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In multi-core in-order processing systems, only one core can be utilized
when the instruction at the head of the instruction queue produces data
input for the next instruction in the queue. Although in-order processing
has been studied in the past, the influence of data clustering, i.e., the
extent to which subsequent instructions rely on each other’s data, has
been largely overlooked. We therefore develop a queueing model and
provide closed-form formulae for the stability condition and the average
time before instructions are executed. These expressions clearly reflect
that data clustering can have a devastating impact.

Introduction: Multi-core processing systems (architectures) cannot
always work at full capacity as instructions might rely on data produced
by other instructions. In order to alleviate this problem, the majority of
the modern architectures adopt the “out-of-order execution paradigm"
[2, 3], which means that instructions do not necessarily have to be
executed by the original order in a program. However, this requires some
additional software and transistors and thus leads to a larger cost and
energy consumption. Therefore, Intel ATOM microprocessors, which
are specifically developed for smartphones, PDA’s and tablets where
cost and energy efficiency are of primordial importance, adopt “in-order
execution" [4, 5]. In such systems, only one processor core is active if the
instruction at the head of the instruction queue produces data input for the
next instruction in the queue , even if other instructions are present in the
instruction queue that do not require that data. In this paper, we investigate
the influence of “data clustering", i.e., the tendency of instructions to rely
on data from previous instructions, on the overall performance. We believe
that this effect has been largely overlooked in the existingliterature. In the
next section, we develop an analytic (queueing) model and weestablish a
formula for the mean delay of instructions. We then discuss this expression
and some numerical examples.

Analytic model: Instructions arrive at the processing unit (“the system")
and are placed in an instruction queue in awaitance of being executed by
a processor core. The time axis is divided into fixed-length contiguous
time periods which correspond to clock cycles, i.e., the time to execute an
instruction. The number of arriving instructions during consecutive clock
cycles is modelled by a sequence of independent and identically distributed
random variables, with common probability generating function E(z). The
average number of arriving instructions during a clock cycle is denoted
by λ and is by definition equal toE

′

(1) (we use primes to indicate
derivatives). As the instruction queue is very large in practice to avoid loss
of instructions due to a full buffer, it is assumed that the instruction queue
has an infinite capacity. As in contemporary Intel Atom processors (Atom
N5xx, D5xx, D2500, D2700, N2600 and N2800 [6, 7]), we consider a
dual-core system, i.e., two processor cores are available.When two or more
instructions are present, we denote the probability that the instruction at the
head of the instruction queue produces data input for the next instruction
in the queue byα. In that case, the second instruction cannot be executed
although two cores are available and, as instructions are processed in order,
i.e., in a first-come-first-served manner, the second available core cannot
execute any instruction (the two instructions block all theothers). In the
other case, both cores execute an instruction.

In [1], a model has been analyzed whereby two classes of customers,
called 1 and 2, enter a system with two types of servers, say A and B. Server
A can only serve class-1 customers whereas server B is dedicated to class-
2 customers. Customers of both classes are accomodated in one common
queue and are served in their order of arrival. Subsequent customers belong
to the same class with probabilityα.

Although the model in [1] is fundamentally different as the model in
the present paper, because one class of customers (the instructions) and
two identical servers (the processor cores) are considered, both systems
behave identical: when at least two customers (instructions) are present,
only one can be served (executed) with probabilityα and two customers
(instructions) can be served (executed) with probability1 − α. We can thus
rely on the results that have been deduced in [1]. The stability condition

then reads

λ < 2 − α . (1)

The stability condition describes for which range of mean arrival rates it
is guaranteed that all instructions can be executed within afinite time.
The right-hand-side of (1) thus represents the supremum of the tolerable
mean arrival rate of the processing system. When the stability condition
is fulfilled, the average time - denoted by E[d] - until an instruction is
executed equals:

E [d] =
−2u(0)(1 − α) + 2(2 − α − λ)(λ + 1) + 2(αλ − 1) + E

′′

(1)

2λ(2 − α − λ)
,

(2)

whereby

u(0) =
(2 − α − λ)z1

(1 − α)(z1 − 1)
,

with z1 the unique root ofz2 − (1 − α + αz)E(z) inside the open
complex unit disk{z ∈ C : |z|< 1}. For instance, in the special case of
geometric arrivals, i.e.,

E(z) =
1

1 + λ − λz
,

expression (2) for E[d] transforms into the following closed-form formula:

E [d] =
1 − 2λ −

√

1 + 4λ(1 − α)

2λ(λ − 2 + α)
.

Discussion of results and numerical examples: In this section, we discuss
our results and some numerical examples. Let us first examinethe
stability condition. Equation (1) exhibits thatα has a direct impact: the
supremum of the tolerable mean arrival rate decreases linearly with α. In
addition, whenα = 0, both cores are always active whenever at least two
instructions are present, because no data dependency appears, whereas in
the opposite case (α = 1), instructions are always data dependent so that
the system becomes equivalent with a single-core processing system.

Next, in Fig. 1, the average time E[d] until instructions are executed
is depicted versusλ, for various values ofα and for a geometric
distribution of the number of per-cycle instruction arrivals. We observe
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Fig. 1. E[d] versusλ, for various values ofα

that data clustering has a negative impact, in the sense thatE [d] increases
and the stability region shrinks. Finally, E[d] is shown versusα for various
values ofλ in Fig. 2. Fig. 2 highlights that data clustering has a devastating
impact, except for small mean arrival rates. Indeed, in the latter case,
the number of arriving instructions is considerably less than the number
of instructions that can be executed by a single core and therefore, the
question of whether the second core is also active or not - determined by
α - is not very relevant.

Conclusion: We have developed an analytic model in order to investigate
the influence of data clustering, i.e., the tendency of instructions to rely on
data from previous instructions, on the performance of a dual-core in-order
processing system. We have provided an expression for the supremum
of the average tolerable mean arrival rate of instructions as well as for
the average time until instructions are executed. These formulas exhibit
the very direct and devastating impact of data clustering. When data is
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Fig. 2. E[d] versusα, for various values ofλ

heavily clustered, the system even becomes nearly equivalent with a single-
core processing system. Only in case of small loads, data clustering has a
negligible impact.
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