View metadata, citation and similar papers at core.ac.uk

Influence of data clustering on in-order
multi-core processing systems

D. Claeys, H. Bruneel, B. Steyaert, W. Mélange, and
Walraevens

In multi-core in-order processing systems, only one coretmutilized
when the instruction at the head of the instruction queueyres data
input for the next instruction in the queue. Although in-ergirocessing
has been studied in the past, the influence of data clustareng the
extent to which subsequent instructions rely on each athdata, has
been largely overlooked. We therefore develop a queueindeimand
provide closed-form formulae for the stability conditiondathe average
time before instructions are executed. These expressieaslycreflect
that data clustering can have a devastating impact.

Introduction: Multi-core processing systems (architectures) cannot

always work at full capacity as instructions might rely ortadproduced
by other instructions. In order to alleviate this probleime majority of

the modern architectures adopt the “out-of-order exenuparadigm"
[2, 3], which means that instructions do not necessarilyeht be

executed by the original order in a program. However, thigiires some
additional software and transistors and thus leads to a&idasgst and
energy consumption. Therefore, Intel ATOM microprocessarhich

are specifically developed for smartphones, PDAs and tsbléhere
cost and energy efficiency are of primordial importance padm-order

execution" [4, 5]. In such systems, only one processor ceagtive if the
instruction at the head of the instruction queue producésidaut for the
next instruction in the queue , even if other instructiores @resent in the
instruction queue that do not require that data. In this papeinvestigate
the influence of “data clustering”, i.e., the tendency ofringtions to rely
on data from previous instructions, on the overall perforoga We believe
that this effect has been largely overlooked in the exiditegature. In the
next section, we develop an analytic (queueing) model andstablish a
formula for the mean delay of instructions. We then dischissexpression
and some numerical examples.

-

P
brought to you by i CORE

provided by Ghent University Academic Bibliography

then reads

A<2—a . «h)

‘}he stability condition describes for which range of meaniivak rates it
is guaranteed that all instructions can be executed withiimige time.
The right-hand-side of (1) thus represents the supremurheofdierable
mean arrival rate of the processing system. When the gtabdindition
is fulfilled, the average time - denoted by{dE - until an instruction is
executed equals:

—2u(0)(1—a)+22—a—-NA+1)+2ex—1)+E"Q1)

Eldl= A2 —a—N) '
)
whereby
_ 2—a—-XAz1
u(0) = 1-a)-1)

with 2; the unique root ofz2 — (1 — a4 a2)E(z) inside the open
complex unit disk{z € C: |z| < 1}. For instance, in the special case of
geometric arrivals, i.e.,

B 1
14+ A=Az

expression (2) for i) transforms into the following closed-form formula:

E(z)

)

1-22—/1+40(1 - a)

Eld= 2A(A — 2+ a)

Discussion of results and numerical examples: In this section, we discuss
our results and some numerical examples. Let us first exarfiae
stability condition. Equation (1) exhibits that has a direct impact: the
supremum of the tolerable mean arrival rate decreaseglinedh «. In
addition, whernn = 0, both cores are always active whenever at least two
instructions are present, because no data dependencyrgppbareas in
the opposite casex(= 1), instructions are always data dependent so that
the system becomes equivalent with a single-core proagesgstem.

Analytic model: Instructions arrive at the processing unit (“the system"Next, in Fig. 1, the average time[& until instructions are executed

and are placed in an instruction queue in awaitance of beiaguéed by
a processor core. The time axis is divided into fixed-lengthtiguous
time periods which correspond to clock cycles, i.e., theettmexecute an
instruction. The number of arriving instructions duringisecutive clock
cycles is modelled by a sequence of independent and idéynticstributed
random variables, with common probability generating fioicE (z). The
average number of arriving instructions during a clock eyisl denoted
by X\ and is by definition equal t(E/(l) (we use primes to indicate
derivatives). As the instruction queue is very large in pcacto avoid loss
of instructions due to a full buffer, it is assumed that th&trinction queue
has an infinite capacity. As in contemporary Intel Atom pestes (Atom
N5xx, D5xx, D2500, D2700, N2600 and N2800 [6, 7]), we conside
dual-core system, i.e., two processor cores are avaiMbien two or more
instructions are present, we denote the probability theirtstruction at the
head of the instruction queue produces data input for theinsttuction

in the queue byv. In that case, the second instruction cannot be executed

although two cores are available and, as instructions aeepsed in order,
i.e., in a first-come-first-served manner, the second alaileore cannot
execute any instruction (the two instructions block all tkers). In the
other case, both cores execute an instruction.

In [1], @ model has been analyzed whereby two classes of roesp
called 1 and 2, enter a system with two types of servers, saydMBaServer
A can only serve class-1 customers whereas server B is dedit@mclass-
2 customers. Customers of both classes are accomodateéd itoarmon
gueue and are served in their order of arrival. Subsequsitmers belong
to the same class with probability

Although the model in [1] is fundamentally different as thedel in
the present paper, because one class of customers (thgctists) and
two identical servers (the processor cores) are considb@t systems
behave identical: when at least two customers (instrus}iane present,
only one can be served (executed) with probabititand two customers
(instructions) can be served (executed) with probability «. We can thus
rely on the results that have been deduced in [1]. The staloitindition

is depicted versus\, for various values ofa and for a geometric
distribution of the number of per-cycle instruction arfs&zaWe observe

’lls

=}

,\
Qe
et

20

-~ Ut b
> 3

[ole)
—~oooo

a
Qe

Fig. 1. E[d] versus\, for various values ofv

that data clustering has a negative impact, in the sens&{Hptncreases
and the stability region shrinks. Finally,[& is shown versus for various
values of) in Fig. 2. Fig. 2 highlights that data clustering has a dextasy
impact, except for small mean arrival rates. Indeed, in #ited case,
the number of arriving instructions is considerably lesntthe number
of instructions that can be executed by a single core anctfibrer;, the
guestion of whether the second core is also active or notermhiied by
« - is not very relevant.

Conclusion: We have developed an analytic model in order to investigate
the influence of data clustering, i.e., the tendency of irt$ions to rely on
data from previous instructions, on the performance of &doi@ in-order
processing system. We have provided an expression for {hersum
of the average tolerable mean arrival rate of instructionsvell as for
the average time until instructions are executed. Thesauias exhibit
the very direct and devastating impact of data clusteringelvdata is

ELECTRONICS LETTERS 12th June 2012 Vol. 00 No. 00

https://core.ac.uk/display/55891236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Eld)

0 01 02 03 04 05 06 07 08 09 1
et

Fig. 2. E[d] versus, for various values ol

heavily clustered, the system even becomes nearly eqofwaith a single-
core processing system. Only in case of small loads, dasiecing has a
negligible impact.

Acknowledgment: The last author is a Postdoctoral Fellow with the
Fund for Scientific Research, Flanders (F.W.O.-Vlaandeieigium.

D. Claeys, H. Bruneel, B. Steyaert, W. Mélange and J. Waénagv
(Ghent University, Department of Telecommunications and Information
Processing, SMACS Research Group, Snt-Pietersnieuwstraat 41, B-9000
Gent, Belgium)

E-mail: dclaeys@telin.UGent.be
References

1 Bruneel, H., Mélange, W., Steyaert, B., Claeys, D., andr&éakens, J.:
‘Impact of blocking when customers of different classessam@mmodated
in one common queueRroceedings of the 1st International Conference on
Operations Research and Enterprise Systems (ICORES 12), 2012, pp. 31-
38.

2 Hennessy, J.L., and Patterson, D.@omputer Architecture: A Quantitative
Approach, 5th Edition, Elsevier, 2012.

3 http://fen.wikipedia.org/wiki/Out-of-order_executio

4 http://www.intel.com/content/www/us/en/processaieh/
atom-processor.html

5 http://software.intel.com/sites/products/documenitéhpc/atom/
application/optimized-for-intel-atom-processor.pdf

6 http://en.wikipedia.org/wiki/Intel_Atom

7 http://ark.intel.com/search/advanced?Family Texeth C2%AE%20Atom
%E2%84%A2%20Processor

