
A probabilistic model for the identification of confinement regimes and edge
localized mode behavior, with implications to scaling laws
Geert Verdoolaege and Guido Van Oost 
 
Citation: Rev. Sci. Instrum. 83, 10D715 (2012); doi: 10.1063/1.4733307 
View online: http://dx.doi.org/10.1063/1.4733307 
View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v83/i10 
Published by the American Institute of Physics. 
 
Related Articles
The low-carbon transformation—A social science perspective 
J. Renewable Sustainable Energy 4, 041404 (2012) 
The adoption behavior of new energy automotive technology in Chinese firms: A knowledge rigidity perspective 
J. Renewable Sustainable Energy 4, 031802 (2012) 
Light contact and surfing state dynamics of air bearing sliders in hard disk drives 
Appl. Phys. Lett. 100, 243104 (2012) 
Exploring energy consumption and CO2 emission of cotton production in Iran 
J. Renewable Sustainable Energy 4, 033115 (2012) 
A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and
centering 
Rev. Sci. Instrum. 83, 065102 (2012) 
 
Additional information on Rev. Sci. Instrum.
Journal Homepage: http://rsi.aip.org 
Journal Information: http://rsi.aip.org/about/about_the_journal 
Top downloads: http://rsi.aip.org/features/most_downloaded 
Information for Authors: http://rsi.aip.org/authors 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55892229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://rsi.aip.org?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://rsi.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Geert Verdoolaege&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://rsi.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Guido Van Oost&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://rsi.aip.org?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4733307?ver=pdfcov
http://rsi.aip.org/resource/1/RSINAK/v83/i10?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4730138?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4730414?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4729055?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4727906?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4722946?ver=pdfcov
http://rsi.aip.org?ver=pdfcov
http://rsi.aip.org/about/about_the_journal?ver=pdfcov
http://rsi.aip.org/features/most_downloaded?ver=pdfcov
http://rsi.aip.org/authors?ver=pdfcov


REVIEW OF SCIENTIFIC INSTRUMENTS 83, 10D715 (2012)
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and edge localized mode behavior, with implications to scaling lawsa)
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Pattern recognition is becoming an important tool in fusion data analysis. However, fusion diagnos-
tic measurements are often affected by considerable statistical uncertainties, rendering the extrac-
tion of useful patterns a significant challenge. Therefore, we assume a probabilistic model for the
data and perform pattern recognition in the space of probability distributions. We show the con-
siderable advantage of our method for identifying confinement regimes and edge localized mode
behavior, and we discuss the potential for scaling laws. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4733307]

I. INTRODUCTION

Pattern recognition methods are very useful for extract-
ing structure from fusion data sets with typically large sta-
tistical uncertainties and many variables. Indeed, the patterns
may reflect the underlying physics of the plasma, while real-
time data interpretation is indispensable for plasma control.

In this work, we advocate the essential role played by the
uncertainty in the data and we show its importance for pattern
recognition in fusion data. According to this viewpoint,
the fundamental object resulting from a measurement act
is a probability distribution. Because pattern recognition is
essentially based on geometrical concepts such as distance,
we use information geometry as a mathematical framework
to calculate distances between distributions, specifically the
geodesic distance.

There are several advantages of our approach. First, the
measurement uncertainty is intrinsically part of the data de-
scription and is carried along with any further processing of
the data, such as pattern recognition. Second, the full proba-
bility distribution of a measurement carries much more infor-
mation than the measurement value weighted by its error bar.
Hence, conclusions drawn from the data become more reli-
able and pattern recognition becomes more effective. Third,
dependency structure, such as correlations between measure-
ments or physical variables, contains even more information
and can be modeled through multivariate distributions.

In this paper, we consider the visualization and classifi-
cation of confinement modes and edge localized mode (ELM)
classes in an international database and we discuss the poten-
tial of our framework for scaling laws in fusion devices.

II. A GEOMETRIC-PROBABILISTIC PATTERN
RECOGNITION FRAMEWORK

In the field of information geometry, a probability den-
sity family is interpreted as a Riemannian differentiable

a)Contributed paper, published as part of the Proceedings of the 19th
Topical Conference on High-Temperature Plasma Diagnostics, Monterey,
California, May 2012.

b)geert.verdoolaege@ugent.be.

manifold,1 or information manifold. A point on the manifold
corresponds to a specific probability density function within
the family and the family parameters provide a coordinate
system on the manifold. The Fisher information acts as a met-
ric tensor, allowing the calculation of the geodesic distance
(GD) as a natural and theoretically motivated similarity mea-
sure between probability distributions.2, 3

In this work we use a simple probability model, namely,
the univariate Gaussian distribution, parameterized by its
mean μ and standard deviation σ . A closed-form expression
exists for the corresponding GD, which permits a fast eval-
uation. More details of our formalism will be published in
Ref. 4.

III. THE INTERNATIONAL TOKAMAK PHYSICS
ACTIVITY (ITPA) DATABASE

We employ measurements from the ITPA Global H-
mode Confinement Database (DB3, version 13f), henceforth
referred to as “the ITPA database”.5, 6 The data have been
used extensively for determining scaling laws for the energy
confinement time, mainly as a function of a set of eight
plasma and engineering parameters: plasma current (Ip),
vacuum toroidal magnetic field, total power loss from the
plasma (Ploss), central line-averaged electron density, plasma
major radius, plasma minor radius, elongation and effective
atomic mass. We use the same eight variables to visualize and
discriminate between confinement regimes and ELM classes.

The ITPA database lists typical error estimates of mea-
surements for the various plasma and engineering variables,
although it is acknowledged that the reliability of these
estimates may vary across the database. We assume that
the error bars represent a single standard deviation. If this
is the only information that is available on the underlying
probability distribution, then according to the principle of
maximum entropy the distribution is Gaussian with mean
the measurement itself and standard deviation the error
bar. We also suppose that, for stationary plasma conditions,
all variables are statistically independent and so the joint
distribution factorizes. It is important to note that our
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formalism has no difficulties with the heterogeneous sources
of the measurements, coming from different tokamaks and
possibly with different error bars for essentially the same
physical quantities. The reason is that the error estimates are
automatically embedded in the probabilistic data description.

For each entry, or sample, in the database, some
characteristics of the confinement regime were determined
by experts. Specifically, the confinement was labeled as
OHM (Ohmic), L or RI, which we summarize through an
“L-mode” class for brevity. In addition, we define an
“H-mode” class as consisting of plasmas in pure H-mode (H),
with frequent L-H transitions (LHLHL), H-mode with small
ELMs (HSELM), high-frequency small ELMs (HSELMH),
large ELMs (HGELM), or high-frequency large ELMs
(HGELMH).

IV. VISUALIZATION AND IDENTIFICATION OF
CONFINEMENT REGIMES AND ELM CLASSES

We now discuss the application of our framework to visu-
alization and classification of confinement data from the ITPA
database. The real-time automated identification of confine-
ment regimes (usually L- and H-mode) and ELM types has
important applications in plasma control and will be an impor-
tant tool for ITER. In addition, extracted patterns from con-
finement data, such as clusters of similar plasma regimes, can
contribute to the understanding of the physics. Furthermore,
the concept of regime identification is closely related to the
establishment of scaling laws for the L to H transition power
threshold and the energy confinement time.

A. Visualization of confinement data

An important tool for the identification of patterns in the
ITPA database is the visualization of the data through a scat-
ter plot in the natural two-dimensional Euclidean space. Since
the original data dimensionality is eight, the data visualization
involves a dimensionality reduction procedure. To this end we
used metric multidimensional scaling (MDS), searching for a
configuration of points in the Euclidean plane yielding mini-
mal distortion of all pairwise distances.4

Figure 1 shows approximately isometric projections of
the ITPA data into the Euclidean plane, obtained via MDS.
For each sample in the database the basic confinement regime,
i.e., L-mode or H-mode, was obtained from the database and
is indicated in the figure. For Figures 1(a) and 1(b) the mea-
surement uncertainty was not considered and MDS was car-
ried out on the basis of simple Euclidean distances in the orig-

FIG. 1. Two-dimensional projections of the ITPA data using MDS, with in-
dicated L- and H-mode clusters. (a) Using the Euclidean distance without
measurement error and with the L-mode points on top. (b) The same, but
with the H-mode points on top for better visibility. (c) Using the GD with
measurement error.
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FIG. 2. (a) MDS projection using the GD with a rotated coordinate system.
When moving along the horizontal (vertical) axis towards the right (upwards),
the points that one meets correspond to actual measurements in the database
of Ploss (Ip) as indicated in panel (b) ((c)).

inal data space. On the contrary, the MDS in Figure 1(c) is
based on GDs between Gaussian product distributions. It can
be clearly noticed that the projections obtained with the GD,
which take into account the measurement error, exhibit con-
siderably more structure compared to the Euclidean case. In
particular, it is much easier to visually discriminate between
the L- and H-mode clusters.

For the MDS projection using the GD, it turns out that
there is a coordinate system where the horizontal axis roughly
corresponds to Ploss and the vertical axis to Ip. This is indi-
cated in Figure 2(a), with the coordinate system rotated about
45◦ clockwise with respect to the horizontal and vertical di-
rections in Figure 1(c). The trend of the measurements of Ploss

and Ip along their respective axes is shown in Figures 2(b) and
2(c), respectively. This shows that MDS recognizes Ploss and
Ip as two of the most fundamental variables (similar to princi-
pal components) governing the confinement.

Finally, in Figure 3 the MDS projection using the GD
is again plotted with the database samples divided according
to the confinement regimes mentioned in Sec. III. There is a
considerable overlap between the different ELM classes, but
this may be partly caused by the restrictive two-dimensional
projection.

B. Classification of confinement regimes and ELMs

We now turn to classification of confinement data. At
this stage we do not intend to present a dedicated platform
for L–H or ELM classification for application in the field,
although the proposed methods can certainly be used for that
purpose. Rather, the objective of the experiments discussed
here is to show the added value of the intrinsic probabilistic
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FIG. 3. MDS projection with indication of the confinement regimes and
ELM classes.
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TABLE I. Mean and standard deviation of the correct classification rates
(%) for the classification of confinement regimes using a kNN classifier for
different sets of variables, and Euclidean and geodesic distance measures.

Variables Mode Euclidean GD

All eight L 97.4 ± 0.7 97.2 ± 0.9
H 96.6 ± 0.6 98.1 ± 0.5

Ip, Ploss L 89.6 ± 1.5 94.5 ± 1.3
H 92.0 ± 0.9 94.7 ± 0.9

description of the data and to provide a benchmark for
visualization and classification algorithms.

We performed a series of classification experiments with
two classes (L-mode and H-mode) using 5% of the data for
training. We carried out k-nearest neighbor (kNN) classifica-
tion with k = 1, effectively assigning a point to be classified
to the class that its nearest neighbor belongs to. Both the Eu-
clidean distance and the GD were used as a similarity mea-
sure. All experiments were repeated 100 times, each time us-
ing different training and test sets, and the mean and standard
deviation of the correct classification rates for L-mode and H-
mode were calculated. The results are shown in Table I. If all
eight plasma parameters are used, the performance of the Eu-
clidean distance and the GD is excellent but relatively similar.
In order to more clearly show the advantage of the probabilis-
tic approach, we repeated the experiments using only Ip and
Ploss, which were identified above as two fundamental degrees
of freedom. This results in generally lower recognition rates,
but the superior performance of the GD can be clearly noticed
now.

We also used kNN to see if the ELM classes can be
identified in the original data space. Although about 90% of
the large ELMs could be recognized, the small ELMs had a
recognition rate of only 56% with the Euclidean distance and
61% using the GD. Clearly, more information is needed to
reliably classify ELM behavior.

V. POTENTIAL FOR SCALING LAWS

Given the superior performance of our geometric-
probabilistic approach for classification of confinement

modes, an advantage may also be obtained in establishing
scaling laws from the ITPA data using a regression analy-
sis. Genuine regression on Riemannian information manifolds
has not been considered before, but we performed a crude test
to evaluate its potential. We projected the data using MDS
based on the GD into an eight-dimensional Euclidean space.
After an additional logarithmic transformation of each vari-
able, we then performed linear regression in the projected
space, and compared with linear regression in the original
data space, considered as a Euclidean space. In the original
data space a normalized coefficient of determination R2 ≈ 0.3
was obtained, while in the projected space this resulted in R2

≈ 0.4. Therefore, a considerable potential for verifying and
possibly improving scaling laws can be expected.

VI. CONCLUSION

We have indicated the importance for pattern recognition
in fusion data of reliable estimates of measurement uncer-
tainty and we have highlighted the fundamental character of
probability distributions for describing the measurement act.
We have shown the appropriateness of information geometry
and the geodesic distance for visualization and classification
of probabilistic confinement data in the ITPA database. It is
remarkable that even the approximate and limited information
in the ITPA database on the underlying probability distribu-
tion is beneficial to pattern recognition. Finally, we have noted
the possibility of our framework for recognition of ELM be-
havior and the potential for scaling laws. Both topics will be
the subject of future work.
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