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Abstract: Maleimide chemistry involving amines and thiols is presented and evaluated for 

the design of autonomous self-healing epoxy materials. Model reactions show that amines 

react rapidly with maleimide compounds at room temperature via the Michael addition 

reaction. Moreover, thiols and maleimides react readily in the presence of a tertiary amines 

that are present in the epoxy material. The maleimide conjugation reaction with residual 

amines in the epoxy material ensures chemical bonding of the newly formed network with the 

original materials during crack healing, while in the crack plane, multifunctional thiols react 

with difunctional maleimides to fill the crack area. Healing efficiencies are evaluated using 

the tapered double cantilever beam (TDCB) test method with manual injection of the healing 

agents, revealing a maximum healing efficiency up to 121 % for EPON 828 epoxy material. 

Furthermore, the use of maleimide chemistry has also been evaluated for self-healing 

applications towards a cold-curing resin that is currently used for infusion of wind turbine 

blades (RIM resin). While the healing efficiency is strongly dependent on the type of epoxy 

material, the average maximum peak load for fracture after healing is roughly the same for all 

tested epoxy materials. 
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1. Introduction 

Throughout their lifetime, polymeric materials and coatings are susceptible to mechanical 

damage such as wear, degradation, and microcracking, all of them reducing the mechanical 

properties of these materials. To overcome these limitations, a rapidly emerging field of 

research has resulted in materials that can repair crack damage in an autonomous fashion 

(without any stimulus or human intervention),  referred to as self-healing materials.[1-12]  

The microencapsulation approach, pioneered by White et al. for the healing of epoxy 

materials,[13] is by far the most studied self-healing (SH) concept in recent years. 

Microcapsules that are incorporated in the polymer composite material contain the self-

healing agents (monomers or network precursors) that can (co)polymerize or cross-link upon 

rupture of the capsules as a result of mechanical damage.[6-7, 13-14]  The healing efficiency 

in this particular microcapsule-based self-healing system is dependent on several factors 

including (1) monomer stability in the absence of a catalyst and the polymerization 

kinetics[15-16], (2) mechanical properties of the newly formed polymer in the crack 

plane,[17-18] and (3) chemical compatibility and stability of the catalyst within the 

matrix.[19-20]  

Despite increased research activities, the current research related to self-healing epoxy 

materials has been mainly limited to a few types of chemistries that will be briefly reviewed 

in the next paragraph: (1) ring opening methathesis polymerization (ROMP) based systems 

with dicyclopentadiene and Grubbs’ catalyst, (2) poly(dimethylsiloxane) (PDMS) based 

systems, (3) solvent-based healing systems, and (4) epoxy-based healing systems.  

 

The healing chemistry that was originally developed by White et al. was based on 

encapsulated dicyclopentadiene (DCPD) that starts to polymerize by ring opening methathesis 

polymerization (ROMP) when the DCPD comes into contact with the ruthenium/Grubbs’ 

catalyst that is dispersed in the epoxy matrix.[13] Although DCPD is a cheap and readily 

available healing agent, the Grubbs’ catalyst is not, and is toxic. Moreover, the catalyst shows 

a limited stability and reactivity due to prolonged exposure to oxygen [21], moisture and the 

amine curing agent, while the monomer is prone to autopolymerization.[20] To overcome 

some of these issues, Cho et al. reported on poly(dimethylsiloxane) (PDMS) based self-

healing materials.[22] The polycondensation reaction of hydroxyl-terminated siloxanes and 

alkoxysilanes is catalyzed by organotin compounds that are less expensive, less toxic, and 

proceed in the presence of moisture, which makes this approach more suitable for practical 

applications. However, as the polymerized healing agent is not structurally similar to the 
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polymer matrix, improvement of  the interfacial compatibility between the healing agent and 

the substrate (crack surface) was desired. As a result, a diglycidyl ether bisphenol A based 

epoxy resin was encapsulated, along with an imidazole-metal complex as a latent 

hardener.[23] As the main drawback, the system requires external heat to promote the 

imidazole complex to dissociate into its reactive species, and can thus not be classified as an 

autonomous one. 

In order to reach a more autonomic epoxy-based self-healing system, a polythiol curing agent 

(pentaerythritol tetrakis(3-mercaptopropionate)) was separately encapsulated, allowing curing 

at room temperature.[24] Microcapsules containing amine hardeners were also investigated, 

but the encapsulation of amines although possible [25]remains challenging.[26] 

Microcapsules containing solvents have also been explored for use in self-healing polymer 

composites.[27] The release of solvents upon damage locally swells the matrix and promotes 

the mobility of functional groups to entangle and react across the crack plane. The proposed 

strategy was further improved by mixing a part of epoxy resin with the solvent, which 

combines the solvent healing effect and additional crosslinking reactions.[28] 

‘Click’ chemistry, as introduced by Sharpless [29], was also proposed as healing mechanism. 

Binder et al. [30-32] made use of azide-alkyne chemistry to heal a poly(isobutylene) matrix. 

In this process, a liquid polymer was successfully used as a reactive compound. 

 In a recent contribution, Zhang et al. have explored the use of glycidyl methacrylate (GMA)–

loaded microcapsules for making a self-healing epoxy material.[33] As GMA is a low 

viscosity liquid chemical, it combines two healing actions: solvent effect on one hand, and 

chemical reactions with unreacted functionalities in the matrix via the reactive epoxide groups 

and double bonds on the other hand. This promising concept was shown to be effective for 

cold-curing epoxy materials (EPON 828). At the same time, it broadened the spectrum of 

possible healing agents as the nucleophilic addition reaction of double bonds as a healing 

chemistry was reported for the first time. However, as a result of the reactive nature of the 

applied methacrylate group, the shelf-life of the healing agent is limited at relatively high 

temperature or the monomer may polymerize during the high curing temperatures when the 

synthesis of high-end composite materials, which require a curing temperature between 120 

and 180 °C, is targeted. For the same reason, one may look for compounds that have an even 

higher boiling point than GMA (189 °C) to prevent high pressures in the microcapsules 

during these curing steps and thus prevent microcapsule breakage or leakage. 
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In view of increasing the industrial feasibility for the widespread use of microcapsule-based 

self-healing thermosets and composites, we have explored and evaluated the use of maleimide 

chemistry for the application in autonomous self-healing epoxy materials. Maleimides were 

already extensively used in self-healing as a member of the Diels-Alder reaction with furan 

compounds.[34-37] On the other hand, maleimides are known as well to react at room 

temperature with amines via the Michael addition reaction. Moreover, maleimides also react 

with thiols, while the presence of a tertiary amine catalyst tremendously speeds up the 

reaction.[38] As tertiary amines as well as unreacted amines are present in epoxy materials, 

maleimide chemistry has been considered as a promising chemical strategy for self-healing 

materials. Moreover, maleimides show a low tendency to homopolymerize and have very 

high boiling points, which is important in view of surviving the high curing temperatures or 

the use of self-healing materials in harsh conditions. As far as we know, a healing chemistry 

using maleimide conjugation reactions has not been reported yet. 

 

In this contribution, we have evaluated the use of maleimide chemistry for two different types 

of epoxy materials. First, the proposed strategy was applied to EPON 828, which is 

considered as a reference material for cold-curing epoxy materials in self-healing applications 

and it still remains the most investigated matrix in the field. Then we have extended the same 

methodology to an epoxy material, RIM 135, that is currently widely used for high-end 

applications. For example, Owens Corning and PPG use it as a benchmark resin for glass fibre 

properties testing.[39-40] Due to its extremely low viscosity, it is currently widely used in the 

European market as a cold-curing resin for infusion of large wind turbine blades. Those 

blades are typically made of low temperature curing thermoset resins with glass fibre 

reinforcement. In the past, polyester and vinylester were the standard resins, but epoxy resins 

are increasingly used because of their superior mechanical properties and of the 

environmental problems like stryrene emission styrene emission problems with other 

materials. This application is particularly interesting for self-healing composites, because 

wind turbine blades have to withstand biaxial variable amplitude fatigue loadings for 20 or 

more years. In an early stage, the fatigue damage typically leads to fibre/matrix debonding 

and small matrix cracks in the composite.[41-44] 

 

Another important topic in the self-healing field is to expand the variety of polymer materials 

and composites that are capable of healing. Although most of the self-healing approaches 

have been focusing on the epoxy systems, a few recent reports show the interest in the 
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exploration of other systems and chemistries.[45-49] The improvement of self-healing 

strategies and the extension to other materials requires to broaden our approach and to move 

away from the currently applied types of chemistry. From this point of view, our current 

research aims to broaden the specific chemistries that are currently applied in the 

microencapsulation approach for epoxy materials. The encapsulation process itself is 

currently being optimized in our research group. 

 

 

2. Results and Discussion 

 

2.1. Model study for the kinetics of maleimides and amines/thiols at room temperature 

 

In order to check the feasibility of the proposed maleimide chemistry for self-healing 

applications, we have first performed a detailed study of the reaction kinetics at room 

temperature of monofunctional maleimides with amines and thiols. As the lifetime of a 

material is dependent on the result of crack growth vs. crack repair, reaction kinetics are of 

utmost importance. At the same time, we have compared the maleimide – amine/thiol 

conjugation reaction kinetics with those of the glycidyl methacrylate – amine reactions that 

were proposed by Zhang et al.[33]   

Glycidyl methacrylate reacts with amines via the reactive epoxide group as well as via the 

methacrylate functionality (C=C bond). In order to assess the contribution of each reactive 

group, we have selected two model compounds, each containing the respective reactive group. 

Butyl glycidyl ether (BGE) was chosen as a model compound for the epoxide group, while 

methyl methacyrlate (MMA) was chosen as a model compound to assess the reactivity of the 

C=C bond (see Scheme 1, reaction (1) and (2)). Both compounds were reacted with a primary 

amine and the conversion was monitored by 
1
H NMR. For the maleimides, the aromatic 

phenylmaleimide (PM) was monitored as a model compound (Scheme 1, reaction (3)). In the 

case of MMA and PM, the aliphatic, monofunctional propylamine (PA) was chosen as the 

amine to mimic the reactivity of the the primary amine groups of diethylene amine (DETA), 

while in the case of BGE, benzyl amine (BA) was chosen to prevent overlap of the 
1
H NMR 

signals. All reactions were performed in m-cresol to ensure similar reaction conditions as with 

the aromatic maleimides used later on. 
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Scheme 1: Model reactions in m-cresol for a comparison of the reactivity of amines with (1) epoxide, (2) 

methacrylate and (3) maleimide functionality, respectively. (4) Model reaction for a comparison of the 

reactivity of thiols with maleimide functionality. 
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Figure 1: Reaction kinetics at room temperature of the reaction of BGE and BA (), MMA and PA (), 

PM and PA (), PM and DT (●), PM and DT catalyzed by TEA (), and PM and DT catalyzed by 

grinded EPON 828 epoxy material ().  

 

As can be noticed from Figure 1, maleimides are more reactive towards amines than the 

epoxide or methacrylate groups. The reaction of PM with PA (Scheme 1, reaction (3)) reaches 

full conversion after 10 min, while the reaction of BGE and BA (Scheme 1, reaction (1))  

reaches only 14 % conversion after 120 min, and only 10 % of the C=C bonds react with PA 

after 120 min (Scheme 1, reaction (2)). The high reactivity of maleimides may show faster 

healing rates and hence increase the rate of crack healing vs. crack propagation. 

In a similar way, we have also investigated the reactivity of thiols with maleimides, using 

PM and dodecanethiol (DT) to mimic the reactivity of the used multifunctional thiols 

(Scheme 1, reaction (4)).[50] As can be seen in Figure 1, the reaction proceeds rather slowly, 

reaching 15 % of maleimide conversion in 120 minutes. However, the use of a tertiary amine 
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catalyst (NEt3) dramatically increases the reaction rate[51] and 100% conversion is reached in 

less than 10 minutes. An identical reaction with grinded epoxy material added as the catalyst 

(average size of the particles ± 100 µm) reached 90 % of conversion of the maleimide 

functionalities in 120 minutes, clearly demonstrating the ability of the tertiary amines in the 

epoxy material to catalyze the thiol-maleimide reaction.     

 

2.2 Healing strategy 

Since the above described model reactions have demonstrated that the maleimide-amine 

reaction proceeds faster than the epoxide-amine or methacrylate-amine reaction, the former 

reaction shows a promising chemical strategy for application in self-healing materials. 

Consequently, we propose a healing strategy based on maleimide and thiol compounds on one 

hand, and amine species that are present in the epoxy material on the other hand. 

Actually, one can make a distinction between the bulk area of the crack and the crack 

interface (Figure 2) in a damaged epoxy material. At the crack interface, residual (unreacted) 

amines, that arise from the incomplete curing reaction of the matrix, can react with maleimide 

compounds. The covalent bond will ensure a chemical bonding of the newly formed network 

and the original epoxy material. Moreover, it has been shown that the use of an excess of 

amine hardener during the synthesis of the epoxy material can result in an important 

contribution to the healing reaction.[33] On the other hand, in the bulk area of the crack, a 

healing reaction can occur by reaction of thiols with the maleimide compounds. These 

reactions are catalyzed by the tertiary amines that are present at the crack interface, as has 

been shown in the model reaction of PM and DT catalyzed by grinded EPON 828 epoxy 

material, which obviously contains tertiary amines at the surface (see Figure 2). Moreover, 

polythiols have been encapsulated for the use in self-healing materials before,[24, 52-53] 

mostly as an alternative to polyamines that are more difficult to encapsulate.[26, 54] 
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Figure 2: Schematic depiction of a crack in the epoxy material. At the crack interface, a reaction can 

occur between unreacted amine functionalities at the crack interface and maleimide compounds as the 

healing agents, ensuring covalent bonding of the newly formed material and the original material. In the 

crack area, multifunctional thiols and maleimides form a network. 

 

 

As we aim to form a crosslinked material in the crack plane, we propose the use of 

multifunctional compounds. A polythiol with four functionalities (pentaerythritol(3-

mercaptopropionate)) was chosen for its high functionality and flexibility, high boiling point 

and earlier demonstration of its successful encapsulation for self-healing epoxy materials. For 

the multifunctional maleimides, we have chosen two difunctional maleimides: 

1,1(methylenedi-4,1-phenyl)bismaleimide (MBM) that has a central bisphenyl moiety, and 

N,N’-(1,3 phenylenedi)maleimide (PDM) that contains a phenyl group (see Scheme 2). The 

structural similarities should ensure a good compatibility of the newly formed material with 

the original material. As both maleimide compounds are solid compounds, they are 

solubilized in m-cresol that was chosen because of the lack of solubility of the bismaleimide 

in other solvents. Moreover, m-cresol has some advantages such as its high boiling point 

(203 °C), its hydrophobic nature that will facilitate the microcapsule production via an ‘oil-in-

water’ microencapsulation process and the ability to act as an inhibitor for the 

homopolymerization of bismaleimides, a possible side reaction that would limit the shelf-life 

of the healing agent. All of the mentioned healing agents are stable for a long period when 

stored in a dry and cool place. The maximal solubility of MBM and PDM was determined as 

30 and 15 wt%, respectively.   
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Scheme 2: Healing agents pentaerythritol(3-mercaptopropionate) (tetrathiol), 1,1(methylenedi-4,1-

phenyl)bismaleimide (MBM), and N,N’-(1,3 phenylenedi)maleimide (PDM). 

 

 

2.2. Quantification of the healing efficiency: Tapered Double Cantilever Beam (TDCB) 

tests 

 

In a next step, the effectiveness of the proposed chemistry for self healing applications 

was determined by the quantitative Tapered Double Cantilever Beam (TDCB) test method. 

TDCB samples with a long moulded groove of 47 mm were used to evaluate the self-healing 

ability, according to the protocol described by White et al.[13] With this test, TDCB samples 

were pulled until crack formation occurred, which results in a maximum load that the virgin 

material can resist. Note that at this stage of the research, the various healing agents are 

manually injected in the crack plane. 30 µL of a combination of healing agents (equimolar 

amounts of MBM and tetrathiol, MBM and DETA, PDM and tetrathiol, PDM and DETA, 

respectively, see experimental part for details) was then injected in the crack plane, the 

sample unloaded, and allowed to heal at 25 °C for 3 or 5 days. The same test was then 

repeated to obtain the maximum load that is necessary to break the healed sample. The ratio 

of these two values is defined as the healing efficiency.[55] The TDCB tests are applied to 

two types of epoxy materials: EPON 828 and RIM 135 resin (vide supra). For the latter 

material, we have also evaluated the effect of the use of excess hardener during the epoxy 

material preparation. 

 

2.2.1. EPON 828 epoxy material 

In the case of the EPON 828 resin, an equimolar distribution of resin and diethylene amine 

(DETA) hardener is used (100/12 w/w ratio of resin/hardener). Using the usual temperature 

program for curing the matrix material (24 h at room temperature, followed by 24 h at 40 °C), 
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a DSC study (see figure 3) revealed a conversion of the epoxide groups of 85 %.[56] As 

equimolar amounts of the amine hardener were used, 15 % of the initial amine functionalities 

(most likely secondary and some primary amines) have not reacted and are still available to 

take part in the healing reaction. During the curing process, the vitrification of the mixture 

will hamper higher conversions because of diffusional constraints. After the curing process 

used in this study, the Tg of the epoxy material is 56 °C, while after a heating cycle up to 

200 °C to ensure complete curing, the Tg rises to about 130 °C. This can best be seen in the 

reversing heat capacity curve where only the heat capacity is retrieved while the reaction 

exotherm is retrieved in the non-reversing curve (not shown). 

 

 

Figure 3:  MDSC thermograms (amplitude = 0.5°C and period 60 sec) of the cured EPON 828 resin. 1st 

heating showing the Tg (55.85°C) after the standard cure procedure followed by the residual reaction. 2nd 

heating(128.55°C) showing the final Tg after full cure. Curves are shifted vertically for clarity. 
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Figure 4: Healing efficiency for the healing of EPON 828 epoxy material with various mixtures of healing 

agents at 25 °C for 3 days (white bars) and 5 days (grey bars), respectively. All the specimens were cured 

at an equimolar ratio of DETA hardener to epoxy resin (12/100, w/w). 

 

Figure 4 shows the healing efficiency for the healing of the EPON 828 epoxy material with 4 

mixtures of healing agent for 3 and 5 days at 25 °C. The healing efficiency shows the average 

value of a minimum of 10 to 15 specimens, with the corresponding standard deviation. This 

standard deviation can be assigned to small variations in the precrack and deviations of the 

crack plane. These values are in accordance to previous reports in which TDCB has been used 

to test self-healing materials.[27, 55] The results clearly show a difference between the 

various mixtures of healing agents, while also the time allowed for healing shows to be an 

important parameter. The MBM compound results in a higher healing efficiency compared to 

PDM (maximum of 121 % compared to 51 % after 5 days, respectively). The combination of 

maleimides with tetrathiol results in a higher healing efficiency than the combination with 

DETA (121 % vs. 70 %). These results show effective healing, with the combination of 

tetrathiol with MBM as the most effective healing agent combination.   

 

2.2.2. RIM 135 epoxy material 

The RIM 135 epoxy resin is a combination of bisphenol A diglycidylether (DGEBA) and 1,6-

hexanediol diglycidylether. The hardener RIMH 137 is mainly composed of alkyl ether amine 

and isophorone diamine.  

When using an equimolar ratio of resin to hardener (100/30 w/w resin/hardener) in the case of 

RIM 135 epoxy material, and using the usual temperature program for curing (24 h at 40°C, 

followed by 16 h at 80 °C), a DSC study revealed a complete conversion of the epoxides.   
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Figure 5: Healing efficiency for the healing of RIM 135 epoxy material with various mixtures of healing 

agents at 25 °C for 3 days (white bars) and 5 days (grey bars), respectively. (A) specimens were cured at 

an equimolar ratio of epoxy resin to RIMH 137 hardener (100/30, w/w). (B) specimens were cured at an 

excess ratio of epoxy resin tot RIMH 137 hardener (100/50, w/w). 

 

Indeed, the Tg of the epoxy material after the applied curing process and after a heating cycle 

up to 200 °C was found to be identical, i.e. 76 °C. As equimolar amounts of the amine 

hardener were used, the amine functionalities have reacted during the curing program. Thus, 

the RIM epoxy material that results from curing of an equimolar ratio of resin to hardener 

(100/30 w/w) does not contain a significant amount of unreacted amines, and hence no 

residual amine functionalities at the crack surfaces that can help in chemically linking the 

epoxy surface to the self healing agent.  

Figure 5A shows that also in this case, the MBM curing agent performs better. The difference 

resulting from the use of tetrathiol or DETA is less clear in this case. Healing efficiencies 

after 5 days are slightly higher than after 3 days. When compared to the healing efficiencies of 
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EPON 828 material, the healing efficiency for the RIM material is generally lower with a 

maximum healing efficiency of about 85 %.   

We also have investigated the effect of using an excess ratio of hardener for the preparation of 

RIM 135 epoxy material (100/50 w/w resin/hardener), as this material will bear unreacted 

amine functionalities at the crack surface, which will be able to react with the maleimide 

healing agents. In this case, the Tg of the material after the curing process is 48 °C; this value 

remains identical after a heating cycle up to 200 °C, revealing that all epoxy functionalities 

have reacted.  Figure 5B shows the healing efficiency for various mixtures of healing agents 

at 25 °C for 3 days (white bars) and 5 days (grey bars), respectively. Also in this case, MBM 

reveals to be a more efficient healing agent than PDM. However, the healing efficiencies are 

lower than in the case of EPON 828 and RIM with an equimolar ratio of hardener to resin. 

 

2.2.3. Average peak load vs. healing efficiency 

Although the healing efficiencies for the epoxy material EPON 828 are higher than the values 

for the corresponding RIM (100:30 and 100:50) epoxy material, one should note that the 

healing efficiency is a relative value, and is influenced by the strength of the original material. 

For this reason, it is of interest to evaluate the maximal force that is needed to break the 

healed material. The white bars in Figure 6 represent the maximal peak load to break the 

various virgin epoxy materials. The average maximal peak load to break the virgin sample is 

58 N in the case of EPON 828, 80 N in the case of RIM (100:30), and 120 N in the case of 

RIM (100:50). It is clear that EPON 828 is an intrinsically weaker material than RIM (100:30) 

and RIM (100:50). However, note that the high apparent strength of the RIM (100:50) arises 

from plastic deformation of the RIM material due to its relatively low Tg (48 °C). The grey 

bars in Figure 6 represent the maximal peak load to break the healed material. The various 

epoxy materials were healed for 5 days at 25 °C with a combination of tetrathiol and MBM, 

as this showed to be the most effective healing agent combination. It should be noted that the 

average maximum peak load to break the healed specimens is not very different (around 62 

N), irrespective of the virgin material. Taking into account this average value, the healing 

efficiency for EPON 828 is 121%, 90 % for RIM (100:30) and 48 % for RIM (100:50). Thus, 

although the maximum peak load is nearly the same, the healing efficiency decreases 

dramatically as a result of the high maximum load to break the original material.   
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Figure 6: Overview of the maximal peak load to break various epoxy samples. The white bars represent 

the maximal peak load to break the original material. The grey bars represent the maximum peak load to 

break the healed material. The horizontal line shows the average maximum peak load for all healed 

specimens (irrespective of the original material). The specimens were healed with a healing agent 

combination of MBM and tetrathiol for 5 days at 25 °C. 

 

 

 

3. Conclusions 

An alternative chemistry based on the Michael addition between bismaleimides and amines or 

thiols was developed for the self-healing of epoxy materials. The proposed healing reaction 

was characterized via an extensive kinetic study of monofunctional model compounds. This 

study lead to the selection of multifunctional healing agents that were tested for their healing 

efficiency of various epoxy materials via the ‘tapered double cantilever beam’ (TDCB) test 

method, with manual injection of the healing agents (30 µL).  For EPON 828, an average 

healing efficiency of 121 % was reached with the healing agent combination MBM + 

tetrathiol. Moreover, we have extended the self-healing testing towards resins that are 

currently used as a cold-curing resin for infusion of large wind turbine blades. In this case, we 

have also investigated the effect of unreacted amine functionalities in the epoxy material by 

using an excess of hardener to resin. Also in the case of the RIM resin, the combination of 

MBM + tetrathiol was found to be the most promising healing agent. It reached healing 

efficiencies going from 80 % (equimolar) to 50 % (excess amine hardener) after a healing 

period of 5 days at room temperature.  However, the healing efficiency was found to be 

strongly dependent on the type of epoxy material, while the absolute average maximum peak 

load for fracture after healing was found to be roughly the same for all epoxy materials. 
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Further research is focusing on the encapsulation of maleimide compounds in microcapsules. 

At the same time, we are exploring other chemical strategies to further optimize the healing 

chemistry and investigate the possibility for the application of these concepts in state-of-the-

art materials for daily applications. 

 

 

4. Experimental 

Materials: Butyl glycidylether (BGE, Aldrich, 95%), benzyl amine (BA, Acros, 99,5%), 

diethylene triamine (DETA, Aldrich, 99%),  phenylmaleimide (PM, Aldrich, 97%), 

propylamine (PA, Acros, 98%), 1-dodecanethiol (DT, Fluka, 97%), pentaerythritol(3-

mercaptopropionate (Tetrathiol, Aldrich, 95%), triethylamine (TEA, Acros, 99%), 

1,1(methylenedi-4,1-phenyl)bismaleimide (MBM, Aldrich, 95%), N,N’-(1,3 

phenylenedi)maleimide (PDM, Acros, 97%), EPON 828 epoxy resin (Low viscosity, 

Momentive Specialty Chemicals GmbH), RIM 135 epoxy resin (Momentive Specialty 

Chemicals GmbH) and RIMH 137 hardener (Momentive Specialty Chemicals GmbH) were 

used as received. The RIM 135 epoxy resin is a combination of bisphenol A diglycidylether 

(DGEBA) and 1,6-hexanediol diglycidylether.[57] The RIMH 137 hardener is mainly 

composed of low MW poly(propylether amine) (MW ≈ 230) and isophorone diamine. 

Solvents were purchased from Acros and used without purification. 

 

 

Model study for the kinetics of the reaction of amines and epoxide/C-C double bonds: PA 

(0.44 ml – 5.28 mmol) is added to MMA (0.56 ml – 5.26 mmol) in m-cresol (10 wt%) in a 

glass (10 ml) vial as reference for the reactivity of amines on the double bond of GMA. As a 

reference for the epoxide group in GMA, BA (0.43 ml – 3.96 mmol) is added to BGE (0.57 

ml – 3.99 mmol) in m-cresol (10 wt%). 
1
H-NMR is used to follow conversions of the 

mentioned reactions.  

 

Model study for the kinetics of the reaction of maleimides and amines/thiols: PM (0.208 g – 

1.20 mmol) is dissolved in m-cresol (1.72 ml – 10 wt%), at room temperature, in a glass (2 

ml) vial. The vial is put in the ultrasonic bath for a short time to ensure that a homogeneous 

solution is obtained. In this solution PA (0.1 ml – 1.20 mmol) or DT (0.285 ml – 1.20 mmol) 

is added. For the reaction with DT, a reaction was conducted without catalyst, with TEA (17 

µl – 0.122 mmol) as a catalyst, or EPON 828 as a catalyst (0.125g - 100:12 wt% - grinded, 
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average size of grains ± 100 µm), respectively. Conversion of the maleimide functionality 

was monitored by 
1
H-NMR.  

 

Stock solutions of healing agents: MBM (0.385 g – 1 mmol) is dissolved in m-cresol (1.24 ml 

– 25 wt%) in a glass vial (2 ml), followed by addition of tetrathiol (190 µl – 0.5 mmol) or 

DETA (108 µl – 1 mmol), respectively. Alternatively, PDM ( 0.268 g – 1 mmol) is dissolved 

in m-cresol (1.60 ml – 15 wt%) in a glass vial (2 ml), followed by addition of tetrathiol (190 

µl – 0.5 mmol) or DETA (108 µl – 1 mmol), respectively.  

 

Synthesis of epoxy materials: EPON 828 resin is mixed with DETA in a 100/12 (equimolar) 

weight/weight ratio, RIM 135 resin is mixed with RIMH 137 in a 100/30 (equimolar) or 

100/50 (excess hardener) weight/weight ratio. After homogeneous mixing, air bubbles are 

removed by applying high vacuum for 5 minutes. The solution is then poured in a silicon 

mold with specific dimensions to produce the Tapered Double Cantilever Beam (TDCB) 

samples.[55] The filled molds are cured at different temperatures - EPON 828 (1 day at 25°C 

and 16 hours at 40 °C) and RIM 135 (1 day at 40 °C and 16 hours at 80°C). 

 

TDCB testing: A precrack was made in the TDCB sample with the aid of a razor blade, which 

was inserted into the groove to the TDCB specimen and tapping it into the moulded notch 

starter. The samples were then clamped on the tensile testing machine to be stretched at a 

speed of 5 µm/sec.[55] The specimens were loaded until failure occurs, resulting in the peak 

load to break the virgin sample. For healing of the samples, 30 µl of healing agent was 

manually injected in the crack plane and the samples were clamped together to ensure a good 

contact of the healing agent to the crack surface. The healed samples were stored at 25°C for 

3 or 5 days and then broken at the same initial opening speed to calculate the healing 

efficiency, which is defined as the ratio of the maximum peak load of the healed sample to the 

maximum peak load of the virgin sample. The average value of minimum 5 samples was 

taken to get accurate results. 

 

Instrumentation: 
1
H NMR spectra were recorded with a Bruker AVANCE 300 (300 MHz) 

FT-NMR spectrometer. Differential Scanning Calorimetry (DSC) thermograms were recorded 

using a TA Instruments Q2000 DSC with autosampler option and Refrigerated Cooling 

System (RCS). Nitrogen gas was used as purge gas. The samples were studied in TAi Tzero 

Hermetic Aluminum sample pans and a scan rate of 10K/min. TDCB tests were conducted on 
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a Tinius Olsen H10KT with a load cell of 5000 N. The load-displacement curves were 

analyzed with the aid of the Test Navigator software.  
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