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Decision Curve Analysis for Personalized
Treatment Choice between Multiple Options

Konstantina Chalkou, MSc , Andrew J. Vickers, PhD , Fabio Pellegrini, PhD,

Andrea Manca, PhD, and Georgia Salanti, PhD

Background. Decision curve analysis can be used to determine whether a personalized model for treatment benefit

would lead to better clinical decisions. Decision curve analysis methods have been described to estimate treatment

benefit using data from a single randomized controlled trial. Objectives. Our main objective is to extend the decision

curve analysis methodology to the scenario in which several treatment options exist and evidence about their effects

comes from a set of trials, synthesized using network meta-analysis (NMA). Methods. We describe the steps needed

to estimate the net benefit of a prediction model using evidence from studies synthesized in an NMA. We show how

to compare personalized versus one-size-fit-all treatment decision-making strategies, such as ‘‘treat none’’ or ‘‘treat

all patients with a specific treatment’’ strategies. First, threshold values for each included treatment need to be

defined (i.e., the minimum risk difference compared with control that renders a treatment worth taking). The net

benefit per strategy can then be plotted for a plausible range of threshold values to reveal the most clinically useful

strategy. We applied our methodology to an NMA prediction model for relapsing-remitting multiple sclerosis, which

can be used to choose between natalizumab, dimethyl fumarate, glatiramer acetate, and placebo. Results. We illu-

strated the extended decision curve analysis methodology using several threshold value combinations for each avail-

able treatment. For the examined threshold values, the ‘‘treat patients according to the prediction model’’ strategy

performs either better than or close to the one-size-fit-all treatment strategies. However, even small differences may

be important in clinical decision making. As the advantage of the personalized model was not consistent across all

thresholds, improving the existing model (by including, for example, predictors that will increase discrimination) is

needed before advocating its clinical usefulness. Conclusions. This novel extension of decision curve analysis can be

applied to NMA-based prediction models to evaluate their use to aid treatment decision making.

Highlights

� Decision curve analysis is extended into a (network) meta-analysis framework.
� Personalized models predicting treatment benefit are evaluated when several treatment options are available

and evidence about their effects comes from a set of trials.
� Detailed steps to compare personalized versus one-size-fit-all treatment decision-making strategies are

outlined.
� This extension of decision curve analysis can be applied to (network) meta-analysis–based prediction models

to evaluate their use to aid treatment decision making.
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Randomized controlled trials (RCTs) and their meta-

analyses have traditionally focused on inferences about

treatment effects for the average patient.1 Yet, what

clinicians want to know is the treatment effect for the

patient in front of them, and the effects of treatment may

differ between individuals. To identify the best treatment

option for an individual, researchers can use prediction

models to evaluate the treatment effects on health

outcomes as a function of patient-level characteristics.2–5

Personalized prediction models could be used to iden-

tify groups of patients for which the benefits of treatment

outweigh the harms. Doing so would require extensive

validation, and such validation should include an evalua-

tion of clinical utility. The latter refers to the ability of

the model to guide treatment decisions at the point of

care. While methods to evaluate a model’s performance

have been well studied and are described in the literature

(e.g., calibration measures, the area under the curve,

etc.),6,7 evaluation of the clinical utility of a model is a

relatively new concept.

Decision curve analysis (DCA) has been proposed to

evaluate the clinical utility of personalized prediction

models.8,9 DCA can be applied to models that predict an

absolute risk (such as a model to predict the risk of

cancer to guide decisions about biopsy) and those pre-

dicting treatment benefit (such as a model to predict the

change in outcome associated with drug therapy).8,10,11

The data used to calculate the net benefit (NB) for a

treatment strategy typically come from an RCT that

compares 2 treatments: a reference treatment (such as no

treatment or placebo) and an active treatment of interest.

Papers, software, tutorials, and data sets on DCA meth-

odology can be found at www.decisioncurveanalysis.org.

There are often several treatment options for a given

condition. Unfortunately, there is often uncertainty

about their relative benefits due to a lack of a direct

head-to-head comparison in a single RCT. Evidence

synthesis in the form of pairwise meta-analysis (PMA)

and its extension, network meta-analysis (NMA), can be

used both to structure the evidence base (summarizing

direct and indirect comparisons) and to produce an

estimate of the effects of any treatment against other

available options. It has been found that prediction

models based on (network) meta-regression of multiple

individual patient data (IPD) can be used to identify the

best treatment option for an individual patient.10,12–14

Consider a patient diagnosed with relapsing-remitting

multiple sclerosis (RRMS) who is contemplating starting

a disease-modifying drug. The individual and her or his

clinician may have access to the results of an NMA of

aggregated data to inform their decision, but this evi-

dence gives insight into only the expected health out-

comes and the efficacy of the treatments being considered

for the ‘‘average patient’’ in the model.15–17 Personalized

treatment recommendations can be obtained if patient

characteristics are taken into account when predicting the

outcome under different treatment options. This can be

achieved using network meta-regression with IPD data,12

with the model indicating the optimal drug (in the case of

RRMS treatment decision, this may be the one that mini-

mizes the predicted risk to relapse over the time horizon

of 2 y) for any given patient profile. Extending this idea

to several outcomes and accounting for the tradeoff

between safety and efficacy will result in a hierarchy of

treatment options that is tailored to a participant’s

characteristics.18,19

In this article, we extend the DCA methodology, as

proposed by Vickers et al.,9 to evaluate the clinical
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usefulness of a personalized prediction model that aims

at recommending a treatment among many possible

options according to individual characteristics, such as

the one described above. The focus of the article is meth-

odological, and we use an example with RRMS only to

outline the developed methodology. This work is sup-

ported and funded by the HTx. The HTx is a Horizon

2020 project supported by the European Union lasting

for 5 y from January 2019. The main aim of HTx is to

create a framework for the next-generation health tech-

nology assessment to support patient-centered, societally

oriented, real-time decision making on access to and

reimbursement for health technologies throughout Eur-

ope. We describe the network meta-regression prediction

model in the next section. In the ‘‘Methods’’ section, we

describe ways to select the threshold values for each

treatment option and how treatment recommendations

can be made based on the results of a network meta-

regression prediction model, and we describe the estima-

tion of quantities in DCA methodology from PMA and

NMA data sets. We show the results from the case study

in the ‘‘Results’’ section, and we conclude with a discus-

sion of the advantages and limitations of the proposed

approach.

Case Study: Personalized Treatment

Recommendation for Patients with RRMS

Multiple sclerosis (MS) is an immune-mediated disease

of the central nervous system with several subtypes. The

most common subtype is RRMS.20 Patients with RRMS

present with acute or subacute symptoms (relapses)

followed by periods of complete or incomplete recovery

(remissions).21 Effective treatment of patients with

RRMS can prevent disease progression and associated

severe consequences, such as spasticity, fatigue, cognitive

dysfunction, depression, bladder dysfunction, bowel dys-

function, sexual dysfunction, pain, and death.22 There

are several available treatment options for RRMS, and

their efficacy and safety profiles vary. For instance, nata-

lizumab is more effective (on average) than dimethyl

fumarate but associated with important side effects and

increased risk of progressive multifocal leukoencephalo-

pathy, which can cause death.23,24

Recently, a 2-stage model was presented to predict the

personalized probability of relapse within 2 y in patients

diagnosed with RRMS.12 Three phase III RCTs were

used: AFFIRM, DEFINE, and CONFIRM.25–27 Patients

were randomized into 3 active drugs (natalizumab, glati-

ramer acetate, dimethyl fumarate) and placebo, as shown

in Figure 1.

In a first stage, the baseline risk score for relapse was

developed, which is a score that summarizes the patient-

level characteristics and indicates the severity of the base-

line health condition. In a second stage, the baseline risk

score was used as the only effect modifier, which has an

impact on relative treatment effects, in a network meta-

regression model to predict the risk to relapse within the

next 2 y under the 3 drugs or placebo. The results are

presented in Figure 2 as well as in an interactive R-Shiny

application available at https://cinema.ispm.unibe.ch/shi-

nies/koms/. A detailed description of the development of

the RRMS personalized prediction model, which we use

as an example here, has been previously given.12

Such models can be used to guide clinical decisions,

assuming heuristically that relapse is the only health out-

come of interest. For example, this prediction model

would recommend dimethyl fumarate to patients whose

baseline risk is lower than 25% and natalizumab to

patients whose baseline risk is higher than 25%. How-

ever, even when a patient has baseline risk score equal to

30%, where natalizumab minimizes the predicted risk to

relapse, the absolute predicted difference in relapse prob-

ability is only 5% compared with dimethyl fumarate. In

addition, natalizumab is a drug with more serious side

effects compared with dimethyl fumarate; hence, the

doctor in discussion with the patient might decide to

administer dimethyl fumarate.

We want to evaluate whether this personalized predic-

tion model could guide the decision-making process. We

will compare the treatment decisions that this model

entails (‘‘treat patients according to the prediction

model’’) to those from ‘‘one-size-fit-all’’ strategies: ‘‘treat

Figure 1 Net-graph: treatments compared in each one of the

available randomized controlled trials: AFFIRM, DEFINE,

and CONFIRM.26–28

Chalkou et al. 3



none,’’ ‘‘treat all patients with natalizumab,’’ ‘‘treat all

patients with dimethyl fumarate,’’ and ‘‘treat all patients

with glatiramer acetate.’’

Methods

In the next section, we describe how treatment recom-

mendations via a prediction model are reached when we

have multiple treatment options. In the subsequent sec-

tion, we introduce the proposed extension of the DCA

methodology when considering several competing treat-

ment strategies. In the ‘‘Comparing Different Treatment

Strategies via DCA’’ section, we describe the implemen-

tation and software used to evaluate the model on

predicting the optimal treatment to prevent relapsing

within the next 2 y in RRMS.

Threshold Values

Let us consider that there are several treatment options

available for a health condition. Each available treat-

ment option is denoted with j, where j= 1, 2, . . . , J .

Each treatment is associated with different side effects,

cost, and inconvenience. For a dichotomous outcome,

the threshold value Tj for treatment j is defined as the

minimum risk difference compared with control treat-

ment that renders treatment j worth taking. Tj sums into

a single value—the harms, costs, and inconvenience of

treatment j—and expresses how much benefit would be

expected to outweigh the harm that treatment j might

cause. At a population level, setting Tj = 20% means

that we would be willing to treat up 5 patients with j to

prevent 1 patient relapsing; 4 patients will be unnecessa-

rily taking the drug (and hence subjected to its toxicity)

and are traded against 1 patient with prevented relapse.

In the RRMS example, it would be reasonable to set a

lower threshold for dimethyl fumarate and glatiramer

acetate compared with natalizumab (TDF ¼ TGA ¼ 10%

and TN ¼ 20%) because of their different side effect

profiles.

Note that specifying Tj is not a novel feature of our

proposed methodology but rather a routine and neces-

sary aspect of traditional clinical trial methodology. It is

required both to determine sample size and to evaluate

the clinical relevance of the findings: if the difference in

event rates between treatment j and control is statistical

significant but less than Tj, we infer that while better than

control, j should not be used in practice. As different

patients might weight differently the risk of an event and

risks associated with each treatment, a clinically relevant

range of threshold values for all treatment options may

be indicated.28 In the RRMS example, we used a range

of threshold values based on discussions with 2 experi-

enced MS neurologists (see the acknowledgments) on the

drugs’ side effects and toxicity to illustrate how the sug-

gested methodology could be applied.

Reaching Treatment Recommendations when

We Have Multiple Options via a Model

Let us consider a personalized prediction model for the

probability of an event, Ri, j, for each patient i, where

Figure 2 Estimated probability to relapse within the next 2 y as a function of the baseline risk score. The x-axis shows the

baseline risk score of relapsing within the next 2 y, and the y-axis shows the estimated probability of relapsing within the next 2 y

under each of the treatments. Between the 2 dashed vertical lines are the baseline risk values observed in the data used.
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i = 1, 2, ., N, under each available treatment option j,

where j= 1, 2, . . . , J . Then, the risk difference, RDi, j, for

patient i between treatment j and the control treatment

(or placebo) is the difference between the patient’s pre-

dicted probabilities under these 2 options: RDi, j=

Ri, control � Ri, j: Whether patient i will be prescribed treat-

ment j depends on several factors. First, treatment j

needs to be effective ,RDi, j.0; that is, it must decrease

the predicted probability of a harmful outcome com-

pared with the control treatment. Second, the benefits of

treatment need to outweigh its harms. For example,

natalizumab is a drug with important side effects and is

associated with increased mortality.23,24 Now, imagine

an RRMS patient, whose predicted risk to relapse within

2 y is decreased by RDi,N = 3% under natalizumab

compared with placebo. It is possible that, given the side

effects of treatment, this patient will not choose natalizu-

mab for such a small reduction in the predicted probabil-

ity of relapse.

We define the threshold value Tj as the minimum risk

difference compared with control that renders treatment

j worth taking. Tj depends on the risks, harms, costs, and

inconvenience of treatment j. For a patient i, the recom-

mended treatment j under the prediction model is the one

that satisfies max RDi, j � Tj
� �

, between those treatments

with RDi, j � Tj. When all active treatments lead to

RDi, j\Tj, then the control treatment is recommended for

patient i. In Table 1, we present a fictional example

showing how treatment recommendation is made via a

prognostic model, with assumed threshold values

TDF=TGA=10% for dimethyl fumarate and TN=20%

for natalizumab.

While the model makes personalized predictions under

each treatment j, the threshold values Tj are not based on

individual preferences.28 To evaluate the clinical useful-

ness of the model, we first need to understand the typical

range of preferences of patients, with respect to the

possible tradeoff between the harms and benefits of each

treatment. Then, these preferences will determine the

range of thresholds over which the clinical utility of the

model comparing the various competing strategies

should be assessed.28

Comparing Different Treatment Strategies via DCA

In the case of medical treatments, there are several deci-

sion strategies that can be evaluated and compared. Con-

sider a treatment strategy s that refers to the choice

between j= 0, 1, . . . J treatments, with 0 denoting the

control. That strategy recommends a treatment for each

patient and can be ‘‘treat all with drug j’’ (s= j), ‘‘treat

none’’ (s= 0), or a more nuanced strategy suggested by

a prediction model. A strategy associated with a predic-

tion model was discussed in detail in the previous sec-

tion; now assume that the recommended treatment for a

patient is well defined in each of the s competing strate-

gies. Control could be any treatment or combination of

treatments used as reference (e.g., standards of care, pla-

cebo, or no treatment at all). From now on, we will

assume placebo as control and strategy s= 0 as the

‘‘treat none’’ strategy.

The measure of performance of each strategy is the

NB. The NB is the benefit that a decision entails minus

the relevant harms weighted by a tradeoff preference

value. In the case of medical treatments, benefit could be

measured as the reduction in a harmful health outcome

(e.g., relapses) with the treatment. Harms include all dis-

benefits of treatment, including side effects, risks, finan-

cial cost, and inconvenience. Vickers et al. described in

detail the DCA methodology and defined the net treat-

ment benefit for a single treatment.9 The NB estimation

involves counterfactuals, the unobserved outcome if a

particular strategy is employed. Consequently, the

estimation of NB for a model predicting treatment

benefit is best estimated using RCT data.9

Table 1 Reaching the Recommended Treatment, via a Prognostic Model, between 4 Options: Placebo, Glatiramer Acetate,

Dimethyl Fumarate, and Natalizumab (Hypothetical Example in Relapsing-Remitting Multiple Sclerosis)

Treatment Placebo Glatiramer Acetate Dimethyl Fumarate Natalizumab

Predicted risk to relapse within 2 y (Ri, j) 75% 66% 52% 44%
Predicted risk difference versus placebo (RDi, j) - 9% 23% 31%
Threshold value for treatment j (Tj) 10% 10% 20%
RDi, j � Tj 21% 12% 11%
Recommended treatment via the prediction model Dimethyl fumarate

The bold font indicates the maximum difference between the risk difference of treatment j, RDi, j, and its threshold value Tj, based on which

the optimal treatment via the prediction model is recommended.

Chalkou et al. 5



We generalize the idea to the NB of a strategy s, NBs,

for 2 or more treatment options, and we show how to

estimate it in a PMA and NMA of RCTs. We define NBs

as the benefit (decrease in event rate using strategy s)

minus the treatment rates multiplied by a set of

treatment-specific threshold values Tj. The threshold val-

ues Tj are measured on a risk scale (from 0 to 1), which

identifies which reduction in risk will justify the use of

each treatment. Notice that the value of Tj may vary

from patient to patient depending on personal prefer-

ences and other medical considerations (such as comor-

bidities). The strategy s with the highest NB, for specific

threshold values Tj, is chosen as leading to better clinical

decisions.9

More specifically, we define the NB of each strategy s

compared with strategy s= 0 (‘‘treat none’’) as

NBs = e0 � es �
X

j

ps, j3 Tj,

where e0 denotes the event rate under no treatment, es

the event rate under strategy s, and ps, j the proportion

of patients treated with treatment j under strategy s.

Estimation of e0. When data from 1 RCT with placebo

are available, e0 is directly quantifiable from the data as

the observed proportion of participants with an event in

the placebo arm ê0 = eData
0

, where Data is the data set of

all available RCTs.9 However, when we have several

RCTs instead of one, the estimation needs to account for

the fact that patients are randomized within trials but

not across them. Hence, when estimating event rates, we

cannot simply pool treatment arms together or results

will be biased (Simpson’s paradox).29,30 In this case, we

first need to perform a meta-analysis of all placebo event

rates in Data across trials to obtain an estimate of the

pooled event rate in the placebo ê0

Estimation of ps, j and es. The interest now lies in the esti-

mation of es and ps, j with strategy s when several RCTs

are available that compare different subsets of the treat-

ments. This is accomplished by considering the congru-

ent data set for strategy s, Datas. A congruent data set

for s is the subset of Data including those patients for

whom the recommended treatment coincides with the

actual given treatment. Using Datas, we estimate all ps, j

as the observed proportion of participants under each

treatment j in strategy s, p̂s;j ¼ pDatass;j .

To derive es we need the following steps. First, we

need to estimate the event rate es, j for each treatment as

recommended by strategy s. Then, the weighted average

event rate under strategy s can be estimated as

ês ¼
X

J

j¼0

pDatass;j 3 ês;j:

The quantity ês;j depends on the strategy and the avail-

able data.

1. When we have only 1 RCT, then ês;j ¼ e
Datas
j ; that is,

es, j is estimated as the observed proportion of events

under arm j in Datas.

2. When we have several RCTs, we first need to perform

a meta-analysis of all placebo arms in Datas to obtain

an estimate of the pooled placebo event rate ês;0.

Then, we perform a synthesis of all studies in Datas to

estimate the pooled risk ratio of each treatment versus

the control, RRDatas
j . Then, the treatment-specific event

rates are ês;j ¼ ês;0 3 RR
Datas
j .

a. In case Datas does not include placebo arms

(e.g., when the treatments are highly effective or

when the threshold values set are very low, it is

more likely for the model to recommend an

active treatment rather than placebo, and there-

fore, the congruent data set will include only

active treatment arms), we could estimate the

pooled event rate ês;k for another treatment k

(instead of ês;0), designated as the reference treat-

ment, included in the congruent data set. Then,

we again perform a synthesis of all studies in

Datas to estimate the pooled risk ratio of each

treatment versus k treatment, RRDatas
j . Then, the

treatment-specific event rates are ês;j ¼ ês;k 3

RR
Datas
j

b. When Datas includes only 1 treatment arm, we

could estimate the event rate ês;j as a meta-

analysis of all j arms in Datas:

3. When the strategy s is treat all with treatment j = x,

with x 6¼ 0, the event rate ês;x can be estimated from

the entire data set Data as ês;x ¼ êx ¼ ê0 3 RRData
x .

The observed proportion pDatass, x is equal to 1, whereas

the observed proportion pDatass, j 6¼x is equal to 0.

4. When the strategy s is ‘‘treat none,’’ then the NB is 0

as ês;0 ¼ ê0, and the p̂s;j ¼ p
Datas
s;j is 0 for all the avail-

able treatments j.

Hence, considering the nature of the strategies, the

congruent data set, Datas, is mainly used when the NB

of a personalized model needs to be estimated. For the

NB estimation of all other ‘‘fit all’’ strategies, the entire

6 Medical Decision Making 00(0)



data set, Data, is used. Considering also the nature of the

available data, when several RCTs comparing several

treatments are available, NMA and/or meta-analysis

must be performed for the NB estimation; however,

when only 1 RCT is available, the observed proportion

of the event can be directly estimated.

NB and comparisons of strategies. We define the NB,

which can be applied to all strategies and settings (i.e., 1

RCT, several RCTs, single treatment comparison, and

several treatment comparisons) as

NBs = e0 �
X

J

j= 0

ps, j 3 es, j �
X

J

j= 0

ps, j 3 Tj:

The NBs ranges between �maxfTjg and 1: It is �maxfTjg
when there is no decrease in event rate compared with

‘‘treat none,’’ and at the same time, all patients take the

drug with the highest threshold value Tj. NB has a theo-

retical maximum of 1 for the impossible case in which the

decrease in event rate is 100% and none of the patients

takes any treatment.

The advantage of any strategy s=w compared with a

strategy s=m, for specific threshold values Tw and Tm,

can be calculated as the difference between the NBw and

the NBm, and can be interpreted in terms of the decrease

in event rate as follows: the use of strategy w compared

with strategy m leads to NBw � NBm fewer events for a

constant treatment rate in each treatment j:

All of the required steps to calculate the NB for sev-

eral strategies into an NMA of the RRMS example are

presented in detail in Table 2. Following these steps, the

NB for each strategy s is estimated for each combination

of threshold values. If the personalized model has the

highest NB across the entire range of threshold values,

then its clinical relevance compared with the default stra-

tegies can be argued. If the optimal approach depends on

the threshold values, then the typical conclusion would

be that the personalized model is of unproven benefit.28

Application in Comparison of Treatment

Strategies in RRMS

We used NB to evaluate the clinical usefulness of the

2-stage personalized prediction model (described briefly in

the ‘‘Case Study’’ section). As natalizumab is a treatment

with serious side effects and is less safe than the other 2

options, patients would be prescribed natalizumab only

when their benefit (here the predicted risk difference) is

high. Dimethyl fumarate and glatiramer acetate, on the

other hand, are similar in terms of side effects and consid-

ered safer than natalizumab. In line with 2 consulting MS

neurologists (see the acknowledgments), the threshold for

natalizumab was set higher than those for dimethyl fuma-

rate and glatiramer acetate.

We first assume a threshold value TN = 20% for nata-

lizumab and an equal (and lower) threshold value for the

other 2 treatments, TGA = TDF = 10%. These threshold

values reflect the drugs’ profiles. Different patients might

weight in differently the risk to relapse and the risks asso-

ciated with each treatment. Therefore, we consider a

range of threshold values for natalizumab (19%–40%) in

combination with a range of common threshold values

for dimethyl fumarate and glatiramer acetate (4%–25%).

These ranges were selected based on safety concerns for

each drug and on the congruent data set’s limitations;

for lower threshold values, the NB could not be calcu-

lated because the congruent data set had only single-arm

studies; hence, NMA could not be conducted. Then we

plot NBs as a function of threshold values Tj, to identify

which treatment strategy leads to better clinical decision

under different preferences on threshold values.

All of our analyses were done in R,31 using version

3.6.2. We made the code available in the following

GitHub library: https://github.com/htx-r/Reproduce-

results-from-papers/tree/master/DCA_NMA. The analy-

sis code uses the metaprop command to estimate the

event rate in control arm and the netmeta command to

estimate the relative risk for each active treatment versus

placebo.

Results

The results from comparing the 5 competing strategies

with treatment thresholds TN ¼ 20%, TDF ¼ TGA ¼ 10%

are presented in Table 3, following all the steps presented

in Table 2. A more detailed description of these estima-

tions is presented in the appendix. Using these thresholds,

the strategy based on the prediction model will recom-

mend dimethyl fumarate to 1251 patients, natalizumab to

740 patients, and placebo to 9 patients. No patient is

recommended to take glatiramer acetate. For the example

threshold values (TN ¼ 20%, TDF ¼ TGA ¼ 10%), the

congruent data set with the model strategy includes 652

patients: 4 patients in placebo, 418 in dimethyl fumarate,

and 230 in natalizumab. The NBs values are presented in

Table 2 and show that treating RRMS patients using the

strategy ‘‘treat patients according to the prediction

model’’ results in higher NBs compared with the default

‘‘one-size-fits-all’’ strategies. The NBs for the ‘‘treat

patients according to the prediction model’’ strategy is

equal to 0.17.
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Table 2 Detailed Description of the Net Benefit Estimation for ‘‘Treat All with Treatment j’’ and ‘‘Treat Patients according to the Prediction Model’’ Strategies on

the Relapsing-Remitting Multiple Sclerosis Examplea

Treat All with

Treat according

to the Model

Placebo

(‘‘Treat

None’’)

Glatiramer

Acetate

Dimethyl

Fumarate Natalizumab

Placebo

(‘‘Treat

None’’)

Glatiramer

Acetate

Dimethyl

Fumarate Natalizumab Total

Treatment

rate

0% 100% 100% 100% pDatas
0

pDatas
1

pDatas
2

pDatas
3

P

J

j= 0

p
Datas
j

Event rate ê0 as a meta-

analysis of

all placebo

arms in Data

ê1 ¼ ê0 3RRData
1

ê2 ¼ ê0 3RRData
2

ê3 ¼ e0 3 RRData
3

ês;0 as a meta-

analysis of

all placebo

arms in Datas

ês;1 ¼ ês;0 3RRDatas
1

ês;2 ¼ ês;0 3RRDatas
2

ês;3 ¼ ês;0 3 RRDatas
3

ês ¼
P

J

j¼0

p
Datas
j 3 ês;j

Decrease in

event rate

0 ê0 � ê1 ê0 � ê2 ê0 � ê3

ê0 �
P

J

j¼0

p
Datas
j 3 ês;j

Net strategy

benefit

0 NB1 ¼ ê0 � ê1 � TGA NB2 ¼ ê0 � ê2 � TDF NB3 ¼ ê0 � ê3 � TN
NBmodel ¼ ê0 �

P

J

j¼0

p
Datas
j 3 ês;j �

P

J

j¼1

p
Datas
j 3Tj

aThe threshold values for glatiramer acetate, dimethyl fumarate, and natalizumab are noted as TGA,TDF , and TN respectively.

Table 3 Net Benefit (NB) Estimation for Each Strategy in the Multiple Sclerosis Example: ‘‘Treat None,’’ ‘‘Treat All Patients with Glatiramer Acetate,’’ ‘‘Treat All

Patients with Dimethyl Fumarate,’’ ‘‘Treat All Patients with Natalizumab,’’ and ‘‘Treat Patients according to the Prediction Model’’a

Treat All with Treat according to the Model

Placebo
(‘‘Treat None’’)

Glatiramer
Acetate

Dimethyl
Fumarate Natalizumab

Placebo
(‘‘Treat None’’)

Glatiramer
Acetate

Dimethyl
Fumarate Natalizumab Total

Treatment rate 0% 100% 100% 100% 4/652 = 0.6% 0/652 = 0% 418/652 = 64.1% 230/652 = 35.3% 100%
Risk ratio from
congruent data set

— 0.68 0.59 0.52 — — 0:24 0:40

Event rate ê0= 53% ê1 ¼ 36% ê2 ¼ 31% ê3 ¼ 28% ês;0= 75% — ês;2= 18% ês;3 = 30% ês ¼ 23%
Decrease in event rate 0 17% 22% 25% 30%
Net strategy benefit 0 NB1 = 0.07 NB2 = 0.12 NB3 = 0.05 NBmodel = 0.17

aThe threshold values used for the NB estimation are TGA ¼ TDF ¼ 10% and TN ¼ 20%, respectively.
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In Figure 3, we present the NBs for each strategy when

19%� TN � 40% and TGA = TDF = 10%. This is an

introductory plot that connects the traditional way of

presenting the DCA results with its suggested extension

and shows that the strategy ‘‘treat patients according to

the prediction model’’ has the highest NBs compared with

the other strategies, almost in the whole range of natali-

zumab threshold values. We were restricted to using as

the minimum threshold a natalizumab value of 19%, as

lower threshold values result in a congruent data set con-

sisting of only single-arm studies, and hence, NMA can-

not be conducted. For threshold values higher than 40%,

the results remain the same, and the strategy ‘‘treat based

on the model’’ outperforms the others.

In Figure 4, we also present a heat plot showing the

strategy with the highest NBs when TN is between 19%

and 40% in combination with TGA = TDF ranging

between 4% and 25%. The empty gray cells in Figure 4

correspond to TGA = TDF.TN , which is deemed clinically

irrational. The numbers in the cells are differences in NB

between the 2 strategies (multiplied by 100). As our focus

is the clinical utility of the personalized prediction model,

Figure 4 presents the NB from the model versus the

highest NB from the default strategies. For instance,

when TGA = TDF = 20% and TN 25%, the ‘‘treat all with

dimethyl fumarate’’ strategy outperforms all other strate-

gies with an NB difference (multiplied by 100) versus

‘‘treat patients according to the prediction model’’ strat-

egy of 0.2. This means that treating everyone with

dimethyl fumarate would lead to 0.2% fewer relapse

events compared to choosing the treatment based on the

model. The strategy ‘‘treat patients according to the pre-

diction model’’ performs either better than or close to

the one-size-fit-all treatment strategies (based on the NB

differences). However, even small differences may be

important in clinical decision making. The strategy ‘‘treat

patients according to the prediction model’’ leads to bet-

ter clinical decisions, when the thresholds for dimethyl

fumarate and glatiramer acetate are low (\; 10%) or

when the threshold value for natalizumab is low

(\; 22%). The ‘‘treat none’’ strategy seems to outper-

form the others when all threshold values are high (i.e.,

for natalizumab .25%, for dimethyl fumarate and gla-

tiramer acetate .20%). The ‘‘treat all with dimethyl

fumarate’’ strategy seems to lead to better clinical deci-

sions when the thresholds for dimethyl fumarate and gla-

tiramer acetate are intermediate (between 10% and

20%) and at the same time the threshold for natalizumab

is high (.25%). The strategy ‘‘treat all patients with gla-

tiramer acetate’’ does not lead to the largest NB for any

of the examined threshold combinations. Our methodol-

ogy raises some questions about the universal applicabil-

ity of the current personalized model and indicates that a

better personalized model may be needed to be univer-

sally applicable for decision making.

Discussion

We extended the DCA methodology to an NMA frame-

work to evaluate the clinical usefulness of a prediction

Figure 3 Decision curve analysis plot for a range of threshold values for natalizumab (19%–40%) and equal constant threshold

values for dimethyl fumarate and glatiramer acetate (10%). The x-axis represents the range of threshold values for natalizumab,

and the y-axis represents the net benefit for each of the 5 strategies: ‘‘treat none,’’ ‘‘treat based on the model,’’ ‘‘treat all with

natalizumab,’’ ‘‘treat all with dimethyl fumarate,’’ and ‘‘treat all with glatiramer acetate.’’ The dashed black line represents the

highest net benefit.
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model that aims at recommending a treatment among

many possible options according to individual character-

istics.9,32 The personalized prediction models are used to

inform patients and decision makers about the most

appropriate treatment for each patient and hence con-

tribute to personalized medicine.12,13,33 Such models need

to be evaluated for their ability to guide treatment deci-

sions at the point of care. For this purpose, Vickers et al.

proposed DCA, which is the tool to evaluate such predic-

tion models by comparing the benefit–risk tradeoffs they

entail to those of other default treatment strategies or

other available personalized prediction models.9 The data

used to evaluate such prediction models typically come

from an RCT that compares 2 treatments: a reference

treatment and the treatment of interest. As the treatment

options for each condition are numerous and their effects

are evaluated in multiple RCTs, the extended proposed

DCA approach could contribute to evaluating the ability

of the widely used personalized prediction models to

guide treatment decisions. We applied our methodology

for RRMS to evaluate the strategy of choosing between

3 disease-modifying drugs (natalizumab, dimethyl fuma-

rate, glatiramer acetate) and placebo using a personalized

prediction model.12

The methods and their application in the data set of

treatments for RRMS have several limitations. The per-

sonalized prediction model compares only 3 active drugs

among all available options (more than 15 available).

The same approach can be applied to personalized pre-

diction models that compare all relevant competing

drugs, assuming that studies that compare them are

available. The main limitation of our application is the

inefficient data set’s sample size; the estimation of the

parameters needed to estimate the NB in our approach

needs a large amount of data to ensure that the sample

size of the congruent data set will be large enough to

conduct NMA. Confidence intervals around the esti-

mated NB could be shown to present uncertainty due to

the limited sample size34; however, they are not typically

used within a classical decision-making approach.28

Another technical issue is that it is possible that the

congruent data set for some thresholds includes many

single-arm studies. In our application, we omitted the

single-arm studies from the NMA in the congruent data

set to establish causal effects of the treatments, but this

resulted in discarding potentially relevant information.

When the congruent data set consists of single arms,

(network) meta-analysis cannot be conducted at all.

Consequently, NBs cannot be estimated for some thresh-

old combinations, and researchers have to calculate the

lower and upper bounds for the thresholds examined to

ensure that they would lead to enough data to estimate

NB. In our application, the lower bounds were outside

the range of thresholds indicated by the expert

Figure 4 Heat plot for the decision curve analysis, in a range of threshold values. The same threshold is assumed for dimethyl

fumarate (DF) and glatiramer acetate (GA) (4%–25%). The threshold values for natalizumab range between 19% and 40%. The

plot shows which approach has the highest net benefit between all possible approaches: (a) treat all patients with placebo, (b)

treat all patients with natalizumab (N), (c) treat all patients with dimethyl fumarate, (d) treat all patients with glatiramer acetate,

and (e) treat patients based on the prediction model. The empty gray cells present the threshold value combinations that are not

clinically possible. The numbers in the cells are differences in net benefit (NB) between the 2 strategies. When the ‘‘treat patients

based on the prediction model’’ strategy is the best, the number in the cell (i.e., red cells) is the difference between its NB and the

NB of the second-best strategy. Otherwise, we present the difference between the NB of the best strategy and the NB of the

‘‘treat patients based on the prediction model’’ strategy. The presented NB estimations are multiplied by 100.
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neurologists as relevant. In practice, however, the lack of

suitable data to estimate NB for relevant thresholds can

limit the applicability of DCA. The issue of single-arm

studies in the congruent data set should be the subject of

further research. Models that include single-arm studies

in the meta-analysis could be considered, although the

risk of bias in the estimates they provide is not to be

underestimated.35–39 Finally, the strategies need to be

evaluated for a relevant range of threshold values for all

treatment options, as different patients might weight dif-

ferently the risk of an event and risks associated with

each treatment.28 In our application, we defined equal

threshold values for dimethyl fumarate and glatiramer

acetate and higher threshold values for natalizumab

according to the expert opinion of 2 MS neurologists

based on the drugs’ safety profiles. In practical applica-

tion, the integration of utilities across a distribution of

patients’ preferences might be used to justify the range of

relevant threshold values.28

To our knowledge, this is the first attempt to use

DCA to evaluate a prediction model that refers to multi-

ple treatments and, consequently, uses evidence from

several studies that compare subsets of the competing

treatments, relying on the assumptions underlying NMA

and prediction models (transitivity, consistency, correct

model specification, etc.).40–43 The proposed approach

can be used to compare several treatment strategies, and

we show how to estimate the NB of a treatment strategy

using causal treatment effects. If the strategy based on

the personalized model is shown to be clinically useful

compared with the default ‘‘treat all patients with X’’

strategy, this does not necessarily mean that it should be

implemented in practice. In many clinical areas, the

treating physician evaluates the patient and determines

the treatment strategy without using a guiding tool. This

state-of-the-art strategy needs to be compared with the

strategy based on the model in a randomized clinical

trial, to inform about the health benefits, patient experi-

ences, and costs associated with clinical implementation

of the decision tool.32,44,45 The original formulations of

DCA were intended to supplement, rather than replace,

other decision analytic techniques. For instance, a diag-

nostic test might be evaluated using a decision curve,

with utilities determined (implicitly) by a range of thresh-

old probabilities, or by a decision tree, in which utilities

are assessed more formally, such as by using data from

the literature. A cost-effectiveness analysis would incor-

porate economic costs obtained by additional research.

The advantage of DCA is that it can be implemented

without the need for specifying a large number of para-

meters that must be obtained from sources other than

the current data set; the disadvantage is that it depends

on the assumption that clinicians are using threshold

probabilities that are rational. Comparably, our pro-

posed method aims to supplement, not replace, other

decision-analytic methods for evaluating treatments and

shares the similar advantage of practicability and disad-

vantage of the assumption of rational thresholds.

Personalized prediction models for treatment recom-

mendation have recently gained ground, and their popu-

larity will increase with the availability of more data. It

is therefore important that such models are evaluated for

their performance before they are ready to be used by

decision makers. The traditional biostatistical metrics of

calibration and discrimination can be useful for analysts

to determine how to build and evaluate a model but can-

not determine its clinical value.8,9,28 We have contributed

to the existing methodological arsenal by providing a

method to infer about a prediction model’s clinical utility

in a (network) meta-analysis framework. With the pro-

posed approach, and assuming that enough data from

several randomized trials would be available, the evalua-

tion of clinical relevance will now be possible for several

prediction models comparing many treatment options.
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