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Abstract

A small minimal k-blocking set B in PG(n, q), q = pt, p prime, is a set of less
than 3(qk + 1)/2 points in PG(n, q), such that every (n − k)-dimensional space
contains at least one point of B and such that no proper subset of B satisfies this
property. The linearity conjecture states that all small minimal k-blocking sets in
PG(n, q) are linear over a subfield Fpe of Fq. Apart from a few cases, this conjecture
is still open. In this paper, we show that to prove the linearity conjecture for k-
blocking sets in PG(n, pt), with exponent e and pe ≥ 7, it is sufficient to prove it for
one value of n that is at least 2k. Furthermore, we show that the linearity of small
minimal blocking sets in PG(2, q) implies the linearity of small minimal k-blocking
sets in PG(n, pt), with exponent e, with pe ≥ t/e + 11.
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1 Introduction and preliminaries

If V is a vectorspace, then we denote the corresponding projective space by PG(V ). If V
has dimension n over the finite field Fq, with q elements, q = pt, p prime, then we also
write V as V(n, q) and PG(V ) as PG(n − 1, q). A k-dimensional space will be called a
k-space.

A k-blocking set in PG(n, q) is a set B of points such that every (n−k)-space of PG(n, q)
contains at least one point of B. A k-blocking set B is called small if |B| < 3(qk+1)/2 and
minimal if no proper subset of B is a k-blocking set. The points of a k-space of PG(n, q)
form a k-blocking set, and every k-blocking set containing a k-space is called trivial. Every
small minimal k-blocking set B in PG(n, pt), p prime, has an exponent e, defined to be
the largest integer for which every (n − k)-space intersects B in 1 mod pe points. The
fact that every small minimal k-blocking set has an exponent e ≥ 1 follows from a result
of Szőnyi and Weiner and will be explained in Section 2. A minimal k-blocking set B in
PG(n, q) is of Rédei-type if there exists a hyperplane containing |B| − qk points of B; this
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is the maximum number possible if B is small and spans PG(n, q). For a long time, all
constructed small minimal k-blocking sets were of Rédei-type, and it was conjectured that
all small minimal k-blocking sets must be of Rédei-type. In 1998, Polito and Polverino [9]
used a construction of Lunardon [8] to construct small minimal linear blocking sets that
were not of Rédei-type, disproving this conjecture. Soon people conjectured that all small
minimal k-blocking sets in PG(n, q) must be linear. In 2008, the ‘Linearity conjecture’
was for the first time formally stated in the literature, by Sziklai [15].

A point set S in PG(V ), where V is an (n + 1)-dimensional vector space over Fpt ,
is called linear if there exists a subset U of V that forms an Fp0

-vector space for some
Fp0

⊂ Fpt, such that S = B(U), where

B(U) := {〈u〉Fpt
: u ∈ U \ {0}}.

If we want to specify the subfield we call S an Fp0
-linear set (of PG(n, pt)).

We have a one-to-one correspondence between the points of PG(n, ph
0) and the elements

of a Desarguesian (h− 1)-spread D of PG(h(n+1)− 1, p0). This gives us a different view
on linear sets; namely, an Fp0

-linear set is a set S of points of PG(n, ph
0) for which there

exists a subspace π in PG(h(n + 1) − 1, p0) such that the points of S correspond to the
elements of D that have a non-empty intersection with π. We identify the elements of D
with the points of PG(n, ph

0), so we can view B(π) as a subset of D, i.e.

B(π) = {S ∈ D|S ∩ π 6= ∅}.

If we want to denote the element of D corresponding to the point P of PG(n, ph
0), we

write S(P ), analogously, we denote the set of elements of D corresponding to a subspace
H of PG(n, ph

0), by S(H). For more information on this approach to linear sets, we refer
to [7].

To avoid confusion, subspaces of PG(n, ph
0) will be denoted by capital letters, while

subspaces of PG(h(n + 1) − 1, p0) will be denoted by lower-case letters.

Remark 1. The following well-known property will be used throughout this paper: if
B(π) is an Fp0

-linear set in PG(n, ph
0), where π is a d-dimensional subspace of PG(h(n +

1) − 1, p0), then for every point x in PG(h(n + 1) − 1, p0), contained in an element of
B(π), there is a d-dimensional space π′, through x, such that B(π) = B(π′). This is a
direct consequence of the fact that the elementwise stabilisor of D in PΓL(h(n + 1), p0)
acts transitively on the points of one element of D.

To our knowledge, the Linearity conjecture for k-blocking sets B in PG(n, pt), p prime,
is still open, except in the following cases:

• t = 1 (for n = 2, see [1]; for n > 2, this is a corollary of Theorem 1 (i));

• t = 2 (for n = 2, see [13]; for k = 1, see [12]; for k ≥ 1, see [3] and [16]);

• t = 3 (for n = 2, see [10]; for k = 1, see [12]; for k ≥ 1, see [6] and independently
[4],[5]);
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• B is of Rédei-type (for n = 2, see [2]; for n > 2, see [11]);

• B spans an tk-dimenional space (see [14, Theorem 3.14]).

It should be noted that in PG(2, pt), for t = 1, 2, 3, all small minimal blocking sets
are of Rédei-type. Storme and Weiner show in [12] that small minimal 1-blocking sets in
PG(n, pt), t = 2, 3, are of Rédei-type too. The proofs rely on the fact that for t = 2, 3,
small minimal blocking sets in PG(2, pt) are listed. The special case k = 1 in Main
Theorem 1 of this paper shows that using the (assumed) linearity of planar small minimal
blocking sets, it is possible to prove the linearity of small minimal 1-blocking sets in
PG(n, pt), which reproofs the mentioned statements of Storme and Weiner in the cases
t = 2, 3.

The techniques developed in [6] to show the linearity of k-blocking sets in PG(n, p3),
using the linearity of 1-blocking sets in PG(n, p3), can be modified to apply for general
t. This will be Main Theorem 2 of this paper. In particular, this theorem reproofs the
results of [16], [6], [4], [5].

In this paper, we prove the following main theorems. Recall that the exponent e of a
small minimal k-blocking set is the largest integer such that every (n− k)-space meets in
1 mod pe points. Theorem 1 (i) will assure that the exponent of a small minimal blocking
set is at least 1.

Main Theorem 1. If for a certain pair (k, n∗) with n∗ ≥ 2k, all small minimal k-blocking
sets in PG(n∗, pt) are linear, then for all n > k, all small minimal k-blocking sets with
exponent e in PG(n, pt), p prime, pe ≥ 7, are linear.

In particular, this shows that if the linearity conjecture holds in the plane, it holds for
all small minimal 1-blocking sets with exponent e in PG(n, pt), pe ≥ 7.

Main Theorem 2. If all small minimal 1-blocking sets in PG(n, pt) are linear, then all
small minimal k-blocking sets with exponent e in PG(n, pt), n > k, pe ≥ t/e + 11, are
linear.

Combining the two main theorems yields the following corollary.

Corollary 1. If the linearity conjecture holds in the plane, it holds for all small minimal
k-blocking sets with exponent e in PG(n, pt), n > k, p prime, pe ≥ t/e + 11.

2 Previous results

In this section, we list a few results on the linearity of small minimal k-blocking sets and
on the size of small k-blocking sets that will be used throughout this paper. The first of
the following theorems of Szőnyi and Weiner has the linearity of small minimal k-blocking
sets in projective spaces over prime fields as a corollary.

Theorem 1. Let B be a k-blocking set in PG(n, q), q = pt, p prime.
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(i) [14, Theorem 2.7] If B is small and minimal, then B intersects every subspace of
PG(n, q) in 1 mod p or zero points.

(ii) [14, Lemma 3.1] If |B| ≤ 2qk and every (n−k)-space intersects B in 1 mod p points,
then B is minimal.

(iii) [14, Corollary 3.2] If B is small and minimal, then the projection of B from a point
Q /∈ B onto a hyperplane H skew to Q is a small minimal k-blocking set in H.

(iv) [14, Corollary 3.7] The size of a non-trivial k-blocking set in PG(n, pt), p prime,

with exponent e, is at least ptk + 1 + pe⌈ptk/pe+1
pe+1

⌉.

Part (iv) of the previous theorem gives a lower bound on the size of a k-blocking set.
In this paper, we will work with the following, weaker, lower bound.

Corollary 2. The size of a non-trivial k-blocking set in PG(n, pt), p prime, with exponent
e, is at least ptk + ptk−e − ptk−2e.

If a blocking set B in PG(2, q) is Fp0
-linear, then every line intersects B in an Fp0

-linear
set. If B is small, many of these Fp0

-linear sets are Fp0
-sublines (i.e. Fp0

-linear sets of
rank 2). The following theorem of Sziklai shows that for all small minimal blocking sets,
this property holds.

Theorem 2. (i) [15, Proposition 4.17 (2)] If B is a small minimal blocking set in
PG(2, q), with |B| = q +κ, then the number of (p0 +1)-secants to B through a point
P of B lying on a (p0 + 1)-secant to B, is at least

q/p0 − 3(κ − 1)/p0 + 2.

(ii) [15, Theorem 4.16] Let B be a small minimal blocking set with exponent e in
PG(2, q). If for a certain line L, |L ∩ B| = pe + 1, then Fpe is a subfield of Fq

and L ∩ B is Fpe-linear.

The next theorem, by Lavrauw and Van de Voorde, determines the intersection of an
Fp-subline with an Fp-linear set; all possibilities for the size of the intersection that are
obtained in this statement, can occur (see [7]). The bound on the characteristic of the
field appearing in Main Theorem 2 arises from this theorem.

Theorem 3. [7, Theorem 8] An Fp0
-linear set of rank k in PG(n, pt) and an Fp0

-subline
(i.e. an Fp0

-linear set of rank 2), intersect in 0, 1, 2, . . . , k or p0 + 1 points.

The following lemma is a straightforward extension of [6, Lemma 7], where the authors
proved it for h = 3.

Lemma 1. If B is a subset of PG(n, ph
0), p0 ≥ 7, intersecting every (n− k)-space, k ≥ 1,

in 1 mod p0 points, and Π is an (n − k + s)-space, s < k, then either

|B ∩ Π| < phs
0 + phs−1

0 + phs−2
0 + 3phs−3

0
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or
|B ∩ Π| > phs+1

0 − phs−1
0 − phs−2

0 − 3phs−3
0 .

Furthermore, |B| < phk
0 + phk−1

0 + phk−2
0 + 3phk−3

0 .

Proof. Let Π be an (n − k + s)-space of PG(n, ph
0), s ≤ k, and put BΠ := B ∩ Π. Let

xi denote the number of (n − k)-spaces of Π intersecting BΠ in i points. Counting the
number of (n − k)-spaces, the number of incident pairs (P, Σ) with P ∈ BΠ, P ∈ Σ, Σ an
(n−k)-space, and the number of triples (P1, P2, Σ), with P1, P2 ∈ BΠ, P1 6= P2, P1, P2 ∈ Σ,
Σ an (n − k)-space yields:

∑

i

xi =

[

n − k + s + 1
n − k + 1

]

ph
0

, (1)

∑

i

ixi = |BΠ|
[

n − k + s
n − k

]

ph
0

, (2)

∑

i(i − 1)xi = |BΠ|(|BΠ| − 1)

[

n − k + s − 1
n − k − 1

]

ph
0

. (3)

Since we assume that every (n−k)-space intersects B in 1 mod p0 points, it follows that
every (n − k)-space of Π intersect BΠ in 1 mod p0 points, and hence

∑

i(i − 1)(i − 1 −
p0)xi ≥ 0. Using Equations (1), (2), and (3), this yields that

|BΠ|(|BΠ| − 1)(phn−hk+h
0 − 1)(phn−hk

0 − 1) − (p0 + 1)|BΠ|(phn−hk+hs
0 − 1)(phn−hk+h

0 − 1)

+(p0 + 1)(phn−hk+hs+h
0 − 1)(phn−hk+hs

0 − 1) ≥ 0.

Putting |BΠ| = phs
0 + phs−1

0 + phs−2
0 + 3phs−3

0 in this inequality, with p0 ≥ 7, gives a
contradiction; putting |BΠ| = phs+1

0 −phs−1
0 −phs−2

0 −3phs−3
0 in this inequality, with p0 ≥ 7,

gives a contradiction if s < k. For s = k, it is sufficient to note that when |B| is the size
of a k-space, the inequality holds, to deduce that |B| < phk

0 + phk−1
0 + phk−2

0 + 3phk−3
0 . The

statement follows.

Let B be a subset of PG(n, ph
0), p0 ≥ 7, intersecting every (n − k)-space, k ≥ 1,

in 1 mod p0 points. From now on, we call an (n − k + s)-space small if it meets B
in less than phs

0 + phs−1
0 + phs−2

0 + 3phs−3
0 points, and large if it meets B in more than

phs+1
0 − phs−1

0 − phs−2
0 − 3phs−3

0 points, and it follows from the previous lemma that each
(n − k + s)-space is either small or large.

The following Lemma and its corollaries show that if all (n − k)-spaces meet a k-
blocking set B in 1 mod p0 points, then every subspace that intersects B, intersects it in
1 mod p0 points.

Lemma 2. Let B be a small minimal k-blocking set in PG(n, ph
0) and let L be a line such

that 1 < |B ∩ L| < ph
0 + 1. For all i ∈ {1, . . . , n − k} there exists an i-space πi through L

such that B ∩ πi = B ∩ L.
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Proof. It follows from Theorem 1 that every subspace through L intersects B \ L in zero
or at least p points, where p0 = pe, p prime. We proceed by induction on the dimension
i. The statement obviously holds for i = 1. Suppose there exists an i-space Πi through L
such that Πi ∩ B=L ∩ B, with i ≤ n − k − 1. If there is no (i + 1)-space intersecting B
only in points of L, then the number of points of B is at least

|B ∩ L| + p(p
h(n−i−1)
0 + p

h(n−i−2)
0 + . . . + ph

0 + 1),

but by Lemma 1 |B| ≤ phk
0 + phk−1

0 + phk−2
0 + phk−3

0 . If i < n − k this is a contradiction.
We may conclude that there exists an i-space Πi through L such that B ∩ L = B ∩ Πi,
∀i ∈ {1, . . . , n − k}.

Using Lemma 2, the following corollaries follow easily.

Corollary 3. (see also [14, Corollary 3.11]) Every line meets a small minimal k-blocking
set in PG(n, pt), p prime, with exponent e in 1 mod pe or zero points.

Proof. Suppose the line L meets the small minimal k-blocking set in x points, where
1 ≤ x ≤ pt. By Lemma 2, the line L is contained in an (n − k)-space π such that
B ∩ π = B ∩ L. Since every (n− k)-space meets the k-blocking set B with exponent e in
1 mod pe points, the corollary follows.

By considering all lines through a certain point of B in some subspace, we get the
following corollary.

Corollary 4. (see also [14, Corollary 3.11]) Every subspace meets a small minimal k-
blocking set in PG(n, pt), p prime, with exponent e in 1 mod pe or zero points.

3 On the (p0+1)-secants to a small minimal k-blocking

set

In this section, we show that Theorem 2 on planar blocking sets can be extended to a
similar result on k-blocking sets in PG(n, q).

Lemma 3. Let B be a small minimal k-blocking set with exponent e in PG(n, ph
0), p0 :=

pe ≥ 7, p prime, n ≥ 2k + 1. The number of points, not in B, that do not lie on a secant
line to B is at least

(p
h(n+1)
0 − 1)/(ph

0 + 1) − (p2hk−2
0 + 2p2hk−3

0 )(ph
0 + 1) − phk

0 − phk−1
0 − phk−2

0 − 3phk−3
0 ,

and this number is larger than the number of points in PG(n − 1, ph
0).

Proof. By Corollary 3, the number of secant lines to B is at most |B|(|B|−1)
(p0+1)p0

. By Lemma

1, the number of points in B is at most phk
0 + phk−1

0 + phk−2
0 +3phk−3

0 , hence the number of
secant lines is at most p2hk−2

0 +2p2hk−3
0 . This means that the number of points on at least
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one secant line is at most (p2hk−2
0 + 2p2hk−3

0 )(ph
0 + 1). It follows that the number of points

in PG(n, ph
0), not in B, not on a secant to B is at least (p

h(n+1)
0 − 1)/(ph

0 + 1)− (p2hk−2
0 +

2p2hk−3
0 )(ph

0 + 1) − phk
0 − phk−1

0 − phk−2
0 − 3phk−3

0 . Since we assume that n ≥ 2k + 1 and
p0 ≥ 7, the last part of the statement follows.

We first extend Theorem 2 (i) to 1-blocking sets in PG(n, q).

Lemma 4. A point of a small minimal 1-blocking set B with exponent e in PG(n, ph
0),

p0 := pe ≥ 7, p prime, lying on a (p0 + 1)-secant, lies on at least ph−1
0 − 4ph−2

0 + 1
(p0 + 1)-secants.

Proof. We proceed by induction on the dimension n. If n = 2, by Theorem 2, the number
of (p0 + 1)-secants through P is at least q/p0 − 3(κ − 1)/p0 + 2, where |B| = q + κ. By
Lemma 1, κ is at most ph−1

0 +ph−2
0 +3ph−3

0 , which means that the number of (p0+1)-secants
is at least ph−1

0 − 4ph−2
0 + 1. This proves the statement for n = 2.

Now assume n ≥ 3. From Lemma 3 (observe that, since n ≥ 3 and k = 1, n ≥ 2k+1),
we know that there is a point Q, not lying on a secant line to B. Project B from the
point Q onto a hyperplane through P and not through Q. It is clear that the number of
(p0+1)-secants through P to the projection of B is the number of (p0+1)-secants through
P to B. By the induction hypothesis, this number is at least ph−1

0 − 4ph−2
0 + 1.

Lemma 5. Let Π be an (n−k)-space of PG(n, ph
0), k > 1, p0 ≥ 7. If Π intersects a small

minimal k-blocking set B with exponent e in PG(n, ph
0), p0 := pe ≥ 7, p prime in p0 + 1

points, then there are at most 3phk−h−3
0 large (n − k + 1)-spaces through Π.

Proof. Suppose there are y large (n− k + 1)-spaces through Π. A small (n− k + 1)-space
through Π meets B clearly in a small 1-blocking set, which is in this case, non-trivial and
hence, by Theorem 2, has at least ph

0 + ph−1
0 − ph−2

0 points.
Then the number of points in B is at least

y(ph+1
0 − ph−1

0 − ph−2
0 − 3ph−3

0 − p0 − 1)+

((phk
0 − 1)/(ph

0 − 1) − y)(ph
0 + ph−1

0 − ph−2
0 − p0 − 1) + p0 + 1 (∗)

which is at most phk
0 + phk−1

0 + phk−2
0 + 3phk−3

0 . This yields y ≤ 3phk−h−3
0 .

Theorem 4. A point of a small minimal k-blocking set B with exponent e in PG(n, ph
0),

p0 := pe ≥ 7, p prime, k > 1, lying on a (p0 + 1)-secant, lies on at least ((phk
0 − 1)/(ph

0 −
1) − 3phk−h−3

0 )(ph−1
0 − 4ph−2

0 ) + 1 (p0 + 1)-secants.

Proof. Let P be a point on a (p0 + 1)-secant L. By Lemma 2, there is an (n− k)-space Π
through L such that B∩Π = B∩L. Let Σ be a small (n−k+1)-space. It is clear that the
space Σ meets B in a small 1-blocking set B′. Every (n − k)-space contained in Σ meets
B′ in 1 mod p0 points. By Theorem 1 (ii), B′ is a small minimal 1-blocking set in Σ. For
every small (n− k + 1)-space Σi through π, P is a point in Σi, lying on a (p0 + 1)-secant
in Σi, and hence, by Lemma 4, P lies on at least ph−1

0 − 4ph−2
0 +1 (p0 +1)-secants to B in

Σi. From Lemma 5, we get that the number of small (n − k + 1)-spaces Σi through Π is
at least (phk

0 − 1)/(ph
0 − 1)− 3phk−h−3

0 , hence, the number of (p0 +1)-secants to B through
P is at least ((phk

0 − 1)/(ph
0 − 1) − 3phk−h−3

0 )(ph−1
0 − 4ph−2

0 ) + 1.
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We will now show that Theorem 2 (ii) can be extended to k-blocking sets in PG(n, q).
We start with the case k = 1.

Lemma 6. Let B be a small minimal 1-blocking set with exponent e in PG(n, q), q = pt.
If for a certain line L, |L∩B| = pe +1, then Fpe is a subfield of Fq and L∩B is Fpe-linear.

Proof. We proceed by induction on n. For n = 2, the statement follows from Theorem 2
(ii), hence, let n > 2. Let L be a line, meeting B in pe+1 points and let H be a hyperplane
through L. A plane through L containing a point of B, not on L, contains at least p2e

points of B, not on L by Theorem 1 (i). If all qn−2 planes through L, not in H , contain
an extra point of B, then |B| ≥ p2eqn−2, which is larger than ph + ph−1 + ph−2 + 3ph−3, a
contradiction by Lemma 1. Let Q be a point on a plane π through L, not in H such that
π meets B only in points of L. The projection of B onto H is a small minimal 1-blocking
set B′ in H (see Theorem 1 (iii)), for which L is a (pe +1)-secant. The intersection B′∩L
is by the induction hypothesis an Fpe-linear set. Since B ∩ L = B′ ∩ L, the statement
follows.

Finally, we extend Theorem 2 (ii) to a theorem on k-blocking sets in PG(n, q).

Theorem 5. Let B be a small minimal k-blocking set with exponent e in PG(n, q), q = pt.
If for a certain line L, |L∩B| = pe + 1, pe ≥ 7, then Fpe is a subfield of Fq and L∩B is
Fpe-linear.

Proof. Let L be a pe +1-secant to B. By Lemma 5, there is at least one small (n−k+1)-
space Π through L. Since Π ∩ B is a small 1-blocking set to B, and every (n − k)-space,
contained in Π meets B in 1 mod pe points, by Theorem 1 (ii), B is minimal. By Lemma
6, L ∩ B is an Fpe-linear set.

4 The proof of Main Theorem 1

In this section, we will prove Main Theorem 1, that, roughly speaking, states that if we
can prove the linearity for k-blocking sets in PG(n, q) for a certain value of n, then it is
true for all n. It is clear from the definition of a k-blocking set that we can only consider
k-blocking sets in PG(n, q) where 1 ≤ k ≤ n − 1, and whenever we use the notation
k-blocking set in PG(n, q), we assume that the above condition is satisfied.

From now on, if we want to state that for the pair (k, n∗), all small minimal k-
blocking sets in PG(n∗, q) are linear, we say that the condition (Hk,n∗) holds.

To prove Main Theorem 1, we need to show that if (Hk,n∗) holds, then (Hk,n) holds for
all n ≥ k + 1. The following observation shows that we only have to deal with the case
n ≥ n∗.

Lemma 7. If (Hk,n∗) holds, then (Hk,n) holds for all n with k + 1 ≤ n ≤ n∗.
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Proof. A small minimal k-blocking set B in PG(n, q), with k + 1 ≤ n ≤ n∗, can be
embedded in PG(n∗, q), in which it clearly is a small minimal k-blocking set. Since
(Hk,n∗) holds, B is linear, hence, (Hk,n) holds.

The main idea for the proof of Main Theorem 1 is to prove that all the (p0 +1)-secants
through a particular point P of a k-blocking set B span a hk-dimensional space µ over
Fp0

, and to prove that the linear blocking set defined by µ is exactly the k-blocking set
B.

Lemma 8. Assume (Hk,n−1) and n−1 ≥ 2k, and let B denote a small minimal k-blocking
set with exponent e in PG(n, pt), p prime, pe ≥ 7, t ≥ 2. Let Π be a plane in PG(n, pt).

(i) There is a 3-space Σ through Π meeting B only in points of Π and containing a
point Q not lying on a secant line to B if k > 2.

(ii) The intersection Π ∩ B, is a linear set if k > 2.

Proof. Let Π be a plane of PG(n, pt), p0 := pe ≥ 7. By Lemma 3, there are at least

s := (p
h(n+1)
0 − 1)/(ph

0 + 1) − (p2hk−2
0 + 2p2hk−3

0 )(ph
0 + 1) − phk

0 − phk−1
0 − phk−2

0 − 3phk−3
0 ,

points Q /∈ {B} not lying on a secant line to B. This means that there are at least
r := (s− (p2h

0 + ph
0 + 1))/p3h

0 3-spaces through Π that contain a point that does not lie on
a secant line to B and is not contained in B nor in Π. If all r 3-spaces contain a point Q
of B that is not contained in Π, then the number of points in B is at least r. It is easy
to check that this is a contradiction if n − 1 ≥ 2k, pe ≥ 7, and k > 2.

Hence, there is a 3-space Σ through Π meeting B only in points of Π and containing a
point Q not lying only on a secant line to B. The projection of B from Q onto a hyperplane
containing Π is a small minimal k-blocking set B̄ in PG(n − 1, q) (see Theorem 1(iii)),
which is, by (Hk,n−1), a linear set. Now Π ∩ B̄ = Π ∩ B, since the space 〈Q, π〉 meets B
only in points of Π, and hence, the set Π ∩ B is linear.

Corollary 5. Assume (Hk,n−1), k > 2, (n − 1) ≥ 2k and let B denote a small minimal
k-blocking set with exponent e in PG(n, pt), p prime, pe ≥ 7, t ≥ 2. The intersection of a
line with B is an Fpe-linear set.

Remark 2. The linear set B(µ) does not determine the subspace µ in a unique way; by
Remark 1, we can choose µ through a fixed point S(P ), with P ∈ B(µ). Note that there
may exist different spaces µ and µ′, through the same point of PG(h(n + 1) − 1, p), such
that B(µ) = B(µ′). If µ is a line, however, if we fix a point x of an element of B(µ), then
there is a unique line µ′ through x such that B(µ) = B(µ′) since, in this case, µ′ is the
unique transversal line through x to the regulus B(µ). This observation is crucial for the
proof of the following lemma.

Lemma 9. Assume (Hk,n−1), n − 1 ≥ 2k, and let B be a small minimal k-blocking set
with exponent e in PG(n, pt), p prime, p0 := pe ≥ 7. Denote the (p0 + 1)-secants through
a point P of B that lies on at least one (p0 + 1)-secant, by L1, . . . , Ls. Let x be a point of
S(P ) and let ℓi be the line through x such that B(ℓi) = Li ∩ B. The following statements
hold:
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(i) The space 〈ℓ1, . . . , ℓs〉 has dimension hk.

(ii) B(〈ℓi, ℓj〉) ⊆ B for 1 ≤ i 6= j ≤ s.

Proof. (i) Let P be a point of B lying on a (p0 + 1)-secant, and let H be a hyperplane
through P . By Lemma 6, there is a point Q, not in B and not in H , not lying on a secant
line to B. The projection of B from Q onto H is a small minimal k-blocking set B̄ in
H ∼= PG(n−1, q) (Theorem 1 (iii)). By (Hk,n−1), B̄ is a linear set. Every line meets B in
1 mod p0 or 0 points, which implies that every line in H meets B̄ in 1 mod p0 or 0 points,
hence, B̄ is Fp0

-linear. Take a fixed point x in S(P ). Since B̄ is an Fp0
-linear set, there is

an hk-dimensional space µ in PG(h(n + 1) − 1, p0), through x, such that B(µ) = B̄.
From Lemma 4, we get that the number of (p0 +1)-secants through P to B is at least

z := ((phk
0 − 1)/(ph

0 − 1)− 3phk−h−3
0 )(ph−1

0 − 4ph−2
0 ) + 1, denote them by L1, . . . , Ls and let

ℓ1, . . . , ℓs be the lines through x such that B(ℓi) = B ∩ Li. These lines exist by Theorem
5. Note that, by Remark 2, B(ℓi) determines the line ℓi through x in a unique way, and
that ℓi 6= ℓj for all i 6= j.

We will prove that the projection of ℓi from S(Q) onto 〈S(H)〉 in PG(h(n+1)−1, p0)
is contained in µ. Since L1 is projected onto a (p0 + 1)-secant M to B̄ through P , there
is a line m through x in PG(h(n + 1) − 1, p0) such that B(m) = M ∩ B̄. Now B̄ = B(µ),
and |B̄ ∩M | = p0 + 1, hence, there is a line m′ through x in µ such that B(m′) = B̄ ∩M .
Since m is the unique transversal line through x to M ∩ B̄ (see Remark 2), m = m′, and
m is contained in µ.

This implies that the space W := 〈ℓ1, . . . , ℓs〉 is contained in 〈S(Q), µ〉, hence, W
has dimension at most hk + h. Suppose that W has dimension at least hk + 1, then it
intersects the (h − 1)-dimensional space S(Q) in at least a point. But this holds for all
S(Q) corresponding to points, not in B, such that Q does not lie on a secant line to B.
This number is at least

(p
h(n+1)
0 − 1)/(ph

0 + 1) − (p2hk−2
0 + 2p2hk−3

0 )(ph
0 + 1) − phk

0 − phk−1
0 − phk−2

0 − 3phk−3
0

by Lemma 3, which is larger than the number of points in W , since W is at most (hk+h)-
dimensional, a contradiction.

From Theorem 4, we get that W contains at least

(((phk
0 − 1)/(ph

0 − 1) − 3phk−h−3
0 )(ph−1

0 − 4ph−2
0 ) + 1)p0 + 1

points, which is larger than (phk
0 −1)/(p0−1) if p0 ≥ 7, hence, W is at least hk-dimensional.

Since we have already shown that W is at most hk-dimensional, the statement follows.

(ii) W.l.o.g. we choose i = 1, j = 2. Let m be a line in 〈ℓ1, ℓ2〉, not through ℓ1 ∩ ℓ2.
Let M be the line of PG(n, qt) containing B(m) and let H be a hyperplane of PG(n, qt)
containing the plane 〈L1, L2〉. We claim that there exists a point Q, not in H , such that
the planes 〈Q, L1〉, 〈Q, L2〉 and 〈Q, M〉 only contain points of B that are in H .

If k > 2, this follows from Lemma 8(i). Now assume that 1 ≤ k ≤ 2. There are
qn−2 planes through M , not in in H . Since M is at least a (p0 + 1)-secant (Theorem 1

the electronic journal of combinatorics 17 (2010), #R174 10



(i)), it holds that if a plane Π through M contains a point of B, that is not contained in
M , then, Π contains at least p2

0 points of B, not in M (again by Theorem 1(i)). Since
|B| ≤ qk + qk−1 + qk−2 + 3qk−3 (Lemma 1), and n − 1 ≥ 2k, there is at least one plane
Π through M , not contained in H that contains only points of B that are contained
in M . Now, there is one of the q2 points in Π, say Q, that is not contained in M for
which the planes 〈Q, Li〉, i = 1, 2 only contain points of B on the line Li, i = 1, 2, since
otherwise, the number of points in B would be at least p2

0q
2, a contradiction since k ≤ 2

and |B| ≤ qk + qk−1 + qk−2 + 3qk−3 by Lemma 1. This proves our claim.
The projection of B from Q onto H is a small minimal k-blocking set B̄ in PG(n, q)

(Theorem 1 (iii)). By (Hk,n−1), B̄ is a linear set, hence, it meets 〈L1, L2〉 in a linear set.
This means that there is a space π through x such that 〈L1, L2〉 ∩ B = B(π). Note that,
since 〈Q, L1〉 and 〈Q, L2〉 only contain points of B that are contained in H , the lines L1

and L2 are (p0 + 1)-secants to B̄.
Hence, the space π contains ℓi since B(π)∩Li = B(ℓi) and ℓi is the unique transversal

line to the regulus B ∩ Li, i = 1, 2. Hence, B(〈ℓ1, ℓ2〉) ⊂ B̄, so B(m) ⊂ B̄. The plane
〈Q, M〉 only contains points of B that are on M , so M ∩ B = M ∩ B̄, hence, B(m) ⊂ B.
Since every point of 〈ℓ1, ℓ2〉, not on ℓ1, ℓ2, lies on a line m meeting ℓ1 and ℓ2 in different
points, B(〈ℓ1, ℓ2〉) ⊆ B.

Proof of Main Theorem 1.
Let B be a small minimal k-blocking set with exponent e in PG(n, pt), p prime,

p0 = pe ≥ 7 and assume that (Hk,n−1) holds with n−1 ≥ 2k. Let P be a point of B, lying
on a (p0+1)-secant. By Theorem 4, there are at least ((phk

0 −1)/(ph
0−1)−3phk−h−3

0 )(ph−1
0 −

4ph−2
0 )+1 (p0 +1)-secants L1 . . . , Ls through P , and by Lemma 9, the corresponding lines

ℓ1, . . . , ℓs in PG(h(n + 1) − 1, p0), with B(ℓi) = B ∩ Li, ℓi through a fixed point x of
S(P ), span an hk-dimensional space W . Suppose that B(W ) 6⊆ B, and let w be a point
of W for which B(w) /∈ B. Since the number of points lying on one of the lines of the set
{ℓ1, . . . , ℓs}, is at least (((phk

0 − 1)/(ph
0 − 1) − 3phk−h−3

0 )(ph−1
0 − 4ph−2

0 ) + 1)p0 + 1, at least
one of the (phk

0 − 1)/(p0 − 1) lines through w, say m, contains two points lying on one of
the lines of the set {ℓ1, . . . , ℓs}. By Lemma 9 (b), B(m) is contained in B, a contradiction
since B(w) ∈ B(m), and B(w) /∈ B.

Hence, B(W ) ⊆ B, and since B(W ) is a small minimal linear k-blocking set PG(n, pt),
contained in the minimal k-blocking set B, B equals the linear set B(W ). Hence, we
have shown that if (Hk,n−1) holds, with n − 1 ≥ 2k, then (Hk,n) holds, and repeating
this argument shows that if (Hk,n∗) holds for some n∗, then (Hk,n) holds for all n ≥ n∗.
Since Lemma 7 shows the desired property for all n with k + 1 ≤ n ≤ n∗, the statement
follows.

5 The proof of Main Theorem 2

In this section, we will prove Main Theorem 2, stating that, if all small minimal 1-blocking
sets in PG(n, ph

0) are linear, then all small minimal k-blocking sets in PG(n, ph
0), are linear,

provided a condition on p0 and h holds.
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We proved in Lemma 1 that a subspace meets the small minimal k-blocking set B in
either in a ‘small’ number, or in a ‘large’ number of points. To simplify the terminology,
we call a (n − k + s)-space Π, s ≤ k, for which |B ∩ Π| < phs

0 + phs−1
0 + phs−2

0 + 3phs−3
0

points, a small (n − k + s)-space. An (n − k + s)-space which is not small is called large.

Lemma 10. Let Π be an (n − k)-space of PG(n, ph
0) and let B be a small minimal k-

blocking set with exponent e in PG(n, pt), p prime, p0 := pe ≥ 7, k > 1.

(i) If B ∩Π is a point, then there are at most phk−h−2
0 + 4phk−h−3

0 − 1 large (n− k + 1)-
spaces through Π.

(ii) If Π intersects B in p0 +1 points, then there are at most 3phk−h−3
0 large (n− k +1)-

spaces through Π.

Proof. (i) A small (n−k +1)-space through Π meets B in at least ph
0 +1 points. Suppose

there are y large (n−k +1)-spaces through Π. Then the number of points in B is at least

y(ph+1
0 − ph−1

0 − ph−2
0 − 3ph−3

0 − 1) + ((phk
0 − 1)/(ph

0 − 1) − y)ph
0 + 1

which is at most phk
0 + phk−1

0 + phk−2
0 + 3phk−3

0 . This yields y ≤ phk−h−2
0 + 4phk−h−3

0 − 1.
(ii) Suppose there are y large (n− k + 1)-spaces through Π. A small (n− k + 1)-space

through Π meets B in a linear 1-blocking set, which is in this case, non-trivial and hence,
by Theorem 2, has at least ph

0 + ph−1
0 − ph−2

0 points.
Then the number of points in B is at least

y(ph+1
0 − ph−1

0 − ph−2
0 − 3ph−3

0 − p0 − 1)+

((phk
0 − 1)/(ph

0 − 1) − y)(ph
0 + ph−1

0 − ph−2
0 − p0 − 1) + p0 + 1 (∗)

which is at most phk
0 + phk−1

0 + phk−2
0 + 3phk−3

0 . This yields y ≤ 3phk−h−3
0 .

Lemma 11. If B is a non-trivial small minimal k-blocking set with exponent e in
PG(n, pt), p prime, p0 := pe ≥ 7, k > 1, then there exist a point P ∈ B, a tangent
(n−k)-space Π at the point P and small (n−k+1)-spaces Hi, through Π, such that there
is a (p0 + 1)-secant through P in Hi, i = 1, . . . , phk−h

0 − 5phk−h−1
0 .

Proof. Let L be a (p0 + 1)-secant to B and let P be a point of B ∩ L. Lemma 2 shows
that there is an (n − k)-space ΠL such that B ∩ ΠL = B ∩ L. By Theorem 4, P lies
on ((phk

0 − 1)/(ph
0 − 1) − 3phk−h−3

0 )(ph−1
0 − 4ph−2

0 ) + 1 other (p0 + 1)-secants. By Lemma
10 (ii), there are at least (phk

0 − 1)/(ph
0 − 1) − 3phk−h−3

0 small hyperplanes through ΠL,
which each contain at least ph

0 + ph−1
0 − ph−2

0 − p0 − 1 points of B not on L. Since
|B| < phk

0 + phk−1
0 + phk−2

0 + 3phk−3
0 (see Lemma 2), there are less than 2phk−1

0 points of B
left in large (n− k + 1)-spaces through ΠL. Hence, P lies on less than 2phk−h−1

0 lines that
are completely contained in B.

Since B is minimal, P lies on a tangent (n − k)-space Π to B. There are at most
phk−h−2

0 + 4phk−h−3
0 − 1 large (n − k + 1)-spaces through Π (Lemma 10 (i)). Moreover,

since at least
phk
0

−1

ph
0
−1

− (phk−h−2
0 + 4phk−h−3

0 − 1)− (2phk−h−1
0 ) (n− k + 1)-spaces through Π
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contain at least ph
0 +ph−1

0 −ph−2
0 points of B, and at most 2phk−h−1

0 of the small (n−k+1)-
spaces through Π contain exactly ph

0 + 1 points of B, there are at most phk−2
0 points of B

contained in large (n− k + 1)-spaces through Π. Hence, P lies on at most phk−3
0 (p0 + 1)-

secants of the large (n − k + 1)-spaces through Π. This implies that there are at least
(((phk

0 − 1)/(ph
0 − 1) − 3phk−h−3

0 )(ph−1
0 − 4ph−2

0 ) + 1) − phk−3
0 (p0 + 1)-secants through P

left in small (n − k + 1)-spaces through Π. Since in a small (n − k + 1)-space through
Π, there can lie at most (ph

0 − 1)/(p0 − 1) (p0 + 1)-secants through P , this implies that
there are at least phk−h

0 − 5phk−h−1
0 (n− k + 1)-spaces Hi through Π such that P lies on a

(p0 + 1)-secant in Hi.

We continue with the following hypothesis:

(H) A small minimal j-blocking set in PG(n, q), 1 ≤ j < k is linear.

Lemma 12. Let B be a non-trivial small minimal k-blocking set with exponent e in
PG(n, pt), p prime, p0 := pe ≥ 7, k > 1. If we assume (H), then the following statements
hold.

(i) A small (n−k+s)-dimensional space Π of PG(n, pt), s < k, intersects B in a linear
set and |Π ∩ B| ≤ (phs+1

0 − 1)/(p0 − 1).

(ii) Let L be a (p0 + 1)-secant to B and let S be a point of B, not on L. There exists a
small (n − 2)-space through L, skew to S.

(iii) A line intersects B in a linear set.

(iv) Let Π be a small (n− 2)-space containing a (p0 + 1)-secant to B. Then the number
of large (n − 1)-spaces through Π is at most 4ph−3

0 .

Proof. (i) It is clear that an (n − k + s)-space Π meets B in a small s-blocking set B′.
Every (n − k)-space contained in Π meets B′ in 1 mod p0 points, hence, by Theorem 1
(ii), B′ is a small minimal s-blocking set in PG(n− k + s, ph

0), which is, by the hypothesis
(H), Fp0

-linear. It follows that |B′| ≤ (phs+1
0 − 1)/(p0 − 1).

(ii) Lemma 2 shows that there is an (n − k)-space Πn−k through L, such that B ∩
L = B ∩ Πn−k. By Lemma 1, an (n − k + 1)-space through Πn−k contains at most
(ph+1

0 − 1)/(p0 − 1) or at least ph+1
0 − ph−1

0 − ph−2
0 − 3ph−3

0 points of B. If all (n − k + 1)-
spaces through Πn−k (except possibly 〈Πn−k, S〉) would be large, the number of points in
B would be at least ((phk

0 −1)/(ph
0 −1)−1)(ph+1

0 −ph−1
0 −ph−2

0 −3ph−3
0 −ph

0), which is larger
than phk

0 +phk−1
0 +phk−2

0 +3phk−3
0 , a contradiction. Hence, there is a small (n−k+1)-space

through Πn−k.
Suppose, by induction, that there exists a small (n − k + s)-space Πn−k+s through L,

skew to S and suppose all (p
h(k−s)
0 − 1)/(ph

0 − 1)− 1 (n− k + s)-spaces through Πn−k+s−1,
different from 〈Πn−k+s, S〉 are large. Then the number of points in B is larger than
phk

0 + phk−1
0 + phk−2

0 + 3phk−3
0 if s ≤ k − 2, a contradiction. We conclude that there exists

a small (n − 2)-space through L, skew to S.
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(iii) Let L be a line, with 0 < |L∩B| < pt +1, otherwise the statement trivially holds.
The previous part of this lemma shows that L is contained in a small (n − k + 1)-space,
which has, by the first part of this lemma, a linear intersection with B. Hence, B ∩ L is
a linear set.

(iv) A small (n − 1)-space through Π meets B in at least phk−h
0 + phk−h−1 − phk−h−2

points (see Corollary 2) and a small (n−2)-space contains at most (phk−2h+1
0 −1)/(p0−1)

points by the first part of this lemma. By Lemma 1, a large (n − 1)-space through Π
contains at least phk−h+1 − phk−h−1 − phk−h−2 − 3phk−h−3 points of B. Suppose there are
y large (n − 1)-spaces through Π. Then the number of points in B is at least

y(phk−h+1
0 − phk−h−1

0 − phk−h−2
0 − 3phk−h−3

0 − (phk−2h+1
0 − 1)/(p0 − 1))+

(ph
0 + 1− y)(phk−h

0 + phk−h−1 − phk−h−2 − (phk−h+1
0 − 1)/(p0 − 1)) + (phk−2h+1

0 − 1)/(p0 − 1)

which is at most phk
0 + phk−1

0 + phk−2
0 + 3phk−3

0 . This yields y ≤ 4ph−3
0 .

Lemma 13. Assume (H). Let B be a non-trivial small minimal k-blocking set with ex-
ponent e in PG(n, pt), p prime, p0 := pe ≥ 7 and let P be a point of B, and let Π be a
tangent (n − k)-space to B through P . Let H1 and H2 be two (n − k + 1)-spaces through
Π for which B ∩ Hi = B(πi), for some h-space πi through a point x ∈ S(P ), such that P
lies on a (p0 + 1)-secant in Hi, i = 1, 2. Then B(〈π1, π2〉) ⊂ B.

Proof. Let L be a (p0+1)-secant through P in H1 and let ℓ be the line in π through x such
that 〈B(ℓ)〉 = L. Let s be a point of π2. By Lemma 12 (ii), there is a small (n− 2)-space
Πn−2 through L, skew to B(s). There are at least ph−1

0 − 4ph−2
0 (p0 + 1)-secants through

P , of which at least ph−1
0 − 4ph−2

0 − (ph−1
0 − 1)/(p0 − 1) span an (n − 1)-space together

with Πn−2. By Lemma 12 (iv), there are at most 4ph−3
0 large spaces through Πn−2, so at

least ph−1
0 − 4ph−2

0 − (ph−1
0 − 1)/(p0 − 1) − 4ph−3

0 of the (p0 + 1)-secants through P have
a transversal line ℓk, for which B(〈ℓ, ℓk〉) ⊂ B. This gives in total at least ph+1

0 − 6ph
0

points Q in 〈ℓ, π2〉 for which B(Q) ⊂ B, denote this pointset by G. This means that every
point t of 〈ℓ, π2〉 lies on a line m with at least p0 − 5 points of G. Since 〈B(m)〉 either is
contained in B, or it meets B in a linear set of rank at most h (see Lemma 12 (iii)), and
p0 − 5 > h, again by Theorem 3, B(m) ⊂ B by Theorem 3, and hence, B(t) ⊂ B.

Hence, for all (p0 + 1)-secants B(ℓ), with ℓ through x, in H1, B(〈ℓ, π2〉) ⊂ B. This
shows that there are at least (ph−1

0 − 4ph−2
0 )ph+1

0 + (ph+1
0 − 1)/(p0 − 1) points Q in the

2h-space 〈π1, π2〉 such that B(Q) ⊂ B. Every point t of 〈π1, π2〉 lies on a line m with at
least p0 − 5 points of G. Again, since p0 − 5 > h, by Theorem 3, B(m) ⊂ B and hence,
B(t) ⊂ B. It follows that B(〈π1, π2〉) ⊆ B.

Proof of Main Theorem 2. Let B be a non-trivial small minimal k-blocking set
with exponent e in PG(n, pt), p prime, p0 := pe ≥ 7. We will show that, assuming that
all small minimal 1-blocking sets with exponent e in PG(n, pt), p prime, p0 := pe ≥ 7, are
Fp0

-linear, B is Fp0
-linear. By induction, we may assume (H) holds. If B is a k-space,

then B is Fp0
-linear. If B is a non-trivial small minimal k-blocking set, Lemma 11 shows
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that there exists a point P of B, a tangent (n − k)-space Π at the point P and at least
phk−h

0 − 5phk−h−1
0 (n − k + 1)-spaces Hi through Π for which B ∩ Hi is small and linear,

where P lies on at least one (p0 + 1)-secant of B ∩Hi, i = 1, . . . , s, s ≥ phk−h
0 − 5phk−h−1

0 .
Let B ∩Hi = B(πi), i = 1, . . . , s, with πi an h-dimensional space in PG(h(n + 1)− 1, p0),
where x ∈ πi, with x ∈ S(P ).

Lemma 13 shows that B(〈πi, πj〉) ⊆ B, 0 ≤ i 6= j ≤ s.
If k = 2, the set B(〈π1, π2〉) corresponds to a linear 2-blocking set B′ in PG(n, ph

0).
Since B is minimal, B = B′, and the Theorem is proven.

Let k > 2. Denote the (n − k + 1)-spaces through Π, different from Hi, by Kj, j =
1, . . . , z. It follows from Lemma 11 that z ≤ 5phk−h−1

0 + (phk−h
0 − 1)/(p0 − 1) ≤ 6phk−h−1

0 .
There are at least (phk−h

0 − 5phk−h−1
0 − 1)/ph

0 different (n − k + 2)-spaces 〈H1, Hj〉, 1 <
j ≤ s. If all (n − k + 2)-spaces 〈H1, Hj〉, contain at least 10ph−1

0 of the spaces Ki, then
z ≥ 10ph−1

0 (phk−h
0 − 5phk−h−1

0 − 1)/ph
0 > 6phk−h−1

0 , a contradiction if p0 > h + 10. Let
〈H1, H2〉 be an (n − k + 2)-spaces containing less than 10ph−1

0 spaces Ki.
Suppose by induction that for any 1 < i < k, there is an (n − k + i)-space

〈H1, H2, . . . , Hi〉 containing at most 10phi−h−1
0 of the spaces Ki such that B(〈π1, . . . , πi〉) ⊆

B.
There are at least

phk−h
0 − 6phk−h−1

0 − (phi
0 − 1)/(ph

0 − 1)

ph
0

different (n − k + i + 1)-spaces 〈H1, H2, . . . , Hi, Hr〉, Hr 6⊆ 〈H1, H2, . . . , Hi〉. If all of
these contain at least 10phi−1

0 of the spaces Ki, then z ≥ 6phk−h−1
0 , a contradiction. Let

〈H1, . . . , Hi+1〉 be an (n − k + i + 1)-space containing less than 10phi−1
0 spaces Ki. We

still need to prove that B(〈π1, . . . , πi+1〉) ⊆ B. Since B(〈πi+1, π〉) ⊆ B, with π an h-
space in 〈π1, . . . , πi〉 for which B(π) is not contained in one of the spaces Ki, there are at
most 10phi−h−1

0 2h-dimensional spaces 〈πi+1, µ〉 for which B(〈πi+1, µ〉) is not necessarily
contained in B, giving rise to at most v := 10phi−h−1

0 (p2h+1
0 −1)/(p0−1) points t for which

B(t) is not necessarily contained in B. Let u be a point of such a space 〈πi+1, µ〉, and
suppose that B(u) /∈ B. If each of the (phi+h

0 −1)/(p0−1) lines through u in 〈π1, . . . , πi+1〉
contains at least 10 of the points t for which B(t) is not in B, then there are more than
v such points t, a contradiction. Hence, there is a line n through u for which for at least
p0 − 10 points v ∈ n, B(v) ∈ B. Every line L meets B in a linear set (see Lemma 12
(iii)), and if this linear set has rank at least h + 1, then L is completely contained in B.
This implies that 〈B(n)〉 ∩ B has rank at most h, and that the subline B(n) contains at
least p0 − 10 points of the linear set 〈B(n)〉 ∩ B. Since p0 − 10 > h, by Theorem 3, B(n)
is contained in 〈B(n)〉 ∩ B, so B(u) ⊂ B, a contradiction.

This implies that B(〈π1, . . . , πi+1〉) ⊆ B.
Since B(〈π1, . . . , πk〉) ⊆ B, and B(〈π1, . . . , πk〉) corresponds to a linear k-blocking set

B′ in PG(n, ph
0) contained in the minimal k-blocking set B, B = B′ and hence, B is

Fp0
-linear.
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