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Abstract

We determine all hyperplanes of the dual polar space DQ−(7, K)
which arise from embedding. This extends one of the results of [5] to
the infinite case.
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1 Introduction

Let Π be a nondegenerate polar space of rank n ≥ 2. With Π there is
associated a point-line geometry ∆ whose points are the maximal singular
subspaces of Π, whose lines are the next-to-maximal singular subspaces of
Π and whose incidence relation is reverse containment. The geometry ∆ is
called a dual polar space of rank n ([1]). The dual polar spaces of rank 2 are
precisely the nondegenerate generalized quadrangles ([9]). Every dual polar
space ∆ is a so-called near polygon. This means that for every point x and
every line L, there exists a unique point on L nearest to x. Here, distances
are measured in the collinearity graph of ∆. If i ∈ N and x is a point of
∆, then ∆i(x) denotes the set of points at distance i from x. We also define
x⊥ := ∆0(x)∪∆1(x) for every point x of ∆. A set S of points of ∆ is called
a subspace if every line which has at least two points in S has all its points in
S. A subspace S is called convex if every point on a shortest path between
two points of S is also contained in S.
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There exists a bijective correspondence between the non-empty convex
subspaces of ∆ and the possibly empty singular subspaces of Π. If α is a
possibly empty singular subspace of Π, then the set of all maximal singular
subspaces containing α is a convex subspace of ∆. Conversely, every convex
subspace of ∆ is obtained in this way. The maximal distance between two
points of a convex subspace F of ∆ is called the diameter of F . The convex
subspaces of diameter 2, 3, respectively n−1, are called the quads, hexes, re-
spectively maxes, of ∆. If F is a convex subspace of diameter δ ∈ {2, . . . , n},
then the point-line geometry ∆F induced on F is a dual polar space of rank
δ. In particular, if Q is a quad, then ∆Q is a generalized quadrangle.

If F is a convex subspace of ∆, then for every point x of ∆, there exists
a unique point πF (x) ∈ F such that d(x, y) = d(x, πF (x)) + d(πF (x), y) for
every point y of F . The point πF (x) is called the projection of x onto F .
If F is a max and x 6∈ F , then πF (x) is collinear with x. If F1 and F2 are
two disjoint maxes, then the restriction of πF2 to F1 is an isomorphism from
∆F1 to ∆F2 . If F1 and F2 are two distinct maxes, then either F1 ∩ F2 = ∅ or
F1 ∩F2 is a convex subspace of diameter n− 2. The set of convex subspaces
through a point x of ∆ define a projective space of dimension n − 1 which
we will denote by Res∆(x).

A hyperplane of a dual polar space is a proper subspace which meets each
line. Suppose H is a hyperplane of a thick dual polar space ∆ and Q is a
quad of ∆. Then either Q ⊂ H or Q ∩ H is a hyperplane of Q. So, by
Theorem 2.3.1 of Payne and Thas [9], one of the following cases occurs: (i)
Q ⊆ H; (ii) Q∩H = x⊥∩Q for a certain point x ∈ Q; (iii) Q∩H is an ovoid
of Q; (iv) Q∩H is a subquadrangle of Q. (We recall here that an ovoid is a
set of points meeting each line in a unique point.) If case (i), case (ii), case
(iii), respectively case (iv) occurs, then Q is called deep, singular, ovoidal,
respectively subquadrangular (with respect to H). If case (ii) occurs, then x
is called the deep point of Q.

A full embedding of a dual polar space ∆ into a projective space Σ is an
injective mapping e from the point-set P of ∆ to the point-set of Σ satisfying
(i) 〈e(P )〉 = Σ and (ii) e(L) is a line of Σ for every line L of ∆. If e : ∆→ Σ
is a full embedding of ∆ into Σ, then for every hyperplane α of Σ, the set
e−1(e(P )∩α) is a hyperplane of ∆. We say that the hyperplane e−1(e(P )∩α)
arises from the embedding e.

We now describe the class of dual polar spaces under consideration in
this paper. Let n ≥ 2 and let K,K′ be fields such that K′ is quadratic Galois
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extension of K. Let θ denote the unique nontrivial element in the Galois
group Gal(K′/K). For all i, j ∈ {0, . . . , 2n + 1} with i ≤ j, let aij ∈ K such
that q(X) =

∑
0≤i≤j≤2n+1 aijXiXj is a quadratic form defining a quadric

Q−(2n+1,K) of Witt index n in PG(2n+1,K) and a quadric Q+(2n+1,K′)
of Witt index n + 1 in PG(2n + 1,K′). Let DQ−(2n + 1,K) denote the
dual polar space associated with Q−(2n + 1,K). So, the points and lines of
DQ−(2n+1,K) are the (n−1)-dimensional, respectively (n−2)-dimensional,
subspaces of Q−(2n + 1,K) and incidence is reverse containment. If F is a
convex subspace of ∆ = DQ−(2n + 1,K) of diameter δ ∈ {2, . . . , n}, then
∆F
∼= DQ−(2δ + 1,K). If n = 2, then DQ−(2n + 1,K) = DQ−(5,K) is

a generalized quadrangle which is isomorphic to the generalized quadrangle
H(3,K′, θ) of the points and lines of a nonsingular θ-Hermitian variety of
Witt index 2 in PG(3,K′).

The dual polar space DQ−(2n+1,K) admits up to isomorphism a unique
full embedding e into the projective space PG(2n−1,K′), see Cooperstein and
Shult [4] (for the finite case) and De Bruyn [8] (general case). This embedding
is called the spin embedding of DQ−(2n+ 1,K). If F is a convex subspace of
diameter δ ∈ {2, . . . , n} of DQ−(2n+ 1,K), then e induces an embedding eF

of ∆F
∼= DQ−(2δ+ 1,K) into a subspace of PG(2n− 1,K′). This embedding

is isomorphic to the spin embedding of DQ−(2δ + 1,K), see e.g. Theorem
1.6 of Cardinali, De Bruyn and Pasini [2]. If n = 2, then DQ−(2n+ 1,K) =
DQ−(5,K) and the image of e is just a nonsingular θ-Hermitian variety of
Witt index 2 in PG(3,K′). (This explains the isomorphism DQ−(5,K) ∼=
H(3,K′, θ).) An ovoid of DQ−(5,K) is called classical if it arises from the
spin embedding of DQ−(5,K).

Suppose now n = 3 and consider the dual polar space DQ−(7,K).
If x is a point of DQ−(7,K), then the set Hx of points of DQ−(7,K) at

distance at most 2 from x is a hyperplane of DQ−(7,K). This hyperplane is
called the singular hyperplane of DQ−(7,K) with deepest point x.

Let Q be a quad of DQ−(7,K) and O an ovoid of Q. Then the set of points
of DQ−(7,K) at distance at most 1 from O is a hyperplane of DQ−(7,K).
We call this hyperplane the extension of O.

Now, let α1 and α2 be two disjoint planes of Q−(7,K) and let α be
a hyperplane of PG(7,K) containing α1 and α2. Then α ∩ Q−(7,K) is a
nonsingular quadric of Witt index 3 of α. Denote this quadric by Q(6,K)
and its associated dual polar space by DQ(6,K). The following proposition
was proved by Shult [11] (for the finite case) and Pralle [10] (for the general
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case).

Proposition 1.1 ([10], [11]) The dual polar space DQ(6,K) has hyper-
planes with respect to which every quad is singular. The points and lines
contained in any such hyperplane define a split-Cayley generalized hexagon
H(K).

Conversely, if H is a hyperplane of a thick dual polar space ∆ of rank
3 such that every quad of ∆ is singular with respect to H, then ∆ is the
dual polar space associated with a nonsingular quadric of Witt index 3 in a
6-dimensional projective space over a field.

If H is a hyperplane of DQ(6,K) such that every quad of DQ(6,K)
is singular with respect to H, then H is called a hexagonal hyperplane of
DQ(6,K). Now, for a hexagonal hyperplane H of DQ(6,K), put H := H∪U ,
where U is the set of generators of Q−(7,K) intersecting α in a line L, which
regarded as line of DQ(6,K) is contained in H. Then by Pralle [10], H is
a hyperplane of DQ−(7,K). We call any such hyperplane of DQ−(7,K) a
hexagonal hyperplane of DQ−(7,K).

The following is the main result of this paper.

Theorem 1.2 The hyperplanes of the dual polar space DQ−(7,K) which
arise from its spin embedding are precisely the following hyperplanes:

(1) the singular hyperplanes of DQ−(7,K);
(2) the extensions of the classical ovoids of the quads of DQ−(7,K);
(3) the hexagonal hyperplanes of DQ−(7,K).

Since the spin embedding of DQ−(7,K) is the so-called absolutely universal
embedding of DQ−(7,K) (see De Bruyn [8, Corollary 1.4]), we have

Corollary 1.3 The hyperplanes of the dual polar space DQ−(7,K) which
arise from some projective embedding are precisely the singular hyperplanes,
the extensions of the classical ovoids of the quads and the hexagonal hyper-
planes.

Along our way, we will also prove the following result regarding the structure
of hyperplanes ofDQ−(2n+1,K), n ≥ 2, which arise from its spin embedding.
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Theorem 1.4 Let H be a hyperplane of the dual polar space ∆ = DQ−(2n+
1,K), n ≥ 2, arising from its spin embedding, and let x be a point of H. Then
the set of lines through x contained in H is a subspace of co-dimension at
most 2 of the projective space Res∆(x) ∼= PG(n− 1,K).

Remark. For finite fields K, Theorem 1.2 was already proved in De Bruyn
[5, Theorem 1.5]. Several arguments in the proof of [5] however only work
in the finite case (counting arguments; a line and a Hermitian variety of
PG(3, q2) always meet).

2 Proof of Theorem 1.2

Lemma 2.1 Let K and K′ be fields such that K′ is a quadratic extension of
K. Let PG(2,K′) be the Desarguesian projective plane coordinatized in the
natural way by the field K′. Let PG(2,K) denote the subplane of PG(2,K′)
consisting of those points of PG(2,K′) whose coordinates can be chosen in
the subfield K. Then any line of PG(2,K′) intersects PG(2,K) in either a
point or a line of PG(2,K).

Proof. Let ε be an arbitrary element of K′ \K. Then {1, ε} is a basis of K′
regarded as two-dimensional vector space over K. Let L be an arbitrary line
of PG(2,K′). Then there exist α1, α2, β1, β2, γ1, γ2 ∈ K, not all zero, such
that L consists of all points (X0, X1, X2) satisfying

(α1 + α2ε)X0 + (β1 + β2ε)X1 + (γ1 + γ2ε)X2 = 0.

If (k0, k1, k2) ∈ PG(2,K) ∩ L, then{
α1k0 + β1k1 + γ1k2 = 0,
α2k0 + β2k1 + γ2k2 = 0.

Let r be the rank of the matrix:[
α1 β1 γ1

α2 β2 γ2

]
.

If r = 1, then L intersects PG(2,K) in a line of PG(2,K). If r = 2, then L
intersects PG(2,K) in a point. �
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Lemma 2.2 Let ∆ be a dual polar space of type DQ−(2n + 1,K), n ≥ 2,
and let H be a hyperplane of ∆. Then there are no quads of ∆ which are
subquadrangular with respect to H.

Proof. In De Bruyn [8, Lemma 3.1] it was proved that a generalized quad-
rangle of type DQ−(5,K) does not have proper subquadrangles. Notice
also that every quad of ∆ is isomorphic to a generalized quadrangle of type
DQ−(5,K). �

Lemma 2.3 Let ∆ be a dual polar space of type DQ−(2n+1,K), n ≥ 2, and
let H be a hyperplane of ∆. For every point x of H, the set ΛH(x) of lines
of ∆ through x contained in H is a set of points of the (n− 1)-dimensional
projective space Res∆(x). This set ΛH(x) is a possibly empty subspace of
Res∆(x).

Proof. Suppose L1 and L2 are two distinct lines through x contained in H.
Let Q denote the unique quad through L1 and L2. By Lemma 2.2, there are
two possibilities.

(1) Q is singular with respect to H. Then Q ∩H = x⊥ ∩Q.
(2) Q is deep with respect to H.
In either case, any line of Q through x is contained in H. It follows that

ΛH(x) is a subspace of Res∆(x). �

Lemma 2.4 Let ∆ be a dual polar space of type DQ−(7,K), let Q be a quad
of ∆ and let H be a hyperplane of DQ−(7,K) containing Q. Then H is either
a singular hyperplane or the extension of an ovoid of Q.

Proof. By Lemma 2.3, there are two possibilities for a point x of Q: either
x⊥ ∩H = x⊥ or x⊥ ∩H = x⊥ ∩Q. Let A denote the set of all points x ∈ Q
for which x⊥ ⊆ H. Since every point outside Q is collinear with a unique
point of Q, we have

H = Q ∪
( ⋃

x∈A

x⊥
)
.

Since H does not coincide with the whole point-set of ∆, A 6= Q. Now, let
Q′ denote an arbitrary quad of ∆ disjoint from Q. Then πQ′(A) = H ∩ Q′
is a hyperplane of Q′ which is either a singular hyperplane or an ovoid of Q′

by Lemma 2.2.
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Suppose H ∩Q′ = y⊥ ∩Q′ for a certain point y of Q′. Then A = πQ(H ∩
Q′) = z⊥ ∩Q where z := πQ(y). It readily follows that H = Q∪

(⋃
x∈A x

⊥
)

is the singular hyperplane of ∆ with deepest point z.
Suppose H ∩ Q′ = O′ for some ovoid O′ of Q′. Then A = πQ(O′) is an

ovoid of Q isomorphic to the ovoid O′ of Q′. Clearly, H = Q ∪
(⋃

x∈A x
⊥
)

is the extension of the ovoid A of Q. �

Proposition 2.5 Let ∆ be a dual polar space of type DQ−(7,K) and let H
be one of the following hyperplanes of DQ−(7,K): (i) a singular hyperplane;
(ii) the extension of a classical ovoid in a quad; (iii) a hexagonal hyperplane.
Then H arises from the spin embedding of ∆.

Proof. Let e : ∆ → Σ denote the spin embedding of ∆ into the projective
space Σ ∼= PG(7,K′), where K′ is the quadratic extension of K associated
with DQ−(7,K). In De Bruyn [8, Theorem 1.2], it was proved that every
singular hyperplane of ∆ arises from e. By Theorem 1.2 of De Bruyn [7],
also every hexagonal hyperplane of DQ−(7,K) arises from e. Suppose now
that H is the extension of a classical ovoid O of a quad Q. Let Q′ denote an
arbitrary quad of ∆ disjoint from Q. Then O′ := πQ′(O) is a classical ovoid
of Q′. By De Bruyn [6, Theorem 1.1 (5)], Σ1 := 〈e(Q)〉 and Σ2 := 〈e(Q′)〉
are two disjoint 3-spaces of Σ. Moreover, the embedding e induces a full
embedding e1 of Q into Σ1 and a full embedding e2 of Q′ into Σ2. These
embeddings are isomorphic to the spin embedding of DQ−(5,K). So, there
exists a plane α in Σ2 such that e−1

2 (e2(Q′)∩α) = O′. Now, let H ′ denote the
hyperplane of ∆ arising from the hyperplane 〈Σ1, α〉 of Σ. Then H ′ contains
Q and O′. By (the proof of) Lemma 2.4, H ′ coincides with the extension of
O, i.e. H ′ = H. This proves the proposition. �

Lemma 2.6 Let ∆ be a dual polar space of type DQ−(7,K) and let H be a
hyperplane of ∆ arising from its spin embedding. Then for every point x of H,
ΛH(x) is a nonempty subspace of the projective plane Res∆(x) ∼= PG(2,K).

Proof. Let e : ∆→ Σ denote the spin embedding of ∆ and let x be a point
of ∆. Then dim〈e(x⊥)〉 = 3 by De Bruyn [6, Theorem 1.6]. So, the quotient
space Σx = 〈e(x⊥)〉/e(x) has dimension 2. For every line L of ∆ through x,
let f(L) denote the point e(L)/e(x) of Σx. Clearly, f is an injection from
the set of points of Res∆(x) to the set of points of Σx. Let Q be a quad
through x and let LQ be the set of lines of Q through x. The embedding e
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induces an embedding of Q into a 3-space of Σ which is isomorphic to the
spin embedding of ∆Q. Hence, dim(〈e(x⊥∩Q)〉) = 2. It follows that f maps
the lines of LQ into a line f(Q) of Σx. If L is a line through x not contained
in Q, then f(L) is not contained in f(Q) by Theorem 1.1 (3) of De Bruyn [6].
Hence, f defines an embedding of Res∆(x) ∼= PG(2,K) into a subgeometry
of Σx

∼= PG(2,K′).

Let V be an 8-dimensional vector space over K′ such that Σ = PG(V ).
Choose a nonzero vector ē1 ∈ V and a 3-dimensional subspace W of V
such that e(x) = 〈ē1〉 and 〈e(x⊥)〉 = PG(〈ē1,W 〉). Let Q∗ be a given quad
through x. The embedding of Q∗ into 〈e(Q∗)〉 induced by e is isomorphic to
the spin embedding of DQ−(5,K). So, e(Q∗) is a nondegenerate θ-Hermitian
variety of Witt index 2 of 〈e(Q∗)〉 ∼= PG(3,K′). Notice that there exists
a natural bijective correspondence between the points of Σx and those of
PG(W ). Since e(Q∗) is a nondegenerate θ-Hermitian variety of Witt index 2
of 〈e(Q∗)〉 ∼= PG(3,K′), we may suppose that we have chosen V , ē1 and W
in such a way that f(LQ∗) corresponds to a Baer-K-subline of PG(W ), i.e.
we may suppose that there exist vectors f̄ ′1, f̄

′
2 ∈ W such that

(1) f(LQ∗) corresponds to the set of all points of PG(W ) of the form 〈k1f̄
′
1+

k2f̄
′
2〉 where k1, k2 ∈ K with (k1, k2) 6= (0, 0).

On the other hand, since f defines an embedding of Res∆(x) ∼= PG(2,K) into
a subgeometry of Σx

∼= PG(2,K′), then there exists a basis {ē2, ē3, ē4} of W
and a subfield K0 of K′ isomorphic to K such that the image of f corresponds
to the set of all points of PG(W ) of the form 〈k2ē2 + k3ē3 + k4ē4〉, where k2,
k3 and k4 are elements of K0 not all equal to 0. Hence, there exist vectors
f̄1, f̄2 ∈ W such that

(2) f(LQ∗) corresponds to the set of all points of PG(W ) of the form 〈k1f̄1+
k2f̄2〉 where k1, k2 ∈ K0 with (k1, k2) 6= (0, 0).

The statements (1) and (2) force the subfields K0 and K of K′ to coincide.
It follows that the image of f corresponds to the set of all points of PG(W )
of the form 〈k2ē2 + k3ē3 + k4ē4〉 where k2, k3 and k4 are elements of K not
all equal to 0.

Now, suppose that H is a hyperplane of ∆ through x arising from the
embedding e. So, H = e−1(e(∆)∩α) for a certain hyperplane α of Σ through
e(x). If α contains 〈e(x⊥)〉, then x⊥ ⊆ H. If α does not contain 〈e(x⊥)〉, then
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α defines a hyperplane of Σx. By Lemma 2.1 and the previous paragraph,
it then readily follows that one of the following two cases occurs: (i) there
exists a unique line through x contained in H; (ii) there exists a quad R
through x such that the set of lines through x contained in H coincides with
the set of lines through x contained in R. This proves the lemma. �

The following proposition is precisely Theorem 1.4.

Proposition 2.7 Let ∆ be a dual polar space of type DQ−(2n+1,K), n ≥ 2,
and let H be a hyperplane of ∆ arising from its spin embedding. Then for
every x ∈ H, ΛH(x) is a subspace of co-dimension at most 2 of Res∆(x) ∼=
PG(n− 1,K).

Proof. By Lemma 2.3, ΛH(x) is a subspace of Res∆(x). Suppose the co-
dimension of ΛH(x) is at least 3. Then there exists a hex F through x
such that x⊥ ∩ (H ∩ F ) = {x}. The hyperplane H ∩ F of F arises from
the embedding eF of ∆F

∼= DQ−(7,K) induced by the spin embedding of
∆. Recall that eF is isomorphic to the spin embedding of DQ−(7,K). A
contradiction is now obtained by applying Lemma 2.6 to the hyperplane
H ∩ F of F and the point x ∈ H ∩ F . So, the co-dimension of ΛH(x) is at
most 2. �

The following proposition in combination with Proposition 2.5 finishes the
proof of Theorem 1.2.

Proposition 2.8 Let ∆ be a dual polar space of type DQ−(7,K). If H is a
hyperplane of ∆ arising from its spin embedding e, then H is either a sin-
gular hyperplane, the extension of a classical ovoid in a quad or a hexagonal
hyperplane.

Proof. Suppose first that H contains a quad Q. Then by Lemma 2.4, H is
either a singular hyperplane or the extension of an ovoid in Q. Suppose H is
the extension of the ovoid O in Q. Let Q′ be a quad of ∆ disjoint from Q and
put O′ := πQ′(O). Then H ∩Q′ = O′. Since H arises from the embedding e,
the ovoid O′ of Q′ arises from the embedding of Q′ induced by e and hence
is classical. As a consequence, also the ovoid O = πQ(O′) of Q is classical.

Suppose now that H does not contain quads. We show that H does not
contain points x for which x⊥ ⊆ H. Suppose to the contrary that x⊥ ⊆ H.
If y ∈ ∆2(x) ∩H, then the unique quad Q through x and y contains x⊥ ∩Q
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and y and hence is completely contained in H, a contradiction. Hence,
∆2(x) ∩ H = ∅. Obviously, ∆3(x) ∩ H 6= ∅. (A line containing a point of
∆3(x) meets H necessarily in a point of ∆3(x).) If y ∈ ∆3(x) ∩H, then by
Lemma 2.6, there exists a line through y contained in H. This line contains
a point at distance 2 from x, a contradiction. Hence, H does not contain
points x for which x⊥ ⊆ H.

Since H does not contain quads, every quad of ∆ is singular or ovoidal
with respect to H (recall Lemma 2.2).

Claim I. If L is a line of ∆, then either all quads through L are singular or
precisely one quad through L is singular. So, there exist singular quads.
Proof. If L ⊆ H, then all quads through L are singular. Suppose therefore
that L ∩H is a singleton {x}. By Lemma 2.6, there are two possibilities:

(1) there exists a unique line M through x which is contained in H. Then
the unique quad through L and M is the unique singular quad through L.

(2) There exists a quad Q through x such that the lines through x con-
tained in H are precisely the lines through x contained in Q. Every quad
through L intersects Q in a line through x and hence is singular. (eop)

Claim II. For every quad Q which is singular with respect to H, there exists
a quad disjoint from Q which is singular with respect to H.
Proof. Let x ∈ Q such that Q ∩H = x⊥ ∩Q. Let Q1 denote an arbitrary
quad through x distinct from Q. Since Q1∩Q is a line contained in H, Q1 is
singular. Hence, Q1 ∩H = x⊥1 ∩ Q1 for a certain point x1 ∈ Q1. Obviously,
x1 ∈ Q1 ∩ Q. Since x⊥ ∩ H = x⊥ ∩ Q, x1 6= x. Now, let Q2 denote a quad
through x1 not containing Q1 ∩ Q. Since Q1 ∩ Q2 is a line contained in H,
Q2 is singular with respect to H. So, Q2 ∩H = x⊥2 ∩Q2 for a certain point
x2 ∈ Q2. Since Q2 ∩Q 6⊆ H, x2 6∈ Q. Now, there exists a line in Q2 through
x2 not meeting Q. Any quad through that line disjoint from Q is singular,
proving the claim. (eop)

Claim III. If x is a point of ∆ such that there exists a quad Q through x
such that Q ∩H = x⊥ ∩H, then every quad through x is singular.
Proof. This follows from the fact that any quad through x contains a line
(of Q) which is completely contained in H. (eop)

Let S denote the set of quads of ∆ which are singular with respect to H. Let
S̃ denote the set of points of Q−(7,K) corresponding to the elements of S. By

Claim I, S̃ is a subspace of Q−(7,K) and hence carries the structure of a polar
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space Π0. It is important to notice that this polar space Π0 is nondegenerate
by Claim II. By Claim III, we know that the rank of Π0 is equal to 3. By
Claim I, Π0 is either Q−(7,K) or a hyperplane of Q−(7,K). In the latter
case, it follows from Cohen and Shult [3, Theorem 5.12] that Π0 is obtained
by intersecting Q−(7,K) with a hyperplane of the ambient projective space
of Q−(7,K); hence Π0

∼= Q(6,K). (Also in [10], it was shown that Π0 is a
polar space (see Proposition 15), but the possible complication that Π0 might
be degenerate - which is impossible by Claim II - seems not to be discussed
there.)

If Π0 = Q−(7,K), then every quad of DQ−(7,K) is singular with respect
to H. This is impossible by Proposition 1.1. So, Π0 = Q(6,K). Then H is
a hexagonal hyperplane of DQ−(7,K) by Pralle [10, Theorem 2 + Corollary
1], Lemma 2.6 and the fact that H does not contain quads. For reasons of
completeness, we give here a complete proof of this fact.

Claim IV. For every line L of Q(6,K), there exists a generator of Q(6,K)
through L belonging to H.
Proof. We regard L as a line of DQ(6,K). We must show that there exists
a point x on L every quad through which is singular, or equivalently (see
Lemma 2.6), a point x on L for which ΛH(x) is a line of Res∆(x). If L is not
contained in H, then the unique point of L∩H satisfies this property (Recall
the proof of Claim I and the fact that every quad through L is singular). If
L is contained in H, then we can take for x the deepest point of any singular
quad through L. (eop)

Now, let H̃ denote the set of points of DQ(6,K) which are also points of H.
The following claim follows from Claim IV and the fact that H is a subspace.

Claim V. A generator α of Q−(7,K) not contained in Q(6,K) belongs to H

if and only if every generator of Q(6,K) through α ∩Q(6,K) belongs to H̃.

Since H is a proper subspace of DQ−(7,K), H̃ is a proper subset of the

point set of DQ(6,K). By Claim IV and the fact that H is a subspace, H̃ is
a hyperplane of DQ(6,K). Every quad Q of DQ(6,K) is properly contained

in a singular quad Q̃ of DQ−(7,K). Every quad of DQ−(7,K) through the

deep point of Q̃ is singular and hence the deep point of Q̃ is a point of
DQ(6,K), i.e. a point of Q. It follows that Q is singular with respect to H̃.

So, H̃ is a hexagonal hyperplane of DQ(6,K). By Claim V, it now follows
that H is a hexagonal hyperplane of DQ−(7,K). �
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