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Abstract

We provide axiomatic characterizations of two natural families of rules for aggre-

gating equivalence relations: the family of join aggregators and the family of meet

aggregators. The central conditions in these characterizations are two separability ax-

ioms. Disjunctive separability, neutrality, and unanimity characterize the family of join

aggregators. On the other hand, conjunctive separability and unanimity characterize

the family of meet aggregators. We show another characterization of the family of

meet aggregators using conjunctive separability and two Pareto axioms, Pareto+ and

Pareto−. If we drop Pareto−, then conjunctive separability and Pareto+ characterize

the family of meet aggregators along with a trivial aggregator.
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1 Introduction

The theory of aggregating individual preferences into a social preference relation was initiated

by the seminal work of Arrow (1951) 1. Arrow’s impossibility theorem inspired many scholars

to apply his approach to other environments as well. For instance, in many situations a plan-

ner is often required to classify a finite set of candidates into “equivalence classes”, where two

candidates belong to the same class if and only if they are assumed to be equivalent. Such a

classification of candidates into disjoint equivalence classes is called an equivalence relation

(partition), and it is often based on the various attributes the candidates may have. The ob-

jective is to then aggregate these equivalence relations of different attributes and form a holis-

tic equivalence relation - a problem studied in detail in various papers such as (Mirkin, 1975),

(Wilson, 1978), (Fishburn and Rubinstein, 1986), (Leclerc, 1984), (Rubinstein and Fishburn,

1986), (Barthélemy et al., 1986), (Neumann and Norton Jr., 1986), and (Barthélemy, 1988).

The critical difference of this problem from the Arrovian framework of individual preference

aggregation is that an equivalence relation does not rank the equivalence classes it contains.

We give an example to illustrate the applicability of this model.

• Partitioning Households of a City. A city planner wants to form an aggregate

equivalence relation of the households of a city. It first collects data from households

about their employment, religion, family etc. Here, the candidates are households

and the attributes are employment, religion, family. The collected data enables the

city planner to form an equivalence relation of the households for every attribute.

He now needs to generate an aggregate equivalence relation from these equivalence

relations. Such an aggregate equivalence relation may help form development policies,

and improve targeting of such policies.

It is natural that out of the entire set of possible attributes, the planner only considers a

subset of the attributes relevant for constructing the aggregate partition of candidates. The

planner may then think of two natural, but somewhat dual, ways to aggregate the equivalence

relations in each attribute into one equivalence relation. It can consider two candidates to

be equivalent if and only if they are equivalent in each of the relevant attribute. On the

other hand, it can take the other extreme view by considering an aggregator which somehow

respects the partitioning under every relevant attribute. In this case, it may consider two

candidates to be equivalent if they are equivalent under any of the relevant attributes. Other

applications of this type of aggregation includes a school wanting to classify its set of students

based on various attributes to better target its activities, a group of experimental researchers

trying to classify a data-set (population in a village, living beings in a forest etc.) based on

various attributes to design its experiment, a political party classifying various constituencies

on various attributes to better plan its campaign etc.

1Some recent pedagogic proofs of Arrow’s impossibility theorem appear in Perote-Pena and Piggins (2002)

and Geanakoplos (2005).
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In this paper we focus on such aggregation of equivalence relations, consider these two

natural families of aggregation rules, and axiomatically characterize them. To start with,

let us consider an example with three candidates say a, b, and c, and two attributes, say 1

and 2. Objects a and b are equivalent but candidate c is different in terms of attribute 1.

Objects a and c are equivalent but b is different in terms of attribute 2. We will now describe

the two families of aggregators using this example. For both families, we first identify a

non-empty subset of attributes, called the decisive attributes. For each possible choice of

decisive attributes, we then define two aggregators. Thus, each family of such aggregators

has 2n − 1 members, where n is the number of attributes.

The first aggregator puts two candidates in the same equivalence class if and only if each

decisive attribute puts them in the same equivalence class. Thus, it reflects the consensus

view of the decisive attributes and is a member of the family of meet aggregators. In the

example above, if we take both the attributes as decisive, then the equivalence relation given

by this meet aggregator puts each candidate in a separate equivalence class.

Each aggregator in the second family of rules we discuss has an entirely different approach

in aggregation. It takes the union (or join) of the equivalence classes of every decisive

attribute. In some sense, it tries to “satisfy” each decisive attribute, and belongs to the

family of join aggregators. In the example above, if we take both attributes as decisive, the

join aggregator puts a and b together due to attribute 1. Also, it puts a and c together due

to attribute 2, and hence, all the three candidates form an equivalence class.

1.1 Our Contribution

We provide characterizations for the family of meet aggregators and for the family of join

aggregators. The central theme of our characterizations is separability. Separability can be

thought as the counterpart of additivity and consistency axioms in this model. Additivity and

consistency has been recognized as a central axiom in cooperative game theory, and used in

various models (for example, Shapley (1953) uses additivity and Hart and Mas-Colell (1989)

use consistency to axiomatize the Shapley value). We motivate our versions of separability

axioms in Section 3.1.

We use two (dual) versions of separability axioms. Conjunctive separability requires that

if we combine two profiles of equivalence relations using the meet operation, then the aggre-

gator must output the same equivalence relation on this combined data as the equivalence

relation obtained by taking the meet of the equivalence relations produced by the aggregator

for each profile of equivalence relations. Analogously, disjunctive separability requires that if

the combination of equivalence relations according to both approaches is done using the join

operation, then it must produce the same equivalence relation. These two axioms reflect two

consistent ways of decentralizing the process of aggregation.

Besides these two separability axioms, we use some standard axioms from the aggregation

theory literature. We start with three different Pareto-type axioms. The first one, Pareto+,

3



says that if two candidates are in the same equivalence class according to every attribute,

then the aggregator must put them in the same equivalence class. Analogously, we define

the Pareto− axiom, which requires that if two candidates are in different equivalence classes

according to every attribute, then the aggregator must put them in different equivalence

classes. Pareto+ is satisfied by both types of aggregators, while Pareto− is satisfied by the

meet aggregators but not by the join aggregators. Finally, we consider also a third Pareto-

type axiom, unanimity, which is satisfied by the aggregators in both families. Unanimity

requires that if the equivalence relation according to every attribute is the same, the aggre-

gator must output this very equivalence relation. The combination of Pareto+ and Pareto−

implies unanimity.

The next standard axiom we use is neutrality. It requires that if we construct a new

profile of equivalence relations from a given profile of equivalence relations by permuting the

set of candidates, then the outcome of the aggregator at the new profile must be the same

permutation applied to the outcome of the old profile. Hence, the names of the candidates

should not matter to the aggregator.

Finally, we use an axiom called non-triviality. An aggregator is called trivial if it outputs

the equivalence relation where all the candidates are put in the same equivalence class for

every profile of equivalence relations. An aggregator satisfies non-triviality if it is not a trivial

aggregator.

We show that an aggregator satisfies unanimity, neutrality, and disjunctive separability if

and only if it is one of the join aggregators. We obtain an almost dual characterization of the

family of meet aggregators. An aggregator satisfies unanimity and conjunctive separability if

and only if it is one of the meet aggregators. Neutrality is implied by conjunctive separability

and unanimity (or Pareto+). We show that one can replace unanimity by Pareto+ and

Pareto− in the characterization of the meet aggregators.

Pareto− is not satisfied by the join aggregators when m ≥ 3, where m is the number of

candidates. A natural task is then to explore the possibility of dropping the Pareto− axiom

in the characterization of the family of meet aggregators. We show that we do not get a

significantly larger set of aggregators if we drop this axiom. In particular, an aggregator

satisfies Pareto+ and conjunctive separability if and only if it is one of the meet aggrega-

tors or the trivial aggregator. Hence, using non-triviality in place of Pareto− along with

Pareto+ and conjunctive separability characterizes the family of meet aggregators. No such

characterization is possible for the family of join aggregators.

Using our characterizations, we can conclude that the families of join and meet aggrega-

tors essentially differ by two different notions of separability. These families contain (almost)

dual aggregators and our characterizations reflect this duality.
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1.2 Relation to Prior Work

The literature on aggregating equivalence relations started with the works of Mirkin (1975),

Leclerc (1984), Barthélemy et al. (1986), Fishburn and Rubinstein (1986), and Neumann and Norton Jr.

(1986). In their work, Rubinstein and Fishburn (1986) discuss a general model of preference

aggregation which covers the aggregation of equivalence relations, while Fishburn and Rubinstein

(1986) consider explicitly the family of meet aggregators. To our knowledge, there is no work

which discusses the family of join aggregators.

Fishburn and Rubinstein (1986) use Pareto+, Pareto−, and binary independence to char-

acterize the family of meet aggregators. Binary independence is an axiom in the spirit of

Arrow’s independence of irrelevant alternatives. It requires that the aggregated equivalence

relation between any two candidates must depend only on the equivalence relations between

these two candidates in every attribute. Our characterization of the family of meet ag-

gregators replaces binary independence by conjunctive separability for m ≥ 3. Is binary

independence weaker than conjunctive separability? We give examples to illustrate that nei-

ther of them imply the other. However, we show that conjunctive separability and binary

independence are equivalent axioms (for m ≥ 3) in the presence of Pareto+.

Our results for the family of meet aggregators are slightly tighter than the results in

Fishburn and Rubinstein (1986). First, the binary independence axiom used in Fishburn and

Rubinstein (1986) has no bite when m = 2. This is not the case for conjunctive separability,

and as a result, we get a characterization which works for all m. Second, when m ≥ 3,

we show that Pareto− in the characterization of Fishburn and Rubinstein (1986) can be

weakened to non-triviality.

Independent of our work, Chambers and Miller (2010) derive a characterization of the

meet aggregators using conjunctive separability, upper unanimity, and non-imposition. This

is similar to our Theorem 4 - while upper unanimity is implied by Pareto+, non-impositiion

implies non-triviality.

Another related strand of the aggregation literature considers environments in which

every individual has a view about how a society he is a member of should be partitioned

into classes (see for example, Houy (2007); Dimitrov and Puppe (2010)). A group identity

function assigns then to each profile of views a societal decomposition into classes. Hence, this

aggregation problem is formally equivalent to the aggregation of equivalence relations and it

extends environments in which the number of social groups is assumed to be fixed and their

names matter (see for example, Çengelci and Sanver (2010); Dimitrov et al. (2007); Houy

(2007); Kasher and Rubinstein (1997); Miller (2008); Samet and Schmeidler (2003), among

others). It is worth noting that the specific features of the group identification problem

allows one to introduce liberalism-type axioms which have no meaning in the more general

framework we consider in the present paper; for instance, Houy (2007) uses such kind of

axioms, along with binary independence, to characterize the grand meet aggregator.

The study of the impact of appropriately defined meet and join separability axioms on
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group identification rules was undertaken by Miller (2008) for a specific context, where the

number of social groups is fixed. This author then shows that the two requirements basically

define a class of one-vote rules, in which one opinion determines whether an individual is

considered to be a member of a group.

Another type of aggregation problems in which individuals submit a menu of options

are considered by Ahn and Chambers (2008). These authors formulate a disjoint additivity

axiom which can be seen as a weaker version of disjunctive separability for the corresponding

context, and show that disjoint additivity, anonymity, unanimity, and a monotonicity axiom

characterize the grand join aggregator in their model. In the characterizations we provide in

this paper, the two separability ideas are formulated as to fit into the more general setting of

aggregating equivalence relations and to clearly stress the duality between the aggregators

in the considered families.

The rest of the paper is organized as follows. Section 2 discusses the model, the notations,

and the general framework, while Section 3 introduces the axioms we use in the paper. We

give our characterization of the family of join aggregators in Section 4 and present different

characterizations of the family of meet aggregators in Section 5. Section 6 is devoted then

to the duality in the characterizations of the two families. We conclude in Section 7 with

discussions on the effect of (a) adding anonymity to our characterizations and (b) imposing

both forms of separability on an aggregator.

2 Framework

Let M = {a, b, c, . . .} be a finite set of m ≥ 2 candidates and N = {1, 2, . . . , n} be a finite set

of n ≥ 2 attributes. An equivalence relation on M is a reflexive, symmetric, and transitive

binary relation. Formally, ∼ is an equivalence relation on M if for all a, b ∈ M , we have

• (Reflexivity) a ∼ a,

• (Symmetry) a ∼ b ⇒ b ∼ a,

• (Transitivity) a ∼ b and b ∼ c ⇒ a ∼ c.

Equivalently, one can think of an equivalence relation to be a partitioning of set of can-

didates into equivalence classes, where candidates a and b belong to the same equivalence

class in equivalence relation ∼ if and only if a ∼ b.

We will denote the equivalence relation of attribute i ∈ N as ∼i. Thus, (∼1, . . . ,∼n) will

denote a profile of equivalence relations. Sometimes, we will refer to a profile (∼1, . . . ,∼n)

as (∼i)N .

One can think of an equivalence relation as being an undirected graph which is transitive.

Such a graph will have a node for every candidate, i.e., the set of nodes is M . There is an edge

between the different candidates a and b if and only if a ∼ b. We denote the (undirected)
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edge between any two different candidates a and b as (a, b) 2. Hence, there are three types

of equivalence classes: a single node which is not part of any edge (equivalence class with

a single candidate), a pair of nodes which are joined by an edge but not part of any cycle

(equivalence class with two candidates), and a set of nodes forming a cycle (equivalence

classes with more than two candidates).

Let E be the set of all equivalence relations on M . An aggregator is a mapping F :

En → E. So, the aggregator outputs a holistic equivalence relation for every profile of

equivalence relations. To simplify notations, sometimes we will write F (∼1, . . . ,∼n) as ∼

and F (∼′

1, . . . ,∼
′

n) as ∼′, etc.

The following specific types of equivalence relations will be useful in what follows. We

will say that an equivalence relation ∼ is

• empty, if every equivalence class in ∼ contains a single candidate (i.e., the graph

corresponding to ∼ has no edges),

• single-edged, if one equivalence class in ∼ contains two candidates, while every other

equivalence class in ∼ contains a single candidate (i.e., the graph corresponding to ∼

has exactly one edge),

• complete, if ∼ contains a single equivalence class consisting of all candidates (i.e., the

graph corresponding to ∼ is complete).

We define two operations on equivalence relations. The meet of two equivalence relations

∼ and ∼′ is denoted as ∼ ∧ ∼′, and is the largest (with respect to inclusion) equivalence

relation contained in both ∼ and ∼′. Consequently, any two candidates a and b are equivalent

in ∼ ∧ ∼′ if and only if a ∼ b and a ∼′ b. The equivalence relation ∼ ∧ ∼′ can also be

seen as ∼ ∩ ∼′. The family of meet aggregators is defined as follows. For every non-empty

S ⊆ N ,

F S
∧
(∼1, . . . ,∼n) = ∧i∈S ∼i ∀ (∼1, . . . ,∼n) ∈ En. (1)

We call F N
∧

the grand meet aggregator.

The join of two equivalence relations ∼ and ∼′ is denoted as ∼ ∨ ∼′, and is the smallest

(with respect to inclusion) equivalence relation containing both ∼ and ∼′. Consequently,

any two candidates a and b are equivalent in ∼ ∨ ∼′ if and only if a ∼ b or a ∼′ b or there

is c such that (a ∼ c and c ∼′ b) or (b ∼ c and c ∼′ a). The equivalence relation ∼ ∨ ∼′ can

also be seen as the transitive closure of ∼ ∪ ∼′. The family of join aggregators is defined as

follows. For every non-empty S ⊆ N ,

F S
∨
(∼1, . . . ,∼n) = ∨i∈S ∼i ∀ (∼1, . . . ,∼n) ∈ En. (2)

2It is appropriate to denote an undirected edge between a and b by {a, b}. For convenience, we abuse

notation here to denote it as (a, b).
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We call F N
∨

the grand join aggregator.

Note that the binary operations ∨ and ∧ are associative. Hence, for any S ⊆ N , the

operations ∨i∈S and ∧i∈S are well-defined. Clearly then, based on the choice of S, we will

have different meet aggregators and different join aggregators.

3 Axioms

In this section, we define the axioms we use later. We start with some well-known axioms

in the preference aggregation literature.

Axiom 1 Let σ be a permutation of M and for any binary relation ∼ define ∼σ as a ∼σ b

if and only if σ(a) ∼ σ(b) for all a, b ∈ M . We say an aggregator F satisfies neutrality if

and only if F ((∼σ
i )N) = F ((∼i)N)σ for all profiles of equivalence relations (∼1, . . . ,∼n).

Neutrality requires that the aggregator should not distinguish between candidates based

on their names. Similarly, if we do not distinguish between attributes based on their names,

then we have the following axiom.

Axiom 2 An aggregator F satisfies anonymity if for any permutation ρ of N and any

profile of equivalence relations (∼1, . . . ,∼n) we have F ((∼i)N) = F ((∼ρ(i))N).

The next two axioms are the equivalent of Pareto axiom in the Arrovian framework.

Axiom 3 An aggregator F satisfies Pareto+ if and only if for all a, b ∈ M and for all

profiles of equivalence relations (∼1, . . . ,∼n) such that a ∼i b for all i ∈ N , we have a ∼ b,

where ∼≡ F (∼1, . . . ,∼n).

Axiom 4 An aggregator F satisfies Pareto− if and only if for all a, b ∈ M and for all

profiles of equivalence relations (∼1, . . . ,∼n) such that a ≁i b for all i ∈ N , we have a ≁ b,

where ∼≡ F (∼1, . . . ,∼n).

It is easy to see that Pareto+ is satisfied by the family of meet and join aggregators. On

the other hand, Pareto− is satisfied by the family of meet aggregators but not by the family

of join aggregators. To see this, consider an example with two attributes 1 and 2 and three

candidates a, b, and c. Consider the following profile of equivalence relations: a ∼1 b but

a ≁1 c and b ≁1 c and a ∼2 c but a ≁2 b and c ≁2 b. Note that b ≁i c for all i ∈ {1, 2}.

Hence, by Pareto−, b and c should belong to different equivalence classes in the aggregated

equivalence relation. Now, consider the grand join aggregator on this profile. It will put a, b,

and c in one equivalence class.

The following axiom is a weakening of the combination of Pareto+ and Pareto−, and is

satisfied by the families of join and meet aggregators.
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Axiom 5 An aggregator F satisfies unanimity if and only if for all profiles of equivalence

relations (∼1, . . . ,∼n) such that ∼1= . . . =∼n, we have F (∼1, . . . ,∼n) =∼1.

Clearly, the combination of Pareto+ and Pareto− imply unanimity.

The following independence axiom was used in Fishburn and Rubinstein (1986).

Axiom 6 An aggregator F satisfies binary independence if and only if for every a, b ∈ M

and for all pairs of profiles (∼i)N and (∼′

i)N such that a ∼i b if and only if a ∼′

i b for all

i ∈ N , we have a ∼ b if and only a ∼′ b, where ∼≡ F ((∼i)N) and ∼′≡ F ((∼′

i)N).

Finally, we say an aggregator F is trivial if for all profiles (∼i)N , F ((∼i)N) is the complete

equivalence relation.

Axiom 7 An aggregator satisfies non-triviality if it is not a trivial aggregator.

3.1 Separability Axioms

Next, we define our two main axioms on separability. Suppose, the planner does not know

the equivalence relation for every attribute. Then, he sends an expert to the “world” to

collect this information. In our earlier example, the city planner sends an expert to collect

data on households. The expert may take time (a finite number of periods) to collect all the

information (we assume that the world is consistent, and does not evolve during the time of

collecting these information). Suppose the planner insists on getting a profile of equivalence

relations every period. But the expert may not have complete information of the actual

profile of equivalence relations in a period (of course, at the end of all periods, the expert

does get this actual profile of equivalence relations). The planner may instruct the expert to

send the incomplete information as an equivalence relation in every period in the following

two natural ways.

1. In any period, the expert reports candidate a and b to be equivalent under attribute i

if and only if

(a) he observes in this period a and b to be equivalent under attribute i (i.e., they

collect complete information about it in this period), or

(b) he observes in this period a and c to be equivalent under attribute i and b and c

to be equivalent under attribute i for some c /∈ {a, b}.

In all other cases, he reports a and b to be not equivalent in this period. So, the

interpretation of a and b to be not equivalent according to attribute i in a period is

twofold: (i) the expert in this period observed that a and b are not equivalent according

to attribute i, or (ii) enough information was not collected in this period to conclude

whether a and b are equivalent under attribute i. Using these instruction, the expert

generates a profile of equivalence relations every period.
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It is clear that the final profile of equivalence relations is just the join of the profile of

equivalence relations in each period. Suppose the planner intends to use an aggregator

every period to form a periodic aggregate equivalence relation. Our first separability

axiom requires some consistency between the periodic aggregate equivalence relations

and the final aggregate equivalence relation. It says that final aggregate equivalence

relation is the join of periodic aggregate equivalence relations.

Axiom 8 An aggregator F satisfies disjunctive separability if and only if for all

pairs of profiles (∼i)N and (∼′

i)N , we have F ((∼i ∨ ∼′

i)N ) = F ((∼i)N) ∨ F ((∼′

i)N).

2. There is another way in which the planner may ask the expert to send incomplete

equivalence relations every period. It can ask the expert to report a and b are not

equivalent under attribute i if and only if the data has been collected till this period

to conclude that a and b are not equivalent under i. In all other cases, a and b

are reported to be equivalent under i. Under these instructions, if no data has been

collected for a and b under attribute i, then they are reported to be equivalent. It is

clear that the final profile of equivalence relations is the meet of the periodic profile

of equivalence relations. Again, the planner may use an aggregator to come up with

a periodic aggregate equivalence relation. Our second separability axiom requires that

the final aggregate equivalence relation is the meet of the periodic aggregate equivalence

relations.

Axiom 9 An aggregator F satisfies conjunctive separability if and only if for all

pairs of profiles (∼i)N and (∼′

i)N , we have F ((∼i ∧ ∼′

i)N ) = F ((∼i)N) ∧ F ((∼′

i)N).

Such separability axioms are primarily motivated by decentralized computation. The

periodic profile of equivalence relations can be processed by the expert in a given period

using the aggregator of the planner, and the planner can then process the periodic aggregate

equivalence relations into a single aggregate equivalence relation. The planner is saved the

hassle of taking the meet or join of the profiles of equivalence relations over all periods, and

then applying the aggregator himself. Instead, he can decentralize the process by aggregating

in each period, and then taking the join or meet (depending on the instructions to the expert)

of these periodic aggregate equivalence relations.

4 Join Aggregators

In this section, we give a characterization of the family of join aggregators. Our character-

ization uses the neutrality, unanimity, and disjunctive separability axioms. To give an idea

why the characterization works, consider an aggregator which satisfies neutrality, unanimity,

and disjunctive separability. Now, consider an example with three attributes (N = {1, 2, 3})
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and four candidates (M = {a, b, c, d}). Call a profile of equivalence relations a single-edged

profile if there is exactly one attribute with a single-edged equivalence relation and all other

attributes have empty equivalence relations. The first step in the proof is to show that the
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Figure 1: Single-edged profiles

aggregator is a join aggregator for any single-edged profile. To do so, consider the single-

edged profiles in Figure 1. Each triplet of relations in a rounded rectangle represents a

profile. Each column corresponds to an attribute. The join of these single-edged profiles is

a profile (last row), where unanimity axiom can be applied. Hence, the aggregator (applied

to the last row) must output the equivalence relation shown in Figure 1. By disjunctive

separability, there is some non-empty set of single-edged profiles ((∼i)N , (∼′

i)N or (∼′′

i )N),

such that the corresponding aggregated equivalence relations (resp. ∼, ∼′ or ∼′′) have edge

(a, b). Moreover, no other edges must be present in ∼, ∼′ or ∼′′. Suppose the aggregator

outputs a non-empty equivalence relation whenever the single-edged profile has edge (a, b) in

attributes 1 or 2. Denote these attributes as Sab. By neutrality, Sab = Scd = S for all (a, b)

and (c, d). Thus, the set S collects all decisive attributes and we call it a decisive set. In

Figure 1, we have S = {1, 2} as the decisive set.

The proof is then concluded by observing that any profile of equivalence relations can

be decomposed into single-edged profiles whose join is the original profile of equivalence

relations. Figure 2 illustrates this using a profile of equivalence relations (∼i)N which is the

join of 5 (total number of edges in this profile of equivalence relations) single-edged profiles

of equivalence relations denoted by (∼1
i )N , (∼2

i )N , (∼3
i )N , (∼4

i )N and (∼5
i )N . Using the first

step of the proof, we know ∼1, . . . ,∼5. The join of these five relations is the cycle with edges

a, b, c. By disjunctive separability, F ((∼i)N) =∼ must be equal to this cycle, that is, the

aggregator must take the join of the equivalence relations in the decisive set.

We now state the theorem and prove it formally.
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Figure 2: Decomposing a profile into single-edged profiles

Theorem 1 An aggregator satisfies neutrality, unanimity, and disjunctive separability if

and only if it is belongs to the family of join aggregators.

Proof : It is not difficult to see that each join aggregator satisfies neutrality, unanimity, and

disjunctive separability. Suppose F is an aggregator which satisfies these three axioms.

Let (∼k,ab
i )N be a single-edged profile of equivalence relations where edge (a, b) is present

in attribute k only, and no other edges are present in any attribute. By construction, the

profile
(

∨k∈N ∼k,ab
i

)

N
is a profile of equivalence relations as in the statement of the unanimity

axiom. Hence, F
(

(∨k∈N ∼k,ab
i )N

)

is a single-edged equivalence relation with edge (a, b). By

disjunctive separability, the edge (a, b) is present in F ((∼k,ab
i )N) for at least one k, and no

other edge is present in F ((∼k,ab
i )N). Define the set Sab as follows.

Sab = {k ∈ N : edge (a, b) belongs to F ((∼k,ab
i )N)}.

We can also define Scd for all c, d ∈ M using profiles (∼k,cd
i )N . By neutrality, Sab = Scd = S

for all a, b, c, d ∈ M . Call S the set of decisive attributes (the decisive set). Hence, for every

single-edged profile, the aggregator is the join over the decisive set.

Now, consider any arbitrary profile of equivalence relations (∼i)N . We can decompose it

into a finite number of single-edged profiles (∼j
i )N , where j ∈ {1, . . . , l} and l is the number

of edges in the profile (∼i)N . Thus, (∼i)N = (∨j=1,...,l ∼
j
i )N . By disjunctive separability,

F ((∼i)N) = F ((∨j=1,...,l ∼
j
i )N) = ∨j=1,...,lF ((∼j

i )N). Since the aggregator for the single-edged

profiles is the join over the corresponding decisive set, it follows that the aggregator over any

profile is also the join over that decisive set. The result then follows because the decisive set

is non-empty. �
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To complete the characterization in Theorem 1, we show that the axioms neutrality,

unanimity, and disjunctive separability are independent. The trivial aggregator satisfies

neutrality and disjunctive separability, but it fails unanimity. The grand meet aggregator

satisfies neutrality and unanimity but fails disjunctive separability.

To show that neutrality is not implied by unanimity and disjunctive separability, we

construct the following aggregator.

Example 1 Fix two candidates a, b ∈ M . For a given profile, (∼i)N , define a binary relation

I as follows. We have aIb if and only if a ∼1 b. For any (c, d) 6= (a, b), we have cId if and

only if c ∼i d for some i ∈ N . Define F ((∼i)N) as the symmetric and transitive closure of

I.

The aggregator in Example 1 satisfies unanimity and disjunctive separability, but fails

neutrality. The fact that it fails neutrality is clear (it distinguishes between pairs (a, b) and

other pairs). Also, it is easy to see that it satisfies unanimity. To show that it satisfies

disjunctive separability requires some effort. We do this in the Appendix.

Also, note that if m = 2, then every aggregator satisfies neutrality. So, Example 1 works

only when m ≥ 3.

5 Meet Aggregators

In this section, we set out to give a characterization of the family of meet aggregators using

conjunctive separability. Our aim is to give a characterization which is analogous to the

characterization of the family of join aggregators in Theorem 1. Fishburn and Rubinstein

(1986) provided the following characterization.

Theorem 2 (Fishburn and Rubinstein (1986)) Suppose m ≥ 3. An aggregator satis-

fies Pareto+, Pareto−, and binary independence if and only if it belongs to the family of meet

aggregators.

Our first characterization of the meet aggregators replaces binary independence in The-

orem 2 by conjunctive separability. Unlike Theorem 2, this characterization works also for

m = 2.

Theorem 3 An aggregator satisfies Pareto+, Pareto−, and conjunctive separability if and

only if it belongs to the family of meet aggregators.

Proof : It is easy to see that each meet aggregator satisfies Pareto+, Pareto−, and conjunc-

tive separability. Consider an aggregator F which satisfies these three axioms. We how that

it must be a meet aggregator. We do the proof in two cases.

Case 1: Suppose m ≥ 3. We use the following lemma for this case.
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Lemma 1 If an aggregator F satisfies Pareto+ and conjunctive separability, then it satisfies

binary independence.

Proof : Suppose F is an aggregator which satisfies Pareto+ and conjunctive separabilty. We

do the proof in two steps.

Step 1: Fix a, b ∈ M and consider any profile of equivalence relations (∼i)N . We then

consider the equivalence relation (∼′

i)N , which is defined by deleting all edges except the

edge (a, b) from ∼i for all i ∈ N (so for all i ∈ N , (a, b) is an edge in ∼i if and only if (a, b)

is an edge in ∼′

i, but for all (c, d) 6= (a, b), (c, d) is not an edge in ∼′

i). Now, consider the

profile of equivalence relations (∼′′

i )N , where for all i ∈ N , ∼′′

i is a single-edged equivalence

relation with edge (a, b). Note the following:

• ∼i ∧ ∼′′

i =∼′

i for all i ∈ N and

• by Pareto+, the edge (a, b) belongs to F ((∼′′

i )N ).

Using conjunctive separability, we can conclude that the edge (a, b) belongs to F ((∼i)N)

if and only if it belongs to F ((∼′

i)N). This completes our Step 1.

Step 2: Fix a, b ∈ M . Consider two profiles of equivalence relations (∼i)N and (∼′′

i )N which

satisfy the premises of binary independence axiom for a and b. Now, consider the profile of

equivalence relations (∼′

i)N as in Step 1. By Step 1, we get that (a, b) belongs to F ((∼i)N)

if and only if it belongs to F ((∼′

i)N ) if and only if it belongs to F ((∼′′

i )N). Hence, F satisfies

binary independence. �

Using Theorem 2 along with Lemma 1, the result now follows.

Case 2: Suppose m = 2. Let M = {a, b}. Call a set of attributes S ⊆ N decisive if

• a ∼ b for all profiles (∼i)N such that a ∼i b for all i ∈ S

• and a ≁ b for all profiles (∼i)N such that a ≁i b for some i ∈ S,

where ∼≡ F ((∼i)N ). By Pareto+, a decisive set exists. By Pareto−, the decisive set is

non-empty. We will be done if we can show that the decisive set is unique. Suppose S and

T are two different decisive sets. Consider a profile (∼i)N in which edge (a, b) is present in

∼i if and only if i ∈ S. Similarly, consider a profile (∼′

i)N in which edge (a, b) is present in

∼′

i if and only if i ∈ T . By definition, (∼i)N 6= (∼′

i)N and S ∩ T 6= S or S ∩ T 6= T . Since

S and T are decisive sets, both F ((∼i)N) and F ((∼′

i)N ) are complete equivalence relations

(i.e., contain edge (a, b)). Hence, F ((∼i)N ) ∧ F ((∼′

i)N) is a complete equivalence relation.

By definition, the profile (∼i)N ∧ (∼′

i)N has edge (a, b) only in attributes in S ∩ T . By

conjunctive separability F ((∼i)N ∧ (∼′

i)N) = F ((∼i)N)∧F ((∼′

i)N ). But (S ∩ T ) ( S. Since

S is decisive, this is a contradiction. �
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Is Theorem 3 a tighter characterization of the family of meet aggregators than the one in

Theorem 2? We try to answer this question. We give two examples to show that conjunctive

separability and binary independence do not imply each other.

Example 2 Fix a, b ∈ M . The aggregator F is defined as follows. For all c, d ∈ M where

(c, d) 6= (a, b) and for all profiles (∼i)N , we have

• c ≁ d,

• and a ∼ b if and only if a ∼1 b and a ≁i b for all i 6= 1,

where ∼≡ F ((∼i)N).

The aggregator F in Example 2 satisfies binary independence. To see this, fix x, y ∈ M

and consider two profiles (∼i)N and (∼′

i)N as in the premises of the binary independence

axiom. If (x, y) 6= (a, b), then the edge (x, y) is absent in both F ((∼i)N) and F ((∼′

i)N). If

(x, y) = (a, b), then clearly, the edge (x, y) = (a, b) is present in F ((∼i)N) if and only if it is

present in F ((∼′

i)N).

However, the aggregator F in Example 2 fails conjunctive separability. An example is

shown in Figure 3. We have only shown candidates a and b in Figure 3. The rest of the

candidates can be put in any arbitrary equivalence class in each attribute. Figure 3 shows

the output of the aggregator in three profiles, where the third profile is the meet of the first

two profiles. It is easy to see that the aggregator violates conjunctive separability.
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Figure 3: Binary independence does not imply conjunctive separability

The following example illustrates that conjunctive separability does not imply binary

independence when m ≥ 3.

Example 3 Suppose m ≥ 3. Define the aggregator F as follows. For any profile (∼i)N ,

• if (∼i)N is a profile of complete equivalence relations, then F ((∼i)N) is a complete

equivalence relation,

• else, it is the empty equivalence relation.
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Clearly, the aggregator in Example 3 satisfies conjunctive separability. Figure 4 shows two

profiles where this aggregator fails binary independence.

Notice that the aggregators in Examples 2 and 3 do not satisfy Pareto+. This is no

coincidence as the following proposition proves that conjunctive separability and Pareto+

are equivalent to binary independence and Pareto+ if m ≥ 3.

Proposition 1 Suppose m ≥ 3 and let F be an aggregator which satisfies Pareto+. The

aggregator F satisfies conjunctive separability if and only if it satisfies binary independence.

Proof : We need the following lemma. The lemma is due to Fishburn and Rubinstein (1986),

but we give a proof in the Appendix for completeness.

Lemma 2 (Fishburn and Rubinstein (1986)) Suppose m ≥ 3, and let F be an aggrega-

tor which satisfies binary independence and Pareto+. Consider a, b, c, d ∈ M and two profiles

(∼i)N and (∼′

i)N such that for every i ∈ N , the edge (a, b) belongs to ∼i if and only if the

edge (c, d) belongs to ∼′

i. Then the edge (a, b) belongs to F ((∼i)N) if and only if the edge

(c, d) belongs to F ((∼′

i)N).

Due to Lemma 1, we only have to prove that Pareto+ and binary independence imply con-

junctive separability. Assume for contradiction that conjunctive separability does not hold.

Then, there are two profiles (∼i)N and (∼′

i)N and a, b ∈ N such that either

a) the edge (a, b) belongs to F ((∼i)N )∧F ((∼′

i)N) but it does not belong to F ((∼i ∧ ∼′

i)N),

b) the edge (a, b) does not belong to F ((∼i)N)∧F ((∼′

i)N) but it belongs to F ((∼i ∧ ∼′

i)N).

Suppose (a) holds. Denote F ((∼i)N) as ∼ and F ((∼′

i)N) as ∼′. Since the edge (a, b) belongs

to ∼ ∧ ∼′, it belongs to both ∼ and ∼′. On the other hand the edge (a, b) does not belong

to F ((∼i ∧ ∼′

i)N). By Pareto+, there must exist some i ∈ N such that the edge (a, b) does

not belong to ∼i ∧ ∼′

i. Define the following sets:

S = {i ∈ N : edge (a, b) belongs to ∼i} (3)

S ′ = {i ∈ N : edge (a, b) belongs to ∼′

i} (4)

S ′′ = {i ∈ N : edge (a, b) belongs to ∼i ∧ ∼′

i}. (5)
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By definition S ′′ ⊆ S and S ′′ ⊆ S ′. We first show that S and S ′ are distinct. Assume for

contradiction S = S ′. Then, S ′′ = S = S ′, and by binary independence, the edge (a, b) must

belong to F ((∼i ∧ ∼′

i)N), which is a contradiction. Similarly, by binary independence again,

S and S ′ are strict supersets of S ′′, i.e., S ′′ ( S and S ′′ ( S ′.

Consider a profile (∼̇i)N and c ∈ M \ {a, b} such that

{i ∈ N : edge (a, b) belongs to ∼̇i} = S

{i ∈ N : edge (b, c) belongs to ∼̇i} = S ′

{i ∈ N : edge (a, c) belongs to ∼̇i} = S ′′.

Note that (∼̇i)N is well defined. Denote F ((∼̇i)N) as ∼̇. By binary independence, edge (a, b)

belongs to ∼̇ since it belongs to ∼. By Lemma 2, edge (b, c) belongs to ∼̇ since the edge

(a, b) belongs to ∼′. By transitivity, edge (a, c) belongs to ∼̇. By Lemma 2, the edge (a, b)

must then belong to F ((∼i ∧ ∼′

i)N). This is a contradiction.

Assume now (b) holds. Since the edge (a, b) does not belong to (∼ ∧ ∼′), it does not

belong to ∼ or ∼′. Without loss of generality, suppose (a, b) does not belong to ∼. Define S

and S ′′ as in Equations 3 and 5 respectively. Since the edge (a, b) belongs to F ((∼i ∧ ∼′

i)N),

by binary independence, S ′′ ( S.

Consider a profile (∼̇i)N and c ∈ M \ {a, b} such that

{i ∈ N : edge (a, b) belongs to ∼̇i} = S

{i ∈ N : edge (b, c) belongs to ∼̇i} = {i ∈ N : edge (a, c) belongs to ∼̇i} = S ′′.

Note that (∼̇i)N is well defined. Denote F ((∼̇i)N) as ∼̇. By binary independence, the edge

(a, b) does not belong to ∼̇ since it does not belong to ∼. But by Lemma 2, the edges (b, c)

and (a, c) belongs to ∼̇ since (a, b) belongs to F ((∼i ∧ ∼′

i)N . By transitivity, (a, b) belongs

to ∼̇. This is a contradiction. �

Though conjunctive separability and binary independence are equivalent in the presence

of Pareto+, conjunctive separability and binary independence are not equivalent in the pres-

ence of Pareto−. This is easily verified from Examples 2 and 3 (the aggregators in Examples

2 and 3 satisfy Pareto−).

Proposition 1 is not true when m = 2. In this case, we can easily construct rules which

satisfies Pareto+ but does not satisfy conjunctive separability (and binary independence

is satisfied vacuously). For example, the grand join aggregator satisfies Pareto+ but fails

conjunctive separability.

5.1 Weakening Pareto−

The characterizations in Theorems 2 and 3 use Pareto−, a form of Pareto axiom which is

not satisfied by the join aggregators. We wish to replace it with a weaker axiom which
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is satisfied by those aggregators. The following theorem shows that any aggregator which

satisfies Pareto+ and conjunctive separability must either be a meet aggregator or the trivial

aggregator.

Theorem 4 Consider the following statements.

1. An aggregator satisfies conjunctive separability, Pareto+, and non-triviality.

2. An aggregator satisfies binary independence, Pareto+, and non-triviality.

3. An aggregator belongs to the family of meet aggregators.

If m ≥ 3, then (1), (2), and (3) are equivalent. If m = 2 then (1) and (3) are equivalent.

Proof : Consider the case when m ≥ 3. The fact that (1) ⇔ (2) follows from Proposition 1.

Clearly, (3) implies (1) and (2). We show that (1) implies (3). We need the following lemma.

Lemma 3 Let F be an aggregator which satisfies binary independence and Pareto+. Then,

F satisfies neutrality.

Proof : For m = 2, every aggregator satisfies neutrality, and hence the claim holds. For

m ≥ 3, the proof is almost immediate from Lemma 2. To see this, consider a permutation

π of the set of candidates and a profile (∼i)N . Let (∼π
i )N be the permuted profile. Suppose

F does not satisfy neutrality. Then, some edge (a, b) belongs to F ((∼i)N) but the edge

(π(a), π(b)) does not belong to F ((∼π
i )N). Note that the profiles (∼i)N and (∼π

i )N satisfy

the premises of Lemma 2 with edge (π(a), π(b)) taking the role of (c, d). Hence, by Lemma 2,

the edge (a, b) belongs to F ((∼i)N) if and only if the edge (π(a), π(b)) belongs to F ((∼π
i )N).

This is a contradiction. �

By Proposition 1 and Lemma 3, if an aggregator satisfies conjunctive separability and

Pareto+, then it satisfies neutrality. Now, consider an aggregator F which satisfies conjunc-

tive separability, Pareto+, and non-triviality. We now do the proof in two steps.

Step 1: In this step, we show that if (∼i)N is a profile of empty equivalence relations then

F ((∼i)N) is the empty equivalence relation. By neutrality, F ((∼i)N ) is either the empty

equivalence relation or the complete equivalence relation. Suppose it is the complete equiv-

alence relation. Consider another profile (∼′

i)N such that F ((∼′

i)N) is not the complete

equivalence relation. Such a profile exists because of non-triviality. But for every i ∈ N ,

∼i ∧ ∼′

i=∼i. Hence, F ((∼i ∧ ∼′

i)N) is a complete equivalence relation. By conjunctive

separability, F ((∼′

i)N ) is a complete equivalence relation. This is a contradiction.

Step 2: In this step, we show that F satisfies Pareto−, and by Theorem 3, F is an aggregator

in the family of meet aggregators. To show that F satisfies Pareto−, fix a, b ∈ M , and consider
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a profile (∼i)N such that the edge (a, b) is not present in ∼i for all i ∈ N . Let (∼′

i)N be a

profile of empty equivalence relations. These two profiles satisfy the premises in the binary

independence axiom. Since by Step 1, F ((∼′

i)N) is an empty equivalence relation, we get

that the edge (a, b) is not present in F ((∼i)N) because of binary independence (F satisfies

binary independence by Proposition 1). Hence, Pareto− holds.

Now, when m = 2, we can go back to Case 2 in the proof of Theorem 3. In the absence

of Pareto−, we will either have a non-empty unique decisive set or an empty decisive set.

An empty decisive set implies a trivial aggregator. Hence, by non-triviality, we must have

a unique non-empty decisive set. The rest of the proof follows as in Case 2 in the proof of

Theorem 3. Hence, (1) and (3) are equivalent for any m ≥ 2. �

The equivalence of (2) and (3) in Theorem 4 is a tighter characterization of the family of

meet aggregators than the characterization of Fishburn and Rubinstein (1986) (Theorem 2).

This is because non-triviality is weaker than Pareto−. For the same reason, the equivalence

of (1) and (3) in Theorem 4 is a tighter characterization than Theorem 3.

6 Duality in the Characterizations

It is interesting to investigate if similar or“dual”characterizations are possible for the families

of meet and join aggregators. The two main axioms, conjunctive and disjunctive separability,

used in the characterizations in Theorems 1, 3, and 4 are dual to each other. However, we

seem to require neutrality in Theorem 1, but not in Theorems 3 and 4 because it is implied

by conjunctive separability and Pareto+ (Lemma 3). 3

One wonders if unanimity can be relaxed in the characterization of the join aggregators.

For instance, does non-triviality, Pareto+, and disjunctive separability characterize the family

of join aggregators? The answer is no. The aggregator in Example 1 satisfies all these axioms

but it is not a join aggregator. Does neutrality, non-triviality, Pareto+, and disjunctive

separability characterize this family? The answer is again no. The aggregator in the following

example satisfies all these axioms but it is not a join aggregator.

Example 4 The aggregator outputs the empty equivalence relation if the profile of equiva-

lence relations include only empty equivalence relations, else it outputs the complete equiva-

lence relation.

Another approach is to modify the characterizations of the family of meet aggregators to

make it look analogous to Theorem 1. The following theorem attempts to do that.

Theorem 5 An aggregator satisfies unanimity and conjunctive separability if and only if it

belongs to the family of meet aggregators.

3This is similar to the Arrovian frameworks, where neutrality is implied by independence and Pareto

axioms (Ubeda, 2004).
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Proof : Clearly, any meet aggregator satisfies unanimity and conjunctive separability. Now,

let F be an aggregator which satisfies unanimity and conjunctive separability. We show that

F satisfies Pareto+.

Consider a profile (∼i)N such that the edge (a, b) belongs to ∼i for all i ∈ N . Consider

another profile (∼′

i)N such that for all i ∈ N , the only edge in equivalence relation ∼′

i is the

edge (a, b). By unanimity, the edge (a, b) belongs to F ((∼′

i)N). Assume for contradiction

that edge (a, b) does not belong to F ((∼i)N). By conjunctive separability, the edge (a, b)

does not belong to F ((∼i ∧ ∼′

i)N). Since for all i ∈ N , ∼i ∧ ∼′

i=∼′

i and the edge belongs to

F ((∼′

i)N), the edge must also belong to F ((∼i ∧ ∼′

i)N). This is a contradiction.

Since F satisfies unanimity, it satisfies non-triviality. Hence, F satisfies conjunctive

separability, Pareto+, and non-triviality, and by Theorem 4, it must belong to the family of

meet aggregators. �

Clearly, unanimity is weaker than the combination of Pareto+ and Pareto−. Hence,

Theorem 5 is a tighter characterization than Theorem 3. Moreover, Theorem 5 gives us an

almost dual characterization of the meet aggregators to the characterization in Theorem 1

of the join aggregators.

7 Conclusion

We conclude by giving two remarks on our characterizations.

Anonymity. It is not difficult to see that adding anonymity to the list of axioms in The-

orems 3, 4, and 5 give us the grand meet aggregator. It can be shown that anonymity is

independent of the axioms used in these theorems. On the other hand, anonymity, unanimity,

and disjunctive separability characterize the grand join aggregator. This can be seen from

the proof of Theorem 3. We use neutrality in the proof of Theorem 3 to conclude Sab = Scd.

But we can use anonymity instead of neutrality to conclude Sab = Scd = N . It is not difficult

to argue that anonymity, unanimity, and disjunctive separability are independent axioms.

Dictatorial Aggregators. Call an aggregator F dictatorial if there exists an attribute

(dictator) j ∈ N such that for every profile of equivalence relations (∼i)N we have F ((∼i

)N) =∼j . Note that an aggregator F is a dictatorial aggregator if and only if F = F S
∨

= F S
∧

for some S ⊆ N and |S| = 1. Thus, dictatorial aggregators are the only aggregators which

belong to the families of meet and join aggregators. Using this fact and our results we can give

various characterizations of the dictatorial aggregators. First, an aggregator is a dictatorial

aggregator if and only if it satisfies conjunctive separability, disjunctive separability, Pareto+,

and Pareto−. This follows from Theorems 1 and 3. Second, an aggregator is a dictatorial

aggregator if and only if it satisfies conjunctive separability, disjunctive separability, Pareto+,

and non-triviality. This follows from Theorems 1 and 4. Finally, an aggregator is a dictatorial
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aggregator if and only if it satisfies conjunctive separability, disjunctive separability, and

unanimity. This follows from Theorems 1 and 5.
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Appendix

Aggregator in Example 1 Satisfies Disjunctive Separability

Consider two profiles (∼i)N and (∼′

i)N . We have to show that

F ((∼i ∨ ∼′

i)N ) = F ((∼i)N) ∨ F ((∼′

i)N).

Suppose (a, b) is an edge in F ((∼i ∨ ∼′

i)N). First, we show that (a, b) in also an edge in

F ((∼i)N) ∨ F ((∼′

i)N). We consider two cases.

Case 1: Suppose (a, b) is an edge in ∼1 ∨ ∼′

1. This in turn induces two subcases.
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• Case 1a: The edge (a, b) is in ∼1 or in ∼′

1. In such a case, the edge (a, b) will either

be in F ((∼i)N) or F ((∼′

i)N). Hence, it will be in F ((∼i)N) ∨ F ((∼′

i)N).

• Case 1b: There is a chain of edges (a, a1), (a1, a2), . . . , (ar, b) which belongs to ∼1

∨ ∼′

1. Hence, these chain of edges are also present in F ((∼i)N) ∨ F ((∼′

i)N). Conse-

quently, the edge (a, b) is present in F ((∼i)N) ∨ F ((∼′

i)N).

Case 2: Suppose (a, b) is not an edge in ∼1 ∨ ∼′

1. Since (a, b) is an edge in F ((∼i ∨ ∼′

i)N),

there must exist a0, a1, . . . , ar with a0 = a and b0 = b and j1, . . . , jr ∈ N such that for

k ∈ {1, . . . , r}, each edge (ak−1, ak) belongs to (∼jk
∨ ∼′

jk
) or there is chain of edges

(ak−1, c1), (c1, c2), . . . , (cq, ak) each of which belongs to (∼jk
∨ ∼′

jk
). By definition of the

aggregator, each edge (ak−1, ak) is in F ((∼i)N) ∨ F ((∼′

i)N). This in turn implies that (a, b)

is in F ((∼i)N) ∨ F ((∼′

i)N).

Suppose now (c, d) 6= (a, b) is an edge in F ((∼i ∨ ∼′

i)N). Using a similar reasoning as

above, we can conclude that (c, d) is an edge in F ((∼i)N ) ∨ F ((∼′

i)N).

Now, we show that if (a, b) is an edge in F ((∼i)N) ∨ F ((∼′

i)N ), then it is also an edge in

F ((∼i ∨ ∼′

i)N). Again, there are multiple cases to consider.

Case 1: The edge (a, b) is in F ((∼i)N). So, either (a, b) is an edge in ∼1 or there is

a chain of edges (a, a1), (a1, a2), . . . , (ar, b) which belongs to (∼i)N . In the first case, the

edge (a, b) also belongs to (∼1 ∨ ∼′

1). Hence, it belongs to F ((∼i ∨ ∼′

i)N ). In the second

case, the same chain of edges belongs to (∼i ∨ ∼′

i)N . Hence, (a, b) belongs to F ((∼i ∨ ∼′

i)N).

Case 2: The edge (a, b) is in F ((∼′

i)N). Again, as in Case 1, we can argue that (a, b) belongs

to F ((∼i ∨ ∼′

i)N).

Case 3: There is a chain of edges (a, a1), (a1, a2), . . . , (ar, b) which belongs to F ((∼i)N ) ∨

F ((∼′

i)N). Each of these edges can be supposed to be different from edge (a, b). Consider any

arbitrary edge (c, d) in this chain. Edge (c, d) is either in (∼i)N or in (∼′

i)N or there is a chain

of edges (c, c1), (c1, c2), . . . , (cq, d) in (∼i ∨ ∼′

i)N . In each of these cases, edge (c, d) belongs to

(∼i ∨
c ∼′

i)N . Since (c, d) 6= (a, b), we conclude that (c, d) belongs to F ((∼i ∨
c ∼′

i)N). This

is true for any edge in the chain (a, a1), (a1, a2), . . . , (ar, b). Hence, the edge (a, b) belongs to

F ((∼i ∨
c ∼′

i)N ).

Finally, suppose (c, d) 6= (a, b) is an edge in F ((∼i)N) ∨ F ((∼′

i)N). Using a similar rea-

soning as above, we can conclude that (c, d) is an edge in F ((∼i ∨ ∼′

i)N).

Proof of Lemma 2
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Proof : If (a, b) = (c, d), then the claim is trivial. Assume a, b, c are distinct. Consider two

profiles (∼i)N and (∼′

i)N such that the edge (a, b) is in ∼i if and only if the edge (b, c) is in

∼′

i. Consider another profile of equivalence relations (∼′′

i )N which satisfies the following for

every i ∈ N :

• the edge (a, b) belongs to ∼′′

i if and only if it belongs to ∼i,

• the edge (b, c) belongs to ∼′′

i if and only if it belongs to ∼′

i (if and only if the edge (a, b)

belongs to ∼i),

• and the edge (a, c) belongs to ∼′′

i .

Note that such a profile of equivalence relations (∼′′

i )N exists. By Pareto+, the edge (a, c)

belongs to F ((∼′′

i )N). By transitivity, the edge (a, b) belongs to F ((∼′′

i )N) if and only if the

edge (b, c) belongs to F ((∼′′

i )N). By binary independence, edge (a, b) belongs to F ((∼i)N)

if and only if it belongs to F ((∼′′

i )N). Similarly, by binary independence again, edge (b, c)

belongs to F ((∼i)N) if and only if it belongs to F ((∼′′

i )N ). Hence, edge (a, b) belongs to

F ((∼i)N) if and only if edge (b, c) belongs to F ((∼′

i)N).

Now, consider a pair of profiles (∼i)N and (∼′

i)N such that for every i ∈ N , the edge

(a, b) belongs to ∼i if and only if the edge (c, d) belongs to ∼′

i. Now, construct (∼′′

i )N such

that it satisfies the following: for every i ∈ N , the edge (a, b) belongs to ∼′′

i if and only if the

edge (b, c) belongs to ∼′′

i if and only if the edge (c, d) belongs to ∼′′

i if and only if the edge

(a, b) belongs to ∼i if and only if the edge (c, d) belongs to ∼′′

i . Applying the result in the

previous paragraph multiple times, we get that the edge (a, b) belongs to F ((∼i)N) if and

only if the edge (b, c) belongs to F ((∼′′

i )N ) if and only if the edge (c, d) belongs to F ((∼′

i)N).

This proves the lemma. �
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