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Abstract

We propose definitions of homogeneity and projective equivalence for
systems of ordinary differential equations of order greater than two,
which allow us to generalize the concept of a spray (for systems of
order two). We show that the Euler-Lagrange fields of parametric La-
grangians of order greater than one which are regular (in a natural
sense that we define) form a projective equivalence class of homoge-
neous systems. We show further that the geodesics, or base integral
curves, of projectively equivalent homogeneous differential equation
fields are the same apart from orientation-preserving reparametriza-
tion; that is, homogeneous differential equation fields determine sys-
tems of paths.
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1 Introduction

This paper is concerned with systems of ordinary differential equations

yin+1 = Γi(yi, yi1, . . . , y
i
n); yir =

dryi

dxr

of order n + 1, n ≥ 1, in m dependent variables yi, i = 1, 2, . . . ,m and one
independent variable x. Second-order systems of this kind (n = 1) have
been studied intensively using methods of differential geometry, by taking
advantage of the fact that the equations are those satisfied by the integral
curves of a vector field of a certain type, a so-called second-order differential
equation field (often abbreviated to SODE) on the tangent bundle TM of
an m-dimensional differential manifold M , or some open submanifold of
it. Higher-order systems may be studied by analoguous methods, where
now the differential equation vector field in question lives (in the case of
equations of order n+1) on the bundle T nM of n-velocities, in other words
n-jets at zero of curves in M (whose domains contain zero), or some open
submanifold of it. This is the approach adopted here. (For a recent account
of the geometric theory of differential equations, covering both second- and
higher-order systems, and containing many references, see [1]. However, this
reference is mainly concerned with aspects of the theory not covered here,
namely generalized connections and related matters.)

In the theory of second-order differential equation fields an important
role is played by a class of fields which are homogeneous in a certain sense.
Let T◦M be the slit tangent bundle ofM (TM with the zero section deleted).
Let ∆ be the Liouville vector field, that is, the infinitesimal generator of di-
lations of the fibres of T◦M . A second-order differential equation field Γ
on T◦M is called a spray if it satisfies [∆,Γ] = Γ. The canonical spray of
a Finsler space, whose integral curves project onto geodesics with constant
speed parametrization, is a helpful example. If Γ is a spray then the distri-
bution D+ spanned by Γ and ∆ is involutive. Any second-order differential
equation field Γ′ contained in D+ is said to be projectively equivalent to Γ,
and its base integral curves are obtained from those of Γ by reparametriza-
tion. Slightly more generally, for the purposes of this paper we shall say
that a second-order differential equation field Γ is homogeneous if the dis-
tribution D+ spanned by Γ and ∆ is involutive. It is not difficult to show
that if Γ is homogeneous in this sense then there is a projectively equivalent
second-order differential equation field which is a spray. In Finsler geom-
etry the canonical spray is the Euler-Lagrange field of the energy, which
is a regular Lagrangian. But instead of the energy one may consider the
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Finsler function itself as a Lagrangian. Because of its assumed homogeneity
it is parametric: that is to say, the corresponding action integral is invariant
under reparametrizations. Such a parametric Lagrangian determines, not a
single Euler-Lagrange field, but a projective equivalence class of second-order
differential equation fields, which in the Finslerian case is the projective class
of the canonical spray.

Our purpose in the present paper is to generalize the concept of homo-
geneity so that it applies to differential equation fields of higher order. For
this purpose we introduce the jet group of order n, Ln, which is defined as
follows. Consider the local diffeomorphisms φ of R, defined in a neighbour-
hood of zero and satisfying φ(0) = 0. Then Ln is the set of n-jets at zero
of such local diffeomorphisms; it is a group under composition, and even a
Lie group. Moreover, it acts to the right on T nM . Let D be the distri-
bution spanned by the generators of the action. We say that a differential
equation field Γ is homogeneous if the distribution D+ spanned by Γ and D

is involutive. This generalizes the concept described above for second-order
differential equation fields because when n = 1, D is just the one-dimensional
distribution spanned by ∆. (A preliminary attempt to examine homogene-
ity of higher-order differential equation fields is to be found in [2]; however,
this paper is again concerend mainly with connection theory.)

Section 3 below is devoted to the definition of homogeneity and its im-
mediate consequences.

With this definition we show that the other properties of homgeneous
second-order differential equation fields discussed above also generalize. The
extremals of a Lagrangian of order n satisfy differential equations of order
2n. If the Lagrangian is parametric, so that it satisfies the so-called Zermelo
conditions, then its extremals are determined only up to reparametrization.
We show in Section 4 that, provided it is sufficiently regular, a parametric
Lagrangian determines a projective equivalence class of homogeneous differ-
ential equation fields. This result gives us the reassurence that our definition
is not vacuous.

In Section 5 we show that the base integral curves of projectively equiva-
lent homogeneous differential equation fields differ only in parametrization.

Section 6 of the paper contains some examples, while Section 2 is devoted
to the requisite geometry of jet manifolds and jet groups.

We shall use the Einstein summation convention for coordinate indices
such as i; other sums will be indicated explicitly.
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2 Geometrical background

We consider differentiable manifolds of class C∞ which are Hausdorff, second-
countable and (unless otherwise specified) connected.

Let M be such a manifold with dimM = m and with local coordinates
(yi). Consider curves γ : (a, b) → M , where 0 ∈ (a, b), and let T nM be the
set of n-jets at zero {jn0 γ}, with coordinates (yir) for 0 ≤ r ≤ n given by

yir(j
n
0 γ) =

drγi

dxr

∣

∣

∣

∣

0

.

It is a standard result that T nM is a manifold with dimT nM = (n + 1)m,
and that the maps τn : T nM → M and τn,n′ : T nM → T n′

M (n′ < n) given
by

τn(j
n
0 γ) = γ(0), τn,n′(jn0 γ) = jn

′

0 γ

are fibre bundles.
The manifold T n+1M has a natural identification with a submanifold of

TT nM , obtained because the map t 7→ jnt γ defines a curve

̃nγ : t 7→ jn0 (γ ◦ tt)

in T nM , where tt : R → R is the translation x 7→ x+ t. We therefore obtain
the inclusion

T n+1M → TT nM, jn+1
0 γ 7→ j0̃

nγ

given in coordinates by yir+1 7→ ẏir. We may think of this inclusion as a sec-
tion of the pull-back vector bundle τ∗n+1,nTT

nM → T n+1M , in other words
as a vector field along the projection τn+1,n; with such an interpretation it
is the total derivative

dT =

n
∑

r=0

yir+1

∂

∂yir
.

The projection τn+1,n : T n+1M → T nM is in fact an affine bundle, modelled
on the vector bundle V τn,n−1 → T nM of very vertical tangent vectors on
T nM . The affine action is just addition in the fibres of TT nM → T nM :

(yir; 0, . . . , 0, z
i) + (yir; ẏ

i
0, . . . , ẏ

i
n−1, ẏ

i
n) 7→ (yir; ẏ

i
0, . . . , ẏ

i
n−1, z

i + ẏin)

gives rise, using the identification ẏir = yir+1 on T n+1M , to

(yir; z
i) + (yir; y

i
n+1) 7→ (yir; z

i + yin+1).
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We shall make use later of the vertical endomorphism on T nM . This is
the type (1, 1) tensor field S given in coordinates by

S =
n
∑

r=1

r
∂

∂yir
⊗ dyir−1;

it is canonically defined, and generalizes the well-known vertical endomor-
phism or tangent structure on TM . It is not difficult to show that for any
1-form α on T nM ,

S(dTα)− dT(Sα) = τ∗n+1,nα

(where in the first instance S is the vertical endomorphism on T n+1M , in the
second the one on T nM). This may conveniently be written SdT−dTS = 1,
with the pull-back map understood (note that we assume action on 1-forms;
there is a more complicated formula for action on forms of higher degree).

A section Γ̃ : T nM → T n+1M of the affine bundle τn+1,n is called a
differential equation field ; in coordinates it is indeed a differential equation

yin+1 = Γi(yi0, . . . , y
i
n).

A curve γ : (a, b) → M is a geodesic of the equation if ̃n+1γ = Γ̃ ◦ ̃nγ.
Composing Γ̃ with the inclusion T n+1M → TT nM gives a vector field Γ on
T nM of the particular form

Γ =

n−1
∑

r=0

yir+1

∂

∂yir
+ Γi ∂

∂yin
;

every integral curve γ̃ : (a, b) → T nM of Γ is of the form γ̃ = ̃nγ for some
geodesic γ of Γ̃; that is to say, the geodesics of Γ̃ are the base integral curves
of Γ. We use the term ‘differential equation field’ to refer to Γ as well as Γ̃.

Now consider local diffeomorphisms φ of R defined in a neighbourhood
of zero and satisfying φ(0) = 0. Let Ln be the set of n-jets at zero {jn0 φ} of
these local diffeomorphisms; this is a group under composition,

jn0 φ1 · j
n
0 φ2 = jn0 (φ1 ◦ φ2)

and is a Lie group. As a manifold it has two connected components. The
component of the identity is a subgroup Ln+ of index 2 containing jets of
local diffeomorphisms satisfying φ′(0) > 0. The map

jnφ0 7→
(

φ′(0), φ′′(0), . . . , φ(n)(0)
)

∈ R
n

5



is a global coordinate system on Ln (and Ln+). We can obtain an explicit
formula for the product in these coordinates by using an expression for
the nth derivative of a composition of functions. This is Faà di Bruno’s
formula [4], which we take in the form involving the Bell polynomials:

(ξ ◦ η)(n)(x) =

n
∑

r=1

ξ(r)(η(x))Br
n

(

η′(x), η′′(x), . . . , η(n+1−r)(x)
)

;

here ξ and η are functions of some variable t with (in our case) ξ(0) = η(0) =
0, and Br

n(η1, η2, . . . , ηn+1−r) is a polynomial in the n + 1 − r variables ηp,
for which the following explicit formula is known:

Br
n(η1, η2, . . . , ηn+1−r)

=
∑ n!

q1!q2! · · · qn+1−r!

(η1
1!

)q1
(η2
2!

)q2
. . .

(

ηn+1−r

(n+ 1− r)!

)qn+1−r

where the sum is over all non-negative integers q1, q2, . . . , qn+1−r such that
q1 + q2 + . . .+ qn+1−r = r and q1 +2q2 + . . .+ (n+1− r)qn+1−r = n. (This
formula may easily be derived by taking ξ(x) = xr and expressing η(x) as a
formal power series in x:

η(x) =
η1
1!
x+

η2
2!
x2 +

η3
3!
x3 + · · · ;

then (r!/n!)Br
n(η1, η2, . . . , ηn+1−r) is the coefficient of xn in the formal power

series for (η(x))r . In principle Br
n could depend on ηp with p > n+1−r, but

in practice, since η(x) contains no constant term there can be no contribution
to xn in (η(x))r coming from the term ηpx

p/p! if p > n+1− r.) To express
multiplication in Ln in terms of the global coordinate system introduced
above, a vectorial notation is convenient. We denote by ξ, η elements of
R
n, considered as row vectors, and by B(η) the (upper triangular) matrix

whose p, q entry is Bp
q (η1, η2, . . .). Then the product in Ln is given by

ξ · η = ξB(η);

we must of course assume that ξ1 and η1 are non-zero. Note that the ma-
trix which determines multiplication in Ln′

with n′ < n is just the n′ × n′

submatrix of B(η) in the upper left corner. For instance, taking n = 4 gives

B(η) =









η1 η2 η3 η4
0 η21 3η1η2 4η1η3 + 3η22
0 0 η31 6η21η2
0 0 0 η41









.
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There are obvious projections λn,1 : Ln → L1 and λ+
n,1 : Ln+ → L1+

given by jn0 φ 7→ j10φ; they are homomorphisms because

λn,1(j
n
0 φ1 · j

n
0 φ2) = λn,1(j

n
0 (φ1 ◦ φ2)) = j10(φ1 ◦ φ2) = j10φ1 · j

1
0φ2.

The kernel of λn,1 is therefore a normal subgroup Kn
⊳ Ln. By inspection

of the matrix B above in the case n = 4 we see that K2 and K3 are abelian
but K4 is not; indeed Kn is non-abelian whenever n ≥ 4.

We may, in addition, identify L1 with a subgroup of Ln by mapping
j10φ to jn0 µφ′(0), where µs : R → R is the multiplication diffeomorphism
µs(t) = st for s 6= 0. Thus Ln may be regarded as a semidirect product
L1

⋊Kn, using the action of L1 on Kn by conjugation.
Furthermore, we may write Ln = L2

⋊ Jn, where Jn is the kernel of the
homomorphism λn,2 : Ln → L2 given by jn0 φ 7→ j20φ. For the inclusion of
L2 in Ln we take, as a representative of j20φ, not the quadratic polynomial
φ(x) = ax+ 1

2bx
2 but the Möbius transformation

φ(x) =
ax

1− a−1bx

because the composition of two of these transformations is another map of
the same form. By calculating the derivatives of φ one finds a polynomial
representative of jn0 φ,

n
∑

r=1

br−1xr

ar−2

(see [5]). Note that the kernels of the homomorphisms λn,r do not give
semidirect product decompositions when r > 2.

We next obtain a basis for the Lie algebra ln of the jet group Ln in terms
of the coordinates defined above. For this purpose we need the following
lemma.

Lemma 1. For given n, p = 1, 2, . . . , n, and r = 1, 2, . . . , n+ 1− p,

∂Bp
n

∂ηr

∣

∣

∣

∣

(1,0,...,0)

= 0

unless p = n+ 1− r, when

∂Bp
n

∂ηr

∣

∣

∣

∣

(1,0,...,0)

=
n!

(n− r)!r!
.
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Proof. We consider the cases r = 1, r ≥ 2 separately. We have

∂Bp
n

∂η1
=

∑ n!

(q1 − 1)!q2! · · · qn+1−p!1!

×
(η1
1!

)q1−1 (η2
2!

)q2
. . .

(

ηn+1−r

(n+ 1− r)!

)qn+1−r

where the sum is over all non-negative integers q1, q2, . . . , qn+1−r with q1 > 0
such that q1+q2+ . . .+qn+1−r = p and q1+2q2+ . . .+(n+1−r)qn+1−r = n.
With η1 = 1, ηr = 0 for r ≥ 2 we get a non-zero contribution to the sum
only if qr = 0 for r ≥ 2, when we must have q1 = p and q1 = n. That is,
there is no non-zero term in the sum unless p = n, and so

∂Bp
n

∂η1

∣

∣

∣

∣

(1,0,...,0)

=







0 p 6= n
n!

(n− 1)!1!
p = n

.

For r ≥ 2 on the other hand

∂Bp
n

∂ηr
=

∑ n!

q1! · · · (qr − 1)! · · · qn+1−p!r!

×
(η1
1!

)q1
. . .

(ηr
r!

)qr−1
. . .

(

ηn+1−r

(n+ 1− r)!

)qn+1−r

where the sum is now over all non-negative integers q1, q2, . . . , qn+1−r with
qr > 0 such that q1+q2+. . .+qn+1−r = p and q1+2q2+. . .+(n+1−r)qn+1−r =
n. With η1 = 1, ηs = 0 for s ≥ 2 we get a non-zero contribution to the sum
only if qr = 1, qs = 0 for s ≥ 2, s 6= r. We must therefore have q1 + 1 = p
and q1 + r = n, that is, p = n+ 1− r and q1 = n− r. Then

∂Bp
n

∂ξr

∣

∣

∣

∣

(1,0,...,0)

=







0 p 6= n+ 1− r
n!

(n− r)!r!
p = n+ 1− r

.

We denote by δr, r = 1, 2, . . . , n, the left-invariant vector field on Ln

which takes the value

r!
∂

∂yr

at the identity. Here (y1, y2, . . . , yn) are the coordinates on Ln. The factor
r! is included for later convenience. We now obtain an explicit expression
for δr in terms of coordinates.
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Proposition 1.

δr =
n
∑

s=r

s!

(s− r)!
ys+1−r

∂

∂ys
.

Proof. Let y = (y1, y2, . . . , yn) be a generic point of Ln. The identity e has
coordinates (1, 0, . . . , 0). We have

δr
y
= Ly|∗eδ

r
e

where Ly is left multiplication by y: Lyη = yB(η). Then

Ly|∗e
∂

∂yr
=

n
∑

s=1

s
∑

p=1

yp
∂Bp

s

∂ηr

∣

∣

∣

∣

(1,0,...,0)

∂

∂ys

=

n
∑

s=r

s!

(s− r)!r!
ys+1−r

∂

∂ys
.

Corollary 1.

[δr , δs] =

{

(r − s)δr+s−1 if r + s ≤ n+ 1
0 otherwise

.

One reason for introducing the factor r! in the definition of δr is to simplify
the expression for the bracket.

We can now make some observations about the Lie algebra ln which
correspond to properties of the Lie group Ln mentioned earlier. In the first
place, {δ1, δ2} span a subalgebra. Furthermore, for any p = 1, 2, . . . , n,
〈δr : r ≥ p〉 is an ideal in ln (since for any r ≥ p and s ≥ 1, r + s − 1 ≥ p).
Let lnp ⊂ ln be the ideal just defined (so that in particular ln = ln1 ). Then
for p > 1, ln/lnp ∼ lp−1.

The ideals lnp for p > 1 are nilpotent. It is known that for a nilpotent Lie
algebra, exponentiation is a surjective map onto the simply connected Lie
group of which it is the algebra; it follows in particular that exponentiation
maps ln2 onto Kn (see [5]). But it is possible to prove this directly, as we
now show. The Lie algebra ln consists of linear vector fields on R

n, and so
exponentiation in the group Ln coincides with matrix exponentiation. In the
case of an element κ =

∑n
r=2 krδ

r of ln2 the matrix Kn to be exponentiated
is strictly lower triangular: its elements are given by

(Kn)rs =







0 r < s
r!

(s − 1)!
kr+1−s r ≥ s

.
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Notice that the (n − 1) × (n − 1) submatrix in the upper left corner is just
the matrix Kn−1 corresponding to the element

∑n−1
r=2 krδ

r of ln−1
2 . As an

example, with n = 5 we have

K5 =

















0 0 0 0 0
2!
0!k2 0 0 0 0
3!
0!k3

3!
1!k2 0 0 0

4!
0!k4

4!
1!k3

4!
2!k2 0 0

5!
0!k5

5!
1!k4

5!
2!k3

5!
3!k2 0

















.

Proposition 2. For any y = (1, y2, y3, . . . , yn)
T ∈ Kn there is κ ∈ ln2 such

that y = expκ.

Proof. As a column vector in R
n, expκ ∈ Ln is just (expKn)e, where e =

(1, 0, . . . , 0)T ; that is to say, expκ is the left column of expKn. It is easy to
see that the first n− 1 entries in the left column of expKn comprise the left
column of the (n− 1)× (n− 1) matrix expKn−1, while the lower left corner
of expKn is of the form n!kn+p(k2, k3, . . . , kn−1) where p is a polynomial in
the indicated variables. Since Kn is strictly lower triangular, expKn has 1s
down the diagonal. We have to show that for any y2, y3, . . . , yn we can choose
k2, k3, . . . , kn such that the left column of expKn is (1, y2, y3, . . . , yn)

T . We
proceed by induction. Thus we assume that we can find k2, k3, . . . , kn−1

such that the left column of expKn−1 is (1, y2, y3, . . . , yn−1)
T . With these

values of k2, k3, . . . , kn−1 we set kn = (yn − p(k2, k3, . . . , kn−1))/n!: then the
left column of expKn is (1, y2, y3, . . . , yn)

T as required. We have

expK2 =

(

1 0
2!k2 1

)

,

so the first step certainly works.

We next turn to the relationship between ln and certain vector fields on
R. An element δ of ln determines a one-parameter subgroup of Ln, namely
t 7→ exp(tδ): observe first that the integral curve of δ through y ∈ Ln is
t 7→ y · exp(tδ). Now let φt be a one-parameter group of diffeomorphisms
of R such that φt(0) = 0. Then φ̃t = jn0 φt is evidently a one-parameter
subgroup of Ln whose infinitesimal generator, a vector field χ on Ln, is left
invariant and therefore an element of ln. For any y ∈ Ln, χy is the tangent
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vector at t = 0 to the curve t 7→ y · φ̃t. But the sth component of y · φ̃t is
given by

(y · φ̃t)s =

s
∑

p=1

ypB
p
s

(

∂φt

∂x

∣

∣

∣

∣

0

,
∂2φt

∂x2

∣

∣

∣

∣

0

, . . . ,
∂s+1−pφt

∂xs+p−1

∣

∣

∣

∣

0

)

yp.

Note that since φ0(x) = x, the argument of Bp
s at t = 0 is (1, 0, . . . , 0), while

∂

∂t

(

∂rφt

∂xr

)

(0,0)

=
∂r

∂xr

(

∂φt

∂t

)

(0,0)

=
drX

dxr

∣

∣

∣

∣

0

where X(x)∂/∂x is the infinitesimal generator of φt (a vector field on R).
On differentiating the formula for (y · φ̃t)s with respect to t at t = 0 we
obtain

χ =
n
∑

s=1





s
∑

p=1

s!

(s− p)!p!

dpX

dxp

∣

∣

∣

∣

0

ys+1−p





∂

∂ys
=

n
∑

p=1

1

p!

dpX

dxp

∣

∣

∣

∣

0

δp.

In fact

Φ : X 7→
n
∑

p=1

1

p!

dpX

dxp

∣

∣

∣

∣

0

δp

is a linear map from the space of vector fields on R vanishing at the ori-
gin onto ln, such that Φ(X∂/∂x) depends only on jn0X. In particular,
Φ(xr∂/∂x) = δr for r = 1, 2, . . . , n while Φ(xr∂/∂x) = 0 for r > n. Now

[

xr
∂

∂x
, xs

∂

∂x

]

= (s− r)xr+s−1 ∂

∂x
,

so Φ is an anti-homomorphism.
Let p be the Lie algebra of vector fields on R whose coefficients are formal

power series in x, and let pn be the subalgebra of those vector fields which
vanish to order n at 0, that is, whose coefficient begins with xn+1. Then
p0 is the subalgebra of formal power series vector fields which vanish at 0;
and for n > 0, pn is an ideal in p0. If we think of Φ as a map p0 → ln it
is a surjective anti-homomorphism with kernel pn, and therefore defines an
anti-isomorphism p0/pn → ln. To put things another way, we can realise
ln as the space of vector fields on R whose coefficients are polynomials of
order n which vanish at the origin, with bracket the negative of the ordinary
bracket of vector fields followed by truncation at order n. This alternative
realisation is found elsewhere in the literature. The fact that the bracket is
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related to the negative of the ordinary bracket is not too surprising when
one recalls that if the diffeomorphism group of R is regarded as an infinite
dimensional Lie group, its Lie algebra is the space of vector fields on R with
compact support, but with bracket the negative of the ordinary vector field
bracket.

The group Ln has a right action αn on T nM given by composition of
jets,

αn : Ln × T nM → T nM, (jn0 φ, j
n
0 γ) 7→ jn0 (γ ◦ φ);

the action is fibred over the identity on M . It restricts to the ‘regular’
submanifold T n

◦ M (that is, of n-jets jn0 γ where γ is a curve with γ′(0) 6= 0, so
that γ is an immersion near zero) because composing a diffeomorphism with
an immersion gives another immersion. We may use Faá di Bruno’s formula
recursively to see that the restricted action is free, using the coordinates
(yir), 1 ≤ i ≤ n, defined on complete fibres over M : by regularity at least one
coordinate yi1 must be non-zero at any given point, so if αn(j

n
0 φ, j

n
0 γ) = jn0 γ

we see successively that φ′(0) = 1 and then that φ′′(0) = 0, φ′′′(0) = 0,
. . . , so that jn0 φ = 1Ln . The orbit space of T n

◦ M under the action αn

has a manifold structure (and is, indeed, a Hausdorff manifold); we shall
denote it by PT nM . The subgroup Ln+ acts in the same way, and its orbit
space will be denoted by P+T nM ; this is a double cover of PT nM . Let
ρn : T n

◦ M → PT nM and ρ+n : T n
◦ M → P+T nM be the projections.

In the present work we shall in effect be interested in the circumstances
when a differential equation field on T nM (more accurately, on T n

◦ M) ‘passes
to the quotient’ to determine a line-element field on PT nM or an oriented
line-element field on P+T nM . In view of the identification of T n+1M with
an affine sub-bundle of TT nM over T nM , it is of some interest to consider
the identification of PT n+1 with a submanifold of PT (PT nM). One may do
this, for instance, by using the action of the tangent group TLn on TT n

◦ M
to give T (PT nM), and then the action of L1 on the open submanifold
T◦(PT nM) to give PT (PT nM). In fact it is known that PT n+1 is an affine
bundle over PT nM , even though PT (PT nM) → PT nM certainly does
not have an affine structure, as its fibres are compact (they are projective
spaces): see, for instance, the discussion in [6], which uses the fact that the
kernel of the homomorphism Ln+1 → Ln is abelian. Similar arguments hold
in the oriented case.

We shall need to know the fundamental vector fields on T nM of the
action of Ln. We denote by ∆r the fundamental vector field corresponding
to δr ∈ ln. Then ∆r is the infinitesimal generator of the one-parameter group
Rexp(tδr) (where R denotes the right action). In terms of the coordinates (yir)

12



on T nM , the action of η ∈ Ln is given by

(Rη(y
j
s))

i
r =

r
∑

p=1

yipB
p
r (η1, η2, . . . , ηr+1−p).

By a by now familiar type of argument invoking Lemma 1 we obtain

Proposition 3.

∆r =
n
∑

s=r

s!

(s− r)!
yis+1−r

∂

∂yis
.

In particular ∆1, which corresponds to the infinitesimal generator of dila-
tions of R, is given by

∆1 = yi1
∂

∂yi1
+ 2yi2

∂

∂yi2
+ · · · + nyin

∂

∂yin
.

Corollary 2.

[∆r,∆s] =

{

(r − s)∆r+s−1 if r + s ≤ n+ 1
0 otherwise

.

Corollary 3. In terms of the vertical endomorphism S

1. a vector field Γ on T n
◦ M is a differential equation field if and only if

S(Γ) = ∆1;

2. ∆r+1 = S(∆r) = Sr(∆1) = Sr+1(Γ).

We shall not use the results of Corollary 3 directly, but we mention
them because they provide an alternative starting point for the geometrical
analysis of differential equation fields which may be found elsewhere in the
literature.

We shall however use in Section 4 a result which is related to item 1
of Corollary 3, which we now explain. We denote by i the operator of
interior product of a vector field with a form, so that for example for a
1-form α, iXα = α(X). We extend this notation to apply to the total
derivative: if α is a 1-form on T n

◦ M then iTα is a function on T n+1
◦ M . Then

iT(Sα) = i∆1(τ∗n+1,nα), which may conveniently be written iTS = i∆1 , with
the pull-back map understood. Note that we assert only that this formula
holds for action on 1-forms (there is a more complicated formula for action
on forms of higher degree). Similarly, in relation to item 2, we have (again
for action on 1-forms) iTS

r = i∆r .
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3 Homogeneous higher-order systems

We now consider differential equation (vector) fields on T n
◦ M .

Definition 1. A differential equation field Γ on T n
◦ M is homogeneous if the

distribution D+ spanned by Γ and the ∆r is involutive.

Proposition 4. The differential equation field Γ is homogeneous if and only
if there are functions λr, r = 1, 2, . . . , n such that

[∆1,Γ] = Γ + λ1∆n, [∆r,Γ] = r∆r−1 + λr∆n, r = 2, 3, . . . , n.

When they exist, such functions must satisfy the following consistency con-
ditions, where 1 < r, s ≤ n, r 6= s:

∆1(λr)−∆r(λ1) = (n+ 1− r)λr;

∆r(λs)−∆s(λr) = (r − s)λr+s−1, r + s ≤ n+ 1;

∆r(λs)−∆s(λr) = −(n+ 1)(r − s), r + s = n+ 2;

∆r(λs)−∆s(λr) = 0, r + s > n+ 2.

Proof. A straightforward coordinate calculation shows that [∆1,Γ]− Γ and
[∆r,Γ] − r∆r−1 are very vertical. Thus in order for D+ to be involutive
there must be functions λr such that

[∆1,Γ] = Γ + λ1∆n, [∆r,Γ] = r∆r−1 + λr∆n, r = 2, 3, . . . , n.

The consistency conditions follow from the Jacobi identities.

In terms of coordinates the conditions for

Γ =

n−1
∑

r=0

yir+1

∂

∂yir
+ Γi ∂

∂yin

to be homogeneous are

∆1(Γi) = (n+ 1)Γi + n!λ1yi1, ∆r(Γi) =
(n+ 1)!

(n+ 1− r)!
yin+2−r + n!λryi1.

If Γ is a differential equation field such thatD+ is involutive, so is Γ+µ∆n

for any function µ on T n
◦ M , and of course it belongs to the same involutive

distribution.
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One cannot, in general, demand that for n ≥ 3 a differential equation
field Γ satisfies the strong conditions

[∆1,Γ] = Γ, [∆r,Γ] = r∆r−1, r = 2, 3, . . . , n;

the Jacobi identities would be inconsistent with the bracket relations for the
∆r. (This point is discussed more fully in [2], where examples of equations
which do satisfy the conditions for n = 2 are given.) Recall that {∆1,∆2}
span a subalgebra of D; it is easily verified that the conditions

[∆1,Γ] = Γ, [∆2,Γ] = 2∆1

are consistent. We shall now show that for any homogeneous Γ̂ it is possible
to find µ such that if Γ = Γ̂ + µ∆n then Γ satisfies the conditions above
(as well as [∆r,Γ] = r∆r−1 + λr∆n for r > 2); in other words, if Γ is
homogeneous, without loss of generality we may assume that λ1 = λ2 = 0.
We need a couple of lemmas.

Lemma 2. There is a submanifold S of T n
◦ M of codimension 1 such that

∆1 is transverse to S and ∆2 is tangent to it. There is a submanifold S ′ of
S of codimension 1 such that ∆2|S is transverse to S ′.

Proof. Let g be any Riemannian metric on M . Then gijy
i
1y

j
1 is a well-

defined function on T nM (because the yi1 transform as the components of

tangent vectors), and gijy
i
1y

j
1 > 0 on T n

◦ M . Let ϕ(y) =
√

gijyi1y
j
1, and

S = {y ∈ T n
◦ M : ϕ(y) = 1}. Then ∆1(ϕ) = ϕ and ∆2(ϕ) = 0, so ∆1 and

∆2 are respectively transverse and tangent to S. Next, let ϕ′ = 1
2Γ(ϕ) for

any differential equation field Γ on T n
◦ M . We have

∆2(ϕ′) = 1
2∆

2(Γ(ϕ)) = 1
2Γ(∆

2(ϕ)) + ∆1(ϕ) = ϕ,

since [∆2,Γ]− 2∆1 is very vertical. Now

2ϕϕ′ = 1
2

∂gij
∂yk

yi1y
j
1y

k
1 + gijy

i
1y

j
2 = gijy

i
1(y

j
2 + Γj

kly
k
1y

l
1),

where the Γk
ij are the connection coefficients of the Levi-Civita connection

of the metric g, from which it is clear that S ′ = {y ∈ S : ϕ′(y) = 0} is a
codimension 1 submanifold of S, and ∆2|S is transverse to it.

Lemma 3. Let X be a complete vector field on a manifold M , with 1-
parameter group φt, and S a codimension 1 submanifold of M transverse

15



to X such that {φt(S) : t ∈ R} = M . Let f be any smooth function on
M , k any constant, and z0 any smooth function on S. Then there is a
unique smooth function z on M such that X(z) + kz = f and z|S = z0. In
particular, if f = 0 and z0 = 0 then z = 0.

Proof. One can integrate the differential equation

dz

dt
+ kz = f(φt(x)),

where x is any fixed point of S, by the integrating factor method.

(The restriction that k should be constant covers the situation encountered
below, but clearly more general equations could be considered.)

Theorem 1. Let Γ̂ be a homogeneous higher-order differential equation field
on T n

◦ M , so that D+ is involutive. Then there is a higher-order differential
equation field Γ = Γ̂ + µ∆n ∈ D+ such that

[∆1,Γ] = Γ, [∆2,Γ] = 2∆1.

Proof. Let S be a codimension 1 submanifold of T n
◦ M such that ∆1 is trans-

verse to S and ∆2 is tangent to it, and S ′ a codimension 1 submanifold of
S such that ∆2|S is transverse to S ′.

We may write

[∆1, Γ̂] = Γ̂ + λ̂1∆n, [∆2, Γ̂] = 2∆1 + λ̂2∆n.

Then with Γ = Γ̂ + µ∆n,

[∆1,Γ] = Γ + (∆1(µ) + (2− n)µ+ λ̂1)∆n.

By Lemma 3 we can solve the equation ∆1(µ) + (2 − n)µ = −λ̂1, assigning
the value of µ on S arbitrarily. Also,

[∆2,Γ] = 2∆1 + (∆2(µ) + λ̂2)∆n.

Now ∆2 is tangent to S, and µ is undetermined on that submanifold, so we
may solve the equation ∆2(µ) = −λ̂2 there, assigning the value of µ on S ′

arbitrarily. With µ satisfying these two equations, for Γ we have λ1 = 0
everywhere on T n

◦ M and λ2 = 0 on S. But from the consistency condition
for λ1 and λ2 applied to Γ we have ∆1(λ2) = (n− 1)λ2 on T n

◦ M . It follows
from Lemma 3 and the fact that λ2 = 0 on S2 that λ2 = 0 everywhere.
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We suggest, somewhat tentatively, that homogeneous higher-order dif-
ferential equation fields such that [∆1,Γ] = Γ and [∆2,Γ] = 2∆1 should be
considered as generalized sprays.

Finally in this section we observe that a homogeneous differential equa-
tion field on T n

◦ M does indeed pass to the quotient under the action of
Ln+.

Theorem 2. Let Γ be a homogeneous differential equation field on T n
◦ M .

Then the involutive distribution D+ defines an oriented line-element field
on P+T nM .

Proof. The distribution D+ evidently projects to a line-element field on
P+T nM . To orient it we take, at any point ρ+n (j

n
0 γ), the positive multiples

of ρ+n∗Γjn
0
γ for any representative point jn0 γ ∈ T n

◦ M .

4 Parametric Lagrangians

To show that the theory described above is not vacuous, we devote this
section to an important source of examples, the higher-order differential
equation fields obtained from parametric variational problems. (Related
results, but for second-order variational problems only, may be found in [8].
Multiple-integral parametric variational problems are discussed at length
in [3], and indeed the methods used here are related to those used in that
paper, but of course specialized to the case of a single integral.)

Let L be a Lagrangian function, defined on T n
◦ M . The Hilbert form of

L is the 1-form

ϑ =

n−1
∑

p=0

(−1)p

(p+ 1)!
dpTS

p+1dL

defined on T 2n−1
◦ M . This may be used to construct the Euler-Lagrange

form of the Lagrangian,
ε = dL− dTϑ

defined on T 2n
◦ M . By construction, therefore,

ε = dL− dT

n−1
∑

p=0

(−1)p

(p + 1)!
dpTS

p+1dL =
n
∑

p=0

(−1)p

p!
dpTS

pdL.

We may see that ε is horizontal over M , because SdT = dTS + 1 (modulo
pullback), so that

SdpT = dpTS + pdp−1
T
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and therefore
SdpTS

p = dpTS
p+1 + pdp−1

T Sp.

Thus Sε is a collapsing sum, and indeed

Sε =

n
∑

p=0

(−1)p

p!
dpTS

p+1dL+

n
∑

p=1

p(−1)p

p!
dp−1
T SpdL =

(−1)n

n!
dnTS

n+1dL = 0

as L has order n.

Lemma 4. The Euler-Lagrange form ε vanishes along the extremals of any
fixed-endpoint variational problem defined by L.

Proof. An extremal of such a problem is a curve γ in M such that
∫ b

a

(̃nγ)∗LXnLdt = 0

for any vector field X on M vanishing at the (fixed) image of the endpoints
of [a, b], where Xn denotes the prolongation of X to T n

◦ M . Then
∫ b

a

(̃nγ)∗LXnLdt =

∫ b

a

(̃nγ)∗(iXndL) dt+

∫ b

a

(̃nγ)∗(diXnL) dt;

but
∫ b

a

(̃nγ)∗(diXnL) dt =

∫ b

a

d((̃nγ)∗iXnL) dt =
[

(̃nγ)∗iXnL
]b

a
= 0

as X vanishes at the endpoints, so that
∫ b

a

(̃nγ)∗LXnLdt =

∫ b

a

(̃nγ)∗(iXndL) dt =

∫ b

a

(̃2nγ)∗(iX2n(ε+ dTϑ)) dt.

But now,
∫ b

a

(̃2nγ)∗(iX2ndTϑ) dt =

∫ b

a

(̃2nγ)∗(dTiX2n−1ϑ) dt

=

∫ b

a

d((̃2n−1γ)∗(iX2n−1ϑ)) dt =
[

(̃2n−1γ)∗(iX2n−1ϑ)
]b

a
= 0

because vector field prolongations commute with total derivatives, and the
pull-back of dT to R is d. Thus

∫ b

a

(̃nγ)∗LXnLdt =

∫ b

a

(̃2nγ)∗(iX2nε) dt =

∫ b

a

(̃2nγ)∗(iXε) dt

because ε is horizontal over M . As X is arbitrary, it follows that (̃2nγ)∗ε =
0.
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Now suppose that L is positively homogeneous; that is, that it satisfies
the Zermelo conditions

∆1(L) = L, ∆r(L) = 0 (r ≥ 2).

Such a Lagrangian is called a parametric Lagrangian, and the geodesics
of the corresponding variational problem are invariant under orientation-
preserving reparametrizations [3]; in other words, they are paths. We shall
show that (subject to suitable regularity conditions) they are also the geodesics
of homogeneous differential equation fields. In order to investigate this, we
first establish a technical lemma.

Lemma 5. The Hilbert form ϑ and the Euler-Lagrange form ε satisfy

iTϑ = L, iTdϑ = −ε

(omitting the pull-back maps).

Proof. From iTdT = dTiT and iTS
p = i∆p we obtain

iTd
p
TS

p+1dL = dpTiTS
p+1dL = dpTi∆p+1dL

=

{

i∆1dL = L (p = 0)

0 (p > 0)

so that

iTϑ =
n−1
∑

p=0

(−1)p

(p+ 1)!
iTd

p
TS

p+1dL = L.

In addition,
dTϑ = diTϑ+ iTdϑ = dL+ iTdϑ

so that, from the definition of ε,

ε = dL− dTϑ = −iTdϑ.

Proposition 5. The characteristic distribution of the 2-form dϑ satisfies

{Γ,∆1,∆2, . . . ,∆2n−1} ⊂ ker dϑ

whenever Γ is a differential equation field on T n
◦ M whose geodesics are ex-

tremals of the variational problem with fixed endpoints defined by L.
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Proof. We remark first that ϑ satisfies i∆rϑ = 0 and L∆rϑ = 0 for 1 ≤ r ≤
2n − 1 ([3], Proposition 6.1 and Theorem 6.4). It follows that

i∆rdϑ = L∆rϑ− di∆rϑ = 0,

and so {∆1,∆2, . . . ,∆2n−1} ⊂ ker dϑ.
Now let Γ̃ be a differential equation field on T 2n−1

◦ M , so that

Γ̃ : T 2n−1
◦ M → T 2n

◦ M,

and let Γ : T 2n−1
◦ M → i

(

T 2n
◦ M

)

⊂ TT 2n−1
◦ M be the corresponding vector

field.
Suppose in particular that the integral curves of Γ (which must, neces-

sarily, be prolongations ̃2n−1γ of curves γ in M) are such that γ is always
an extremal of the variational problem. Each point of T 2n−1

◦ M must lie on
such an integral curve, and we may suppose (by translation in the domain)
that the point in question is ̃2n−1γ(0), in other words that the point may
be written as j2n−1

0 γ.
The integral curve property means that Γ̃(j2n−1

0 γ) = j2n0 γ, so that

Γ
j2n−1

0
γ
= (i ◦ Γ̃)(j2n−1

0 γ) = i(j2n0 γ);

thus for any vector ξ ∈ T
j2n−1

0
γ
T 2n−1
◦ M we have

dϑ
j2n−1

0
γ

(

Γ
j2n−1

0
γ
, ξ

)

= dϑ
j2n−1

0
γ

(

i(j2n0 γ), ξ
)

=
〈

(iTdϑ)j2n
0

γ , ξ
〉

=
〈

−εj2n
0

γ , ξ
〉

= 0

because γ is an extremal of L so that εj2n
0

γ = 0. This calculation also uses the

fact that the contraction iT is just the inclusion map i : T 2n
◦ M → TT 2n−1

◦ M
in disguise.

We say that the Lagrangian is regular if the characteristic distribution
of dϑ has dimension 2n. Any differential equation field in this distribution is
an Euler-Lagrange field of the variational problem. Since the characteristic
distribution of a closed 2-form is involutive we have the following theorem.

Theorem 3. Any Euler-Lagrange field of a regular parametric Lagrangian
is homogeneous.
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5 Projective equivalence and reparametrization

We now return to the study of general higher-order differential equation
fields.

Definition 2. Let Γ, Γ′ be homogeneous. Then if Γ′ − Γ = µ∆n for some
function µ we say that Γ and Γ′ are projectively equivalent.

Projective equivalence is an equivalence relation. The projective equiva-
lence class of a homogeneous differential equation field consists of all the dif-
ferential equation fields in the involutive distribution D+. We may summa-
rize the result of Theorem 1 by saying that every projective equivalence class
of a homogeneous differential equation field contains a generalized spray.

We have seen that the Euler-Lagrange fields of a regular parametric La-
grangian consist of a projective equivalence class of homogeneous differential
equation fields. So we should expect in this case that the geodesics of projec-
tively equivalent homogeneous differential equation fields should define the
same paths, that is, differ only in parametrization. In this section we shall
show that this is true for any projective equivalence class of homogeneous
differential equation fields, whether or not they come from a parametric
Lagrangian.

In fact we shall prove two results about projective equivalence in homo-
geneous systems: firstly, if Γ′ is projectively equivalent to Γ then a geodesic
of Γ′ is a reparametrization of a geodesic of Γ; secondly, the jet group acts
on differential equation fields in such a way as to map any homogeneous
field to one which is projectively equivalent to it.

Theorem 4. Let Γ be a homogeneous differential equation field, and Γ′

another which is projectively equivalent to it. Let γ′ be a geodesic of Γ′. Then
there is a geodesic γ of Γ such that γ′ is obtained from γ by an orientation-
preserving reparametrization.

Proof. By assumption the distribution D+ is involutive, and thus integrable.
Let L be a leaf of D+. Then Γ′ is tangent to L, and any integral curve
of Γ′ which meets L lies in it. If γ′ is a geodesic of Γ′ then ̃nγ′ is an
integral curve of Γ′: let L be in fact the leaf of D+ containing (the image
of) ̃nγ′. Since D ⊂ D+, L is invariant under the action of Ln+, the identity
component of the jet group Ln, and consists of the orbits of points on ̃nγ′

under the action of Ln+. Under projection τn : T n
◦ M → M , we have of

course τn ◦ ̃nγ′ = γ′, and for any g ∈ Ln+, τn ◦ g = τn. Thus τn(L) is the
1-dimensional submanifold of M which is the oriented path of γ′. Now Γ
also belongs to D+, and so likewise any integral curve of Γ which meets L
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lies in it. Take any point of L, and the integral curve of Γ through that
point: it is of the form ̃nγ where γ is a geodesic of Γ. Then γ = τn ◦ ̃nγ
lies in τn(L), that is to say, γ′ and γ have the same oriented path. Since
we are restricted to (yi1) 6= 0, we must assume that γ and γ′ have nowhere
vanishing tangent vectors. It follows that one is a reparametrization of the
other, by a reparametrization that preserves orientation.

Corollary 4. Let Γ be a homogeneous differential equation field of order
n+ 1. Let γ be the geodesic of Γ with initial conditions (yi, yi1, . . . , y

i
n). Let

(zi1, . . . , z
i
n) be the image of (yi1, . . . , y

i
n) under some element of Ln+ (so that

(zi1) is a positive scalar multiple of (yi1)). Then the geodesic of Γ with initial
conditions (yi, zi1, . . . , z

i
n) is obtained from γ by an orientation-preserving

reparametrization.

The second result is rather more complicated to prove, and requires some
preliminaries.

We shall need to distinguish notationally between the fundamental vector
fields of the actions of Ln on T nM and Ln+1 on T n+1M . Let us denote by
∆r

n the vector field operating on T nM : that is to say

∆r
n =

n
∑

s=r

s!

(s− r)!
yis+1−r

∂

∂yis
.

With a bit of licence we can write, for r = 1, 2, . . . , n,

∆r
n+1 = ∆r

n +
(n+ 1)!

(n+ 1− r)!
yin+2−r

∂

∂yin+1

,

while

∆n+1
n+1 = (n+ 1)!yi1

∂

∂yin+1

.

In particular,

∆r
n+1(y

i
n+1) =

(n+ 1)!

(n+ 1− r)!
yin+2−r, ∆n+1

n+1(y
i
n+1) = (n+ 1)!yi1.

Now the homogeneity conditions for an (n+1)th order differential equation
field Γ, when expressed in terms of the Γi, are

∆1
n(Γ

i) = (n+ 1)Γi + n!λ1yi1, ∆r
n(Γ

i) =
(n+ 1)!

(n + 1− r)!
yin+2−r + n!λryi1.

Comparison with the formulae for ∆r
n+1(y

i
n+1) is suggestive.
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Consider the section Γ̃ of T n+1
◦ M → T n

◦ M corresponding to Γ, given by
yin+1 = Γi(yj0, y

j
1, . . . , y

j
n). We have, on im Γ̃, with r = 2, . . . , n,

∆1
n+1(y

i
n+1 − Γi) = (n+ 1)(yin+1 − Γi)− n!λ1yi1 = −n!λ1yi1

∆r
n+1(y

i
n+1 − Γi) = −n!λryi1

∆n+1
n+1(y

i
n+1 − Γi) = (n+ 1)!yi1.

One way of restating this is that for r = 1, 2, . . . , n the vector fields

∆r
n+1 +

λr

(n+ 1)
∆n+1

n+1

(strictly speaking one should write τ∗n+1,nλ
r rather than just λr) are tangent

to im Γ̃. Set

∆r
n+1 +

λr

(n+ 1)
∆n+1

n+1 = ∆̃r.

The ∆̃r are well-defined vector fields on T n+1M .

Proposition 6. For r, s = 1, 2, . . . , n

[∆̃r, ∆̃s] =

{

(r − s)∆̃r+s−1 if r + s ≤ n+ 1
0 otherwise

.

Proof. We have

[∆̃1, ∆̃r] = [∆1
n+1,∆

r
n+1] +

(∆1
n(λ

r)−∆r
n(λ

1)− nλr)

(n+ 1)
∆n+1

n+1

while

[∆̃r, ∆̃s] = [∆r
n+1,∆

s
n+1] +

(∆r
n(λ

s)−∆s
n(λ

r))

(n + 1)
∆n+1

n+1

(the λr are functions on T nM). The stated results follow easily, using the
consistency conditions on the λr. The one case which is not entirely straight-
forward is r + s = n+ 2, when we have

[∆̃r, ∆̃s] = [∆r
n+1,∆

s
n+1] +

(∆r
n(λ

s)−∆s
n(λ

r))

(n + 1)
∆n+1

n+1

= (r − s)∆n+1
n+1 −

(n+ 1)(r − s)

(n+ 1)
∆n+1

n+1 = 0,

since in this case ∆r(λs)−∆s(λr) = −(n+ 1)(r − s).
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That is to say, when Γ is homogeneous there is a representation of the
algebra ln on im Γ̃.

Notice also that for r ≥ 2, [∆n+1
n+1, ∆̃

r] = 0, since [∆n+1
n+1,∆

r
n+1] = 0 and

∆n+1
n+1(λ

r) = 0.
Let φ be an orientation-preserving local diffeomorphism of R leaving 0

fixed. Let φn be the diffeomorphism of T nM given by the action of jn0 φ ∈
Ln. We have τn+1,n ◦ φn+1 = φn ◦ τn+1,n. Let Γ be an (n + 1)st-order
differential equation field, Γ̃ : T n

◦ M → T n+1
◦ M the corresponding section.

Since τn+1,n ◦ Γ̃ = idTn
◦ M , φ−1

n+1 ◦ Γ̃ ◦ φn is also a section of τn+1,n, and so
defines a new (n + 1)st-order differential equation field, say Γφ. Suppose
that Γ is any homogeneous (n + 1)st-order differential equation field. We
shall show that for any φ, there is a function νφ on T n

◦ M such that

Γi
φ(y

j
r) = Γi(yjr) + νφ(y

j
r)y

i
1.

Note that when this holds Γφ = Γ + νφ∆
n
n, so Γφ is projectively equivalent

to Γ. From the point of view of representation by sections one might say
that Γ̃φ is obtained by sliding Γ̃ along the integral curves of ∆n+1

n+1. To be
more precise, recalling that T n+1

◦ M is an affine bundle over T n
◦ M modelled

on the bundle of very vertical tangent vectors on T n
◦ M , Γ̃φ is the translate

of Γ̃ by the very vertical vector field νφ∆
n+1
n+1.

Theorem 5. Let Γ be a homogeneous differential equation field and let φ
be an orientation-preserving local diffeomorphism of R leaving 0 fixed. Then
Γφ is projectively equivalent to Γ.

Proof. Note first that Γφ1◦φ2
= (Γφ1

)φ2
. So if for some φ1, φ2 and every

homogeneous Γ, it is the case that Γφ1
is projectively equivalent to Γ and

Γφ2
is projectively equivalent to Γ then Γφ1◦φ2

is projectively equivalent to
Γ. We pointed out in Section 2 that the finite order jet group Lm is the
semi-direct product of L1 and Km, the subgroup consisting of the jets of
diffeomorphisms with derivative at 0 equal to the identity, and further that
every element of the latter is the exponential of some element of its Lie
algebra. So the result about Γφ, or equivalently Γ̃φ, will be proved if it can
be proved when φ(x) = kx (k a positive constant) and when φn+1 is the
exponential of an element of 〈∆r

n+1〉 for r = 2, . . . , n.
Consider first the case where φ(x) = kx. Then φn(y

i
r) = (kryir). We

have ∆1
n(Γ

i) = (n+ 1)Γi + n!λ1yi1, which integrates to give

e−(n+1)tΓi(ertyjr)− Γi(yjr) = n!

∫ t

0
e−nsλ1(ersyjr)y

i
1ds.
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Then

Γ̃φ(y
j
r) = φ−1

n+1Γ̃(φn(y
j
r)) = φ−1

n+1(k
ryir,Γ

i(kryjr))

= (yir, k
−(n+1)Γi(kryjr))

= (yir,Γ
i(yjr) + νφ(y

j
r)y

i
1)

where

νφ(y
j
r) = n!

∫ log k

0
e−nsλ1(ersyjr)ds.

Next, let κt be the 1-parameter group generated by
∑n+1

p=2 kp∆
p
n+1 for some

constants kp. Now

n+1
∑

p=2

kp∆
p
n+1 =

n
∑

p=2

(kp∆̃
p) +



kn+1 −
1

n+ 1

n
∑

p=2

kpλ
p



∆n+1
n+1.

Let κ̃t be the flow generated by
∑n

p=2(kp∆̃
p), and κ̄t the flow generated by

∑n
p=2(kp∆

p
n), so that

κ̄t ◦ τn+1,n = τn+1,n ◦ κ̃t = τn+1,n ◦ κt.

For any (yir) ∈ T nM let τ(t, yir) be the solution of the first-order ordinary
differential equation

dτ

dt
= kn+1 −

1

n+ 1

n
∑

p=2

kpλ
p(κ̄t(y

j
r))

such that τ(0, yir) = 0. We claim that

κt(Γ̃(y
i
r)) = φn+1

τ(t,yir)
(κ̃t(Γ̃(y

i
r)),

where φn+1
t is the 1-parameter group generated by ∆n+1

n+1. Consider the
(dimT nM + 1)-dimensional submanifold S of T n+1

◦ M consisting of points
φn+1
t (Γ̃(yir)), t ∈ R, (yir) ∈ T n

◦ M . Since
∑n

p=2(kp∆̃
p) is tangent to im Γ̃,

κ̃t(Γ̃(y
i
r)) ∈ im Γ̃ for all t, and so φn+1

τ(t,yir)
(κ̃t(Γ̃(y

i
r)) ∈ S for all t. We can

use coordinates (t, yir) on S; with respect to these coordinates φn+1
t is just

translation of the first coordinate, and

φn+1
τ(t,yir)

(κ̃t(Γ̃(y
i
r)) = (τ(t, yir), κ̄t(y

i
r)).
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Moreover, since [∆n+1
n+1, ∆̃

r] = 0 the coordinate representation of ∆̃r co-

incides with its coordinate representation on im Γ̃, which is the same as
the coordinate representation of ∆r

n. Thus the tangent vector to the curve
t 7→ φn+1

τ(t,yir)
(κ̃t(Γ̃(y

i
r)) at t, in coordinate form, is

τ̇(t, yir)
∂

∂t
+

n
∑

p=2

kp∆
p
n(κ̄t(y

i
r)).

But ∂/∂t is the coordinate representation of ∆n+1
n+1 on S, and we conclude

that t 7→ φn+1
τ(t,yir)

(κ̃t(Γ̃(y
i
r)) is an integral curve of the vector field



kn+1 −
1

n+ 1

n
∑

p=2

kpλ
p



∆n+1
n+1 +

n
∑

p=2

(kp∆̃
p) =

n+1
∑

p=2

kp∆
p
n+1.

Since φn+1
τ(0,yir)

(κ̃0(Γ̃(y
i
r)) = Γ̃(yir), we see that t 7→ φn+1

τ(t,yir)
(κ̃t(Γ̃(y

i
r)) is the

integral curve of
∑n+1

p=2 kp∆
p
n+1 starting at Γ̃(yir), that is, it coincides with

κt(Γ̃(y
i
r)) as claimed.

It follows that

κt(Γ̃(κ̄−t(y
i
r))) = φn+1

τ(t,κ̄−t(yir))
(κ̃t(Γ̃(κ̄−t(y

i
r))).

But κ̃t maps im Γ̃ to itself, and τn+1,n ◦ κ̃t = κ̄t ◦ τn+1,n, so κ̃t(Γ̃(κ̄−t(y
i
r)) =

Γ̃(yir). Thus

κt(Γ̃(κ̄−t(y
i
r))) = φn+1

τ(t,κ̄−t(yir))
(Γ̃(yir)) = (yir,Γ

i(yjr) + τ(t, κ̄−t(y
j
r))y

i
1).

This establishes the required result with κt = φ−1
n+1 and νφ(y

i
r) = τ(t, φn(y

i
r)).

This result shows that a projective equivalence class is invariant under
the action of the group Ln+ on T n

◦ M .

6 Examples

Take M to be Euclidean space of dimension m and the yi to be Euclidean
coordinates. With the scalar product etc. denoted in the usual way, consider
the third-order differential equation field defined by

Γi(y1, y2) = −

(

2|y1|
2|y2|

2 + (y1 · y2)
2

2|y1|4

)

yi1 + 3
(y1 · y2)

|y1|2
yi2.
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This is easily seen to be homogeneous, with λ1 = λ2 = 0.
We now explain the geometrical significance of this third-order system.

Denote the differential equation field by Γ. It is easy to see that

Γ(|y1|
2) = 2(y1 · y2)

Γ(y1 · y2) =
2(y1 · y2)

|y1|2
.

It follows that Γ is tangent to the submanifold on which |y1| = 1, y1 · y2 = 0.
This consists of the 2-jets of curves parametrized by Euclidean arc-length.
The restriction of Γi to this submanifold is just −|y2|

2yi1. The corresponding
vector differential equation, considering the yi as the components of a vec-
tor r with respect to an orthonormal frame and using overdots to indicate
differentiation with respect to arc-length s, may be written

ṙ̇̇ = −|r̈|2ṙ.

Along any solution curve of this differential equation the 2-plane spanned
by ṙ and r̈ is constant, and so the curve is a plane curve. Moreover, |r̈| is
the curvature of the curve, and

d

ds
|r̈|2 = 2r̈ · ṙ̇̇ = −2|r̈|2r̈ · ṙ = 0.

So the curve is a plane curve of constant curvature, that is, a circle (or if
the curvature is zero, a straight line).

Now the submanifold |y1| = 1, y1 · y2 = 0 in this case is just the subman-
ifold S ′ of Lemma 2. It follows that every point of T 2

◦M can be written in
the form φ1

t1
(φ2

t2
(z)) for some z ∈ S ′, where φ1

t and φ2
t are the 1-parameter

groups generated by ∆1 and ∆2. So in particular every point of T 2
◦M is

the image by some jet map of a point of S ′. It follows from Corollary 4
that the homogeneous system we started with also has the property that its
geodesics are circles.

There will of course be other homogeneous differential equation fields
with the same property, namely those projectively equivalent to Γ. For
example we could take the simpler system with

Γi(y1, y2) = 3
(y1 · y2)

|y1|2
yi2.

The corresponding field is homogeneous, now with λ2 = (y1 · y2)/|y1|
2 (but

λ1 = 0 still). However, this field is not tangent to S ′, so while it is true (by
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Theorem 4) that its geodesics are circles, it is not so straightforward to see
this.

We next exhibit a fourth-order system in Euclidean space derived from
a parametric second-order Lagrangian. Consider the Lagrangian function L
on T 2

◦M given (in terms of Euclidean coordinates (yi) as before) by

L(y, y1, y2) =
|y1|

2|y2|
2 − (y1 · y2)

2

|y1|5
.

This satisfies ∆1(L) = L and ∆2(L) = 0, so is parametric. In fact L is
closely related to the (first) curvature of a curve, which may be considered as
a function κ on T 2

◦M : we have L = κ2|y1| (see for example [9]). By deriving
the Euler-Lagrange equations for L one obtains the projective equivalence
class of fourth-order equations, necessarily homogeneous, containing the one
given by

Γi = −3
(y2 · y3)

|y1|2
yi1+

(

5|y1|
2|y2|

2 − 35(y1 · y2)
2 + 8|y1|

2(y1 · y3)

2|y1|4

)

yi2+6
(y1 · y2)

|y1|2
yi3.

For this particular representative Γ we have λ1 = 0, but λ2 is nonzero, and
so of course is λ3. We find that Γ(|y1|, Γ(y1 · y2) and Γ(y1 · y3 + |y2|

2) are
contained in the ring generated by these functions, which means that Γ is
tangent to the submanifold S ′′ of T 2

◦M where |y1| = 1, y1·y2 = y1·y3+|y2|
2 =

0, whose points consist of jets of curves parametrized by arc-length. On S′′

we obtain the differential equation

r̈̈ = −3(r̈ · ṙ̇̇)ṙ− 3
2 |r̈|

2r̈

(in terms of arc-length parameter). This may be more succinctly written as

d

ds

(

ṙ̇̇+ 3
2 |r̈|

2ṙ
)

= 0.

This is the Euclidean version of an equation discussed recently by Matsyuk
in the context of ‘Zitterbewegung’ [7] (eq (38) with A = 0 and R = 0).
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