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Abstract

Let K be a perfect field of characteristic 2. In this paper, we
classify all hyperplanes of the symplectic dual polar space DW (5,K)
that arise from its Grassmann embedding. We show that the number
of isomorphism classes of such hyperplanes is equal to 5 + N , where
N is the number of equivalence classes of the following equivalence
relation R on the set {λ ∈ K |X2 + λX + 1 is irreducible in K[X]}:
(λ1, λ2) ∈ R whenever there exists an automorphism σ of K and an
a ∈ K such that (λσ2 )−1 = λ−1

1 + a2 + a.
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1 Introduction

Let n ≥ 2, let K be a perfect field of characteristic 2 and let V be a 2n-
dimensional vector space over K equipped with a nondegenerate alternating
bilinear form. With this bilinear form there corresponds a symplectic polarity
ζ of the projective space PG(V ) = PG(2n− 1,K).

Associated with the polarity ζ there is a symplectic polar space W (2n−
1,K) (see Tits [29]) and a symplectic dual polar space DW (2n − 1,K) (see
Cameron [5]). The singular subspaces of W (2n− 1,K) are the subspaces of
PG(2n − 1,K) which are absolute with respect to ζ. We denote by P the
set of all maximal singular subspaces of W (2n − 1,K). For every next-to-
maximal singular subspace β of W (2n − 1,K), let Lβ denote the set of all
maximal singular subspaces of W (2n− 1,K) containing β, and let L denote
the set of all sets Lβ which can be obtained in this way. Then DW (2n−1,K)
is the point-line geometry with point-set P and line-set L.
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Let
∧n V denote the n-th exterior power of V . For every point α =

〈v̄1, v̄2, . . . , v̄n〉 of DW (2n − 1,K), let e(α) be the point 〈v̄1 ∧ v̄2 ∧ · · · ∧ v̄n〉
of PG(

∧n V ). The subspace Σ of PG(
∧n V ) generated by all points e(α),

α ∈ P , is
((

2n
n

)
−
(

2n
n−2

)
− 1
)

-dimensional (see e.g. Brouwer [3] or De Bruyn

[16]). By Cooperstein [10], the map α 7→ e(α) defines a full projective em-
bedding of DW (2n− 1,K) into Σ. In other words, e is an injective mapping
from the point-set of DW (2n − 1,K) to the point-set of Σ mapping lines
of DW (2n − 1,K) to (full) lines of Σ such that the image of e generates
the whole projective space Σ. The embedding e is called the Grassmann
embedding of DW (2n− 1,K).

A set S 6= P of points of DW (2n−1,K) is called a hyperplane of DW (2n−
1,K) if every line of DW (2n− 1,K) intersects S in either the whole line or a
singleton. If Π is a hyperplane of the projective space Σ, then e−1(Π∩e(P)) is
a hyperplane of DW (2n− 1,K). We say that the hyperplane e−1(Π ∩ e(P))
arises from (the Grassmann embedding) e. The aim of this paper is to
determine the isomorphism classes of hyperplanes of DW (5,K) that arise
from its Grassmann embedding. Except for the case K ∼= F2 the hyperplanes
of DW (5,K) that arise from some projective embedding are precisely the
hyperplanes of DW (5,K) that arise from the Grassmann embedding (see the
remark at the end of this section).

If x and y are two points of DW (2n−1,K), then we denote by d(x, y) the
distance between x and y in the collinearity graph ∆ of DW (2n−1,K) (which
has diameter n). The dual polar space DW (2n − 1,K) is a near polygon
([28], [11]) which means that for every point x and every line L, there exists
a unique point πL(x) on L nearest to x. A set X of points of DW (2n− 1,K)
is called connected if the subgraph of ∆ induced on X is connected. For every
point x of DW (2n − 1,K) and every i ∈ N, ∆i(x) denotes the set of points
of DW (2n− 1,K) at distance i from x. We also define x⊥ := ∆0(x)∪∆1(x).
For every nonempty set X of points and every i ∈ N, ∆i(X) is the set of
all points y for which d(y,X) := min{d(y, x) |x ∈ X} = i. If x is a point
of DW (2n − 1,K), then the set Hx of points of DW (2n − 1,K) at distance
at most n− 1 from x is a hyperplane of DW (2n− 1,K), called the singular
hyperplane of DW (2n− 1,K) with deepest point x. The singular hyperplanes
of DW (2n− 1,K) arise from the Grassmann embedding of DW (2n− 1,K),
see e.g. Cardinali, De Bruyn and Pasini [7, Section 4.3] or De Bruyn [15,
Proposition 2.15].

By Shult [26, Lemma 6.1], every hyperplane of DW (2n− 1,K) is a max-
imal subspace of DW (2n − 1,K) and hence its complement is connected.
This fact also implies that if H is a hyperplane of DW (2n − 1,K) arising
from the Grassmann embedding e of DW (2n− 1,K), then 〈e(H)〉Σ is a hy-
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perplane of Σ and 〈e(H)〉Σ ∩ e(P) = e(H). If H1 and H2 are two distinct
hyperplanes of DW (2n − 1,K) arising from e, then we denote by [H1, H2]∗

the set of all hyperplanes of DW (2n− 1,K) of the form e−1(e(P)∩Π) where
Π is some hyperplane of Σ containing 〈e(H1)〉Σ ∩ 〈e(H1)〉Σ. We also define
(H1, H2)∗ := [H1, H2]∗ \ {H1, H2}.

A quad of DW (2n − 1,K) is the set of all maximal singular subspaces
of W (2n− 1,K) containing a given (n− 3)-dimensional singular subspace of
W (2n−1,K). The lines and quads through a given point x of DW (2n−1,K)
define a point-line geometry Res(x) (natural incidence) which is a projective
space isomorphic to PG(n − 1,K). The points and lines of DW (2n − 1,K)

contained in a quad Q define a point-line geometry Q̃ which is a generalized
quadrangle isomorphic to DW (3,K) ∼= Q(4,K). The Grassmann embedding
e : DW (2n − 1,K) → Σ of DW (2n − 1,K) induces a full embedding eQ
of Q̃ into the subspace 〈e(Q)〉Σ of Σ. This embedding is isomorphic to the
Grassmann embedding of DW (3,K), see e.g. Cardinali, De Bruyn and Pasini
[7, Proposition 4.10]. (Although the discussion there was limited to the finite
case, the arguments work as well for the infinite case.) The Grassmann
embedding of DW (3,K) is isomorphic to the natural embedding of Q(4,K)
into PG(4,K). It is easy to verify that every hyperplane of Q(4,K) is either
a singular hyperplane, a full subgrid or an ovoid, an ovoid being a set of
points intersecting each line in a singleton. Every singular hyperplane or
full subgrid of Q(4,K) arises from the natural embedding of Q(4,K) into
PG(4,K). This is not necessarily true for the ovoids. If an ovoid of Q(4,K)
arises from the natural embedding of Q(4,K) into PG(4,K), then it is called
classical. So, a classical ovoid is a nonsingular quadric of Witt index 1 in a
hyperplane of PG(4,K).

A max of DW (2n− 1,K) is the set of all maximal singular subspaces of
W (2n− 1,K) through a given point x of W (2n− 1,K). The points and lines

contained in a max M define a point-line geometry M̃ which is isomorphic
to DW (2n− 3,K) if n ≥ 3. If A is a hyperplane of M̃ , then HA := ∆0(A) ∪
∆1(A) = M ∪∆1(A) is a hyperplane of DW (2n− 1,K), called the extension

of A ([19, Proposition 1]). The extension of a singular hyperplane of M̃ is
a singular hyperplane of DW (2n− 1,K). The extension of a full subgrid of
a quad of DW (5,K) arises from the Grassmann embedding of DW (5,K),
see [15, Section 2.3]. In Section 3 (more precisely Lemma 3.7), we will show
that also the extension of a classical ovoid of a quad of DW (5,K) arises from
the Grassmann embedding. If M is a max of DW (2n − 1,K) and x is a
point not contained in M , then x is collinear with a unique point πM(x) of
M , called the projection of x onto M . Moreover, d(x, y) = 1 + d(πM(x), y)
for every point y ∈ M . If M1 and M2 are two disjoint maxes, then the
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map x 7→ πM2(x) defines an isomorphism between M̃1 and M̃2, see e.g. [11,
Theorem 1.10].

Consider the polar space Q(2n,K) related to a nonsingular quadric of
Witt-index n of PG(2n,K) and let DQ(2n,K) denote the associated dual
polar space. Since K is a perfect field of characteristic 2, the dual polar
spaces DW (2n − 1,K) and DQ(2n,K) are isomorphic (see e.g. De Bruyn
and Pasini [18]). The dual polar space DQ(2n,K) has a full embedding
into the projective space PG(2n − 1,K) which is called the spin embedding
of DQ(2n,K), see Chevalley [9] or Buekenhout and Cameron [4]. If e :
DW (2n− 1,K)→ Σ denotes the Grassmann embedding of DW (2n− 1,K),
then the intersectionN of all subspaces 〈e(Hx)〉Σ, x ∈ P , is called the nucleus
of e. By Cardinali, De Bruyn and Pasini [7, Section 4.1], dim(Σ)−dim(N ) =
2n; hence, dim(N ) =

(
2n
n

)
−
(

2n
n−2

)
− 2n − 1. The hyperplanes of DW (2n −

1,K) that arise from the spin embedding are precisely the hyperplanes H of
DW (2n − 1,K) that arise from e and that satisfy N ⊆ 〈e(H)〉Σ. Hence, if
H1 and H2 are two distinct hyperplanes of DW (2n − 1,K) that arise from
the spin embedding, then also every hyperplane of [H1, H2]∗ arises from the
spin embedding.

The isomorphism between the dual polar spaces DW (5,K) and DQ(6,K)
plays a crucial role in this paper. The reason why we have imposed the
restriction that K is a perfect field of characteristic 2 is that this isomorphism
fails to hold for other fields. We will now discuss some properties of the
hyperplanes of DW (5,K) ∼= DQ(6,K) that arise from its spin embedding.
Proofs of these facts can be found in the papers De Bruyn [13], Pralle [24],
Shult [25] and Shult & Thas [27]. There are two types of hyperplanes of
DW (6,K) ∼= DQ(6,K) that arise from its spin embedding: the singular
hyperplanes and the so-called hexagonal hyperplanes. The points and lines
contained in a hexagonal hyperplane define a split-Cayley hexagon H(K). If
H is a hexagonal hyperplane of DQ(6,K), then for every quad Q of DQ(6,K),
Q∩H is a singular hyperplane of Q. Moreover, for every point x ∈ H, there
exists a unique quad Q through x for which x⊥ ∩H = x⊥ ∩Q = Q ∩H.

In this paper, we prove the following theorem.

Theorem 1.1 Let K be a perfect field of characteristic 2 and let H be a
hyperplane of DW (5,K) arising from the Grassmann embedding. Then H is
one of the following:

(1) a singular hyperplane of DW (5,K);
(2) a hexagonal hyperplane of DW (5,K);
(3) the extension of a full subgrid of a quad of DW (5,K);
(4) the extension of a classical ovoid of a quad of DW (5,K);

4



(5) a hyperplane belonging to some set (HG, Hx)
∗ where G is a full subgrid

of a quad Q of DW (5,K) and x is a point of DW (5,K) not contained in Q
for which πQ(x) ∈ G;

(6) a hyperplane belonging to some set (HG, Hx)
∗ where G is a full subgrid

of a quad Q of DW (5,K) and x is a point of DW (5,K) not contained in Q
for which πQ(x) 6∈ G.

The 6 hyperplane classes mentioned in Theorem 1.1 can be distinguished as
follows. For a hyperplane H of DW (5,K), let DH denote the set of quads of
DW (5,K) that are contained in H. In case (1), DH consists of all quads of
DW (5,K) which contain the deepest point of H. In case (2), DH = ∅ since

every quad Q intersects H in a singular hyperplane of Q̃. In case (3), DH

consists of all quads which contain a line of the grid which defines H. In case
(4), DH consists of the unique quad which carries the ovoid which defines
H. In case (5), DH defines a nonempty and nondegenerate conic in the dual
projective plane of Res(πQ(x)). In case (6), DH = ∅ and there exists a quad

Q for which Q ∩H is not a singular hyperplane of Q̃.

Regarding the uniqueness of the hyperplanes in each of the 6 classes men-
tioned in Theorem 1.1, we can say the following:

Theorem 1.2 For each of the classes corresponding to (1), (2), (3), (5) or
(6) of Theorem 1.1, there exists up to isomorphism a unique hyperplane.
Two extensions of classical ovoids are isomorphic if and only if the ovoids of
Q(4,K) from which they arise are isomorphic.

It remains to determine how many isomorphism classes of classical ovoids of
Q(4,K) there are. Take a reference system in the projective space PG(4,K)
and supposeQ(4,K) is associated with the quadricQ↔ X2

0 +X1X2+X3X4 =
0 of PG(4,K). For every λ ∈ K, let πλ be the hyperplane X4 = X3 + λX0 of
PG(4,K) and put Oλ := Q ∩ πλ. The equation of Oλ induced on the hyper-
plane πλ is X1X2+(X2

0 +λX0X3+X2
3 ). So, Oλ is a (classical) ovoid of Q(4,K)

if and only if λ ∈ Ω := {λ ∈ K |X2 + λX + 1 is irreducible in K[X]}. Define
the following equivalence relation R on the set Ω: (λ1, λ2) ∈ R whenever there
exists an automorphism σ of K and an a ∈ K such that (λσ2 )−1 = λ−1

1 +a2 +a.
Then we show the following:

Theorem 1.3 Let K be a perfect field of characteristic 2. Then:
(i) Every classical ovoid O of Q(4,K) is isomorphic to an ovoid Oλ for

some λ ∈ Ω.
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(ii) If λ1, λ2 ∈ Ω, then the classical ovoids Oλ1 and Oλ2 of Q(4,K) are
isomorphic if and only if (λ1, λ2) ∈ R.

Hence, we can say the following:

Corollary 1.4 Let K be a perfect field of characteristic 2. Then:
(i) The number of nonisomorphic classical ovoids of Q(4,K) is equal to

the number N of classes of the equivalence relation R.
(ii) The number of nonisomorphic hyperplanes of DW (5,K) is equal to

5 +N .

The results mentioned in Theorems 1.1 and 1.2 were already known if K
is a finite field of characteristic 2, see [14]. The proofs given in [14] however
make use of several counting arguments. The key result which allows us to
avoid all counting arguments is Lemma 4.1 whose proof relies very much
on a recent result of Blok, Cardinali and De Bruyn [1] (see also [8]) on the
nucleus of the Grassmann embedding of DW (5,K). Some of the lemmas
mentioned in that paper are essentially contained in [14] since their proofs
do not essentially make use of the finiteness of the field. Some other lemmas
require an adaptation of the arguments so that their proofs would also work
in the infinite case. We have decided to include also complete proofs of these
lemmas in order to be able to offer the reader complete, self-contained and
streamlined proofs for Theorems 1.1 and 1.2.

Remark. If |K| 6= 2, then the Grassmann embedding of DW (5,K) is the so-
called absolutely universal embedding of DW (5,K), see [10], [17] and [20].
In that case, the hyperplanes of DW (5,K) that arise from some projec-
tive embedding are precisely the hyperplanes of DW (5,K) arising from the
Grassmann embedding. If |K| = 2, then the Grassmann embedding is not the
absolutely universal embedding of DW (5,K) = DW (5, 2), see e.g. Blokhuis
and Brouwer [2] or Li [21]. The dual polar space DW (5, 2) has 6 isomorphism
classes of hyperplanes which do not arise from the Grassmann embedding,
see [24] or [14].

2 Some properties of the automorphism group

of DW (2n− 1,K)

Let W (2n − 1,K), n ≥ 2, be the symplectic polar space associated with a
nondegenerate alternating bilinear form (·, ·) of a 2n-dimensional vector space
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V over a field K. Suppose g is an element of ΓL(V ) for which there exists an
ag ∈ K\{0} and an automorphism σg of K such that (g(x̄), g(ȳ)) = ag ·(x̄, ȳ)σg

for all x̄, ȳ ∈ V . Then the map 〈x̄〉 7→ 〈g(x̄)〉 defines an automorphism of
W (2n− 1,K). Conversely, every automorphism of W (2n− 1,K) is obtained
in this way.

Let A denote the full automorphism group of DW (2n − 1,K). Then
every element of A is induced by an automorphism of W (2n − 1,K), and
conversely. The following properties are easily verified taking into account
the above description of the automorphisms of A (some of them also follow
from Witt’s theorem):

(P1) A acts transitively on the set of points of DW (2n− 1,K).

(P2) A acts transitively on the set of ordered pairs (x1, x2) where x1 and x2

are two opposite points of DW (2n− 1,K).

(P3) A acts transitively on the set of maxes of DW (2n− 1,K).

(P4) If θ ∈ A fixes the point x of DW (2n − 1,K), then θ trivially induces
an automorphism of Res(x) ∼= PG(n − 1,K). Conversely, if n ≥ 3
then every automorphism of Res(x) is induced by an automorphism of
DW (2n− 1,K) fixing x.

(P5) If n ≥ 3, if M is a max of DW (2n− 1,K) and if θ is an automorphism

of the point-line geometry M̃ , then there exists an automorphism θ′ of
DW (2n− 1,K) such that θ′(x) = θ(x) for every x ∈M .

(P6) The automorphism group of W (2n−1,K) acts transitively on the set of
hyperbolic lines of W (2n−1,K). [With a hyperbolic line we mean a line
of PG(2n− 1,K) which is not a totally isotropic line of W (2n− 1,K).]

(P7) If e denotes the Grassmann embedding of DW (2n − 1,K) into Σ =
PG(

∧n V ), then for every automorphism θ of DW (2n − 1,K), there

exists an automorphism θ̃ of Σ such that e(θ(x)) = θ̃(e(x)) for every
point x of DW (2n − 1,K). If θ is associated with a projectivity of

PG(2n− 1,K), then θ̃ is a projectivity of Σ. (Every g ∈ ΓL(V ) natu-
rally induces an element g̃ ∈ ΓL(

∧n V ), and the automorphisms of K
corresponding to g and g̃ coincide.) Property (P7) implies that if a hy-
perplane H of DW (2n−1,K) arises from e, then also every hyperplane
θ(H), θ ∈ A, arises from e.

Lemma 2.1 Let n ≥ 2. For every max M of DW (2n− 1,K), there exists a
group TM of automorphisms of DW (2n− 1,K) satisfying:
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(i) every element of TM fixes M pointwise;
(ii) if L is a line meeting M in a unique point z, then TM acts regularly

on L \ {z}.

Proof. Let 〈x̄∗〉 denote the point of W (2n − 1,K) corresponding to the
max M of DW (2n − 1,K). For every k ∈ K, the symplectic transvection
ȳ 7→ ȳ − k(x̄∗, ȳ)x̄∗ of GL(V ) defines an automorphism of W (2n− 1,K) and
hence also an automorphism τk of DW (2n− 1,K). Put TM := {τk | k ∈ K}.
Then TM is a group of automorphisms of DW (2n−1,K) fixing M pointwise.

Now, let L be a line meeting M in a unique point z. Then L corre-
sponds to an (n − 2)-dimensional singular subspace β = 〈x̄1, x̄2, . . . , x̄n−1〉
of W (2n − 1,K) and α := 〈x̄1, x̄2, . . . , x̄n−1, x̄

∗〉 is the (n − 1)-dimensional
singular subspace of W (2n − 1,K) corresponding to z. Let 〈x̄1, x̄2, . . . , x̄n〉
be an (n − 1)-dimensional singular subspace through β distinct from α.
Then the points of L \ {z} correspond to the (n − 1)-dimensional singu-
lar subspaces 〈x̄1, x̄2, . . . , x̄n−1, x̄n + λx̄∗〉, λ ∈ K \ {0}. It is now straight-
forward to verify that TM acts regularly on the set L \ {z} (notice that
(x̄1, x̄

∗) = . . . = (x̄n−1, x̄
∗) = 0 and (x̄n, x̄

∗) 6= 0). �

Lemma 2.2 The automorphism group of Q(4,K) acts transitively on the set
of full subgrids of Q(4,K).

Proof. Let ζ be a symplectic polarity of PG(3,K) giving rise to DW (3,K) ∼=
Q(4,K). For every full subgrid G of Q(4,K) there exists a hyperbolic line L
of W (3,K) such that the points of G correspond to the totally isotropic lines
of W (3,K) meeting L and Lζ . The lemma now follows from Property (P6).
�

Lemma 2.3 The automorphism group of Q(4,K) acts transitively on the set
of all pairs (G, x) where G is a full subgrid of Q(4,K) and x is a point of
Q(4,K) not contained in G.

Proof. By Lemma 2.2, the automorphism group of Q(4,K) acts transitively
on the set of full subgrids of Q(4,K). If G is a full subgrid of Q(4,K), then
G is a hyperplane and hence its complement is connected. So, it suffices to
prove that for any full subgrid G of Q(4,K) and any two distinct collinear
points x1 and x2 of Q(4,K) not contained in G, there exists an automorphism
of Q(4,K) stabilizing G and mapping x1 to x2. For such a choice of G, x1

and x2, let x denote the unique point in x1x2 ∩G and let L denote a line of
G containing x. Then there exists a unique automorphism in TL mapping x1

to x2. This automorphism of TL stabilizes G. �
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Lemma 2.4 The automorphism group of DW (5,K) acts transitively on the
pairs (G, x) where G is a full subgrid of a quad and x is a point of ∆2(G).

Proof. The automorphism group of DW (5,K) acts transitively on the set
of full subgrids by Properties (P3)+(P5) and Lemma 2.2. Now, fix a certain
full subgrid G and let Q denote the unique quad containing G. Then ∆2(G)
is connected since it is the complement of a hyperplane. So, it suffices to
prove that for any two distinct collinear points x1, x2 ∈ ∆2(G), there exists
an automorphism of DW (5,K) stabilizing G and mapping x1 to x2. Let x
denote the unique point of the line x1x2 contained in G∪∆1(G). If x ∈ Q, put
M := Q; otherwise, let M denote one of the two quads of DW (5,K) through
x intersecting G in a line. By Lemma 2.1, there exists an automorphism of
TM mapping x1 to x2. This automorphism stabilizes G. �

Lemma 2.5 Let K be a perfect field of characteristic 2. Let x1 and x2 be
two points of DW (5,K) at distance 3 from each other. Then there exists a
line L in DW (5,K) satisfying the following: (i) d(x1, L) = d(x2, L) = 2; (ii)
πL(x1) 6= πL(x2); (iii) for any two points y1, y2 ∈ L \ {πL(x1), πL(x2)}, there
exists an automorphism θ of DW (5,K) fixing x1 and x2, stabilizing L and
mapping y1 to y2.

Proof. Choose a reference system such that the polar space W (5,K) is
described by the following alternating form:

(X0Y3 −X3Y0) + (X1Y4 −X4Y1) + (X2Y5 −X5Y2).

Without loss of generality (see Property (P2)), we may suppose that x1 ↔
X3 = X4 = X5 = 0 and x2 ↔ X0 = X1 = X2 = 0. Let L be the following
line of DW (5,K): L ↔ X0 − X3 = X1 − X4 = X2 = X5 = 0. The points
p1 ↔ X0−X3 = X1−X4 = X5 = 0 and p2 ↔ X0−X3 = X1−X4 = X2 = 0
belong to L. Moreover, d(x1, p1) = d(x2, p2) = 2 and d(x1, p2) = d(x2, p1) =
3. The other points of L are given by the equations X0 − X3 = X1 −
X4 = X2 − µX5 = 0, µ ∈ K \ {0}, and lie at distance 3 from x1 and x2.
Now, choose two arbitrary points y1 and y2 in L \ {p1, p2}. So, there exist
µ1, µ2 ∈ K \ {0} such that yi ↔ X0 − X3 = X1 − X4 = X2 − µiX5 = 0,
i ∈ {1, 2}. Since K is perfect, there exists a k ∈ K \ {0} such that k2 = µ2

µ1
.

The map (X0, X1, X2, X3, X4, X5) 7→ (X0, X1, kX2, X3, X4,
X5

k
) induces an

automorphism θ of DW (5,K) fixing x1 and x2, stabilizing L and mapping
y1 to y2. �

Lemma 2.6 Let K be a perfect field of characteristic 2. Let G be a full
subgrid of a quad Q of DW (5,K) and let p1 be an arbitrary point of ∆2(G).
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Then there exists a line L satisfying the following properties: (i) L intersects
Q in a point p2 of ∆3(p1)\G; (ii) for every two points y1, y2 ∈ L\{p2, πL(p1)},
there exists an automorphism θ of DW (5,K) fixing p1, stabilizing G and L,
and mapping y1 to y2.

Proof. Suppose first that K ∼= F2. Let p2 be a point of Q \ (G ∪ πQ(p1)⊥)
and let L denote an arbitrary line through p2 not contained in Q. Then
|L \ {p2, πL(p1)}| = 1 and so condition (ii) holds: since y1 = y2, we can take
for θ the trivial automorphism.

Suppose K is not isomorphic to F2. The point p1 corresponds to a totally
isotropic plane α1 of W (5,K). There exists a nonisotropic plane α2 such
that the singular point xα2 of α2 corresponds to the quad Q and the points
of G correspond to the totally isotropic planes of W (5,K) which intersect α2

in a line through xα2 . (Recall that with every full subgrid of Q(4,K) there
corresponds a pair of orthogonal hyperbolic lines of W (3,K), see the proof
of Lemma 2.2.) Since p1 6∈ Q and πQ(p1) 6∈ G, α1 and α2 are disjoint.

Now, choose a reference system such that the polar space W (5,K) is
described by the following alternating form:

(X0Y3 −X3Y0) + (X1Y4 −X4Y1) + (X2Y5 −X5Y2).

Without loss of generality (see Lemma 2.4), we may suppose that α1 ↔ X0 =
X1 = X2 = 0 and α2 ↔ X3 = X4 = X0−X5 = 0. One readily verifies that α2

is a nonisotropic plane and that the point (0, 1, 0, 0, 0, 0) is its singular point.
Now, choose a δ ∈ K \ {0, 1} and let L be the following line of DW (5,K):
X0 − δX5 = X2 − δX3 = X1 = X4 = 0. Put L ∩ Q = {p2}. Then p2 is the
following point of Q: X0−δX5 = δX3−X2 = X4 = 0. Obviously, d(p1, p2) =
3. Since the system X3 = X4 = X0−X5 = 0, X0−δX5 = δX3−X2 = X4 = 0
has only the point (0, 1, 0, 0, 0, 0) as solution, p2 6∈ G. The point πL(p1)
has the following equation: X0 − δX5 = X2 − δX3 = X1 = 0. A point
y of L \ {p2, πL(p1)} has the following equation for a certain µ ∈ K \ {0}:
X0 − δX5 = X2 − δX3 = X1 − µX4 = 0. Now, let y1, y2 be arbitrary points
of L \ {p2, πL(p1)} and let µ1, µ2 ∈ K \ {0} such that yi ↔ X0 − δX5 =
X2 − δX3 = X1 − µiX4 = 0 for every i ∈ {1, 2}. Let k ∈ K \ {0} such that
k2 = µ2

µ1
, then the map (X0, X1, X2, X3, X4, X5) 7→ (X0, kX1, X2, X3,

X4

k
, X5)

induces an automorphism of DW (5,K) satisfying all required properties. �

3 Regarding the sets [H1, H2]∗

Throughout this section, K denotes a perfect field of characteristic 2.
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Lemma 3.1 If G is a full subgrid of Q(4,K), then for every point x ∈ G,
(G, x⊥)∗ only contains full subgrids.

Proof. If L is one of the two lines through x which are contained in G, then
since L ⊆ G and L ⊆ x⊥, L is also contained in any hyperplane of (G, x⊥)∗.
If L is a line through x not contained in G, then since L ⊆ x⊥ and L 6⊆ G,
L cannot be contained in any of the hyperplanes of (G, x⊥)∗. So, for any
hyperplane H of (G, x⊥)∗, precisely two lines through x are contained in H;
hence, H is a full subgrid. �

Lemma 3.2 If x1 and x2 are two distinct points of Q(4,K), then any hy-
perplane of [x⊥1 , x

⊥
2 ]∗ is singular.

Proof. The spin embedding of Q(4,K) is isomorphic to the natural embed-
ding of W (3,K) into PG(3,K) and hence the hyperplanes arising from it are
precisely the singular hyperplanes of Q(4,K). Now, since x⊥1 and x⊥2 arise
from the spin embedding of Q(4,K) also any hyperplane of [x⊥1 , x

⊥
2 ]∗ arises

from the spin embedding and hence is singular. �

Lemma 3.3 Let M be a max of DW (2n−1,K) and let A1, A2 be two distinct

hyperplanes of M̃ . If H is a hyperplane of DW (2n − 1,K) satisfying H ∩
HA1 = HA1 ∩HA2 = H ∩HA2, then H = HA3 for some hyperplane A3 of M̃
satisfying A1 ∩ A3 = A1 ∩ A2 = A2 ∩ A3.

Proof. Notice first that for every hyperplane A of M̃ , HA =
⋃
x∈A x

⊥.
We have M ⊆ HA1 ∩ HA2 ⊆ H. We show that for any x ∈ M , either

x⊥ ⊆ H or x⊥ ∩H = x⊥ ∩M . If this would not be the case, then there exist
two lines L1 and L2 through x not contained in M such that L1 ⊆ H and
L2 6⊆ H. Let Q denote the unique quad through L1 and L2 and let L3 be
the line Q ∩M . Now, Q ∩H is a hyperplane of Q̃ which is necessary a full
subgrid since L1, L3 ⊆ H and L2 6⊆ H. Let y denote a point of L3 ∩ A1 and
let L4 denote the unique line of Q ∩ H through y distinct from L3. Since
H∩HA1 = HA1∩HA2 = H∩HA2 , we would have the following: (i) L4 ⊆ HA2 ;
(ii) any line through y not contained in M ∪L4 is not contained in HA2 . This
is clearly not possible. Hence, either x⊥ ⊆ H or x⊥ ∩H = x⊥ ∩M .

Now, let A3 denote the set of points of M satisfying x⊥ ⊆ H. Let M ′

denote a max disjoint from M and put A′i := πM ′(Ai), i ∈ {1, 2, 3}. Since

A′3 = H ∩M ′, A′3 is a hyperplane of M̃ ′. So, since the projection from M ′

onto M is an isomorphism, A3 is a hyperplane of M̃ and H = HA3 . Since
H ∩HA1 = HA1 ∩HA2 = H ∩HA2 , we have A′1 ∩ A′3 = A′1 ∩ A′2 = A′2 ∩ A′3.
Hence, also A1 ∩ A3 = A1 ∩ A2 = A2 ∩ A3. �
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Lemma 3.4 Let Q be a quad of DW (5,K) and let A and B be two dis-

tinct hyperplanes of Q̃ which are not ovoids. Then [HA, HB]∗ = {HC |C ∈
[A,B]∗}.

Proof. Let Q′ be a quad disjoint from Q and put A′ := πQ′(A) and
B′ := πQ′(B). Then A′ 6= B′. Let e : DW (5,K) → Σ denote the Grass-

mann embedding of DW (5,K) and let eQ′ : Q̃′ → Σ′ be the embedding

of Q̃′ induced by e. Recall that eQ′ is isomorphic to the Grassmann em-
bedding of Q(4,K). Let ΣA and ΣB denote the hyperplanes of Σ giving
rise to HA and HB, respectively. [Recall that the extension of any singular

hyperplane or any full subgrid of Q̃ arises from the Grassmann embedding
of DW (5,K).] Then since A′ = HA ∩ Q′, the hyperplane A′ of Q̃′ arises
from eQ′ , more precisely from the hyperplane ΣA ∩ Σ′ of Σ′. Similarly, the
hyperplane B′ arises from the hyperplane ΣB ∩ Σ′ of Σ′. Now, the hyper-
planes of Σ′ through (ΣA ∩ Σ′) ∩ (ΣB ∩ Σ′) are precisely the hyperplanes
of the form Π ∩ Σ′ where Π is some hyperplane of Σ through ΣA ∩ ΣB.
This implies that {H ∩ Q′ |H ∈ [HA, HB]∗} = [A′, B′]∗. By Lemma 3.3,

every hyperplane of [HA, HB]∗ is the extension of a hyperplane of Q̃. Hence,
[HA, HB]∗ = {HC |C ⊆ Q and πQ′(C) ∈ [A′, B′]∗} = {HC |C ∈ [A,B]∗}. �

Lemma 3.5 If x1 and x2 are two distinct points of DW (5,K) at distance at
most 2 from each other, then any hyperplane of [Hx1 , Hx2 ]

∗ is singular.

Proof. Let Q denote an arbitrary quad containing x1 and x2. Then Hxi ,

i ∈ {1, 2}, is the extension of the singular hyperplane x⊥i ∩ Q of Q̃. The
lemma now immediately follows from Lemmas 3.2 and 3.4. �

Lemma 3.6 If O is a classical ovoid of Q(4,K), then there exists a full
subgrid G of Q(4,K) and a point x 6∈ G such that O ∈ [G, x⊥]∗.

Proof. Let x be a point of Q(4,K) not contained in O, let y be a point of
O collinear with x and let z be a point collinear with y at distance 2 from
x. Since y ∈ O ∩ x⊥, y is contained in any hyperplane of (x⊥, O)∗. Since
z 6∈ x⊥ ∪ O, there exists a unique hyperplane H∗ ∈ (x⊥, O)∗ containing z.
The hyperplane H∗ contains the line yz and hence has to be either a singular
hyperplane (necessarily distinct from x⊥) or a full subgrid. If H∗ would we
a singular hyperplane, then by Lemma 3.2, also O ∈ [H∗, x⊥]∗ would be
singular, a contradiction. So, H∗ is a full subgrid and O ∈ (H∗, x⊥)∗. Since
x 6∈ O and x ∈ x⊥, x cannot belong to H∗. �

Lemma 3.7 The extension of a classical ovoid O of a quad Q of DW (5,K)
arises from the Grassmann embedding of DW (5,K).
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Proof. By Lemma 3.6, there exists a full subgrid G of Q̃ and a point
x ∈ Q \ G such that O ∈ (G, x⊥)∗. By Lemma 3.4, HO ∈ [Hx, HG]∗; hence,
HO arises from the Grassmann embedding of DW (5,K). �

Lemma 3.8 If x1 and x2 are two points of DW (5,K) at distance 3 from
each other, then every hyperplane of (Hx1 , Hx2)

∗ is hexagonal.

Proof. Since Hx1 and Hx2 arise from the spin embedding of DW (5,K), also
every hyperplane of (Hx1 , Hx2)

∗ arises from the spin embedding of DW (5,K).
So, any hyperplaneH of (Hx1 , Hx2)

∗ is either singular or hexagonal. It suffices

to show that every quad Q intersects H in a singular hyperplane of Q̃. If
xi ∈ Q for some i ∈ {1, 2}, then since Q ⊆ Hxi and Q∩Hx3−i is the singular

hyperplane of Q̃ with deepest point πQ(x3−i), also H ∩ Q is the singular

hyperplane of Q̃ with deepest point πQ(x3−i). If x1, x2 6∈ Q, then πQ(x1) 6=
πQ(x2) (since d(x1, x2) = 3) and H ∩Q ∈ [πQ(x1)⊥ ∩Q, πQ(x2)⊥ ∩Q]∗ (look
at the embedding space); by Lemma 3.2, H ∩ Q is a singular hyperplane of
Q. �

Lemma 3.9 If H is a hexagonal hyperplane of DW (5,K), then for every
point x1 of DW (5,K) not contained in H, there exists a unique point x2 6= x1

such that H ∈ (Hx1 , Hx2)
∗. The point x2 lies at distance 3 from x1.

Proof. Let y be a point of H collinear with x1, let Q denote the unique
quad through y such that Q ∩ H = y⊥ ∩ Q and let z ∈ ∆2(y) ∩ Q. Since
y⊥∩Q ⊆ H ∩Hx1 , y

⊥∩Q is contained in any hyperplane of (H,Hx1)
∗. Since

z 6∈ H ∪ Hx1 , there exists a unique hyperplane H∗ ∈ (H,Hx1)
∗ containing

z. Since H and Hx1 arise from the spin embedding of DW (5,K), also H∗

arises from the spin embedding and hence is either singular or hexagonal.
Since y⊥ ∩ Q ⊆ H∗ and z ∈ H∗, Q ⊆ H∗ and hence H∗ is singular with
deepest point belonging to Q. Since H ∈ [Hx1 , H

∗]∗, the deepest point x2

of H∗ lies at distance 3 from x1 by Lemma 3.5. If there would exist a point
x′2 6∈ {x1, x2} such that H ∈ (Hx1 , Hx′2

)∗, then Hx′2
∈ [Hx1 , H]∗ = [Hx1 , Hx2 ]

∗,
contradicting Lemma 3.8. �

4 Proof of Theorem 1.1

Throughout this section, K denotes a perfect field of characteristic 2.

Lemma 4.1 Let H be a hyperplane of DW (5,K) arising from the Grass-
mann embedding and let QH denote the set of quads of DW (5,K) which ei-

ther are contained in H or intersect H in a singular hyperplane of Q̃. Then
the following holds:
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(1) If H arises from the spin embedding of DW (5,K), then QH coincides
with the set of all quads of DW (5,K).

(2) If H does not arise from the spin embedding of DW (5,K), then there
exists a quad Q∗ of DW (5,K) such that QH consists of all the quads
of DW (5,K) which meet Q∗.

Moreover, if H1 and H2 are two distinct hyperplanes of DW (5,K) aris-
ing from the Grassmann embedding of DW (5,K) for which QH1 = QH2,
then [H1, H2]∗ contains a hyperplane that arises from the spin embedding of
DW (5,K).

Proof. Let e denote the Grassmann embedding of DW (5,K) into Σ ∼=
PG(13,K) and let N denote the nucleus of e. Then dim(N ) = 5. For every

quad Q of DW (5,K), e induces a full embedding eQ of Q̃ into the subspace
〈e(Q)〉 of Σ which is isomorphic to the Grassmann embedding of Q(4,K).
Let f(Q) denote the nucleus of the embedding eQ and let g(Q) denote the
point of W (5,K) corresponding to the quad Q. By Blok, Cardinali and De
Bruyn [1] (see also Cardinali and Lunardon [8] for the finite case), f ◦ g−1

defines a full projective embedding of W (5,K) into N which is (necessarily)
isomorphic to the natural embedding of W (5,K) into PG(5,K). Now, let
U denote the set of points contained in N ∩ 〈e(H)〉. Let x be an arbitrary
point of N and put Q = f−1(x). If x ∈ U , then the space 〈e(H)〉 ∩ 〈e(Q)〉
contains the nucleus of eQ and hence intersects e(Q) in e(A) where A is either

Q or a singular hyperplane of Q̃. If x 6∈ U , then 〈e(H)〉 ∩ 〈e(Q)〉 does not
contain the nucleus of eQ and hence intersects e(Q) in e(A) where A is either

a full subgrid or a classical ovoid of Q̃. If follows that QH = f−1(U). If H
arises from the spin embedding of DW (5,K), then U = N and QH coincides
with the whole set of quads of DW (5,K). If H does not arise from the spin
embedding of DW (5,K), then U is a hyperplane of N and g ◦ f−1(U) is a
hyperplane of W (5,K) which consists of all the points of W (5,K) which are
equal to or collinear with a given point x∗ of W (5,K). Hence, QH = f−1(U)
consists of all quads of DW (5,K) which meet Q∗ := g−1(x∗). This proves
the first part of the lemma.

Suppose now that H1 and H2 are two distinct hyperplanes of DW (5,K)
arising from e for which QH1 = QH2 . If QH1 = QH2 consists of all the quads
of DW (5,K), then H1 and H2 arise from the spin embedding of DW (5,K)
and hence also all hyperplanes of [H1, H2]∗. So, suppose QH1 = QH2 does
not coincide with the whole set of quads of DW (5,K). Then by the above
discussion, 〈e(H1)〉 ∩ N = 〈e(H2)〉 ∩ N is a hyperplane of N . Now, let α
denote the hyperplane of Σ generated by the subspaces N and 〈e(H1)〉 ∩
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〈e(H2)〉. Then the hyperplane e−1(α∩ e(P)) arises from the spin embedding
of DW (5,K) and belongs to [H1, H2]∗. �

We are now ready to give a proof of Theorem 1.1. If H arises from the
spin embedding of DW (5,K), then H is either a singular hyperplane or a
hexagonal hyperplane of DW (5,K).

Suppose H does not arise from the spin embedding of DW (5,K). Then
by Lemma 4.1, there exists a quad Q such that QH consists of all the quads
of DW (5,K) which meet Q. Now, let G be an arbitrary full subgrid of Q
such that HG 6= H. Then QHG = QH . Hence, by Lemma 4.1, there exists a
hyperplane H ′ ∈ (HG, H)∗ that arises from the spin embedding of DW (5,K).
We have H ∈ (H ′, HG)∗.

We now prove that there exists a point x in DW (5,K) and a full subgrid
G′ of Q such that H ∈ [Hx, HG′ ]

∗. Obviously, this is the case if H ′ is singular
(take for x the deepest point of H ′ and G′ = G). So, suppose H ′ is hexagonal.
Let y be an arbitrary point of G \ H ′. Then by Lemma 3.9, there exists a
unique point x at distance 3 from y such that H ′ ∈ (Hx, Hy)

∗. Since H ∈
(H ′, HG)∗ and H ′ ∈ (Hx, Hy)

∗, there exists a hyperplane H ′′ ∈ (Hy, HG)∗

such that H ∈ (Hx, H
′′)∗. By Lemmas 3.1 and 3.4, H ′′ is the extension of a

certain full subgrid G′ of Q. So, H ∈ (Hx, HG′)
∗.

Notice that if x ∈ Q, then H ∈ (Hx, HG)∗ is the extension of a classical

ovoid or a full subgrid of Q̃ by Lemma 3.4 and the fact that H is not singular.
Theorem 1.1 now readily follows.

5 Proof of Theorem 1.2

By Property (P1), there exists up to isomorphism a unique singular hyper-
plane of DW (5,K).

By Properties (P3)+(P5) and Lemma 2.2, there exists up to isomorphism
a unique hyperplane of DW (5,K) that arises by extending a full subgrid of
a quad.

By Properties (P2)+(P7) and Lemmas 2.5 + 3.9, there exists up to iso-
morphism a unique hexagonal hyperplane in DW (5,K).

By Property (P7) and Lemmas 2.4 + 2.6, there exists up to isomorphism
a unique hyperplane of DW (5,K) which belongs to some set of the form
(HG, Hx)

∗ where G is a full subgrid of a quad of DW (5,K) and x ∈ ∆2(G).

Lemma 5.1 Let Oi, i ∈ {1, 2}, be an ovoid of a quad Qi. Then HO1
∼= HO2

if and only if there exists an isomorphism θ from Q̃1 to Q̃2 mapping O1 to
O2.
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Proof. Suppose there exists an isomorphism θ from Q̃1 to Q̃2 mapping
O1 to O2. Let θ′1 be an arbitrary automorphism of DW (5,K) mapping Q2

to Q1 (recall Property (P3)) and let θ1 be the isomorphism from Q̃2 to Q̃1

induced by θ′1. Then θ3 := θ1 ◦ θ is an automorphism of Q̃1 which extends
to an automorphism θ′3 of DW (5,K) (recall Property (P5)). Clearly, the
automorphism θ′1

−1 ◦ θ′3 of DW (5,K) maps HO1 to HO2 .
Conversely, if θ′ is an automorphism of DW (5,K) mapping HO1 to HO2 ,

then since Oi, i ∈ {1, 2}, is the set of all points x ∈ HOi for which x⊥ ⊆ Hi,

θ′ induces an isomorphism θ from Q̃1 to Q̃2 mapping O1 to O2. �

The following lemma finishes the proof of Theorem 1.2.

Lemma 5.2 For every i ∈ {1, 2}, let Gi be a full subgrid of a quad Qi of
DW (5,K), let xi be a point of ∆1(Gi) ∩∆1(Qi) and let Hi be a hyperplane
of the set (HGi , Hxi)

∗. Then the hyperplanes H1 and H2 are isomorphic.

Proof. Let i ∈ {1, 2}. Put yi := πQi(xi). Then y⊥i ⊆ Hi since y⊥i ⊆ Hxi

and y⊥i ⊆ HGi . So, if Q is a quad through yi, then either Q ⊆ Hi or
Q∩Hi = y⊥i ∩Q. Let Ui denote the set of quads through yi contained in Hi.
Since Hi is a maximal subspace of DW (5,K) and Hi 6= Hyi , there exists a
point zi ∈ Hi ∩∆3(yi). The map which associates with every line L through
zi the unique quad through yi meeting L defines an isomorphism between
Res(zi) and the dual of Res(yi). Let Li denote the set of lines through
zi meeting a quad of Ui. Then Li coincides with the set of lines through
zi contained in Hi. By Cardinali and De Bruyn [6, Corollary 1.5] (see also
Pasini [22, Theorem 9.3]), Li is a possibly degenerate conic of Res(zi). Hence,
Ui defines a possibly degenerate conic in the dual of Res(yi). These conics
are nonempty and nondegenerate by (1) and (2) below. [Notice that a conic
of PG(2,K) is nonempty and nondegenerate if and only if it contains at least
2 points and no lines.]

(1) It holds that |Ui| ≥ 2. For, if R1 and R2 denote the two quads through
xiyi meeting G in a line, then R1, R2 ⊆ Hi since R1, R2 ⊆ Hxi ∩HGi .

(2) We claim that there exists no line L through yi with the property
that every quad through L is contained in Hi. If R is a quad through xiyi
intersecting Qi in a line which is not contained in Gi, then since R ⊆ Hxi

and R 6⊆ HGi , R is not contained in Hi. Hence, the claim holds if L = xiyi
or if L is not contained in R1 ∪ R2. Suppose now that L 6= xiyi and that L
is contained in Rj for a certain j ∈ {1, 2}. Then the unique quad through L
and R3−j ∩ Q is not contained in Hi since it is contained in HGi but not in
Hxi .
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Notice that there exists up to isomorphism only 1 nonempty and non-
degenerate conic in PG(2,K), namely the one which is described by the
equation X2

0 +X1X2 = 0 with respect to some reference system.

Claim: Hi is the unique hyperplane of DW (5,K) arising from the Grass-
mann embedding of DW (5,K) which contains y⊥i and every line of Li.
Proof. Put α1 = 〈e(y⊥i )〉Σ and α2 = 〈e(z⊥i )〉Σ where e : DW (5,K) →
Σ ∼= PG(13,K) denotes the Grassmann embedding of DW (5,K). Since
yi and zi are opposite points, Σ = 〈α1, α2〉 and dim(α1) = dim(α2) = 6,
see e.g. [12]. By [6, Theorem 1.3], for every hyperplane α′2 of α2 through
e(zi), the set of lines L through zi for which e(L) ⊆ α′2 is a conic C(α′2)
of Res(zi). Moreover, there exist reference systems in Res(zi) and the quo-
tient space α2/e(zi) such that if α′2/e(zi) is given by the equation a00Y0 +
a01Y1 +a02Y2 +a11Y3 +a12Y4 +a22Y5 = 0, then C(α′2) is given by the equation
a00X

2
0 + a11X

2
1 + a22X

2
2 + a01X0X1 + a02X0X2 + a12X1X2 = 0. The map

α′2 7→ C(α′2) is not necessarily injective. However, since the equation of a
nonempty nondegenerate conic of PG(2,K) is uniquely determined up to a
nonzero factor, there exists a unique hyperplane α∗2 in α2 through e(zi) for
which C(α∗2) = Li.

It is now clear that the unique hyperplane of DW (5,K) arising from e
and containing y⊥i and

⋃
L∈Li L coincides with the hyperplane of DW (5,K)

arising from the hyperplane 〈α2, α
∗
2〉 of Σ. (qed)

By Properties (P1) and (P4), there now exists an automorphism θ of
DW (5,K) mapping y1 to y2 and U1 to U2. Now, let L∗ be a line through
z1 not contained in L1, i.e. not meeting U1. Then θ(L∗) does not meet
any quad of θ(U1) = U2. So, θ(L∗) contains a unique point of H2 ∩∆3(y2).
Without loss of generality, we may suppose that this point is equal to z2.
(Recall that the only restriction on the choice of z2 was that it is a point
of H2 ∩ ∆3(y2).) Now, let M denote the unique quad through y2 meeting
θ(L∗). Then there exists a unique element θ′ ∈ TM mapping θ(z1) to z2. The
automorphism θ′ fixes y2 and every quad through y2 since every such quad
intersects M in a line. Now, the automorphism θ′ ◦ θ maps y1 to y2, U1 to
U2 and z1 to z2. Hence, it also maps L1 to L2. So, θ′ ◦ θ(H1) is a hyperplane
of DW (5,K) containing y⊥2 and

⋃
L∈L2

L. Moreover, θ′ ◦ θ(H1) arises from
the Grassmann embedding of DW (5,K) by Property (P7). By the previous
claim, we necessarily have θ′ ◦ θ(H1) = H2. �

Remark. The claims mentioned after Theorem 1.1 should now be all clear
for the first 5 classes of hyperplanes. Suppose now that H is a hyperplane
belonging to the 6th class. Suppose H ∈ (HG, Hx)

∗, where G is a full subgrid
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of a quad Q of DW (5,K) and x is a point of DW (5,K) contained in ∆2(G).
If R is a quad through x, then since R ⊆ Hx and R 6⊆ HG, R is not contained
in H. If R is a quad not containing x, then R∩Hx is the singular hyperplane
of R̃ with deepest point πR(x). If R would be contained in H, then also

R ∩ HG would be the singular hyperplane of R̃ with deepest point πR(x).
This would imply that R ∩Q is a line of Q which intersects G in the unique
point πR(x). But this is impossible since x ∈ ∆2(G).

Hence, no quad of DW (5,K) is contained in H. Observe also that if R
is a quad through x disjoint from Q, then H ∩R = πR(G) since R ⊆ Hx and
R ∩HG = πR(G).

6 Proof of Theorem 1.3

Throughout this section, K denotes a perfect field of characteristic 2.

Lemma 6.1 Let λ1, λ2 ∈ K \ {0}, a ∈ K and σ an automorphism of K such
that 1

λ1
+ 1

λσ2
+ a2 + a = 0. If the polynomial X2 + λ1X + 1 is irreducible in

K[X], then also the polynomial X2 + λ2X + 1 is irreducible in K[X].

Proof. If λ ∈ K \ {0}, then 1
λ2 (X2 + λX + 1) = (X

λ
)2 + X

λ
+ 1

λ2 and
hence X2 + λX + 1 is irreducible (in K[X]) if and only if X2 + X + 1

λ2 is
irreducible. So, X2 + X + 1

λ2
1

is irreducible. Now, since X2 + X + 1
λ2
1

=

(X + a2)2 + (X + a2) + 1
λ2
1

+ a4 + a2 = (X + a2)2 + (X + a2) + ( 1
λσ2

)2, also the

polynomials X2 +X + ( 1
λσ2

)2 and X2 + λσ2X + 1 are irreducible. Hence, also

the polynomial X2 + λ2X + 1 is irreducible. �

Now, let Ω denote the set of all elements λ ∈ K for which the polynomial
X2 + λX + 1 is irreducible in K[X]. We define the following relation R on
the set Ω. We say that (λ1, λ2) ∈ R if and only if there exists an a ∈ K and
an automorphism σ of K such that 1

λ1
+ 1

λσ2
+a2 +a = 0. It is straightforward

to verify that R is an equivalence relation.

Now, choose a reference system in PG(4,K) and suppose Q(4,K) is the gener-
alized quadrangle associated with the quadric Q↔ X2

0 +X1X2+X3X4 = 0 of
PG(4,K). For every automorphism σ of K, let θσ denote the following auto-
morphism of PG(4,K): (X0, X1, X2, X3, X4) 7→ (Xσ

0 , X
σ
1 , X

σ
2 , X

σ
3 , X

σ
4 ). Then

θσ stabilizes Q. For every λ ∈ K, let πλ be the hyperplane X4 = X3 + λX0

of PG(4,K) and put Oλ := Q∩ πλ. Then Oλ is a (classical) ovoid of Q(4,K)
if and only if λ ∈ Ω. The following lemma is precisely Theorem 1.3(i).
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Lemma 6.2 Every classical ovoid O of Q(4,K) is isomorphic to an ovoid
Oλ for some λ ∈ Ω.

Proof. By Lemma 3.6, there exists a full subgrid G of Q(4,K) and a point
x of Q(4,K) not contained in G such that O ∈ (G, x⊥)∗. By Lemma 2.3, we
may without loss of generality suppose that x = (1, 0, 0, 1, 1) and that G is
described by the equations X0 = 0, X2

0 + X1X2 + X3X4 = 0. The set x⊥ is
described by the equations X3 +X4 = 0, X2

0 +X1X2 +X3X4 = 0. So, there
exists a λ ∈ K\{0} such that O is described by the equations X4 = X3+λX0,
X2

0 +X1X2 +X3X4 = 0, i.e. O = Oλ. Since O is a classical ovoid, λ ∈ Ω. �

Lemma 6.3 Let λ1, λ2 ∈ Ω. If there exists a projectivity µ of PG(4,K)
stabilizing the quadric X2

0 + X1X2 + X3X4 = 0 and mapping the hyperplane
X4 +X3 +λ1X0 = 0 to the hyperplane X4 +X3 +λ2X0 = 0, then there exists
an a ∈ K such that 1

λ2
+ 1

λ1
+ a2 + a = 0.

Proof. Let K denote a given algebraic closure of K and let Ki, i ∈ {1, 2},
denote the splitting field in K of the quadratic polynomial X2 + λiX + 1 ∈
K[X]. Then Ki is also the splitting field of the polynomial X2 +X + 1

λ2
i
. For

every i ∈ {1, 2}, let Pi (respectively P ′i), denote the set of points of PG(4,K)
(respectively PG(4,K1)) defined by the equations{

X4 +X3 + λiX0 = 0,
X2

0 +X1X2 +X3(X3 + λiX0) = 0.

Then µ(P1) = P2. Regarding µ as a projectivity of PG(4,K1), we have
µ(P ′1) = P ′2. So, P ′2 is a hyperbolic quadric in the hyperplane X4 + X3 +
λ2X0 = 0 of PG(4,K1). This is only possible when K2 ⊆ K1. Applying the
same reasoning to the projectivity µ−1, we find K1 ⊆ K2. Hence, K1 = K2.

Let δ ∈ K1 be a root of the polynomial X2 +X + 1
λ2
1
. Since K1 = K2 can

be regarded as a two-dimensional vector space over K, there exist b, c ∈ K
such that bδ+ c is a root of the polynomial X2 +X + 1

λ2
2
. Since X2 +X + 1

λ2
2

is irreducible, bδ + c 6∈ K and hence b 6= 0. We have δ2 = δ + 1
λ2
1

and

(bδ+ c)2 + (bδ+ c) + 1
λ2
2

= (b2 + b)δ+ b2

λ2
1

+ 1
λ2
2

+ c2 + c = 0. Since δ ∈ K1 \K,

b2 + b = 0, i.e. b = 1. Hence, 1
λ2
1

+ 1
λ2
2

+ c2 + c = 0. If a ∈ K denotes the

square root of c, then 1
λ1

+ 1
λ2

+ a2 + a = 0. �

Lemma 6.4 Let λ1, λ2 ∈ Ω. If there exists an automorphism θ of PG(4,K)
stabilizing the quadric X2

0 + X1X2 + X3X4 = 0 and mapping the hyperplane
X4 +X3 +λ1X0 = 0 to the hyperplane X4 +X3 +λ2X0 = 0, then there exists
an automorphism σ of K and an a ∈ K such that 1

λσ2
+ 1

λ1
+ a2 + a = 0.
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Proof. Let θ be an automorphism of PG(4,K) satisfying the conditions of
the lemma. Then θ = θσ−1 ◦ µ for some automorphism σ of K and some
projectivity µ of PG(4,K). The automorphism θσ−1 stabilizes the quadric
X2

0 + X1X2 + X3X4 = 0 and maps the hyperplane X4 + X3 + λσ2X0 = 0 to
the hyperplane X4 + X3 + λ2X0 = 0. So, the projectivity µ also stabilizes
the quadric and maps the hyperplane X4 +X3 +λ1X0 = 0 to the hyperplane
X4 + X3 + λσ2X0 = 0. By Lemma 6.3, there exists an a ∈ K such that
1
λσ2

+ 1
λ1

+ a2 + a = 0. �

The proofs of the following two lemmas are straightforward.

Lemma 6.5 Let λ1, λ2 ∈ K \ {0} and a ∈ K such that 1
λ2

+ 1
λ1

+ a2 + a = 0.
Then the projectivity

µ :

{
X0 7→ X0 + (a2λ1)X3, X1 7→ X1, X2 7→ X2,
X3 7→ λ1

λ2
X3, X4 7→ λ2

λ1
X4 + (a4λ1λ2)X3,

of PG(4,K) stabilizes the quadric X2
0 + X1X2 + X3X4 = 0 and maps the

hyperplane X4 +X3 + λ1X0 = 0 to the hyperplane X4 +X3 + λ2X0 = 0.

Lemma 6.6 Let λ ∈ K and let σ be an automorphism of K. Then the
automorphism θσ of PG(4,K) stabilizes the quadric X2

0 +X1X2 +X3X4 = 0
and maps the hyperplane X4 + X3 + λX0 = 0 to the hyperplane X4 + X3 +
λσX0 = 0.

Theorem 1.3(ii) is now an immediate corollary of Lemmas 6.4, 6.5 and 6.6.
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