Hyperplanes of $D W(5, \mathbb{K})$ with \mathbb{K} a perfect field of characteristic 2

Bart De Bruyn
Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

Let \mathbb{K} be a perfect field of characteristic 2 . In this paper, we classify all hyperplanes of the symplectic dual polar space $D W(5, \mathbb{K})$ that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to $5+N$, where N is the number of equivalence classes of the following equivalence relation R on the set $\left\{\lambda \in \mathbb{K} \mid X^{2}+\lambda X+1\right.$ is irreducible in $\left.\mathbb{K}[X]\right\}$: $\left(\lambda_{1}, \lambda_{2}\right) \in R$ whenever there exists an automorphism σ of \mathbb{K} and an $a \in \mathbb{K}$ such that $\left(\lambda_{2}^{\sigma}\right)^{-1}=\lambda_{1}^{-1}+a^{2}+a$.

Keywords: symplectic dual polar space, hyperplane, perfect field
MSC2000: 51A45, 51A50, 05E20

1 Introduction

Let $n \geq 2$, let \mathbb{K} be a perfect field of characteristic 2 and let V be a $2 n$ dimensional vector space over \mathbb{K} equipped with a nondegenerate alternating bilinear form. With this bilinear form there corresponds a symplectic polarity ζ of the projective space $\mathrm{PG}(V)=\mathrm{PG}(2 n-1, \mathbb{K})$.

Associated with the polarity ζ there is a symplectic polar space $W(2 n-$ $1, \mathbb{K}$) (see Tits [29]) and a symplectic dual polar space $D W(2 n-1, \mathbb{K})$ (see Cameron [5]). The singular subspaces of $W(2 n-1, \mathbb{K})$ are the subspaces of $\mathrm{PG}(2 n-1, \mathbb{K})$ which are absolute with respect to ζ. We denote by \mathcal{P} the set of all maximal singular subspaces of $W(2 n-1, \mathbb{K})$. For every next-tomaximal singular subspace β of $W(2 n-1, \mathbb{K})$, let L_{β} denote the set of all maximal singular subspaces of $W(2 n-1, \mathbb{K})$ containing β, and let \mathcal{L} denote the set of all sets L_{β} which can be obtained in this way. Then $D W(2 n-1, \mathbb{K})$ is the point-line geometry with point-set \mathcal{P} and line-set \mathcal{L}.

Let $\bigwedge^{n} V$ denote the n-th exterior power of V. For every point $\alpha=$ $\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\rangle$ of $D W(2 n-1, \mathbb{K})$, let $e(\alpha)$ be the point $\left\langle\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{n}\right\rangle$ of $\operatorname{PG}\left(\bigwedge^{n} V\right)$. The subspace Σ of $\operatorname{PG}\left(\bigwedge^{n} V\right)$ generated by all points $e(\alpha)$, $\alpha \in \mathcal{P}$, is $\left(\binom{2 n}{n}-\binom{2 n}{n-2}-1\right)$-dimensional (see e.g. Brouwer [3] or De Bruyn [16]). By Cooperstein [10], the map $\alpha \mapsto e(\alpha)$ defines a full projective embedding of $D W(2 n-1, \mathbb{K})$ into Σ. In other words, e is an injective mapping from the point-set of $D W(2 n-1, \mathbb{K})$ to the point-set of Σ mapping lines of $D W(2 n-1, \mathbb{K})$ to (full) lines of Σ such that the image of e generates the whole projective space Σ. The embedding e is called the Grassmann embedding of $D W(2 n-1, \mathbb{K})$.

A set $S \neq \mathcal{P}$ of points of $D W(2 n-1, \mathbb{K})$ is called a hyperplane of $D W(2 n-$ $1, \mathbb{K})$ if every line of $D W(2 n-1, \mathbb{K})$ intersects S in either the whole line or a singleton. If Π is a hyperplane of the projective space Σ, then $e^{-1}(\Pi \cap e(\mathcal{P}))$ is a hyperplane of $D W(2 n-1, \mathbb{K})$. We say that the hyperplane $e^{-1}(\Pi \cap e(\mathcal{P}))$ arises from (the Grassmann embedding) e. The aim of this paper is to determine the isomorphism classes of hyperplanes of $D W(5, \mathbb{K})$ that arise from its Grassmann embedding. Except for the case $\mathbb{K} \cong \mathbb{F}_{2}$ the hyperplanes of $D W(5, \mathbb{K})$ that arise from some projective embedding are precisely the hyperplanes of $D W(5, \mathbb{K})$ that arise from the Grassmann embedding (see the remark at the end of this section).

If x and y are two points of $D W(2 n-1, \mathbb{K})$, then we denote by $\mathrm{d}(x, y)$ the distance between x and y in the collinearity graph Δ of $D W(2 n-1, \mathbb{K})$ (which has diameter n). The dual polar space $D W(2 n-1, \mathbb{K})$ is a near polygon ([28], [11]) which means that for every point x and every line L, there exists a unique point $\pi_{L}(x)$ on L nearest to x. A set X of points of $D W(2 n-1, \mathbb{K})$ is called connected if the subgraph of Δ induced on X is connected. For every point x of $D W(2 n-1, \mathbb{K})$ and every $i \in \mathbb{N}, \Delta_{i}(x)$ denotes the set of points of $D W(2 n-1, \mathbb{K})$ at distance i from x. We also define $x^{\perp}:=\Delta_{0}(x) \cup \Delta_{1}(x)$. For every nonempty set X of points and every $i \in \mathbb{N}, \Delta_{i}(X)$ is the set of all points y for which $\mathrm{d}(y, X):=\min \{\mathrm{d}(y, x) \mid x \in X\}=i$. If x is a point of $D W(2 n-1, \mathbb{K})$, then the set H_{x} of points of $D W(2 n-1, \mathbb{K})$ at distance at most $n-1$ from x is a hyperplane of $D W(2 n-1, \mathbb{K})$, called the singular hyperplane of $D W(2 n-1, \mathbb{K})$ with deepest point x. The singular hyperplanes of $D W(2 n-1, \mathbb{K})$ arise from the Grassmann embedding of $D W(2 n-1, \mathbb{K})$, see e.g. Cardinali, De Bruyn and Pasini [7, Section 4.3] or De Bruyn [15, Proposition 2.15].

By Shult [26, Lemma 6.1], every hyperplane of $D W(2 n-1, \mathbb{K})$ is a maximal subspace of $D W(2 n-1, \mathbb{K})$ and hence its complement is connected. This fact also implies that if H is a hyperplane of $D W(2 n-1, \mathbb{K})$ arising from the Grassmann embedding e of $D W(2 n-1, \mathbb{K})$, then $\langle e(H)\rangle_{\Sigma}$ is a hy-
perplane of Σ and $\langle e(H)\rangle_{\Sigma} \cap e(\mathcal{P})=e(H)$. If H_{1} and H_{2} are two distinct hyperplanes of $D W(2 n-1, \mathbb{K})$ arising from e, then we denote by $\left[H_{1}, H_{2}\right]^{*}$ the set of all hyperplanes of $D W(2 n-1, \mathbb{K})$ of the form $e^{-1}(e(\mathcal{P}) \cap \Pi)$ where Π is some hyperplane of Σ containing $\left\langle e\left(H_{1}\right)\right\rangle_{\Sigma} \cap\left\langle e\left(H_{1}\right)\right\rangle_{\Sigma}$. We also define $\left(H_{1}, H_{2}\right)^{*}:=\left[H_{1}, H_{2}\right]^{*} \backslash\left\{H_{1}, H_{2}\right\}$.

A quad of $D W(2 n-1, \mathbb{K})$ is the set of all maximal singular subspaces of $W(2 n-1, \mathbb{K})$ containing a given $(n-3)$-dimensional singular subspace of $W(2 n-1, \mathbb{K})$. The lines and quads through a given point x of $D W(2 n-1, \mathbb{K})$ define a point-line geometry $\operatorname{Res}(x)$ (natural incidence) which is a projective space isomorphic to $\mathrm{PG}(n-1, \mathbb{K})$. The points and lines of $D W(2 n-1, \mathbb{K})$ contained in a quad Q define a point-line geometry \widetilde{Q} which is a generalized quadrangle isomorphic to $D W(3, \mathbb{K}) \cong Q(4, \mathbb{K})$. The Grassmann embedding $e: D W(2 n-1, \mathbb{K}) \rightarrow \Sigma$ of $D W(2 n-1, \mathbb{K})$ induces a full embedding e_{Q} of \widetilde{Q} into the subspace $\langle e(Q)\rangle_{\Sigma}$ of Σ. This embedding is isomorphic to the Grassmann embedding of $D W(3, \mathbb{K})$, see e.g. Cardinali, De Bruyn and Pasini [7, Proposition 4.10]. (Although the discussion there was limited to the finite case, the arguments work as well for the infinite case.) The Grassmann embedding of $D W(3, \mathbb{K})$ is isomorphic to the natural embedding of $Q(4, \mathbb{K})$ into $\operatorname{PG}(4, \mathbb{K})$. It is easy to verify that every hyperplane of $Q(4, \mathbb{K})$ is either a singular hyperplane, a full subgrid or an ovoid, an ovoid being a set of points intersecting each line in a singleton. Every singular hyperplane or full subgrid of $Q(4, \mathbb{K})$ arises from the natural embedding of $Q(4, \mathbb{K})$ into $\operatorname{PG}(4, \mathbb{K})$. This is not necessarily true for the ovoids. If an ovoid of $Q(4, \mathbb{K})$ arises from the natural embedding of $Q(4, \mathbb{K})$ into $\mathrm{PG}(4, \mathbb{K})$, then it is called classical. So, a classical ovoid is a nonsingular quadric of Witt index 1 in a hyperplane of $\mathrm{PG}(4, \mathbb{K})$.

A max of $D W(2 n-1, \mathbb{K})$ is the set of all maximal singular subspaces of $W(2 n-1, \mathbb{K})$ through a given point x of $W(2 n-1, \mathbb{K})$. The points and lines contained in a $\max M$ define a point-line geometry \widetilde{M} which is isomorphic to $D W(2 n-3, \mathbb{K})$ if $n \geq 3$. If A is a hyperplane of \widetilde{M}, then $H_{A}:=\Delta_{0}(A) \cup$ $\Delta_{1}(A)=M \cup \Delta_{1}(A)$ is a hyperplane of $D W(2 n-1, \mathbb{K})$, called the extension of $A([19$, Proposition 1]). The extension of a singular hyperplane of \widetilde{M} is a singular hyperplane of $D W(2 n-1, \mathbb{K})$. The extension of a full subgrid of a quad of $D W(5, \mathbb{K})$ arises from the Grassmann embedding of $D W(5, \mathbb{K})$, see [15, Section 2.3]. In Section 3 (more precisely Lemma 3.7), we will show that also the extension of a classical ovoid of a quad of $D W(5, \mathbb{K})$ arises from the Grassmann embedding. If M is a max of $D W(2 n-1, \mathbb{K})$ and x is a point not contained in M, then x is collinear with a unique point $\pi_{M}(x)$ of M, called the projection of x onto M. Moreover, $\mathrm{d}(x, y)=1+\mathrm{d}\left(\pi_{M}(x), y\right)$ for every point $y \in M$. If M_{1} and M_{2} are two disjoint maxes, then the
map $x \mapsto \pi_{M_{2}}(x)$ defines an isomorphism between \widetilde{M}_{1} and \widetilde{M}_{2}, see e.g. [11, Theorem 1.10].

Consider the polar space $Q(2 n, \mathbb{K})$ related to a nonsingular quadric of Witt-index n of $\mathrm{PG}(2 n, \mathbb{K})$ and let $D Q(2 n, \mathbb{K})$ denote the associated dual polar space. Since \mathbb{K} is a perfect field of characteristic 2 , the dual polar spaces $D W(2 n-1, \mathbb{K})$ and $D Q(2 n, \mathbb{K})$ are isomorphic (see e.g. De Bruyn and Pasini [18]). The dual polar space $D Q(2 n, \mathbb{K})$ has a full embedding into the projective space $\operatorname{PG}\left(2^{n}-1, \mathbb{K}\right)$ which is called the spin embedding of $D Q(2 n, \mathbb{K})$, see Chevalley [9] or Buekenhout and Cameron [4]. If e : $D W(2 n-1, \mathbb{K}) \rightarrow \Sigma$ denotes the Grassmann embedding of $D W(2 n-1, \mathbb{K})$, then the intersection \mathcal{N} of all subspaces $\left\langle e\left(H_{x}\right)\right\rangle_{\Sigma}, x \in \mathcal{P}$, is called the nucleus of e. By Cardinali, De Bruyn and Pasini [7, Section 4.1], $\operatorname{dim}(\Sigma)-\operatorname{dim}(\mathcal{N})=$ 2^{n}; hence, $\operatorname{dim}(\mathcal{N})=\binom{2 n}{n}-\binom{2 n}{n-2}-2^{n}-1$. The hyperplanes of $D W(2 n-$ $1, \mathbb{K})$ that arise from the spin embedding are precisely the hyperplanes H of $D W(2 n-1, \mathbb{K})$ that arise from e and that satisfy $\mathcal{N} \subseteq\langle e(H)\rangle_{\Sigma}$. Hence, if H_{1} and H_{2} are two distinct hyperplanes of $D W(2 n-1, \mathbb{K})$ that arise from the spin embedding, then also every hyperplane of $\left[H_{1}, H_{2}\right]^{*}$ arises from the spin embedding.

The isomorphism between the dual polar spaces $D W(5, \mathbb{K})$ and $D Q(6, \mathbb{K})$ plays a crucial role in this paper. The reason why we have imposed the restriction that \mathbb{K} is a perfect field of characteristic 2 is that this isomorphism fails to hold for other fields. We will now discuss some properties of the hyperplanes of $D W(5, \mathbb{K}) \cong D Q(6, \mathbb{K})$ that arise from its spin embedding. Proofs of these facts can be found in the papers De Bruyn [13], Pralle [24], Shult [25] and Shult \& Thas [27]. There are two types of hyperplanes of $D W(6, \mathbb{K}) \cong D Q(6, \mathbb{K})$ that arise from its spin embedding: the singular hyperplanes and the so-called hexagonal hyperplanes. The points and lines contained in a hexagonal hyperplane define a split-Cayley hexagon $H(\mathbb{K})$. If H is a hexagonal hyperplane of $D Q(6, \mathbb{K})$, then for every quad Q of $D Q(6, \mathbb{K})$, $Q \cap H$ is a singular hyperplane of Q. Moreover, for every point $x \in H$, there exists a unique quad Q through x for which $x^{\perp} \cap H=x^{\perp} \cap Q=Q \cap H$.

In this paper, we prove the following theorem.
Theorem 1.1 Let \mathbb{K} be a perfect field of characteristic 2 and let H be a hyperplane of $D W(5, \mathbb{K})$ arising from the Grassmann embedding. Then H is one of the following:
(1) a singular hyperplane of $D W(5, \mathbb{K})$;
(2) a hexagonal hyperplane of $D W(5, \mathbb{K})$;
(3) the extension of a full subgrid of a quad of $D W(5, \mathbb{K})$;
(4) the extension of a classical ovoid of a quad of $D W(5, \mathbb{K})$;
(5) a hyperplane belonging to some set $\left(H_{G}, H_{x}\right)^{*}$ where G is a full subgrid of a quad Q of $D W(5, \mathbb{K})$ and x is a point of $D W(5, \mathbb{K})$ not contained in Q for which $\pi_{Q}(x) \in G$;
(6) a hyperplane belonging to some set $\left(H_{G}, H_{x}\right)^{*}$ where G is a full subgrid of a quad Q of $D W(5, \mathbb{K})$ and x is a point of $D W(5, \mathbb{K})$ not contained in Q for which $\pi_{Q}(x) \notin G$.

The 6 hyperplane classes mentioned in Theorem 1.1 can be distinguished as follows. For a hyperplane H of $D W(5, \mathbb{K})$, let D_{H} denote the set of quads of $D W(5, \mathbb{K})$ that are contained in H. In case (1), D_{H} consists of all quads of $D W(5, \mathbb{K})$ which contain the deepest point of H. In case (2), $D_{H}=\emptyset$ since every quad Q intersects H in a singular hyperplane of \widetilde{Q}. In case (3), D_{H} consists of all quads which contain a line of the grid which defines H. In case (4), D_{H} consists of the unique quad which carries the ovoid which defines H. In case (5), D_{H} defines a nonempty and nondegenerate conic in the dual projective plane of $\operatorname{Res}\left(\pi_{Q}(x)\right)$. In case (6), $D_{H}=\emptyset$ and there exists a quad Q for which $Q \cap H$ is not a singular hyperplane of \widetilde{Q}.

Regarding the uniqueness of the hyperplanes in each of the 6 classes mentioned in Theorem 1.1, we can say the following:

Theorem 1.2 For each of the classes corresponding to (1), (2), (3), (5) or (6) of Theorem 1.1, there exists up to isomorphism a unique hyperplane. Two extensions of classical ovoids are isomorphic if and only if the ovoids of $Q(4, \mathbb{K})$ from which they arise are isomorphic.

It remains to determine how many isomorphism classes of classical ovoids of $Q(4, \mathbb{K})$ there are. Take a reference system in the projective space $\operatorname{PG}(4, \mathbb{K})$ and suppose $Q(4, \mathbb{K})$ is associated with the quadric $Q \leftrightarrow X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=$ 0 of $\mathrm{PG}(4, \mathbb{K})$. For every $\lambda \in \mathbb{K}$, let π_{λ} be the hyperplane $X_{4}=X_{3}+\lambda X_{0}$ of $\operatorname{PG}(4, \mathbb{K})$ and put $O_{\lambda}:=Q \cap \pi_{\lambda}$. The equation of O_{λ} induced on the hyperplane π_{λ} is $X_{1} X_{2}+\left(X_{0}^{2}+\lambda X_{0} X_{3}+X_{3}^{2}\right)$. So, O_{λ} is a (classical) ovoid of $Q(4, \mathbb{K})$ if and only if $\lambda \in \Omega:=\left\{\lambda \in \mathbb{K} \mid X^{2}+\lambda X+1\right.$ is irreducible in $\left.\mathbb{K}[X]\right\}$. Define the following equivalence relation R on the set Ω : $\left(\lambda_{1}, \lambda_{2}\right) \in R$ whenever there exists an automorphism σ of \mathbb{K} and an $a \in \mathbb{K}$ such that $\left(\lambda_{2}^{\sigma}\right)^{-1}=\lambda_{1}^{-1}+a^{2}+a$. Then we show the following:

Theorem 1.3 Let \mathbb{K} be a perfect field of characteristic 2. Then:
(i) Every classical ovoid O of $Q(4, \mathbb{K})$ is isomorphic to an ovoid O_{λ} for some $\lambda \in \Omega$.
(ii) If $\lambda_{1}, \lambda_{2} \in \Omega$, then the classical ovoids $O_{\lambda_{1}}$ and $O_{\lambda_{2}}$ of $Q(4, \mathbb{K})$ are isomorphic if and only if $\left(\lambda_{1}, \lambda_{2}\right) \in R$.

Hence, we can say the following:
Corollary 1.4 Let \mathbb{K} be a perfect field of characteristic 2 . Then:
(i) The number of nonisomorphic classical ovoids of $Q(4, \mathbb{K})$ is equal to the number N of classes of the equivalence relation R.
(ii) The number of nonisomorphic hyperplanes of $D W(5, \mathbb{K})$ is equal to $5+N$.

The results mentioned in Theorems 1.1 and 1.2 were already known if \mathbb{K} is a finite field of characteristic 2 , see [14]. The proofs given in [14] however make use of several counting arguments. The key result which allows us to avoid all counting arguments is Lemma 4.1 whose proof relies very much on a recent result of Blok, Cardinali and De Bruyn [1] (see also [8]) on the nucleus of the Grassmann embedding of $D W(5, \mathbb{K})$. Some of the lemmas mentioned in that paper are essentially contained in [14] since their proofs do not essentially make use of the finiteness of the field. Some other lemmas require an adaptation of the arguments so that their proofs would also work in the infinite case. We have decided to include also complete proofs of these lemmas in order to be able to offer the reader complete, self-contained and streamlined proofs for Theorems 1.1 and 1.2.

Remark. If $|\mathbb{K}| \neq 2$, then the Grassmann embedding of $D W(5, \mathbb{K})$ is the socalled absolutely universal embedding of $D W(5, \mathbb{K})$, see [10], [17] and [20]. In that case, the hyperplanes of $D W(5, \mathbb{K})$ that arise from some projective embedding are precisely the hyperplanes of $D W(5, \mathbb{K})$ arising from the Grassmann embedding. If $|\mathbb{K}|=2$, then the Grassmann embedding is not the absolutely universal embedding of $D W(5, \mathbb{K})=D W(5,2)$, see e.g. Blokhuis and Brouwer [2] or Li [21]. The dual polar space $D W(5,2)$ has 6 isomorphism classes of hyperplanes which do not arise from the Grassmann embedding, see [24] or [14].

2 Some properties of the automorphism group of $D W(2 n-1, \mathbb{K})$

Let $W(2 n-1, \mathbb{K}), n \geq 2$, be the symplectic polar space associated with a nondegenerate alternating bilinear form (\cdot, \cdot) of a $2 n$-dimensional vector space
V over a field \mathbb{K}. Suppose g is an element of $\Gamma L(V)$ for which there exists an $a_{g} \in \mathbb{K} \backslash\{0\}$ and an automorphism σ_{g} of \mathbb{K} such that $(g(\bar{x}), g(\bar{y}))=a_{g} \cdot(\bar{x}, \bar{y})^{\sigma_{g}}$ for all $\bar{x}, \bar{y} \in V$. Then the map $\langle\bar{x}\rangle \mapsto\langle g(\bar{x})\rangle$ defines an automorphism of $W(2 n-1, \mathbb{K})$. Conversely, every automorphism of $W(2 n-1, \mathbb{K})$ is obtained in this way.

Let \mathcal{A} denote the full automorphism group of $D W(2 n-1, \mathbb{K})$. Then every element of \mathcal{A} is induced by an automorphism of $W(2 n-1, \mathbb{K})$, and conversely. The following properties are easily verified taking into account the above description of the automorphisms of \mathcal{A} (some of them also follow from Witt's theorem):
(P1) \mathcal{A} acts transitively on the set of points of $D W(2 n-1, \mathbb{K})$.
(P2) \mathcal{A} acts transitively on the set of ordered pairs $\left(x_{1}, x_{2}\right)$ where x_{1} and x_{2} are two opposite points of $D W(2 n-1, \mathbb{K})$.
(P3) \mathcal{A} acts transitively on the set of maxes of $D W(2 n-1, \mathbb{K})$.
(P4) If $\theta \in \mathcal{A}$ fixes the point x of $D W(2 n-1, \mathbb{K})$, then θ trivially induces an automorphism of $\operatorname{Res}(x) \cong \operatorname{PG}(n-1, \mathbb{K})$. Conversely, if $n \geq 3$ then every automorphism of $\operatorname{Res}(x)$ is induced by an automorphism of $D W(2 n-1, \mathbb{K})$ fixing x.
(P5) If $n \geq 3$, if M is a max of $D W(2 n-1, \mathbb{K})$ and if θ is an automorphism of the point-line geometry \widetilde{M}, then there exists an automorphism θ^{\prime} of $D W(2 n-1, \mathbb{K})$ such that $\theta^{\prime}(x)=\theta(x)$ for every $x \in M$.
(P6) The automorphism group of $W(2 n-1, \mathbb{K})$ acts transitively on the set of hyperbolic lines of $W(2 n-1, \mathbb{K})$. [With a hyperbolic line we mean a line of $\mathrm{PG}(2 n-1, \mathbb{K})$ which is not a totally isotropic line of $W(2 n-1, \mathbb{K})$.]
(P7) If e denotes the Grassmann embedding of $D W(2 n-1, \mathbb{K})$ into $\Sigma=$ $\operatorname{PG}\left(\bigwedge^{n} V\right)$, then for every automorphism θ of $D W(2 n-1, \mathbb{K})$, there exists an automorphism $\widetilde{\theta}$ of Σ such that $e(\theta(x))=\widetilde{\theta}(e(x))$ for every point x of $D W(2 n-1, \mathbb{K})$. If θ is associated with a projectivity of $\mathrm{PG}(2 n-1, \mathbb{K})$, then $\widetilde{\theta}$ is a projectivity of Σ. (Every $g \in \Gamma L(V)$ naturally induces an element $\widetilde{g} \in \Gamma L\left(\bigwedge^{n} V\right)$, and the automorphisms of \mathbb{K} corresponding to g and \widetilde{g} coincide.) Property (P7) implies that if a hyperplane H of $D W(2 n-1, \mathbb{K})$ arises from e, then also every hyperplane $\theta(H), \theta \in \mathcal{A}$, arises from e.

Lemma 2.1 Let $n \geq 2$. For every $\max M$ of $D W(2 n-1, \mathbb{K})$, there exists a group T_{M} of automorphisms of $D W(2 n-1, \mathbb{K})$ satisfying:
(i) every element of T_{M} fixes M pointwise;
(ii) if L is a line meeting M in a unique point z, then T_{M} acts regularly on $L \backslash\{z\}$.

Proof. Let $\left\langle\bar{x}^{*}\right\rangle$ denote the point of $W(2 n-1, \mathbb{K})$ corresponding to the $\max M$ of $D W(2 n-1, \mathbb{K})$. For every $k \in \mathbb{K}$, the symplectic transvection $\bar{y} \mapsto \bar{y}-k\left(\bar{x}^{*}, \bar{y}\right) \bar{x}^{*}$ of $G L(V)$ defines an automorphism of $W(2 n-1, \mathbb{K})$ and hence also an automorphism τ_{k} of $D W(2 n-1, \mathbb{K})$. Put $T_{M}:=\left\{\tau_{k} \mid k \in \mathbb{K}\right\}$. Then T_{M} is a group of automorphisms of $D W(2 n-1, \mathbb{K})$ fixing M pointwise.

Now, let L be a line meeting M in a unique point z. Then L corresponds to an ($n-2$)-dimensional singular subspace $\beta=\left\langle\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n-1}\right\rangle$ of $W(2 n-1, \mathbb{K})$ and $\alpha:=\left\langle\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n-1}, \bar{x}^{*}\right\rangle$ is the ($n-1$)-dimensional singular subspace of $W(2 n-1, \mathbb{K})$ corresponding to z. Let $\left\langle\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\rangle$ be an $(n-1)$-dimensional singular subspace through β distinct from α. Then the points of $L \backslash\{z\}$ correspond to the ($n-1$)-dimensional singular subspaces $\left\langle\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n-1}, \bar{x}_{n}+\lambda \bar{x}^{*}\right\rangle, \lambda \in \mathbb{K} \backslash\{0\}$. It is now straightforward to verify that T_{M} acts regularly on the set $L \backslash\{z\}$ (notice that $\left(\bar{x}_{1}, \bar{x}^{*}\right)=\ldots=\left(\bar{x}_{n-1}, \bar{x}^{*}\right)=0$ and $\left.\left(\bar{x}_{n}, \bar{x}^{*}\right) \neq 0\right)$.

Lemma 2.2 The automorphism group of $Q(4, \mathbb{K})$ acts transitively on the set of full subgrids of $Q(4, \mathbb{K})$.

Proof. Let ζ be a symplectic polarity of $\operatorname{PG}(3, \mathbb{K})$ giving rise to $D W(3, \mathbb{K}) \cong$ $Q(4, \mathbb{K})$. For every full subgrid G of $Q(4, \mathbb{K})$ there exists a hyperbolic line L of $W(3, \mathbb{K})$ such that the points of G correspond to the totally isotropic lines of $W(3, \mathbb{K})$ meeting L and L^{ζ}. The lemma now follows from Property (P6).

Lemma 2.3 The automorphism group of $Q(4, \mathbb{K})$ acts transitively on the set of all pairs (G, x) where G is a full subgrid of $Q(4, \mathbb{K})$ and x is a point of $Q(4, \mathbb{K})$ not contained in G.

Proof. By Lemma 2.2, the automorphism group of $Q(4, \mathbb{K})$ acts transitively on the set of full subgrids of $Q(4, \mathbb{K})$. If G is a full subgrid of $Q(4, \mathbb{K})$, then G is a hyperplane and hence its complement is connected. So, it suffices to prove that for any full subgrid G of $Q(4, \mathbb{K})$ and any two distinct collinear points x_{1} and x_{2} of $Q(4, \mathbb{K})$ not contained in G, there exists an automorphism of $Q(4, \mathbb{K})$ stabilizing G and mapping x_{1} to x_{2}. For such a choice of G, x_{1} and x_{2}, let x denote the unique point in $x_{1} x_{2} \cap G$ and let L denote a line of G containing x. Then there exists a unique automorphism in T_{L} mapping x_{1} to x_{2}. This automorphism of T_{L} stabilizes G.

Lemma 2.4 The automorphism group of $D W(5, \mathbb{K})$ acts transitively on the pairs (G, x) where G is a full subgrid of a quad and x is a point of $\Delta_{2}(G)$.

Proof. The automorphism group of $D W(5, \mathbb{K})$ acts transitively on the set of full subgrids by Properties (P3)+(P5) and Lemma 2.2. Now, fix a certain full subgrid G and let Q denote the unique quad containing G. Then $\Delta_{2}(G)$ is connected since it is the complement of a hyperplane. So, it suffices to prove that for any two distinct collinear points $x_{1}, x_{2} \in \Delta_{2}(G)$, there exists an automorphism of $D W(5, \mathbb{K})$ stabilizing G and mapping x_{1} to x_{2}. Let x denote the unique point of the line $x_{1} x_{2}$ contained in $G \cup \Delta_{1}(G)$. If $x \in Q$, put $M:=Q$; otherwise, let M denote one of the two quads of $D W(5, \mathbb{K})$ through x intersecting G in a line. By Lemma 2.1, there exists an automorphism of T_{M} mapping x_{1} to x_{2}. This automorphism stabilizes G.

Lemma 2.5 Let \mathbb{K} be a perfect field of characteristic 2. Let x_{1} and x_{2} be two points of $D W(5, \mathbb{K})$ at distance 3 from each other. Then there exists a line L in $D W(5, \mathbb{K})$ satisfying the following: $(i) d\left(x_{1}, L\right)=d\left(x_{2}, L\right)=2$; (ii) $\pi_{L}\left(x_{1}\right) \neq \pi_{L}\left(x_{2}\right)$; (iii) for any two points $y_{1}, y_{2} \in L \backslash\left\{\pi_{L}\left(x_{1}\right), \pi_{L}\left(x_{2}\right)\right\}$, there exists an automorphism θ of $D W(5, \mathbb{K})$ fixing x_{1} and x_{2}, stabilizing L and mapping y_{1} to y_{2}.

Proof. Choose a reference system such that the polar space $W(5, \mathbb{K})$ is described by the following alternating form:

$$
\left(X_{0} Y_{3}-X_{3} Y_{0}\right)+\left(X_{1} Y_{4}-X_{4} Y_{1}\right)+\left(X_{2} Y_{5}-X_{5} Y_{2}\right)
$$

Without loss of generality (see Property (P2)), we may suppose that $x_{1} \leftrightarrow$ $X_{3}=X_{4}=X_{5}=0$ and $x_{2} \leftrightarrow X_{0}=X_{1}=X_{2}=0$. Let L be the following line of $D W(5, \mathbb{K}): L \leftrightarrow X_{0}-X_{3}=X_{1}-X_{4}=X_{2}=X_{5}=0$. The points $p_{1} \leftrightarrow X_{0}-X_{3}=X_{1}-X_{4}=X_{5}=0$ and $p_{2} \leftrightarrow X_{0}-X_{3}=X_{1}-X_{4}=X_{2}=0$ belong to L. Moreover, $\mathrm{d}\left(x_{1}, p_{1}\right)=\mathrm{d}\left(x_{2}, p_{2}\right)=2$ and $\mathrm{d}\left(x_{1}, p_{2}\right)=\mathrm{d}\left(x_{2}, p_{1}\right)=$ 3. The other points of L are given by the equations $X_{0}-X_{3}=X_{1}-$ $X_{4}=X_{2}-\mu X_{5}=0, \mu \in \mathbb{K} \backslash\{0\}$, and lie at distance 3 from x_{1} and x_{2}. Now, choose two arbitrary points y_{1} and y_{2} in $L \backslash\left\{p_{1}, p_{2}\right\}$. So, there exist $\mu_{1}, \mu_{2} \in \mathbb{K} \backslash\{0\}$ such that $y_{i} \leftrightarrow X_{0}-X_{3}=X_{1}-X_{4}=X_{2}-\mu_{i} X_{5}=0$, $i \in\{1,2\}$. Since \mathbb{K} is perfect, there exists a $k \in \mathbb{K} \backslash\{0\}$ such that $k^{2}=\frac{\mu_{2}}{\mu_{1}}$. The map $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \mapsto\left(X_{0}, X_{1}, k X_{2}, X_{3}, X_{4}, \frac{X_{5}}{k}\right)$ induces an automorphism θ of $D W(5, \mathbb{K})$ fixing x_{1} and x_{2}, stabilizing L and mapping y_{1} to y_{2}.

Lemma 2.6 Let \mathbb{K} be a perfect field of characteristic 2 . Let G be a full subgrid of a quad Q of $D W(5, \mathbb{K})$ and let p_{1} be an arbitrary point of $\Delta_{2}(G)$.

Then there exists a line L satisfying the following properties: (i) L intersects Q in a point p_{2} of $\Delta_{3}\left(p_{1}\right) \backslash G$; (ii) for every two points $y_{1}, y_{2} \in L \backslash\left\{p_{2}, \pi_{L}\left(p_{1}\right)\right\}$, there exists an automorphism θ of $D W(5, \mathbb{K})$ fixing p_{1}, stabilizing G and L, and mapping y_{1} to y_{2}.

Proof. Suppose first that $\mathbb{K} \cong \mathbb{F}_{2}$. Let p_{2} be a point of $Q \backslash\left(G \cup \pi_{Q}\left(p_{1}\right)^{\perp}\right)$ and let L denote an arbitrary line through p_{2} not contained in Q. Then $\left|L \backslash\left\{p_{2}, \pi_{L}\left(p_{1}\right)\right\}\right|=1$ and so condition (ii) holds: since $y_{1}=y_{2}$, we can take for θ the trivial automorphism.

Suppose \mathbb{K} is not isomorphic to \mathbb{F}_{2}. The point p_{1} corresponds to a totally isotropic plane α_{1} of $W(5, \mathbb{K})$. There exists a nonisotropic plane α_{2} such that the singular point $x_{\alpha_{2}}$ of α_{2} corresponds to the quad Q and the points of G correspond to the totally isotropic planes of $W(5, \mathbb{K})$ which intersect α_{2} in a line through $x_{\alpha_{2}}$. (Recall that with every full subgrid of $Q(4, \mathbb{K})$ there corresponds a pair of orthogonal hyperbolic lines of $W(3, \mathbb{K})$, see the proof of Lemma 2.2.) Since $p_{1} \notin Q$ and $\pi_{Q}\left(p_{1}\right) \notin G, \alpha_{1}$ and α_{2} are disjoint.

Now, choose a reference system such that the polar space $W(5, \mathbb{K})$ is described by the following alternating form:

$$
\left(X_{0} Y_{3}-X_{3} Y_{0}\right)+\left(X_{1} Y_{4}-X_{4} Y_{1}\right)+\left(X_{2} Y_{5}-X_{5} Y_{2}\right)
$$

Without loss of generality (see Lemma 2.4), we may suppose that $\alpha_{1} \leftrightarrow X_{0}=$ $X_{1}=X_{2}=0$ and $\alpha_{2} \leftrightarrow X_{3}=X_{4}=X_{0}-X_{5}=0$. One readily verifies that α_{2} is a nonisotropic plane and that the point ($0,1,0,0,0,0$) is its singular point. Now, choose a $\delta \in \mathbb{K} \backslash\{0,1\}$ and let L be the following line of $D W(5, \mathbb{K})$: $X_{0}-\delta X_{5}=X_{2}-\delta X_{3}=X_{1}=X_{4}=0$. Put $L \cap Q=\left\{p_{2}\right\}$. Then p_{2} is the following point of $Q: X_{0}-\delta X_{5}=\delta X_{3}-X_{2}=X_{4}=0$. Obviously, $\mathrm{d}\left(p_{1}, p_{2}\right)=$ 3. Since the system $X_{3}=X_{4}=X_{0}-X_{5}=0, X_{0}-\delta X_{5}=\delta X_{3}-X_{2}=X_{4}=0$ has only the point $(0,1,0,0,0,0)$ as solution, $p_{2} \notin G$. The point $\pi_{L}\left(p_{1}\right)$ has the following equation: $X_{0}-\delta X_{5}=X_{2}-\delta X_{3}=X_{1}=0$. A point y of $L \backslash\left\{p_{2}, \pi_{L}\left(p_{1}\right)\right\}$ has the following equation for a certain $\mu \in \mathbb{K} \backslash\{0\}$: $X_{0}-\delta X_{5}=X_{2}-\delta X_{3}=X_{1}-\mu X_{4}=0$. Now, let y_{1}, y_{2} be arbitrary points of $L \backslash\left\{p_{2}, \pi_{L}\left(p_{1}\right)\right\}$ and let $\mu_{1}, \mu_{2} \in \mathbb{K} \backslash\{0\}$ such that $y_{i} \leftrightarrow X_{0}-\delta X_{5}=$ $X_{2}-\delta X_{3}=X_{1}-\mu_{i} X_{4}=0$ for every $i \in\{1,2\}$. Let $k \in \mathbb{K} \backslash\{0\}$ such that $k^{2}=\frac{\mu_{2}}{\mu_{1}}$, then the map $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \mapsto\left(X_{0}, k X_{1}, X_{2}, X_{3}, \frac{X_{4}}{k}, X_{5}\right)$ induces an automorphism of $D W(5, \mathbb{K})$ satisfying all required properties.

3 Regarding the sets $\left[H_{1}, H_{2}\right]^{*}$

Throughout this section, \mathbb{K} denotes a perfect field of characteristic 2 .

Lemma 3.1 If G is a full subgrid of $Q(4, \mathbb{K})$, then for every point $x \in G$, $\left(G, x^{\perp}\right)^{*}$ only contains full subgrids.

Proof. If L is one of the two lines through x which are contained in G, then since $L \subseteq G$ and $L \subseteq x^{\perp}, L$ is also contained in any hyperplane of $\left(G, x^{\perp}\right)^{*}$. If L is a line through x not contained in G, then since $L \subseteq x^{\perp}$ and $L \nsubseteq G$, L cannot be contained in any of the hyperplanes of $\left(G, x^{\perp}\right)^{*}$. So, for any hyperplane H of $\left(G, x^{\perp}\right)^{*}$, precisely two lines through x are contained in H; hence, H is a full subgrid.

Lemma 3.2 If x_{1} and x_{2} are two distinct points of $Q(4, \mathbb{K})$, then any hyperplane of $\left[x_{1}^{\perp}, x_{2}^{\perp}\right]^{*}$ is singular.

Proof. The spin embedding of $Q(4, \mathbb{K})$ is isomorphic to the natural embedding of $W(3, \mathbb{K})$ into $\mathrm{PG}(3, \mathbb{K})$ and hence the hyperplanes arising from it are precisely the singular hyperplanes of $Q(4, \mathbb{K})$. Now, since x_{1}^{\perp} and x_{2}^{\perp} arise from the spin embedding of $Q(4, \mathbb{K})$ also any hyperplane of $\left[x_{1}^{\perp}, x_{2}^{\perp}\right]^{*}$ arises from the spin embedding and hence is singular.

Lemma 3.3 Let M be a max of $D W(2 n-1, \mathbb{K})$ and let A_{1}, A_{2} be two distinct hyperplanes of \widetilde{M}. If H is a hyperplane of $D W(2 n-1, \mathbb{K})$ satisfying $H \cap$ $H_{A_{1}}=H_{A_{1}} \cap H_{A_{2}}=H \cap H_{A_{2}}$, then $H=H_{A_{3}}$ for some hyperplane A_{3} of \widetilde{M} satisfying $A_{1} \cap A_{3}=A_{1} \cap A_{2}=A_{2} \cap A_{3}$.

Proof. Notice first that for every hyperplane A of $\widetilde{M}, H_{A}=\bigcup_{x \in A} x^{\perp}$.
We have $M \subseteq H_{A_{1}} \cap H_{A_{2}} \subseteq H$. We show that for any $x \in M$, either $x^{\perp} \subseteq H$ or $x^{\perp} \cap H=x^{\perp} \cap M$. If this would not be the case, then there exist two lines L_{1} and L_{2} through x not contained in M such that $L_{1} \subseteq H$ and $L_{2} \nsubseteq H$. Let Q denote the unique quad through L_{1} and L_{2} and let L_{3} be the line $Q \cap M$. Now, $Q \cap H$ is a hyperplane of \widetilde{Q} which is necessary a full subgrid since $L_{1}, L_{3} \subseteq H$ and $L_{2} \nsubseteq H$. Let y denote a point of $L_{3} \cap A_{1}$ and let L_{4} denote the unique line of $Q \cap H$ through y distinct from L_{3}. Since $H \cap H_{A_{1}}=H_{A_{1}} \cap H_{A_{2}}=H \cap H_{A_{2}}$, we would have the following: (i) $L_{4} \subseteq H_{A_{2}}$; (ii) any line through y not contained in $M \cup L_{4}$ is not contained in $H_{A_{2}}$. This is clearly not possible. Hence, either $x^{\perp} \subseteq H$ or $x^{\perp} \cap H=x^{\perp} \cap M$.

Now, let A_{3} denote the set of points of M satisfying $x^{\perp} \subseteq H$. Let M^{\prime} denote a max disjoint from M and put $A_{i}^{\prime}:=\pi_{M^{\prime}}\left(A_{i}\right), i \in\{1,2,3\}$. Since $A_{3}^{\prime}=H \cap M^{\prime}, A_{3}^{\prime}$ is a hyperplane of $\widetilde{M^{\prime}}$. So, since the projection from M^{\prime} onto M is an isomorphism, A_{3} is a hyperplane of \widetilde{M} and $H=H_{A_{3}}$. Since $H \cap H_{A_{1}}=H_{A_{1}} \cap H_{A_{2}}=H \cap H_{A_{2}}$, we have $A_{1}^{\prime} \cap A_{3}^{\prime}=A_{1}^{\prime} \cap A_{2}^{\prime}=A_{2}^{\prime} \cap A_{3}^{\prime}$. Hence, also $A_{1} \cap A_{3}=A_{1} \cap A_{2}=A_{2} \cap A_{3}$.

Lemma 3.4 Let Q be a quad of $D W(5, \mathbb{K})$ and let A and B be two distinct hyperplanes of \widetilde{Q} which are not ovoids. Then $\left[H_{A}, H_{B}\right]^{*}=\left\{H_{C} \mid C \in\right.$ $\left.[A, B]^{*}\right\}$.

Proof. Let Q^{\prime} be a quad disjoint from Q and put $A^{\prime}:=\pi_{Q^{\prime}}(A)$ and $B^{\prime}:=\pi_{Q^{\prime}}(B)$. Then $A^{\prime} \neq B^{\prime}$. Let $e: D W(5, \mathbb{K}) \rightarrow \Sigma$ denote the Grassmann embedding of $D W(5, \mathbb{K})$ and let $e_{Q^{\prime}}: \widetilde{Q^{\prime}} \rightarrow \Sigma^{\prime}$ be the embedding of $\widetilde{Q^{\prime}}$ induced by e. Recall that $e_{Q^{\prime}}$ is isomorphic to the Grassmann embedding of $Q(4, \mathbb{K})$. Let Σ_{A} and Σ_{B} denote the hyperplanes of Σ giving rise to H_{A} and H_{B}, respectively. [Recall that the extension of any singular hyperplane or any full subgrid of \widetilde{Q} arises from the Grassmann embedding of $D W(5, \mathbb{K})$.] Then since $A^{\prime}=H_{A} \cap Q^{\prime}$, the hyperplane A^{\prime} of $\widetilde{Q^{\prime}}$ arises from $e_{Q^{\prime}}$, more precisely from the hyperplane $\Sigma_{A} \cap \Sigma^{\prime}$ of Σ^{\prime}. Similarly, the hyperplane B^{\prime} arises from the hyperplane $\Sigma_{B} \cap \Sigma^{\prime}$ of Σ^{\prime}. Now, the hyperplanes of Σ^{\prime} through ($\left.\Sigma_{A} \cap \Sigma^{\prime}\right) \cap\left(\Sigma_{B} \cap \Sigma^{\prime}\right)$ are precisely the hyperplanes of the form $\Pi \cap \Sigma^{\prime}$ where Π is some hyperplane of Σ through $\Sigma_{A} \cap \Sigma_{B}$. This implies that $\left\{H \cap Q^{\prime} \mid H \in\left[H_{A}, H_{B}\right]^{*}\right\}=\left[A^{\prime}, B^{\prime}\right]^{*}$. By Lemma 3.3, every hyperplane of $\left[H_{A}, H_{B}\right]^{*}$ is the extension of a hyperplane of \widetilde{Q}. Hence, $\left[H_{A}, H_{B}\right]^{*}=\left\{H_{C} \mid C \subseteq Q\right.$ and $\left.\pi_{Q^{\prime}}(C) \in\left[A^{\prime}, B^{\prime}\right]^{*}\right\}=\left\{H_{C} \mid C \in[A, B]^{*}\right\}$.

Lemma 3.5 If x_{1} and x_{2} are two distinct points of $D W(5, \mathbb{K})$ at distance at most 2 from each other, then any hyperplane of $\left[H_{x_{1}}, H_{x_{2}}\right]^{*}$ is singular.

Proof. Let Q denote an arbitrary quad containing x_{1} and x_{2}. Then $H_{x_{i}}$, $i \in\{1,2\}$, is the extension of the singular hyperplane $x_{i}^{\perp} \cap Q$ of \widetilde{Q}. The lemma now immediately follows from Lemmas 3.2 and 3.4.

Lemma 3.6 If O is a classical ovoid of $Q(4, \mathbb{K})$, then there exists a full subgrid G of $Q(4, \mathbb{K})$ and a point $x \notin G$ such that $O \in\left[G, x^{\perp}\right]^{*}$.

Proof. Let x be a point of $Q(4, \mathbb{K})$ not contained in O, let y be a point of O collinear with x and let z be a point collinear with y at distance 2 from x. Since $y \in O \cap x^{\perp}, y$ is contained in any hyperplane of $\left(x^{\perp}, O\right)^{*}$. Since $z \notin x^{\perp} \cup O$, there exists a unique hyperplane $H^{*} \in\left(x^{\perp}, O\right)^{*}$ containing z. The hyperplane H^{*} contains the line $y z$ and hence has to be either a singular hyperplane (necessarily distinct from x^{\perp}) or a full subgrid. If H^{*} would we a singular hyperplane, then by Lemma 3.2, also $O \in\left[H^{*}, x^{\perp}\right]^{*}$ would be singular, a contradiction. So, H^{*} is a full subgrid and $O \in\left(H^{*}, x^{\perp}\right)^{*}$. Since $x \notin O$ and $x \in x^{\perp}, x$ cannot belong to H^{*}.

Lemma 3.7 The extension of a classical ovoid O of a quad Q of $D W(5, \mathbb{K})$ arises from the Grassmann embedding of $\operatorname{DW}(5, \mathbb{K})$.

Proof. By Lemma 3.6, there exists a full subgrid G of \widetilde{Q} and a point $x \in Q \backslash G$ such that $O \in\left(G, x^{\perp}\right)^{*}$. By Lemma 3.4, $H_{O} \in\left[H_{x}, H_{G}\right]^{*}$; hence, H_{O} arises from the Grassmann embedding of $D W(5, \mathbb{K})$.

Lemma 3.8 If x_{1} and x_{2} are two points of $D W(5, \mathbb{K})$ at distance 3 from each other, then every hyperplane of $\left(H_{x_{1}}, H_{x_{2}}\right)^{*}$ is hexagonal.

Proof. Since $H_{x_{1}}$ and $H_{x_{2}}$ arise from the spin embedding of $D W(5, \mathbb{K})$, also every hyperplane of $\left(H_{x_{1}}, H_{x_{2}}\right)^{*}$ arises from the spin embedding of $D W(5, \mathbb{K})$. So, any hyperplane H of $\left(H_{x_{1}}, H_{x_{2}}\right)^{*}$ is either singular or hexagonal. It suffices to show that every quad Q intersects H in a singular hyperplane of \widetilde{Q}. If $x_{i} \in Q$ for some $i \in\{1,2\}$, then since $Q \subseteq H_{x_{i}}$ and $Q \cap H_{x_{3-i}}$ is the singular hyperplane of \widetilde{Q} with deepest point $\pi_{Q}\left(x_{3-i}\right)$, also $H \cap Q$ is the singular hyperplane of \widetilde{Q} with deepest point $\pi_{Q}\left(x_{3-i}\right)$. If $x_{1}, x_{2} \notin Q$, then $\pi_{Q}\left(x_{1}\right) \neq$ $\pi_{Q}\left(x_{2}\right)\left(\right.$ since $\left.\mathrm{d}\left(x_{1}, x_{2}\right)=3\right)$ and $H \cap Q \in\left[\pi_{Q}\left(x_{1}\right)^{\perp} \cap Q, \pi_{Q}\left(x_{2}\right)^{\perp} \cap Q\right]^{*}$ (look at the embedding space); by Lemma 3.2, $H \cap Q$ is a singular hyperplane of Q.

Lemma 3.9 If H is a hexagonal hyperplane of $D W(5, \mathbb{K})$, then for every point x_{1} of $D W(5, \mathbb{K})$ not contained in H, there exists a unique point $x_{2} \neq x_{1}$ such that $H \in\left(H_{x_{1}}, H_{x_{2}}\right)^{*}$. The point x_{2} lies at distance 3 from x_{1}.
Proof. Let y be a point of H collinear with x_{1}, let Q denote the unique quad through y such that $Q \cap H=y^{\perp} \cap Q$ and let $z \in \Delta_{2}(y) \cap Q$. Since $y^{\perp} \cap Q \subseteq H \cap H_{x_{1}}, y^{\perp} \cap Q$ is contained in any hyperplane of $\left(H, H_{x_{1}}\right)^{*}$. Since $z \notin H \cup H_{x_{1}}$, there exists a unique hyperplane $H^{*} \in\left(H, H_{x_{1}}\right)^{*}$ containing z. Since H and $H_{x_{1}}$ arise from the spin embedding of $D W(5, \mathbb{K})$, also H^{*} arises from the spin embedding and hence is either singular or hexagonal. Since $y^{\perp} \cap Q \subseteq H^{*}$ and $z \in H^{*}, Q \subseteq H^{*}$ and hence H^{*} is singular with deepest point belonging to Q. Since $H \in\left[H_{x_{1}}, H^{*}\right]^{*}$, the deepest point x_{2} of H^{*} lies at distance 3 from x_{1} by Lemma 3.5. If there would exist a point $x_{2}^{\prime} \notin\left\{x_{1}, x_{2}\right\}$ such that $H \in\left(H_{x_{1}}, H_{x_{2}^{\prime}}\right)^{*}$, then $H_{x_{2}^{\prime}} \in\left[H_{x_{1}}, H\right]^{*}=\left[H_{x_{1}}, H_{x_{2}}\right]^{*}$, contradicting Lemma 3.8.

4 Proof of Theorem 1.1

Throughout this section, \mathbb{K} denotes a perfect field of characteristic 2 .
Lemma 4.1 Let H be a hyperplane of $D W(5, \mathbb{K})$ arising from the Grassmann embedding and let \mathcal{Q}_{H} denote the set of quads of $D W(5, \mathbb{K})$ which either are contained in H or intersect H in a singular hyperplane of \widetilde{Q}. Then the following holds:
(1) If H arises from the spin embedding of $D W(5, \mathbb{K})$, then \mathcal{Q}_{H} coincides with the set of all quads of $D W(5, \mathbb{K})$.
(2) If H does not arise from the spin embedding of $D W(5, \mathbb{K})$, then there exists a quad Q^{*} of $D W(5, \mathbb{K})$ such that \mathcal{Q}_{H} consists of all the quads of $D W(5, \mathbb{K})$ which meet Q^{*}.

Moreover, if H_{1} and H_{2} are two distinct hyperplanes of $D W(5, \mathbb{K})$ arising from the Grassmann embedding of $D W(5, \mathbb{K})$ for which $\mathcal{Q}_{H_{1}}=\mathcal{Q}_{H_{2}}$, then $\left[H_{1}, H_{2}\right]^{*}$ contains a hyperplane that arises from the spin embedding of $D W(5, \mathbb{K})$.

Proof. Let e denote the Grassmann embedding of $D W(5, \mathbb{K})$ into $\Sigma \cong$ $\operatorname{PG}(13, \mathbb{K})$ and let \mathcal{N} denote the nucleus of $e . \operatorname{Then} \operatorname{dim}(\mathcal{N})=5$. For every quad Q of $D W(5, \mathbb{K}), e$ induces a full embedding e_{Q} of \widetilde{Q} into the subspace $\langle e(Q)\rangle$ of Σ which is isomorphic to the Grassmann embedding of $Q(4, \mathbb{K})$. Let $f(Q)$ denote the nucleus of the embedding e_{Q} and let $g(Q)$ denote the point of $W(5, \mathbb{K})$ corresponding to the quad Q. By Blok, Cardinali and De Bruyn [1] (see also Cardinali and Lunardon [8] for the finite case), $f \circ g^{-1}$ defines a full projective embedding of $W(5, \mathbb{K})$ into \mathcal{N} which is (necessarily) isomorphic to the natural embedding of $W(5, \mathbb{K})$ into $\operatorname{PG}(5, \mathbb{K})$. Now, let U denote the set of points contained in $\mathcal{N} \cap\langle e(H)\rangle$. Let x be an arbitrary point of \mathcal{N} and put $Q=f^{-1}(x)$. If $x \in U$, then the space $\langle e(H)\rangle \cap\langle e(Q)\rangle$ contains the nucleus of e_{Q} and hence intersects $e(Q)$ in $e(A)$ where A is either Q or a singular hyperplane of \widetilde{Q}. If $x \notin U$, then $\langle e(H)\rangle \cap\langle e(Q)\rangle$ does not contain the nucleus of e_{Q} and hence intersects $e(Q)$ in $e(A)$ where A is either a full subgrid or a classical ovoid of \widetilde{Q}. If follows that $\mathcal{Q}_{H}=f^{-1}(U)$. If H arises from the spin embedding of $D W(5, \mathbb{K})$, then $U=\mathcal{N}$ and \mathcal{Q}_{H} coincides with the whole set of quads of $D W(5, \mathbb{K})$. If H does not arise from the spin embedding of $D W(5, \mathbb{K})$, then U is a hyperplane of \mathcal{N} and $g \circ f^{-1}(U)$ is a hyperplane of $W(5, \mathbb{K})$ which consists of all the points of $W(5, \mathbb{K})$ which are equal to or collinear with a given point x^{*} of $W(5, \mathbb{K})$. Hence, $\mathcal{Q}_{H}=f^{-1}(U)$ consists of all quads of $D W(5, \mathbb{K})$ which meet $Q^{*}:=g^{-1}\left(x^{*}\right)$. This proves the first part of the lemma.

Suppose now that H_{1} and H_{2} are two distinct hyperplanes of $D W(5, \mathbb{K})$ arising from e for which $\mathcal{Q}_{H_{1}}=\mathcal{Q}_{H_{2}}$. If $\mathcal{Q}_{H_{1}}=\mathcal{Q}_{H_{2}}$ consists of all the quads of $D W(5, \mathbb{K})$, then H_{1} and H_{2} arise from the spin embedding of $D W(5, \mathbb{K})$ and hence also all hyperplanes of $\left[H_{1}, H_{2}\right]^{*}$. So, suppose $\mathcal{Q}_{H_{1}}=\mathcal{Q}_{H_{2}}$ does not coincide with the whole set of quads of $D W(5, \mathbb{K})$. Then by the above discussion, $\left\langle e\left(H_{1}\right)\right\rangle \cap \mathcal{N}=\left\langle e\left(H_{2}\right)\right\rangle \cap \mathcal{N}$ is a hyperplane of \mathcal{N}. Now, let α denote the hyperplane of Σ generated by the subspaces \mathcal{N} and $\left\langle e\left(H_{1}\right)\right\rangle \cap$
$\left\langle e\left(H_{2}\right)\right\rangle$. Then the hyperplane $e^{-1}(\alpha \cap e(\mathcal{P}))$ arises from the spin embedding of $D W(5, \mathbb{K})$ and belongs to $\left[H_{1}, H_{2}\right]^{*}$.

We are now ready to give a proof of Theorem 1.1. If H arises from the spin embedding of $D W(5, \mathbb{K})$, then H is either a singular hyperplane or a hexagonal hyperplane of $D W(5, \mathbb{K})$.

Suppose H does not arise from the spin embedding of $D W(5, \mathbb{K})$. Then by Lemma 4.1, there exists a quad Q such that \mathcal{Q}_{H} consists of all the quads of $D W(5, \mathbb{K})$ which meet Q. Now, let G be an arbitrary full subgrid of Q such that $H_{G} \neq H$. Then $\mathcal{Q}_{H_{G}}=\mathcal{Q}_{H}$. Hence, by Lemma 4.1, there exists a hyperplane $H^{\prime} \in\left(H_{G}, H\right)^{*}$ that arises from the spin embedding of $D W(5, \mathbb{K})$. We have $H \in\left(H^{\prime}, H_{G}\right)^{*}$.

We now prove that there exists a point x in $D W(5, \mathbb{K})$ and a full subgrid G^{\prime} of Q such that $H \in\left[H_{x}, H_{G^{\prime}}\right]^{*}$. Obviously, this is the case if H^{\prime} is singular (take for x the deepest point of H^{\prime} and $G^{\prime}=G$). So, suppose H^{\prime} is hexagonal. Let y be an arbitrary point of $G \backslash H^{\prime}$. Then by Lemma 3.9, there exists a unique point x at distance 3 from y such that $H^{\prime} \in\left(H_{x}, H_{y}\right)^{*}$. Since $H \in$ $\left(H^{\prime}, H_{G}\right)^{*}$ and $H^{\prime} \in\left(H_{x}, H_{y}\right)^{*}$, there exists a hyperplane $H^{\prime \prime} \in\left(H_{y}, H_{G}\right)^{*}$ such that $H \in\left(H_{x}, H^{\prime \prime}\right)^{*}$. By Lemmas 3.1 and $3.4, H^{\prime \prime}$ is the extension of a certain full subgrid G^{\prime} of Q. So, $H \in\left(H_{x}, H_{G^{\prime}}\right)^{*}$.

Notice that if $x \in Q$, then $H \in\left(H_{x}, H_{G}\right)^{*}$ is the extension of a classical ovoid or a full subgrid of \widetilde{Q} by Lemma 3.4 and the fact that H is not singular. Theorem 1.1 now readily follows.

5 Proof of Theorem 1.2

By Property (P1), there exists up to isomorphism a unique singular hyperplane of $D W(5, \mathbb{K})$.

By Properties (P3)+(P5) and Lemma 2.2, there exists up to isomorphism a unique hyperplane of $D W(5, \mathbb{K})$ that arises by extending a full subgrid of a quad.

By Properties (P2)+(P7) and Lemmas $2.5+3.9$, there exists up to isomorphism a unique hexagonal hyperplane in $D W(5, \mathbb{K})$.

By Property (P7) and Lemmas $2.4+2.6$, there exists up to isomorphism a unique hyperplane of $D W(5, \mathbb{K})$ which belongs to some set of the form $\left(H_{G}, H_{x}\right)^{*}$ where G is a full subgrid of a quad of $D W(5, \mathbb{K})$ and $x \in \Delta_{2}(G)$.

Lemma 5.1 Let $O_{i}, i \in\{1,2\}$, be an ovoid of a quad Q_{i}. Then $H_{O_{1}} \cong H_{O_{2}}$ if and only if there exists an isomorphism θ from \widetilde{Q}_{1} to \widetilde{Q}_{2} mapping O_{1} to O_{2}.

Proof. Suppose there exists an isomorphism θ from \widetilde{Q}_{1} to \widetilde{Q}_{2} mapping O_{1} to O_{2}. Let θ_{1}^{\prime} be an arbitrary automorphism of $D W(5, \mathbb{K})$ mapping Q_{2} to Q_{1} (recall Property (P3)) and let θ_{1} be the isomorphism from \widetilde{Q}_{2} to \widetilde{Q}_{1} induced by θ_{1}^{\prime}. Then $\theta_{3}:=\theta_{1} \circ \theta$ is an automorphism of \widetilde{Q}_{1} which extends to an automorphism θ_{3}^{\prime} of $D W(5, \mathbb{K})$ (recall Property (P5)). Clearly, the automorphism $\theta_{1}^{\prime-1} \circ \theta_{3}^{\prime}$ of $D W(5, \mathbb{K})$ maps $H_{O_{1}}$ to $H_{O_{2}}$.

Conversely, if θ^{\prime} is an automorphism of $D W(5, \mathbb{K})$ mapping $H_{O_{1}}$ to $H_{O_{2}}$, then since $O_{i}, i \in\{1,2\}$, is the set of all points $x \in H_{O_{i}}$ for which $x^{\perp} \subseteq H_{i}$, θ^{\prime} induces an isomorphism θ from \widetilde{Q}_{1} to \widetilde{Q}_{2} mapping O_{1} to O_{2}.

The following lemma finishes the proof of Theorem 1.2.
Lemma 5.2 For every $i \in\{1,2\}$, let G_{i} be a full subgrid of a quad Q_{i} of $D W(5, \mathbb{K})$, let x_{i} be a point of $\Delta_{1}\left(G_{i}\right) \cap \Delta_{1}\left(Q_{i}\right)$ and let H_{i} be a hyperplane of the set $\left(H_{G_{i}}, H_{x_{i}}\right)^{*}$. Then the hyperplanes H_{1} and H_{2} are isomorphic.
Proof. Let $i \in\{1,2\}$. Put $y_{i}:=\pi_{Q_{i}}\left(x_{i}\right)$. Then $y_{i}^{\perp} \subseteq H_{i}$ since $y_{i}^{\perp} \subseteq H_{x_{i}}$ and $y_{i}^{\perp} \subseteq H_{G_{i}}$. So, if Q is a quad through y_{i}, then either $Q \subseteq H_{i}$ or $Q \cap H_{i}=y_{i}^{\perp} \cap Q$. Let U_{i} denote the set of quads through y_{i} contained in H_{i}. Since H_{i} is a maximal subspace of $D W(5, \mathbb{K})$ and $H_{i} \neq H_{y_{i}}$, there exists a point $z_{i} \in H_{i} \cap \Delta_{3}\left(y_{i}\right)$. The map which associates with every line L through z_{i} the unique quad through y_{i} meeting L defines an isomorphism between $\operatorname{Res}\left(z_{i}\right)$ and the dual of $\operatorname{Res}\left(y_{i}\right)$. Let \mathcal{L}_{i} denote the set of lines through z_{i} meeting a quad of U_{i}. Then \mathcal{L}_{i} coincides with the set of lines through z_{i} contained in H_{i}. By Cardinali and De Bruyn [6, Corollary 1.5] (see also Pasini [22, Theorem 9.3]), \mathcal{L}_{i} is a possibly degenerate conic of $\operatorname{Res}\left(z_{i}\right)$. Hence, U_{i} defines a possibly degenerate conic in the dual of $\operatorname{Res}\left(y_{i}\right)$. These conics are nonempty and nondegenerate by (1) and (2) below. [Notice that a conic of $\operatorname{PG}(2, \mathbb{K})$ is nonempty and nondegenerate if and only if it contains at least 2 points and no lines.]
(1) It holds that $\left|U_{i}\right| \geq 2$. For, if R_{1} and R_{2} denote the two quads through $x_{i} y_{i}$ meeting G in a line, then $R_{1}, R_{2} \subseteq H_{i}$ since $R_{1}, R_{2} \subseteq H_{x_{i}} \cap H_{G_{i}}$.
(2) We claim that there exists no line L through y_{i} with the property that every quad through L is contained in H_{i}. If R is a quad through $x_{i} y_{i}$ intersecting Q_{i} in a line which is not contained in G_{i}, then since $R \subseteq H_{x_{i}}$ and $R \nsubseteq H_{G_{i}}, R$ is not contained in H_{i}. Hence, the claim holds if $L=x_{i} y_{i}$ or if L is not contained in $R_{1} \cup R_{2}$. Suppose now that $L \neq x_{i} y_{i}$ and that L is contained in R_{j} for a certain $j \in\{1,2\}$. Then the unique quad through L and $R_{3-j} \cap Q$ is not contained in H_{i} since it is contained in $H_{G_{i}}$ but not in $H_{x_{i}}$.

Notice that there exists up to isomorphism only 1 nonempty and nondegenerate conic in $\operatorname{PG}(2, \mathbb{K})$, namely the one which is described by the equation $X_{0}^{2}+X_{1} X_{2}=0$ with respect to some reference system.

CLAIM: H_{i} is the unique hyperplane of $D W(5, \mathbb{K})$ arising from the Grassmann embedding of $D W(5, \mathbb{K})$ which contains y_{i}^{\perp} and every line of \mathcal{L}_{i}.
Proof. Put $\alpha_{1}=\left\langle e\left(y_{i}^{\perp}\right)\right\rangle_{\Sigma}$ and $\alpha_{2}=\left\langle e\left(z_{i}^{\perp}\right)\right\rangle_{\Sigma}$ where $e: D W(5, \mathbb{K}) \rightarrow$ $\Sigma \cong \mathrm{PG}(13, \mathbb{K})$ denotes the Grassmann embedding of $D W(5, \mathbb{K})$. Since y_{i} and z_{i} are opposite points, $\Sigma=\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ and $\operatorname{dim}\left(\alpha_{1}\right)=\operatorname{dim}\left(\alpha_{2}\right)=6$, see e.g. [12]. By [6, Theorem 1.3], for every hyperplane α_{2}^{\prime} of α_{2} through $e\left(z_{i}\right)$, the set of lines L through z_{i} for which $e(L) \subseteq \alpha_{2}^{\prime}$ is a conic $C\left(\alpha_{2}^{\prime}\right)$ of $\operatorname{Res}\left(z_{i}\right)$. Moreover, there exist reference systems in $\operatorname{Res}\left(z_{i}\right)$ and the quotient space $\alpha_{2} / e\left(z_{i}\right)$ such that if $\alpha_{2}^{\prime} / e\left(z_{i}\right)$ is given by the equation $a_{00} Y_{0}+$ $a_{01} Y_{1}+a_{02} Y_{2}+a_{11} Y_{3}+a_{12} Y_{4}+a_{22} Y_{5}=0$, then $C\left(\alpha_{2}^{\prime}\right)$ is given by the equation $a_{00} X_{0}^{2}+a_{11} X_{1}^{2}+a_{22} X_{2}^{2}+a_{01} X_{0} X_{1}+a_{02} X_{0} X_{2}+a_{12} X_{1} X_{2}=0$. The map $\alpha_{2}^{\prime} \mapsto C\left(\alpha_{2}^{\prime}\right)$ is not necessarily injective. However, since the equation of a nonempty nondegenerate conic of $\operatorname{PG}(2, \mathbb{K})$ is uniquely determined up to a nonzero factor, there exists a unique hyperplane α_{2}^{*} in α_{2} through $e\left(z_{i}\right)$ for which $C\left(\alpha_{2}^{*}\right)=\mathcal{L}_{i}$.

It is now clear that the unique hyperplane of $D W(5, \mathbb{K})$ arising from e and containing y_{i}^{\perp} and $\bigcup_{L \in \mathcal{L}_{i}} L$ coincides with the hyperplane of $D W(5, \mathbb{K})$ arising from the hyperplane $\left\langle\alpha_{2}, \alpha_{2}^{*}\right\rangle$ of Σ. (qed)

By Properties (P1) and (P4), there now exists an automorphism θ of $D W(5, \mathbb{K})$ mapping y_{1} to y_{2} and U_{1} to U_{2}. Now, let L^{*} be a line through z_{1} not contained in \mathcal{L}_{1}, i.e. not meeting U_{1}. Then $\theta\left(L^{*}\right)$ does not meet any quad of $\theta\left(U_{1}\right)=U_{2}$. So, $\theta\left(L^{*}\right)$ contains a unique point of $H_{2} \cap \Delta_{3}\left(y_{2}\right)$. Without loss of generality, we may suppose that this point is equal to z_{2}. (Recall that the only restriction on the choice of z_{2} was that it is a point of $H_{2} \cap \Delta_{3}\left(y_{2}\right)$.) Now, let M denote the unique quad through y_{2} meeting $\theta\left(L^{*}\right)$. Then there exists a unique element $\theta^{\prime} \in T_{M}$ mapping $\theta\left(z_{1}\right)$ to z_{2}. The automorphism θ^{\prime} fixes y_{2} and every quad through y_{2} since every such quad intersects M in a line. Now, the automorphism $\theta^{\prime} \circ \theta$ maps y_{1} to y_{2}, U_{1} to U_{2} and z_{1} to z_{2}. Hence, it also maps \mathcal{L}_{1} to \mathcal{L}_{2}. So, $\theta^{\prime} \circ \theta\left(H_{1}\right)$ is a hyperplane of $D W(5, \mathbb{K})$ containing y_{2}^{\perp} and $\bigcup_{L \in \mathcal{L}_{2}} L$. Moreover, $\theta^{\prime} \circ \theta\left(H_{1}\right)$ arises from the Grassmann embedding of $D W(5, \mathbb{K})$ by Property (P7). By the previous claim, we necessarily have $\theta^{\prime} \circ \theta\left(H_{1}\right)=H_{2}$.

Remark. The claims mentioned after Theorem 1.1 should now be all clear for the first 5 classes of hyperplanes. Suppose now that H is a hyperplane belonging to the 6 th class. Suppose $H \in\left(H_{G}, H_{x}\right)^{*}$, where G is a full subgrid
of a quad Q of $D W(5, \mathbb{K})$ and x is a point of $D W(5, \mathbb{K})$ contained in $\Delta_{2}(G)$. If R is a quad through x, then since $R \subseteq H_{x}$ and $R \nsubseteq H_{G}, R$ is not contained in $\underset{\sim}{H}$. If R is a quad not containing x, then $R \cap H_{x}$ is the singular hyperplane of \widetilde{R} with deepest point $\pi_{R}(x)$. If R would be contained in H, then also $R \cap H_{G}$ would be the singular hyperplane of \widetilde{R} with deepest point $\pi_{R}(x)$. This would imply that $R \cap Q$ is a line of Q which intersects G in the unique point $\pi_{R}(x)$. But this is impossible since $x \in \Delta_{2}(G)$.

Hence, no quad of $D W(5, \mathbb{K})$ is contained in H. Observe also that if R is a quad through x disjoint from Q, then $H \cap R=\pi_{R}(G)$ since $R \subseteq H_{x}$ and $R \cap H_{G}=\pi_{R}(G)$.

6 Proof of Theorem 1.3

Throughout this section, \mathbb{K} denotes a perfect field of characteristic 2 .
Lemma 6.1 Let $\lambda_{1}, \lambda_{2} \in \mathbb{K} \backslash\{0\}$, $a \in \mathbb{K}$ and σ an automorphism of \mathbb{K} such that $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}^{\sigma}}+a^{2}+a=0$. If the polynomial $X^{2}+\lambda_{1} X+1$ is irreducible in $\mathbb{K}[X]$, then also the polynomial $X^{2}+\lambda_{2} X+1$ is irreducible in $\mathbb{K}[X]$.

Proof. If $\lambda \in \mathbb{K} \backslash\{0\}$, then $\frac{1}{\lambda^{2}}\left(X^{2}+\lambda X+1\right)=\left(\frac{X}{\lambda}\right)^{2}+\frac{X}{\lambda}+\frac{1}{\lambda^{2}}$ and hence $X^{2}+\lambda X+1$ is irreducible (in $\mathbb{K}[X]$) if and only if $X^{2}+X+\frac{1}{\lambda^{2}}$ is irreducible. So, $X^{2}+X+\frac{1}{\lambda_{1}^{2}}$ is irreducible. Now, since $X^{2}+X+\frac{1}{\lambda_{1}^{2}}=$ $\left(X+a^{2}\right)^{2}+\left(X+a^{2}\right)+\frac{1}{\lambda_{1}^{2}}+a^{4}+a^{2}=\left(X+a^{2}\right)^{2}+\left(X+a^{2}\right)+\left(\frac{1}{\lambda_{2}^{\sigma}}\right)^{2}$, also the polynomials $X^{2}+X+\left(\frac{1}{\lambda_{2}^{2}}\right)^{2}$ and $X^{2}+\lambda_{2}^{\sigma} X+1$ are irreducible. Hence, also the polynomial $X^{2}+\lambda_{2} X+1$ is irreducible.

Now, let Ω denote the set of all elements $\lambda \in \mathbb{K}$ for which the polynomial $X^{2}+\lambda X+1$ is irreducible in $\mathbb{K}[X]$. We define the following relation R on the set Ω. We say that $\left(\lambda_{1}, \lambda_{2}\right) \in R$ if and only if there exists an $a \in \mathbb{K}$ and an automorphism σ of \mathbb{K} such that $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}^{\sigma}}+a^{2}+a=0$. It is straightforward to verify that R is an equivalence relation.

Now, choose a reference system in $\operatorname{PG}(4, \mathbb{K})$ and suppose $Q(4, \mathbb{K})$ is the generalized quadrangle associated with the quadric $Q \leftrightarrow X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$ of $\operatorname{PG}(4, \mathbb{K})$. For every automorphism σ of \mathbb{K}, let θ_{σ} denote the following automorphism of $\operatorname{PG}(4, \mathbb{K}):\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right) \mapsto\left(X_{0}^{\sigma}, X_{1}^{\sigma}, X_{2}^{\sigma}, X_{3}^{\sigma}, X_{4}^{\sigma}\right)$. Then θ_{σ} stabilizes Q. For every $\lambda \in \mathbb{K}$, let π_{λ} be the hyperplane $X_{4}=X_{3}+\lambda X_{0}$ of $\operatorname{PG}(4, \mathbb{K})$ and put $O_{\lambda}:=Q \cap \pi_{\lambda}$. Then O_{λ} is a (classical) ovoid of $Q(4, \mathbb{K})$ if and only if $\lambda \in \Omega$. The following lemma is precisely Theorem 1.3(i).

Lemma 6.2 Every classical ovoid O of $Q(4, \mathbb{K})$ is isomorphic to an ovoid O_{λ} for some $\lambda \in \Omega$.

Proof. By Lemma 3.6, there exists a full subgrid G of $Q(4, \mathbb{K})$ and a point x of $Q(4, \mathbb{K})$ not contained in G such that $O \in\left(G, x^{\perp}\right)^{*}$. By Lemma 2.3, we may without loss of generality suppose that $x=(1,0,0,1,1)$ and that G is described by the equations $X_{0}=0, X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$. The set x^{\perp} is described by the equations $X_{3}+X_{4}=0, X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$. So, there exists a $\lambda \in \mathbb{K} \backslash\{0\}$ such that O is described by the equations $X_{4}=X_{3}+\lambda X_{0}$, $X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$, i.e. $O=O_{\lambda}$. Since O is a classical ovoid, $\lambda \in \Omega$.

Lemma 6.3 Let $\lambda_{1}, \lambda_{2} \in \Omega$. If there exists a projectivity μ of $\operatorname{PG}(4, \mathbb{K})$ stabilizing the quadric $X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$ and mapping the hyperplane $X_{4}+X_{3}+\lambda_{1} X_{0}=0$ to the hyperplane $X_{4}+X_{3}+\lambda_{2} X_{0}=0$, then there exists an $a \in \mathbb{K}$ such that $\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{1}}+a^{2}+a=0$.

Proof. Let $\overline{\mathbb{K}}$ denote a given algebraic closure of \mathbb{K} and let $\mathbb{K}_{i}, i \in\{1,2\}$, denote the splitting field in $\overline{\mathbb{K}}$ of the quadratic polynomial $X^{2}+\lambda_{i} X+1 \in$ $\mathbb{K}[X]$. Then \mathbb{K}_{i} is also the splitting field of the polynomial $X^{2}+X+\frac{1}{\lambda_{i}^{2}}$. For every $i \in\{1,2\}$, let \mathcal{P}_{i} (respectively \mathcal{P}_{i}^{\prime}), denote the set of points of $\operatorname{PG}(4, \mathbb{K})$ (respectively $\operatorname{PG}\left(4, \mathbb{K}_{1}\right)$) defined by the equations

$$
\left\{\begin{aligned}
X_{4}+X_{3}+\lambda_{i} X_{0} & =0 \\
X_{0}^{2}+X_{1} X_{2}+X_{3}\left(X_{3}+\lambda_{i} X_{0}\right) & =0
\end{aligned}\right.
$$

Then $\mu\left(\mathcal{P}_{1}\right)=\mathcal{P}_{2}$. Regarding μ as a projectivity of $\operatorname{PG}\left(4, \mathbb{K}_{1}\right)$, we have $\mu\left(\mathcal{P}_{1}^{\prime}\right)=\mathcal{P}_{2}^{\prime}$. So, \mathcal{P}_{2}^{\prime} is a hyperbolic quadric in the hyperplane $X_{4}+X_{3}+$ $\lambda_{2} X_{0}=0$ of $\operatorname{PG}\left(4, \mathbb{K}_{1}\right)$. This is only possible when $\mathbb{K}_{2} \subseteq \mathbb{K}_{1}$. Applying the same reasoning to the projectivity μ^{-1}, we find $\mathbb{K}_{1} \subseteq \mathbb{K}_{2}$. Hence, $\mathbb{K}_{1}=\mathbb{K}_{2}$.

Let $\delta \in \mathbb{K}_{1}$ be a root of the polynomial $X^{2}+X+\frac{1}{\lambda_{1}^{2}}$. Since $\mathbb{K}_{1}=\mathbb{K}_{2}$ can be regarded as a two-dimensional vector space over \mathbb{K}, there exist $b, c \in \mathbb{K}$ such that $b \delta+c$ is a root of the polynomial $X^{2}+X+\frac{1}{\lambda_{2}^{2}}$. Since $X^{2}+X+\frac{1}{\lambda_{2}^{2}}$ is irreducible, $b \delta+c \notin \mathbb{K}$ and hence $b \neq 0$. We have $\delta^{2}=\delta+\frac{1}{\lambda_{1}^{2}}$ and $(b \delta+c)^{2}+(b \delta+c)+\frac{1}{\lambda_{2}^{2}}=\left(b^{2}+b\right) \delta+\frac{b^{2}}{\lambda_{1}^{2}}+\frac{1}{\lambda_{2}^{2}}+c^{2}+c=0$. Since $\delta \in \mathbb{K}_{1} \backslash \mathbb{K}$, $b^{2}+b=0$, i.e. $b=1$. Hence, $\frac{1}{\lambda_{1}^{2}}+\frac{1}{\lambda_{2}^{2}}+c^{2}+c=0$. If $a \in \mathbb{K}$ denotes the square root of c, then $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+a^{2}+a=0$.

Lemma 6.4 Let $\lambda_{1}, \lambda_{2} \in \Omega$. If there exists an automorphism θ of $\mathrm{PG}(4, \mathbb{K})$ stabilizing the quadric $X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$ and mapping the hyperplane $X_{4}+X_{3}+\lambda_{1} X_{0}=0$ to the hyperplane $X_{4}+X_{3}+\lambda_{2} X_{0}=0$, then there exists an automorphism σ of \mathbb{K} and an $a \in \mathbb{K}$ such that $\frac{1}{\lambda_{2}^{\sigma}}+\frac{1}{\lambda_{1}}+a^{2}+a=0$.

Proof. Let θ be an automorphism of $\operatorname{PG}(4, \mathbb{K})$ satisfying the conditions of the lemma. Then $\theta=\theta_{\sigma^{-1}} \circ \mu$ for some automorphism σ of \mathbb{K} and some projectivity μ of $\operatorname{PG}(4, \mathbb{K})$. The automorphism $\theta_{\sigma^{-1}}$ stabilizes the quadric $X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$ and maps the hyperplane $X_{4}+X_{3}+\lambda_{2}^{\sigma} X_{0}=0$ to the hyperplane $X_{4}+X_{3}+\lambda_{2} X_{0}=0$. So, the projectivity μ also stabilizes the quadric and maps the hyperplane $X_{4}+X_{3}+\lambda_{1} X_{0}=0$ to the hyperplane $X_{4}+X_{3}+\lambda_{2}^{\sigma} X_{0}=0$. By Lemma 6.3, there exists an $a \in \mathbb{K}$ such that $\frac{1}{\lambda_{2}^{\sigma}}+\frac{1}{\lambda_{1}}+a^{2}+a=0$.

The proofs of the following two lemmas are straightforward.
Lemma 6.5 Let $\lambda_{1}, \lambda_{2} \in \mathbb{K} \backslash\{0\}$ and $a \in \mathbb{K}$ such that $\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{1}}+a^{2}+a=0$. Then the projectivity

$$
\mu:\left\{\begin{array}{l}
X_{0} \mapsto X_{0}+\left(a^{2} \lambda_{1}\right) X_{3}, \quad X_{1} \mapsto X_{1}, \quad X_{2} \mapsto X_{2}, \\
X_{3} \mapsto \frac{\lambda_{1}}{\lambda_{2}} X_{3}, \quad X_{4} \mapsto \frac{\lambda_{2}}{\lambda_{1}} X_{4}+\left(a^{4} \lambda_{1} \lambda_{2}\right) X_{3},
\end{array}\right.
$$

of $\operatorname{PG}(4, \mathbb{K})$ stabilizes the quadric $X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$ and maps the hyperplane $X_{4}+X_{3}+\lambda_{1} X_{0}=0$ to the hyperplane $X_{4}+X_{3}+\lambda_{2} X_{0}=0$.

Lemma 6.6 Let $\lambda \in \mathbb{K}$ and let σ be an automorphism of \mathbb{K}. Then the automorphism θ_{σ} of $\mathrm{PG}(4, \mathbb{K})$ stabilizes the quadric $X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0$ and maps the hyperplane $X_{4}+X_{3}+\lambda X_{0}=0$ to the hyperplane $X_{4}+X_{3}+$ $\lambda^{\sigma} X_{0}=0$.

Theorem 1.3(ii) is now an immediate corollary of Lemmas 6.4, 6.5 and 6.6.

References

[1] R. J. Blok, I. Cardinali and B. De Bruyn. On the nucleus of the Grassmann embedding of the symplectic dual polar space $\operatorname{DSp}(2 n, \mathbb{F})$, $\operatorname{char}(\mathbb{F})=2$. European J. Combin. 30 (2009), 468-472.
[2] A. Blokhuis and A. E. Brouwer. The universal embedding dimension of the binary symplectic dual polar space. Discrete Math. 264 (2003), 3-11.
[3] A. E. Brouwer. The composition factors of the Weyl modules with fundamental weights for the symplectic group. Preprint, 1992.
[4] F. Buekenhout and P. J. Cameron. Projective and affine geometry over division rings. Handbook of Incidence Geometry, 27-62, North-Holland, Amsterdam, 1995.
[5] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75-85.
[6] I. Cardinali and B. De Bruyn. The structure of full polarized embeddings of symplectic and Hermitian dual polar spaces. Adv. Geom. 8 (2008), 111-137.
[7] I. Cardinali, B. De Bruyn and A. Pasini. Minimal full polarized embeddings of dual polar spaces. J. Algebraic Combin. 25 (2007), 7-23.
[8] I. Cardinali and G. Lunardon. A geometric description of the spinembedding of symplectic dual polar spaces of rank 3. J. Combin. Theory Ser. A 115 (2008), 1056-1064.
[9] C. C. Chevalley. The algebraic theory of spinors. Columbia University Press, New York, 1954.
[10] B. N. Cooperstein. On the generation of dual polar spaces of symplectic type over finite fields. J. Combin. Theory Ser. A 83 (1998), 221-232.
[11] B. De Bruyn. Near polygons. Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[12] B. De Bruyn. A decomposition of the natural embedding spaces for the symplectic dual polar spaces. Linear Algebra Appl. 426 (2007), 462-477.
[13] B. De Bruyn. The hyperplanes of $D Q(2 n, \mathbb{K})$ and $D Q^{-}(2 n+1, q)$ which arise from their spin-embeddings. J. Combin. Theory Ser. A 114 (2007), 681-691.
[14] B. De Bruyn. The hyperplanes of $D W\left(5,2^{h}\right)$ which arise from embedding. Discrete Math. 309 (2009), 304-321.
[15] B. De Bruyn. On a class of hyperplanes of the symplectic and Hermitian dual polar spaces. Electron. J. Combin. 16 (2009), Research paper 1, 20pp.
[16] B. De Bruyn. Some subspaces of the k-th exterior power of a symplectic vector space. Linear Algebra Appl., to appear.
[17] B. De Bruyn and A. Pasini. Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to \mathbb{F}_{2}. Electron. J. Combin. 14 (2007), Research paper 54, 17pp.
[18] B. De Bruyn and A. Pasini. On symplectic polar spaces over nonperfect fields of characteristic 2. Linear Multilinear Algebra, to appear.
[19] B. De Bruyn and P. Vandecasteele. Valuations and hyperplanes of dual polar spaces. J. Combin. Theory Ser. A. 112 (2005), 194-211.
[20] A. Kasikova and E. E. Shult. Absolute embeddings of point-line geometries. J. Algebra 238 (2001), 265-291.
[21] P. Li. On the universal embedding of the $S p(2 n, 2)$ dual polar space. J. Combin. Theory Ser. A 94 (2001), 100-117.
[22] A. Pasini. Embeddings and expansions. Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 585-626.
[23] H. Pralle. Hyperplanes of dual polar spaces of rank 3 with no subquadrangular quad. Adv. Geom. 2 (2002), 107-122.
[24] H. Pralle. The hyperplanes of $D W(5,2)$. Experiment. Math. 14 (2005), 373-384.
[25] E. E. Shult. Generalized hexagons as geometric hyperplanes of near hexagons. Groups, Combinatorics and Geometry (Durham, 1990), 229239, London Math. Soc. Lecture Note Ser. 165, Cambridge Univ. Press, Cambridge, 1992.
[26] E. E. Shult. On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299-316.
[27] E. E. Shult and J. A. Thas. Hyperplanes of dual polar spaces and the spin module. Arch. Math. 59 (1992), 610-623.
[28] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1-72.
[29] J. Tits. Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics 386. Springer, Berlin, 1974.

