit strong seasonality caused by

factors such as weather, holidays, repeating promotions, as well

the behavior of economic agents [10]. Thus, the question of

how to cope with seasonality in time series is an important re-

search topic. Most prediction approaches deal with seasonality

by decomposition of the time series into a trend-cycle, seasonal

and irregular components. These components are predicted in-

dependently and afterwards combined to get a good prediction

of the original time series [11]. In [11] a comparative study

for monthly aggregate retail sales forecasting using both lin-

ear and nonlinear techniques was presented. Their results sug-

gested that the overall best method for retail sales forecasting is

a neural network model with deseasonalized time series data.

In the domain of time series prediction neural network tech-

niques are increasingly used. Particularly, recurrent neural net-

works are gaining success because they are ideal for such a tem-

poral task. This kind of networks have internal feedback loops

which gives them the ability to model temporal relationship of

the time series explicitly within their internal states [12]. But

gradient-based training algorithms have been known to suffer

from local minima and demand high computational efforts [13].

Recently a novel technique for the efficient training of large re-

current neural networks has been introduced. Instead of train-

ing all the weights, the weights are initialized randomly and

the desired function is implemented by a full instantaneous lin-

ear mapping of the neuron states. For this, standard linear re-

gression methods can be used which eases the training process.

When analog neurons are used, the method is referred to as

Echo State Networks [14]. When spiking neurons are used,

one often speaks of Liquid State Machines [15]. Commonly,

they are referred to as Reservoir Computing [16]. Reservoir
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Computing has been successfully applied in a wide range of

temporal tasks such as robotic localization [17], speech recog-

nition [18, 19] and time series generation [20]. In 2007, Reser-

voir Computing in combination with seasonal adjustment and

a voting collective approach outperformed all other methods

in the NN3 competition for monthly financial time series pre-

diction [21]. More recently, an approach combining Reservoir

Computing and a decomposition approach based on wavelet de-

composition was used for prediction of the time series provided

in the ESTSP2008 competition [22] which led to average results

in the competition. Additionally, reservoir computing showed

outstanding performance in prediction of nonlinear chaotic time

series. On a benchmark task of predicting a chaotic time series,

accuracy was improved by a factor of 2400 over previous tech-

niques [20].

Based on previous research and results on forecasting using

Reservoir Computing, we do a comparative study of several

Reservoir Computing strategies for monthly time series pre-

diction. More specifically, we will address following research

questions:

• Are Reservoir Computing based techniques suited for

monthly time series prediction?

• Can we improve the prediction accuracy by the use of sea-

sonal adjustment, increasing the reservoir size or using

voting collectives?

• Are the nonlinear modeling abilities and the dynamical

properties of Reservoir Computing beneficial in compar-

ison to other techniques?

The outline of the paper is as follows: first we will describe

how Reservoir Computing can be used for forecasting. Next,

we review a number of strategies that can be combined with

Reservoir Computing in order to improve the prediction accu-

racy. This is followed by a description of the time series we use

for our empirical findings. After that, we present our results

and discuss them. Finally our conclusions will be drawn and

answers for our major questions will be stated.

2. Reservoir Computing for time series prediction

Reservoir Computing (RC) is a recently developed technique

for the efficient training of recurrent neural networks. The tech-

nique is based on the use of a large, untrained dynamical sys-

tem, the reservoir, which can be excited with one or more in-

puts. The desired output function is usually implemented by a

linear memory-less mapping of the full instantaneous state of

the dynamical system. Only this linear mapping is learned with

commonly used standard linear regression techniques. Because

of the nature of the task, generation of future time steps based

on a learned history, we will focus on the use of RC for recur-

sive prediction. This means that we will only consider systems

which have the delayed output feedback as an input to the reser-

voir which is illustrated in Figure 1.

Throughout this work the reservoir is implemented by a large

Figure 1: Schematic overview of Reservoir Computing used for recursive pre-

diction. The system has only output feedback as an input. Only connections

directed to the output nodes, denoted by dashed lines, are trained. Reservoir-

to-reservoir connections and output feedback connections (represented by solid

black lines and solid gray lines, respectively), are randomly created and kept

fixed during training.

randomly connected recurrent neural network of sigmoid neu-

rons. The neuron states and the output are update by the fol-

lowing equations:

x[k + 1] = (1 − λ)x[k]

+λ tanh

(
W res
resx[k] +W

res
outy[k] +W

res
bias

)

ŷ[k + 1] = Wout
res x[k + 1] +W

out
bias, (1)

where x[k + 1] are the neuron states at time k + 1 depending on

the neuron states x[k] at previous time step k, the teacher forced

output y[k] and a bias. One of the most important parameters,

especially for a temporal task such as time series prediction, is

the leak-rate λ with which the reservoir’s dynamics, and thus

the timescale at which the system operates, can be effectively

tuned [14]. Before any data processing can begin, one has to

first create the system’s topology. All connections from the

bias and output to the reservoir, denoted with Wbias
res and Wout

res

respectively, are drawn from a normal distribution with zero

mean and of which the variance is a parameter to tune. For

construction of the weight matrix W res
res , which determines con-

nections within the reservoir, weights are drawn from a normal

distribution with zero mean and variance 1 and a large part is

set to zero according to the connection fraction. The randomly

connected matrix W res
res is usually rescaled such that the largest

eigenvalue, spectral radius, is near to 1. This causes the created

system to operate at the edge of stability where its processing

power is greatest [23]. Note that in the Reservoir Computing

setup we use, the effective spectral radius introduced in [24],

is also dependent on the bias and the weights from and to the

output of which the weights to the output are unknown during

the construction of the topology. Thus, the spectral radius

as defined in this work loses it significance as a measure for

stability and it has been shown previously that you can go even

beyond 1 without unstable behavior [25].
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Only the connections to the output, denoted by Wout
" , are

changed during training in order to learn the desired output

function. Because only the output weights are changed,

training is extremely fast which can be an additional benefit

in comparison with other methods. Additionally, the training

of the reservoir system doesn’t suffer from local optima like

other methods based on neural networks do. When validating

or testing the system, the teacher forced output feedback y[k]

in Equation 1 is replaced by the actual output ŷ[k], which is

known as recursive prediction.

We now describe the full process of modeling time series and

prediction future data points. We always start with normalizing

the given time series. This is done by removing the mean and

dividing by the standard deviation of the time series, i.e. makes

them Z-scores. This avoids that all neurons get saturated and

thus lose processing power. Next, the time series is divided

into two parts. The first (largest) part is used for training and

optimization of the meta-parameters, the second part (equal in

length to the desired prediction horizon) is kept unknown and

is only used for testing.

After construction of the reservoir topology, the reservoir sys-

tem is ready to process the training part of the time series using

teacher forcing. The neuron states are updated using Equation 1

and collected. Because we use a dynamical system, it takes

some time before the full effects of the teacher forced input is

visible in the reservoir states. Therefore, the initial states con-

taining the transient effects are discarded which is known as

warmup drop. When all training data is processed the system

can be trained by using standard linear regression techniques.

A 4-fold cross-validation scheme is used to optimize the meta-

parameters, more specific the leak-rate, bias and output feed-

back scale. Because the reservoir system needs to be initial-

ized, we make sure that there is overlap in de subsets of the

training and validation data used for the cross-validation so that

almost no data is lost for the warmup drop. The overlapping

data points are thus only used for initialization of the reservoir

system. During validation, our system is used in recursive pre-

diction mode, generating future data points. The Normalized

Mean Squared Error (NMSE) is used as an error metric:

NMSE =
1

N

∑N
k=1 (y[k] − ŷ[k])

2

σ2y
, (2)

with y[k] the desired predictions and ŷ[k] the outcome of our

system for a prediction horizon N.

After optimization of the meta-parameters with 4-fold cross-

validation, the system is retrained using the full training and

validation part of the time series. Finally, the system is used for

recursive prediction of the (unknown) test part of the data. After

undoing the normalization, the prediction accuracy is evaluated.

For this, based on discussion in [26], we will use multiple error

metrics such as the earlier mentionedNMSE and the Symmetric

Mean Absolute Percentage Error (SMAPE):

SMAPE =
100

N

N∑

k=1

|y[k] − ŷ[k]|

(y[k] + ŷ[k]) /2
, (3)

in which we assume y[k] and ŷ[k] to be positive.

3. Prediction strategies

Although RC in its standard setup performs well in a broad

range of applications, additional techniques have already been

introduced to improve its results. In this Section we provide

some well known and commonly used strategies in order to im-

prove the performance of RC techniques.

3.1. Influence of reservoir size and regularization

RC techniques are based on the use of a large untrained dy-

namical system. Previous results showed that increasing reser-

voir size leads to larger memory capacity [27, 28]. However

larger networks, thus more complex models, increase the dan-

ger of overfitting leading to poor results on the test set. In [29],

ridge regression has been found a good candidate to avoid over-

fitting when output feedback is necessary. Later, in [30] ridge

regression was compared with other regularization techniques

such as pruning. But in none of these papers, time series pre-

diction was considered. In this work we extend the previous

work by investigating the use of ridge regression for time series

prediction more closely.

When using ridge regression instead of standard linear regres-

sion an additional term, dependent on the readout weightsWout
"

is added to the cost function [31]:

Jridge(W
out
" ) =

1

2

(
CWout

" − D
)T (

CWout
" − D

)

+
1

2
λ
∥∥∥Wout
"

∥∥∥2
2
, (4)

in which matrix C consists of the concatenation of all inputs to

the readout including the collected reservoir states and the bias

and matrix D contains the desired outputs.

Ridge regression uses an additional parameter, the regulariza-

tion parameter λ, which needs to be optimized. When applied

well (and the regularization parameter is optimized correctly),

ridge regression keeps the output weights small, regularizes the

trained trajectory in state-space and gives our system good gen-

eralization capabilities. Additionally, it stabilizes the output

when using output feedback. In this paper, we will investigate

the influence of the reservoir size and regularization on the pre-

diction accuracy.

3.2. Voting collectives

Previous work showed that RC techniques can classify

speech data very well if many small reservoirs are combined in

a voting collective [32]. By keeping the reservoir size small, the

reservoir dynamics change drastically, increasing significantly

the variance of the results of the many systems. This makes

them suited as a weak learner. Additionally, small reservoirs

have intrinsic regularization properties which makes it easier

to apply. The idea [32] is that every classifier independently

generates a result based on randomly constituted features. The

mean of the individual votes is taken, hoping that this averages

out the fluctuations that are due to the single classifiers’ biases.
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In [21] this approach is used for time series prediction. In this

paper we will investigate whether this approach is beneficial or

not for the time series we consider.

3.3. Seasonal decomposition

One of the current main shortcomings is that RC methods

tend to be sensitive to a small temporal range [33]. When data

consists of highly different temporal domains, or if interference

can occur inside the network, performance can degrade rapidly.

The importance of this is also mentioned in [32, 34]. This is-

sue can be partially solved by the use of leaky integrator neu-

rons [14] or band-pass neurons [35, 33]. But, in the domain

of forecasting, another technique, known as seasonal decompo-

sition, could be beneficial. Monthly time series exhibit strong

seasonal components. How to deal with seasonality is an im-

portant research question and its application has shown a large

increase in the prediction accuracy when using e.g. neural net-

works [11]. Most approaches deal with seasonality by decom-

position of the time series Y into a trend-cycle C, seasonal S

and irregular I components. This can be done by means of the

general additive decomposition model:

Y = C + S + I. (5)

The trend-cycle includes long-term trends and movements in-

cluding consequential turning points. When the seasonal fluc-

tuations vary proportionally with the level of the time series,

which is typical for economical time series, one can better use

a multiplicative decomposition model:

Y = CS I. (6)

This is also the default seasonal adjustment mode for the Cen-

sus X-12-ARIMA program [36] which we will use for seasonal

adjustment. This program gives us the three components of a

time series Y. Instead of modeling the original time series Y as

described in Section 2, we will model the trend-cycle, seasonal

and irregular component individually. After prediction of each

component we can try to reconstruct the future of the original

time series by applying equation 6. Based on the described is-

sues of RC techniques with respect to multiple timescales, it

can be expected that seasonal decomposition will improve the

prediction accuracy. This strategy was also used in successful

results of the NN3 competition [21].

4. Prediction of monthly time series

In this Section we describe how to apply RC and the three

strategies for monthly time series prediction. In this compara-

tive study we will investigate the effectiveness of RC on several

monthly time series and the benefits of the different proposed

strategies. We will compare the accuracy of the predictions

with results from an ARIMA model provided by the Census

X-12-ARIMA program. Additionally we compare with a NAR

model estimated using Least-Squares Support Vector Machines

(LS-SVMs) [37].
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Figure 2: Example of a monthly time series: production of machinery in the

USA.

4.1. Methodology

In this study we used five datasets coming from industry. The

first time series is the monthly electricity production in Aus-

tralia starting in September 1959 and ending in August 1995.

All four other time series were provided by the US Federal Re-

serve Board and concern the monthly evolution of plastic and

rubber goods production, glass goods production, metal goods

production and machinery production. These datasets start in

January 1972 and end in December 2007. As an illustration,

one of the monthly time series (production of machinery in the

USA) is visualized in Figure 2. One can see that the time series

include seasonal effects. For all time series the prediction hori-

zon is 24 months. This means that we used the last 24 samples

of the provided time series for testing only and they are left out

while training (and optimizing) our system.

During the first experiment we investigated the influence of

the reservoir size with and without regularization. Therefore

we applied Reservoir Computing as described in Section 2 us-

ing the Reservoir Computing Toolbox v2.02. The reservoir size

varied from 10 to 1000 neurons. Applying RC involves tuning

of quite a number of meta-parameters changing the characteris-

tics of the reservoir system. Fortunately not all of them are cru-

cial. The performance of a reservoir system using analog neu-

rons is largely independent of the sparsity of the network [38].

Therefore we will set all connection fractions (fraction of neu-

rons connected to each other, fraction of output connected to

the neurons, fraction of neurons that has a bias) to an arbi-

trary value of 25 %. The spectral radius is set to 1 based on

what we previously said in Section 2. We also tried other val-

ues including values greater than 1, but this gave no significant

improvement. If the spectral radius was chosen too large, pre-

diction accuracy degraded strongly indicating the reservoir was

beyond the edge of stability. Other parameters have greater in-

fluence on the dynamics of the reservoir system and prediction

accuracy. These parameters include the feedback weights, the

leak-rate and bias. For each time series we processed with RC,

the leak-rate was optimized using 2-level grid-searching in 10

logarithmically spaced values between 0 and 1. This is driven

2On http://reslab.elis.ugent.be/rctoolbox, a toolbox consisting of functions

that allow the user to easily set up datasets, reservoir topologies, experiment

parameters and to easily process results of experiments, can be downloaded.
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by the fact that the cut-off frequencies of the low-pass filters you

get by using leaky neurons are also logarithmically spaced [35].

The feedback weights are set randomly to w or −w, where w is

grid-searched in two levels in 10 logarithmically spaced values.

Additionally, we tested wether adding bias to the neurons was

necessary or not. If bias was added to the neurons, the bias

weights are drawn from a normal distribution with zero mean

and variance 1. Optimization was done using a 4-fold cross-

validation scheme.

When regularization was done, ridge regression was used. This

introduces an additional parameter, the regularization parame-

ter, which needs to be optimized. The regularization parameter

was line searched in the range 101:−0.2:−8 3 using 4-fold cross-

validation.

After the first experiment we considered a reservoir size of 500

neurons using ridge regression as a regularization technique as

a basis of comparison for the standard RC approach in the next

experiments.

During the second experiment we made use of a RC based

voting collective system. We constructed a system consisting of

500 relatively small reservoirs of 75 neurons. Although using

relatively small reservoirs, which have intrinsic regularization

properties, we applied ridge regression as an additional regular-

ization technique for each trained reservoir system. Each sys-

tem was trained separately but the bias, leak-rate en feedback

weights were optimized globally and chosen equally for each

reservoir. For the final result of the voting collective, the out-

come (eg. predicted time series) of all the small entities were

averaged.

For the third experiment we investigated the use of seasonal

decomposition. Therefore each of the provided time series was

processed by the Census X-12-ARIMA seasonal adjustment

program resulting in a trend-cycle, seasonal and irregular com-

ponent. For the production of machinery time series (see Fig-

ure 2), the three components: trend-cycle, seasonal and irreg-

ular components are shown in Figure 3, Figure 4 and Figure 5

respectively. As said before we only used multiplicative sea-

sonal decomposition. Both, RC in its standard form and the

voting collective approach were used to forecast each compo-

nent separately. Afterwards the predictions of all components

were recombined resulting in predictions for the original time

series. When applying the voting collective approach, the pre-

dictions of the components were averaged separately before re-

construction.

Because we work with a non-deterministic technique which

involves random generation of the neuron weights, we redo

each experiment 50 times which will give us a better idea of

the results one can expect.

As a basis for comparison, we constructed both, a linear and

nonlinear model for the time series. The linear model was pro-

vided by the Census X-12-ARIMA program which uses sea-

sonal decomposition. For the NARmodel, we applied LS-SVM

on the normalized time series (without using seasonal decom-

position) using a RBF kernel. A leave-one-out cross-validation

3Which means that the regularization parameter ranged from 10 to 10−8,

each time by decreasing the exponent with 0.2.
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Figure 3: Production of machinery: trend-cycle obtained with the Census X-

12-ARIMA program.
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Figure 4: Production of machinery: seasonal component obtained with the Cen-

sus X-12-ARIMA program.
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Figure 5: Production of machinery: irregular component obtained with the Cen-

sus X-12-ARIMA program.
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Figure 6: Prediction accuracy for two time series, time series 1: electricity

production and time series 4: metal goods production, in function of reservoir

size with (solid line) and without (dashed line) using regularization.

scheme with two-level grid-search was used to select the hyper-

parameters. The size of the time window was optimized in the

range 6 to 84 in steps of 6. This is motivated by the specifica-

tions of the data: monthly time series. We did not apply any

algorithm to actively select the regressors.

4.2. Results

In Figure 6 the results of our first experiment are summa-

rized. The NMSE on the test set in function of the reservoir

size, with and without using regularization, can be seen for two

of the five time series. The same behavior could be seen for

the other time series but is not shown in order to not overload

the figure. We see that without using regularization the predic-

tion accuracy is strongly dependent on the size of the reservoir.

For larger reservoirs, the model complexity increases leading to

over-fitting the training data and thus poor regularization, while

small reservoirs show intrinsic regularization properties. On the

other hand, when using ridge regression, prediction accuracy

increases asymptotically for increasing reservoir size. Based on

these results we decide to apply ridge regression in all further

experiments.

In Table 1 we summarized the results for all time series using

all the strategies presented in Section 3: a single reservoir setup

with 500 neurons, a voting collective setup using 500 reservoirs

of 75 neurons, a single reservoir setup with 500 neurons after

seasonal decomposition and a voting collective setup using 500

reservoirs of 75 neurons after seasonal decomposition. Addi-

tionally, the prediction results of the ARIMA model and the

NAR model are given.

If we compare the results of the voting collective setup with

these of the single reservoir setup, we can see that they are

competitive with each other. However, we can see that the vot-

ing collective setup show low variance in prediction accuracy

which is beneficial in comparisonwith the single reservoir setup

were results are dependent on the generated reservoir. This

comes at a cost: computational efforts are much higher than for

the single reservoir approaches. This is mainly due to the cost

of optimizing the regularization parameter of each of the 500

reservoirs. To illustrate this, we did time measurements for all

the reservoir computing strategies. The computational cost is

shown relatively against the standard single reservoir approach

in Table 2.

Table 2: Computational efforts

single single decomp. voting voting decomp.

1 3 9.71 29.13

Considering this, one would more likely choose the single

reservoir computing approach. However based on the results of

the first experiment, in which we investigated the influence of

the reservoir size and the regularization, one could reconsider

the necessity of using ridge regression since small reservoirs

show intrinsic regularization properties. One could decide to

optimize the global reservoir size which is less costly in terms

of computational demands than optimizing the regularization

parameter. This might be an interesting research topic for future

work.

From Table 1 we learn that seasonal decomposition improves

greatly the prediction accuracy in both, a single and voting col-

lective reservoir setup. This is also illustrated in Figure 7 in

which we present the prediction for the metal goods production

time series using all strategies presented earlier. We see that the

RC strategies without decomposition are not able to capture the

seasonality while strategies using decomposition can, not sur-

prisingly, capture the seasonality. Remarkably, the NARmodel,

which does not use seasonal decomposition, shows seasonal ef-

fects in the prediction of the time series. However, the results

of the NAR model are comparable with the results from the RC

models without decomposition. As we learn from Table 2, sea-

sonal decomposition comes at a cost: the computational efforts

increase with factor three since the three components have to be

processed separately. However, in our opinion the increase of

performance is worth the increase in computational demands.

Of all strategies the voting collective setup after seasonal de-

composition shows best overall prediction accuracy. Next in

line, the single reservoir setup with regularization shows good

performancewhich proves that decomposition increases greatly

prediction accuracywhen using RC. If we compare these results

with the results from the ARIMA and NAR model we can con-

clude that RC is an interesting technique to consider when one

wants to do monthly time series prediction.

5. Conclusions

It is hard to find the right prediction method for a given ap-

plication if not a prediction expert. Many time series prediction

competitions try to seek an answer to the need for a good gen-

eral purpose prediction strategy. In this paper we discussed how

Reservoir Computing, an efficient training method for recurrent

neural networks, can be used for time series prediction, which

has previously proven its outstanding performance in predic-

tion of chaotic nonlinear time series. We applied Reservoir

Computing for recursive prediction of monthly time series. We

investigated the influence of reservoir size and regularization.

Additionally, we tried to improve its prediction accuracy using
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Table 1: Prediction results
Time series error metric single single decomp. voting voting decomp. NAR (LS-SVM) X-12-ARIMA

electric. prod. NMSE (STD) 0.2567 (0.0339) 0.1871 (0.0234) 0.2756 (0.0048) 0.1687 (0.0012) 0.5955 0.1703

SMAPE (STD) 2.1103 (0.1386) 1.8056 (0.1270) 2.1349 (0.0155) 1.7032 (0.0072) 3.3709 1.5690

plastics goods NMSE (STD) 2.6905 (0.4482) 1.2110 (0.1067) 2.7616 (0.0176) 1.1914 (0.1449) 1.9937 2.8891

SMAPE (STD) 2.4002 (0.5580) 1.5204 (0.0788) 2.4432 (0.0095) 1.5375 (0.1329) 2.1054 2.6059

glass goods NMSE (STD) 2.4100 (1.7059) 0.8987 (0.1914) 1.8095 (0.0460) 0.8378 (0.0038) 2.2269 0.9161

SMAPE (STD) 2.2947 (0.8162) 1.3942 (0.1625) 2.0182 (0.0328) 1.3363 (0.0133) 2.3349 1.3549

metal goods NMSE (STD) 1.4162 (0.4248) 0.6432 (0.1464) 1.3646 (0.0232) 0.6726 (0.0064) 1.3229 0.6864

SMAPE (STD) 3.8187 (0.7849) 2.4923 (0.3570) 3.7566 (0.0524) 2.5779 (0.0161) 3.927 2.7872

machinery NMSE (STD) 3.8303 (0.896) 2.1853 (0.4464) 4.2581 (0.0302) 2.1640 (0.0450) 1.2922 2.3244

SMAPE (STD) 4.5261 (0.5651) 3.4308 (0.3822) 4.8412 (0.0192) 3.4485 (0.0352) 2.4496 3.4288
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Figure 7: Forecasts of a monthly time series (metal goods production) using six

different prediction strategies: single reservoir setup with 500 neurons, single

reservoir setup with 500 neurons after seasonal decomposition, voting collec-

tive reservoir setup, voting collective reservoir setup after seasonal decomposi-

tion, X-12-ARIMA modeling and NAR modeling with LS-SVMs.

different strategies such as seasonal decomposition and a voting

collective reservoir setup.

We showed that Reservoir Computing shows competitive re-

sults for monthly time series prediction. By increasing the

reservoir size, the prediction accuracy of the single reservoir ap-

proach can be improved on the condition that regularization is

applied correctly. In other work, researchers showed that Reser-

voir Computing techniques have difficulties to handle multiple

timescales in time series. We showed that the problems with

multiple timescales can be solved in the field of time series pre-

diction by decomposition of the time series.

The results of the single reservoir setup are dependent on the

generated reservoir. This can be seen in the rather large variance

in the results. In this work we demonstrate that it is preferable

to use a voting collective approach to overcome this problem.

This is because having a bad prediction due to a poorly gener-

ated reservoir is decreasing significantly due to the averaging

out of many votes. This, however comes at the cost of higher

computational demands.

Overall we can say that Reservoir Computing strategies can

be seen as a viable tool for state-of-the-art monthly time se-

ries prediction. It is preferable to use seasonal decomposition

to increase prediction accuracy. When high accuracy and reli-

able results are necessary, a voting collective approach is rec-

ommended.
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