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Purpose: Optic nerve aplasia (ONA, OMIM 165550) is a very rare unilateral or bilateral condition that leads to blindness
in the affected eye, and is usually associated with other ocular abnormalities. Although bilateral ONA often occurs in
association with severe congenital anomalies of the brain, nonsyndromic sporadic forms with bilateral ONA have been
described. So far, no autosomal-dominant nonsyndromic ONA has been reported. The genetic basis of this condition
remains largely unknown, as no developmental genes other than paired box gene 6 (PAX6) are known to be implicated in
sporadic bilateral ONA.
Methods: The individuals reported underwent extensive ophthalmological, endocrinological, and neurologic evaluation,
including neuroimaging of the visual pathways. In addition genomewide copy number screening was performed.
Results: Here we report an autosomal-dominant form of nonsyndromic ONA in a Belgian pedigree, with unilateral
microphthalmia and ONA in the second generation (II:1), and bilateral ONA in two sibs of the third generation (III:1; III:
2). No PAX6 mutation was found. Genome wide copy number screening revealed a microdeletion of maximal 363 kb of
chromosome 10q23.33q23.33 in all affected individuals (II:1, III:1; III:2) and in unaffected I:1, containing three genes:
exocyst complex component 6 (EXOC6), cytochrome p450, subfamily XXVIA, polypeptide 1 (CYP26A1), and
cytochrome p450, subfamily XXVIC, polypeptide 1 (CYP26C1). The latter two encode retinoic acid-degrading enzymes.
Conclusions: This is the first study reporting an autosomal-dominant form of nonsyndromic ONA. The diagnostic value
of neuroimaging in uncovering ONA in microphthalmic patients is demonstrated. Although involvement of other genetic
factors cannot be ruled out, our study might point to a role of CYP26A1 and CYP26C1 in the pathogenesis of nonsyndromic
ONA.

Optic nerve aplasia (ONA, OMIM #165550) is a very rare
congenital anomaly that can be unilateral or bilateral. ONA is
usually associated with other ocular abnormalities such as
punched-out chorioretinal defects, retinal dysplasia,
coloboma, microphthalmos, cataracts, and sclerocornea [1].
There may be a scleral aperture, but there are no retinal
vessels. ONA always causes total blindness of the affected
eye. The disorder is ophthalmoscopically distinct from optic
nerve hypoplasia. Taylor et al. [1] introduced diagnostic
criteria and a classification of ONA. Bilateral cases often
occur in association with severe congenital anomalies of the
brain [2]; however, unilateral and bilateral ONA have been
reported in otherwise healthy children [3-5]. Apart from two
sisters with putative nonsyndromic bilateral aplasia described
by Newman and coworkers in 1864 [1], all nonsyndromic
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reported cases with bilateral ONA have been sporadic so far
( [1] and references therein).

The genetic basis of ONA is largely unknown. A paired
box gene 6 (PAX6) missense mutation, p.T391A, has been
described in a patient with bilateral ONA, nystagmus, and
normal anterior eye segments. Apart from absence of the optic
nerves, no other abnormalities were observed in this patient,
who exhibited normal growth, a normal physical exam, and
karyotype [6].

Here we report, for the first time, the familial occurrence
of nonsyndromic ONA in a father and his dizygotic twins.
Their phenotypes are documented with ophthalmological,
endocrinological, and neurologic evaluation, including
neuroimaging of the visual pathways. Genomewide copy
number screening using microarray-based comparative
genomic hybridization (arrayCGH) revealed a microdeletion
of 10q23.33q23.33, potentially implicating the cytochrome
p450, subfamily XXVIA, polypeptide 1 (CYP26A1) and
cytochrome p450, subfamily XXVIC, polypeptide 1
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(CYP26C1) genes encoding retinoic acid (RA)-degrading
enzymes as novel candidate genes for ONA.

METHODS
Patients: For this study, we enrolled a consenting family with
a healthy grandmother (I:1), an affected father (II:1), his
affected twins (III:1, III:2), and his unaffected partner (II:2).
The couple was Caucasian and nonconsanguineous. There
were no other children. Family history was negative. The
study was conducted following the tenets of Helsinki and was
approved by our local Institutional Review Boards.
Clinical evaluation: The ophthalmological evaluation
consisted of fundoscopy, ultrasound, Doppler examination,
and visual evoked potentials (VEP). Endocrinological
evaluation was performed as follows: target height range was
calculated as (father’s height + mother’s height±13 cm)/2±8.5
cm [7]. Birthweight and birth length data are expressed as
standard deviation scores (SDS) using the Niklasson
references [8]. Height was measured using a Harpender
stadiometer and data are expressed as SDS using the Cole
references [9]. Laboratory investigations included growth
hormone (GH) stimulation test, insulin-like growth factor 1
(IGF1), prolactin, and thyroid function measurements,
antiendomysium antibodies, and plasma and urine osmolarity.
Neuroimaging was performed using magnetic resonance
imaging (MRI) of the brain and orbits in II:1, III:1, and III:2.
Genetic testing: Genomic DNA was extracted from
leukocytes using the Puregene (Gentra, Qiagen, Venlo, The
Netherlands) and QiaAmp DNA isolation kit (Qiagen, Venlo,
The Netherlands). Sequencing of coding exons of PAX6,
orthodenticle, drosophila, homolog of, 2 (OTX2), and SRY-
box 2 (SOX2) was performed as described [10-12]. All family
members underwent genome-wide copy number screening
with 60 K Agilent oligonucleotide arrays as described
(Agilent Technologies, Diegem, Belgium) [13].
Hybridizations were performed according to the
manufacturer's instructions with minor modifications. The
results were subsequently visualized in arrayCGHbase [14].

RESULTS
A couple with dizygotic twins with blindness due to bilateral
ONA was admitted for genetic counseling. The father wore a
scleral prosthesis on his left microphthalmic eye. The family
history was unremarkable otherwise. The couple requested a
second opinion about the recurrence risk for ONA.

Twin pregnancy was obtained after intracytoplasmic
sperm injection. Intake of thyroxine during gestation was
reported in the context of maternal Hashimoto thyroiditis
(chronic lymphocytic thyroiditis). The girl (III:2) had a
birthweight of 2,150 g (−2.1 standard deviation score [SDS])
and a length of 43 cm (−2.6 SDS) [8]. The boy (III:1) had a
birthweight of 2,320 g (−1.9 SDS) and a length of 46 cm
(−1.4 SDS). Both children required nasogastric feeding in the

neonatal period. At the age of three weeks, blindness was
suspected in both children and confirmed by ophthalmologic
examination. Karyotyping was normal.

The children were three years old when first examined by
us. Both children showed normal neurodevelopmental
milestones, taking into account their blindness [15].
Development of language and performance skills was normal
for the age.

Ophthalmologic examination: Both children (III:1 and
III:2) had no light perception. III:2 presented with mild
bilateral microphthalmia with 10.5 mm corneal diameters and
atypical coloboma of the iris in the right eye (Figure 1A). The
pupils were nonreactive to light. Lenses were transparent.
Fundoscopy revealed absence of the optic nerves and retinal
vasculature in both eyes. The presence of retinal dysplasia was
observed. There was no associated chorioretinal coloboma.

The twin brother (III:1) of child III:2 presented bilateral
microphthalmia with 9 mm corneal diameters and
scleralization of the inferior cornea (Figure 1B). The pupils
were round and nonreactive to light. Ophthalmoscopic
examination disclosed the absence of the optic nerve,
dysplastic retinae, and a few retinal vessels (Figure 1C,D).

Examination of the father (II:1) revealed unilateral left
microphthalmos (corneal diameter of 7 mm) with
vascularized cornea, impairing the view to the anterior
segment and to the fundus (Figure 1E). Doppler
ultrasonography of II:1 showed a normal right eye, with
normal optic nerve and arteria centralis retinae (Figure 2A),
and a left microphthalmos with an axial length of 14.7 mm, a
cataractous lens, and absence of the optic nerve (Figure 2B).

Doppler ultrasonography of the eye and orbit in III:1
showed a normal structure in both eyes, with a slight reduction
in the anteroposterior size of the left eye (19.9 mm) compared
to the right one (21.7 mm). It also showed complete absence
of both optic nerves and corresponding vascularization
(Figure 2C,D). Doppler examination revealed the presence of
a few blood vessels entering the posterior pole and distributed
in an irregular pattern (Figure 2C,D).

VEPs in II:1 were registered after pattern reversal full-
field stimulation of the right eye. The symmetry of the
distribution of responses over both hemispheres was analyzed.
Normal responses were registered in the left hemisphere, but
with a larger amplitude of P100.

Clinical ophthalmological assessment of the
grandmother (I:1; best corrected visual acuity, slit lamp
examination, fundoscopy) revealed no abnormalities.

Endocrinological assessment: The father’s (II:1) height
was 169 cm, and the mother’s (II:2) height was 164.7 cm.
Midparental target height was 160.9±8.5 cm for girls and
173.4 ±8.5 cm for boys.

III:2 had a birthweight of 2,150 g (−2.1 SDS) and a birth
length of 43 cm (−2.6 SDS). At the age of three years and
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seven months, her physical examination showed: standing
height 88.9 cm (−2.5 SDS), weight 10.5 kg, body mass index
13.3 kg/m2 (−2.3 SDS), and head circumference 48 cm (−1.9
SDS). The growth curve showed relatively regular growth.
Bone age was three years according to Greulich and Pyle
[16]. Laboratory investigations showed normal IGF1 (107 ng/
ml), normal thyroid function tests and prolactin, and negative
antiendomysium antibodies. A GH stimulation test
(glucagon) showed a normal GH peak value (34.2 ng/ml,
n>10) and a normal cortisol response.

III:1 had a birthweight of 2,320 g (−1.9 SDS) and a birth
length of 46 cm (−1.4 SDS). At the age of three years and
seven months, his physical examination showed: standing
height 90 cm (−2.5 SDS), weight 11 kg, body mass index 13.6
kg/m2 (−2.2 SDS), and head circumference 48.7 cm (−2.3
SDS). The growth curve showed relatively regular growth.
Bone age was two years and eight months according to
Greulich and Pyle [16]. Laboratory investigations showed
normal IGF1 (111 ng/ml), normal thyroid function tests and
prolactin, and negative antiendomysium antibodies. A GH
stimulation test (glucagon) showed a GH peak value of 5.2
ng/ml, (n>10) and a normal cortisol response. Fasting plasma
osmolarity was 285 mOSm/kg H2O and fasting urine
osmolarity was 885 mOSm/kg H2O, which demonstrates a
normal urine-concentrating ability.

Neuroimaging: Brain and orbit MRI in II:1 (Figure 2E)
confirmed normal morphology and size of the right eye, lens,
and nerve, and absence of optic nerve (orbital and

prechiasmatic part) in the left eye. The chiasm was
asymmetric. The optic tract size was asymmetric, the left
being larger than the right. The left orbit was microphthalmic
with a thick sclera. Brain MRI was normal.

Brain and orbit MRI examination of both children (III:1
and III:2) confirmed a normal aspect in both eyes with a slight
reduction in size of the globe. Both optic nerves, both tracts,
and the chiasm were absent (Figure 2F-H) in each child. The
anatomies of the brain and pituitary gland were normal.

Genetic study: Mutation screening in three
developmental genes—PAX6, OTX2, and SOX2—revealed no
pathogenic mutations. Genome-wide microarray-based
comparative genome hybridization (arrayCGH) in III:1
revealed an abnormal male arrayCGH profile: a 249–363 kb
deletion of chromosome band 10q23.33q23.33 and an 86–215
kb duplication of chromosome band 2p16.2p16.2 (Figure 3A).
The 10q23.33q23.33 deletion was also found in his twin sister
(III:2) and father (II:1). The duplication was also found in II:
2, and was absent in II:1 and III:2 (Figure 3B). The deletion
was present in the unaffected grandmother (I:1). The deleted
region contains three genes: exocyst complex component 6
(EXOC6), cytochrome p450, subfamily XXVIA, polypeptide
1 (CYP26A1), and and cytochrome p450, subfamily XXVIC,
polypeptide 1 (CYP26C1; Figure 3A). Apart from those copy
number variations (CNVs), no other CNVs were found in the
proband III:1. No other deletions of this region are present in
our local patient database (~2,000 patients, ~2,000 controls).

Figure 1. Clinical pictures of III:2, III:1
and II:1. A: A picture of III:2 with mild
bilateral microphthalmia with 10.5 mm
corneal diameters and atypical
coloboma of the iris in the right eye. B:
A picture of twin brother III:1 with
bilateral microphthalmia with 9 mm
corneal diameters and scleralization of
the inferior cornea. C-D: Fundus picture
of III:1 showing the absence of the optic
nerve, dysplastic retinae, and a few
retinal vessels. E: A picture of the
father’s (II:1) left eye, showing
unilateral left microphthalmos (corneal
diameter of 7 mm) with a vascularized
cornea, impairing the view to the
anterior segment and to the fundus.
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DISCUSSION
Newman et al. [17] reported on two blind sisters with absent
optic discs and retinal vessels. However, there exists some
doubt about the true nature of ONA in these siblings [17].
Moreover, autosomal recessive inheritance cannot be
excluded. Apart from this family, nonsyndromic ONA has
never been reported in a familial context. Here, we report
autosomal-dominant nonsyndromic ONA in a father and his
dizygotic twins for the first time.

The histopathology of eyes with ONA has been described
previously [18], reporting the absence of ganglion cells, optic
nerve fibers, and retinal vessels. The retinal pigment
epithelium covered the area where the optic disc should have
been [19], and remnants of the dural sheath were identified.
The arteria centralis retinae was lacking, although the
existence of a few rudimentary retinal vessels entering the
posterior pole in a chaotic way has been reported [20]. Doppler
examination in our patients clearly demonstrated the absence
of an areteria centralis retinae, but some ciliary vasculature
was present entering the posterior pole. Neovascularization in
ONA has been reported in neonates with subsequent tractional
retinal detachment [21]. Life-long risk for choroidal
neovascularization exists, and has been well documented by
Pieramici et al. [22].

The incidence of optic aplasia in microphthalmic eyes has
never been studied. Diagnosis of ONA in the microphthalmic

eye of II:1 was performed by MRI imaging, as fundoscopy
was not possible because the eye was severely
microphthalmic with an opaque cornea. This illustrates that
ONA may remain underdiagnosed in severely
microphthalmic eyes. Therefore, MRI imaging in
microphthalmos is recommended to exclude ONA.

In addition, MRI of the brain is essential to diagnose
associated malformations of the central nervous system. The
association of hypopituitarism and severe microphthalmos
and anophthalmos, as well as the association of congenital
hypopituitarism with ONA, have been reported [23-25].

In these twins with ONA (III:1 and III:2) the
hypothalamic-pituitary function seemed normal: growth was
regular; no episodes of hypoglycemia had been noted; free T4
levels, IGF1, and cortisol plasma levels were normal; and
there was no diabetes insipidus. GH peak values were normal
in the girl and subnormal in the boy, but the GH stimulation
tests have a low positive predictive value [26,27].
Anatomically, the hypothalamic-pituitary axis was normal on
MRI. The short stature probably resulted from intrauterine
growth retardation.

Neuroimaging of the visual pathways in the twins (III:1
and III:2) showed absence of chiasm and tractus. Imaging of
the visual pathways in the father with left ONA proved a
complete absence of the left optic nerve, although with optic
tract asymmetry. VEP findings were correlated with this MRI

Figure 2. Ultrasound and MRI findings in III:1 and II:1. The father’s (II:1) Doppler ultrasonographic examination. This demonstrates A: a
normal right eye with the optic nerve and arteria centralis retinae; B: a left microphthalmic heterogeneous eye without the optic nerve visible.
C, D: The son’s (III:1) Doppler ultrasonographic examination demonstrating the absence of both optic nerves and corresponding
vascularization, but the presence of posterior ciliary vessels (C and D for right and left eye, respectively). The vessels are represented in color.
The Doppler examination is represented in the boxes. E: II:1’s axial T2-weighted image in MRI demonstrated a normal right eye and lens and
a left microphthalmic eye with thick sclera. F: III:1’s axial T2-weighted image in MRI showed an almost normal morphology of both eyes
but the absence of optic nerves (with some remnants of dural sheath), chiasms, and tracts. G-H: Coronal T1-weighted MRI images in the
midorbital (G) and intracranial (H) planes. This shows the complete lack of both orbital nerves in the son, III:1.
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observation. VEP in the father demonstrated the existence of
contralateral crossing nerve fibers, and hence a functional
posterior pathway contralaterally. Moreover, stimulation of
the normal eye resulted in a response that had a larger
amplitude on the contralateral cortex than on the ipsilateral
cortex, suggesting abnormal nerve crossing, with more nerve
fibers crossing on the chiasm. Misrouting of nerve fibers of
the normal eye in unilateral ONA may be the result of
nonmeeting retinal axons from the side with ONA.

The pathogenesis of ONA is unknown. The fact that eyes
with optic aplasia may be nearly normal in size and have a
normal lens suggests normal initial development of the eye
with primitive multipotent retinal ganglion cells with vascular
supply from both the hyaloid artery and the annular vessel. At
six weeks post conception, the optic stalk is almost completely
filled by nerve fibers. At three months, axons of ganglion cells
pass through the glial lamina cribrosa at the optic nerve head.
During the second month, a primitive vascular network in the
mesenchyme around the optic cup (annular vessel) and

precursors of the posterior ciliary arteries that arose from the
ophthalmic artery connect and form the precursor of the
choroidal vasculature [28]. This choroidal vasculature is
normal in ONA. Primitive retinal vessels emerge early in the
fourth month from cell clusters near the hyaloid artery as it
enters the optic disc. These buds then push into the nerve fiber
layer, and the proximal intraneural portion of the hyaloid
vessels becomes the central retinal artery and vein. The
observation of the absence of retinal vessels and lacunar
retinal defects in ONA might suggest that defective retinal
development and failure of retinal angiogenesis in the third to
fourth month may contribute to the degeneration of retinal
ganglion cells [28]. Defective retinal angiogenesis and retinal
dysplasia in ONA could be associated with coloboma of the
eyes.

Both environmental and genetic factors are hypothesized
to contribute to unilateral ONA. Here, unilateral and bilateral
ONA occur in the same family in an autosomal-dominant
fashion, assuming a genetic basis. So far, only mutations in

Figure 3. UCSC track of the 10q microdeletion. A: The 10q23.33q23.33 track shows the extent of the249–363 kb deletion of chromosome
band 10q23.33q23.33 (arr 10q23.33q23.33(94659243–94908060)x1 pat 10q23.33q23.33. The location and size of the deletion are indicated
by a horizontal red bar. The figure was drawn according to the UCSC, Human Genome Browser, March 2006 (NCBI36/hg18). B: The three-
generation pedigree represents the unaffected grandmother (I:1), affected father (II:1), and twins (III:1 and III:2) carrying the 10q23 deletion.
Del: deletion of 10q23.33q23.33; dup: duplication of 2p16.2p16.2. Filled symbol: bilateral optic nerve aplasia (ONA). Partially filled symbol:
unilateral ONA.
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the developmental genes PAX6 and OTX2 have been reported
in ONA [6]. Mutation screening of these genes, however, was
negative in this family. A microdeletion of 10q23.33q23.33
was found in the affected father and his affected children, but
also in the unaffected grandmother. The paternal grandfather
is deceased and the father has no siblings. The deletion
contained three known genes: EXOC6, CYP26A1 and
CYP26C1. In the Toronto database, two copy number
variations of the EXOC6 gene have been reported in control
individuals [29,30]. While CNVs (i.e., gains) containing
EXOC6 have been reported in two control individuals, no
CNVs of CYP26A1 and CYP26C1 have been described so far.
Interestingly, the latter two encode retinoic acid-degrading
enzymes. Although a long-range effect of the deletion on
neighboring upstream or downstream genes cannot be
excluded, we might postulate that haploinsufficiency of the
CYP26A1 and CYP26C1 genes is causally related to the ONA
phenotype in this family. Of note, two cases with partial
trisomy of 10q24.1-ter with concomitant 7pter and 4qter
deletion share ONA and malformation of the anterior chamber
[31]. As no fine-mapping was performed of the 10q24
breakpoints at that time, involvement of the CYP26A1 and
CYP26C1 genes cannot be excluded. CYP26A1 and
CYP26C1, encoding RA-degrading enzymes, might be
interesting candidate genes contributing to the pathogenesis
of optic nerve defects when mutated. CYP26 enzymes are
thought to play a central role in appropriate regulation of the
RA signal as a posteriorizing factor in central nervous system
development [32-34]. Mice and humans possess three
CYP26 genes: CYP26A1, CYP26B1, and CYP26C1 [35-37].

The functions of Cyp26a1 and Cyp26c1 have been
studied in knockout mice. Loss of Cyp26c1 did not appear to
affect embryonic development, suggesting that Cyp26a1 and
Cyp26c1 are functionally redundant. Studies in mice lacking
both genes suggested that the activity of Cyp26a1 and
Cyp26c1 is required for correct anteroposterior patterning and
the production of migratory cranial neural crest cells in the
developing mammalian brain [38]. Importantly, Cyp26
expression is known to be more distinctive during the later
stages of retina formation in mice [38]. The presence of retinal
dysplasia in the family studied here might be attributed to
defective embryogenesis.

The absence of any ocular abnormalities in a carrier of
the deletion (I:1) might suggest reduced penetrance. This
might be attributed to the redundancy of the CYP26B1 gene,
or to modifier effects and environmental factors influencing
RA metabolism, resulting in an overall CYP26 expression
above the threshold, and hence normal RA metabolism in I:1.
An alternative explanation might be somatic mosaicism of an
as yet unidentified genetic defect in the father (II:1).

The role of additional environmental factors such as
intracytoplasmic sperm injection in the more severe, bilateral
phenotypic expression in the twins is unclear at this moment

[39,40]. In-depth studies of the retinal morphology of Cyp26
knockout mice or other model organisms with knockdowns of
Cyp26a1 and Cyp26c1 will be instrumental to understanding
their role in the pathogenesis of ONA.

Conclusion: This is the first study reporting an
autosomal-dominant form of nonsyndromic unilateral and
bilateral ONA. We demonstrated that neuroimaging (e.g.,
MRI) may have an important diagnostic value for uncovering
ONA in microphthalmic patients. Finally, our findings
implicate the deletion of the CYP26A1 and CYP26C1 genes
as potential susceptibility factor for ONA.
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