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1. Introduction

Clifford analysis (see a.o. [1,3]) is a theory that offers a natural generalization
of complex analysis to higher dimensions. To R™, the Euclidean space in m
dimensions, we first associate the Clifford algebra CY ,,, generated by the
canonical basis e;, « = 1,...,m. These generators satisfy the multiplication
rules eiej + eje; = —251'3'.

The Clifford algebra Cly ., can be decomposed as Clo m = & CL ,,
with Cff ,,, the space of k-vectors defined by

k . .
Clg , = spanie;, .., = €5, - ey, i1 < - -- <lig}.

More precisely, we have that the space of 1-vectors is given by Céé)m =
span{e;, i = 1,...,m} and it is obvious that this space is isomorphic with
R™. The space of so-called bivectors is given explicitly by

Cég)m = span{e;; = e;ej, i < j}.

Moreover, the sum of a scalar and a bivector is a so-called parabivector. In
what follows, [a] denotes the projection of a € Cly ,, on Cff .

We identify the point (x1,...,2,,) in R™ with the vector variable z
given by = = Z;"Zl z;e;. The Clifford product of two vectors splits into a
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scalar part and a bivector part: xy =z ey +z Ay with

" 1
zey=—(z,y)=—Y = 52y +yz),
j=1

1
TNy = ejer(Tjyr — Thy;) = §(£g—g£)-
j<k

It is interesting to note that the square of a vector variable z is scalar-
valued and equals the norm squared up to a minus sign: 22 = —(z, z) = —|z|*.

In a similar way we introduce a first order vector differential operator
by 0, = ZT:l Oy, ej. This operator is the so-called Dirac operator. Its square
equals, up to a minus sign, the Laplace operator in R™: 82 = —A,,,. In the
sequel, we will also consider the so-called Cauchy-Riemann operator Oy, + 0,
for which

(8960 + aﬁ) (8960 - 3£) = Am+1-

A function f(z1,...,xm), respectively f(xg,x1,...,2Zm), defined and contin-
uously differentiable in an open domain of R™, respectively R™*!, and taking
values in Cly p,, is called monogenic in that region if 9, f = 0, respectively
(Ory +0:)f = 0.

A monogenic function is called azially monogenic if it is of the “axial
form”

(o, 2) = Ao, al) + 5 Blo, ),
where A and B are scalar functions. The m;nogenicity condition
9y +02)f =0
then leads to the Vekua system for A and B:

m—1

8m0A—8pB:TB, On,B+0pA=0, p=|z,

the solution of which leads to numerous special monogenic functions (cf. [14]).

In general, every monogenic function f(zg,z) is determined by its re-
striction f(0,z) to the hyperplane o = 0 and, conversely, any given real
analytic function f(z) has a monogenic extension f(xo,z) called Cauchy-
Kowalevski extension (abbreviated CK-extension). Axial monogenics are also
determined by their restriction A(zo,0) to the zp-axis and, consequently,
starting from a given function A(zo) of one variable, one may establish its
axial CK-extension

X
A(zo, |z]) + @B(xo, |z)-

If one composes this operation with the restriction to zg = 0 we arrive at a
correspondence

A(wg) — A0, Izl)+é3(0, 1)),

transforming one dimensional functions into higher dimensional ones.
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In Section 2, we study this axial CK-extension and the resulting corre-
spondence in detail for some cases, namely A(xg) = €™, A(zg) = e=73/2 and
A(zo) = (1 —23)*, a € R.

In Section 3, we generalize our result to the case of biaxial mono-
genic functions. These functions originate from the more general splitting
R™ = RP ¢ R? giving rise to two vector variables xz = Zle z;e; and
y = 23:1 Yjej+p Which anti-commute, and the corresponding Dirac oper-

ators
P q
Op = 0Ouej, Oy=> 0y eisp
j=1

The over-all Dirac operator is 9, + 0, and biaxial monogenics are defined as
solutions of

(8£ + ag)f@, Q) =0

of the special form

x
A+ Epy Loy Lp
z[ [yl 2yl
whereby A, B, C, D are scalar functions of the two radial variables [z| and |y|.
Biaxial monogenics split into biaxial monogenics of vector type %B + %C

and of parabivector type A+ %D. It may be shown that (see [3]) the pairs
(A, D), (B, C) will also satisfy Vekua-type systems (r = |z|, p = ly])

&A+C%+%;>D_Q

(a+3}gp—@A_a

resp.

(8T+Z);1>B+(8p—|—g>0—0,
r p
0,C — 8,B = 0.

Similar to axial monogenics, biaxial monogenics are determined by their re-
striction to the first axis RP given by y = 0 and the second axis R? given by
2 = 0. This leads to a correspondence between functions on R? and functions
on R? that will be investigated in a number of examples.

In Section 4, we will produce special axial and biaxial monogenics as
linear superpositions of plane wave type monogenic functions.

In the axial case we start from monogenic plane waves of the simple
form (1—it)h(zo+i(z,t)), whereby t € S™~! is a variable unit vector and h
is a classical holomorphic function of the complex variable z¢ + i (z,t). For
special examples of holomorphic functions A we then consider the integral

/ (1 - it)h(zo+ i (2, 1)) dt
Smfl
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which may be evaluated using Funk-Hecke’s theorem and which gives rise
to an axial monogenic function whose restriction to the xg-axis is, up to a
constant, simply h(zg).

In the biaxial case, we start from plane wave functions of either form

(t +is)h(i(z,t) — (y,8)) or (1+its)h(i(z,t) — (y,5))

with t € SP~1, s € §97! being variable orthogonal unit vectors. After integra-
tion of such functions over the bi-sphere (¢, s) € SP~! x S971 we obtain biax-
ial monogenics of vector-type and of parabivector-type, respectively. We work
out these integrals explicitly for the exponential function exp (z@, t) — (y, §>) ,
giving rise to integral expressions for the Clifford-Bessel function of biaxial
type.

It is clear that this paper deals with simple, though fundamental, ex-
amples of special monogenic functions and that many more special functions
may be computed using these methods.

For an introduction to Clifford analysis we refer to [1,3,5,6]. Other
papers dealing with axial and biaxial monogenics include [2,8,9,11-13].

2. Cauchy-Kowalevski extensions: the axial framework

2.1. General problem

Any axially symmetric function may be written in the form

o0

flxo,x) =) esa® Fo(wo)W (o)

s=0
with Fy(zg) = 1, whereby the coefficients ¢, are determined by
Oplcsz®) = corz®™ "t co =1 (2.1)

For axially monogenic functions (0, + 9z)[f(z0,z)] = 0, the question is to

determine
o0

F0,2) = sz Fs(0)W(0).
s=0
In other words, the restriction to R of the function f, which is monogenic in
the whole of R™"1 is given by f(z0,0) = W(zo). The aim is to determine
its restriction to R™, i.e., f(0,z).
By means of induction and using the fundamental formula

2] = —sxs1 for s even,
= ) =(s—1+m)z*! for s odd,
one can prove that the coefficients ¢, satisfying (2.1) take the form

r(%) (%)
[ (24 () 2240 o+ 1) 22601

Coy = and Copyr1 = —
I (
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2.2. Examples
2.2.1. W(xg) = e®. This example was already considered in [14]. Given

o0

f(an &) = csx® By (xo)exo
s=0

with By(zg) = 1, ¢ satisfying (2.1) and f being monogenic in R™*! | we look
for f(0,x).

The first step is to determine Bgs(xg). From the monogenicity of f, we
obtain consecutively

Z csz’ B, (xo)ex“] =0

s=0

(Ozy + Oz)

A Z B (zo)e®™ cox® + Z By(x)ecsz® + Z By(x0)e™cs_12® L =0

s=1

o0 o0 o0
Aand Z By(zo)e™csz’ + Z Bs(xo)e®™csz® + Z Bsii(zo)e™esz® =0,
= = s=0

where in the last series we have made the substitution s’ = s — 1.
Hence, functions Bg(xg) must satisfy
Bgt1(x0) = —Bs(20) — Bg(o), By(zo) =1,

from which we obtain that Boy(xo) = 1 and Bayy1(xo) = —1.
Consequently, using spherical co-ordinates z = |z|w, w € S™~ !, we find

o0

ZCSQSBS(O)
s=0
= Z C2e£2e - Z C2e+1£2e+1
£=0 £=0
my o~ _ (=) [af* z| ¢ )‘lzf**
=1 (— —~ 7 =1 — ) =
(z)zr(ﬂw)z%w r(3 ) 2 Zr +é+1)22fe|w
=0 2 =
Finally, taking into account that
(=Dp*
2v 2.
J Zé’ry+€+1)225’ (2:3)
we obtain
J0,2) = e’ B(0) =T (5) 227 (Tjza(Jzl) + T2 (lzl)a
y L st Ds 9 m/2—1 m/2

s=0
which corresponds to the result obtained in [14].

Remark 2.1. Note that the full axial CK-extension f(xg,z) takes the form:
Jwosz) =T (5) 272 (Tonjer(la]) + Ty (zl)e) €.
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2.2.2. W(xg) = e~"3/2, As a second example, we consider for W (zo) the
hermite weight function. Hence, given

f(an &) = Z CsﬁsHs(xo)eixg/Q (24)
s=0
with Ho(zo) = 1, ¢, again satisfying (2.1) and f being monogenic in R™*,
the aim is to determine f(0,z).
In a similar way as in the first example, the monogenicity of f in the

whole of R™"! leads to the following recurrence relation for the functions
Hy(xo):

HSJrl(xO) :{E()HS({E()) —Hg(xo), Ho(xo) =1.
From this recurrence relation we observe that Hs(x) are the classical Hermite

polynomials on the real line associated with the weight function e~/ 2, which
are defined by the Rodrigues formula

T BN
Hy(xg) = %o ( d:c0> [e 0 }

These polynomials satisfy (see e.g. [10, p. 250]):

(—1)(20)!

HQE(O) = and H2g+1(0) = U,

012¢
which leads to
3 3 o T(3) @0 (122
F0,2) =3 et Ha(0) = Y eara® Hag(0) = 3 22 o (__> |
2 2 2 g @\ s
Taking into account (see e.g., [10, p. 3])
r¢+1 !
T (3) ¢

we finally arrive at

where

is Kummer’s function.
Remark 2.2. When m = 1, we have f(0,z) = e* /2.

Let us now calculate an expression for the full axial CK-extension f(z, )
which we will use in subsection 4.3.2.
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Splitting series (2.4) into even and odd parts, we obtain
m = (~1 |$|2eH2g (z0)
- (2)
o) =1 (& (z ol

DY zP T Hopga (o) \ 20
_F( )(Z D (24 041) 2264101 =

with w = % e sm1L,
We will now rewrite both series over ¢ as series in zg instead of |z|.

Hereto we use the explicit expression of the classical Hermite polynomials
(see e.g., [10, p. 250]):

L2J 2%
11 n
AESERI) i weoi (31
1=0

Hence, for the first series we obtain:

(1) 22 H oo 1) |28 b (1)igp202i
Z ( )nl£| zggx?) _ Z (m )zl _ |(2€)!Z '(|2i ;ZO .
e D(p+0)220 ST (422 T il2i(20 - 2i)!

Substituting j = ¢ — i and changing the order of summation, we find

(D) 2 Hoelwo) _ o (1) ]af* L)Y
2 TG v ‘ZWW” > T

J
o'}

o - (26) 2 25
—Z Z ( +€)23g€|(€ ])||E Ly -

j=0 =y

Next, we interchange the indices ¢ and j, and rewrite the above expression
as

i )|z[* Hae(wo) _
2T (1) 220
0o (_1)6 00 00 (2j)!|£|2j725 o
- . 2.6
2o \ ST w0 Y

The series over j yields the Kummer function. Indeed, changing the summa-
tion index as ¢ = j — ¢ and using relation (2.5), we arrive at

- (2))!]z|2 2 _ i (20 + 20)! E
D (2 44) 25315 — ) &= (i+0)! T (2 +i+ ()23
X+l 1 (@P)i

VRS T (it \ 2

=t

2

26T (0+1) F( 1 m |x|2>
141

STz Pt TE
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Substituting the above result into (2.6) and using once more (2.5), we finally
arrive at

— (D2l Hae(zo) =  (=D)|z[* Lom o ]z]* o
= F - .
; w1 ) 220q] gzwm(%w)l Wrgigths )

In a similar way we find

o0

Z D) |z * T Hagr (w0)
[ (% + 0+ 1) 226410

o~ (=D 3. m 2 arta
= Fi{l+ S+ 0415 :
;22“1€!F(%+€+1) T2 2 )"0

£=0

We thus conclude that

f(ang) =
m - (=1)z* L m |$| 20\ —=2/2
r(%) (Z—2W!F(ﬂ+€) B0+ 55 6wl e
£=0 2
m e (_1)E|£|2E+1
() (; 22T (2 4 £+ 1)

2
X 1F1(€+g 54—54—1 |2| >$3e+l>gex?’/2. (2.7)

2.2.3. W(zo) = (1 — 23)%, a € R. Next, we take for W (zo) the Gegenbauer
weight function. The axial CK-extension f(zo,z) now takes a slightly differ-
ent form, namely

o0

flwo,z) =) eax* G (xo)(1 — 2d)* "

s=0

Again we have that G§(xg) = 1 and that the coefficients ¢y satisfy (2.1).
Hence,

Fl@o,0) = (1 - x)*.

The question is to first determine the functions G%(z¢) and then to find the
sum Yoo ¢z G(0).
From the monogenicity relation

(8960 + 8&) [f('rOa Q)] =0,

we derive the recurrence relation

G241 (w0) = 2(a = 8)a0GS (w0) — (1= 23)(G) (o), Gg(wo) =1. (2.8)
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The lower degree polynomials take the form
G§(xo) =1,
G¥(z0) = 2axy,
G5 (20) = 2a(2a — 1)22 — 201,
G5 (z0) = 4a(a —1)(2a — 1)xy — 12a(a — 1),

etc.
Putting
t t
o o 2t, o 24 o o 2t+1,¢ 2741
Gi(wo) = E by “xyt and  Gogyyq(wo) = E bait1 o s
1=0 1=0

we then have the following result.

Theorem 2.3. For 0 <1i <t, one has

(O[ — 2t + 1)215
(200 — 4t + 1)l (a — 2t + 1)

bi” = (—1)"2%(2)! (-1

22T(a+ 5 —t+1)
(t —1)!(23)!

(O[ — 2t>2t+1
(20 — 4t — 1)1l (a — 2t — 1)

by = (~1)'2% (2t + 1))

(-1

22D+ § — t 4 1)
(t—i)(2i+1)!

with (@) =ala+1)---(a+l—-1)= Fgo(‘;r)e) , the Pochhammer’s symbol.

Proof. This result is proved by induction on the degree of the polynomial
and using the recurrence relation (2.8). O

Using the above theorem, we can write G¥(z¢) in terms of the classical
Gegenbauer polynomials on the real line.

Corollary 2.4. One has

(@—=2t+1)2 a—2t+1

g = 22(2t)!
2¢(wo) (2t) (2o — 4t + )9, 2

(xo),
(@ —2t)2¢11 a—2t—1

Ge _ 22t+1 21 1) 2
Bi41(w0) 2+ )(2a—4t—1)2t+1 21 (@0);

with C)(xq) being the classical Gegenbauer polynomial on the real line given
explicitly by (see e.g., [10, p. 219])

!

|3
[

(—1)IT(A +n — 1)

Cnwo) = (n — 2i)!

(220)" 7%, A >0. (2.9)

I'(A)

=0
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Proof. This follows immediately from Theorem 2.3 and the explicit expression
(2.9). O

Now, we also easily obtain that G§;,,(0) = 0 and

2t))  D(a+ 12— 4t + )I(a+ 3 —1)

! T(a—2t+ )20 — 2t + DI — 2t + 3)
Taking into account (see e.g., [10, p. 3]):

@5,(0) = 1240 = (—1yted

['(22) = 7222710 (z)T (z + %) : (2.10)

the expression for G$,(0) can be simplified to

o (20! T(a+1)
G2(0) = (=" Tla—t+1)

Hence, we find

> ez G (0) =) eara™ G5y(0)
s=0 =0
=2 tm (2)22% @'%(25) rr(a:1)1 - (21
=0 (7 + ) : : (a—L+1)
Using formula (2.5) and (see e.g., [10, p. 2])
I'(-)
— — (— 4 -~ 7
MNa+1—-2¢)=(-1) NOH_UF(K—@)’
expression (2.11) can be simplified to
S o~ _L(3) T(+3)T(-a)(=[zP)
csz’G(0) = o : i
; ; rz+¢ ri) r(-a @

1
= oI (5, —a;m/2; —|£|2>

with

T(a) T(b) D(ct0) 0

TI'(a o) S
oF1(a,b;c; 2) = Z Pla+O)T(b+¢) T(c)

£=0
being the hypergeometric function.

3. Cauchy-Kowalevski-extensions: the biaxial framework

In this section we consider functions of two vector variables x = Zle
and y = 231':1 Yjeptj- The sum z + y represents a vector variable in RPT9
equipped with the orthonormal basis (e1,...,€p, €pt1, ..., €ptrq). The corre-

sponding Dirac operators take the form

P q
8£ = Z 8x]. €j and 8g = Z 8y]. Eptj-

j=1 j=1

Zj€5
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Note that the vector variables and Dirac operators anti-commute, i.e. zy =
—yx and 9,0, = —0,0, and that the vector variables are orthogonal, i.e.,
(z,y) = 0.

In this biaxial framework we consider the analogue CK-problem as in
the previous section.

3.1. First example: Gauss function

Given -
f(g, g) = Z CSQSHS(£)€*|£|2/2

s=0

with HO(&) =1, 8g[csgs] = Csflg571, co =1 and
(0 +0y)[f(z, y)] = 0, (3.1)
the question is to determine
F0.y) = cy*Ha(0).
s=0

In other words, the restriction to R? of the function f, which is monogenic
in the whole of RP*9, is given by the Gauss function: f(z,0) = e~1zl/2,
The aim is to determine its restriction to RY, i.e., to determine f(0,y).
In a completely similar way as in the previous section, we obtain that
the coefficients ¢, are given by

() r(3)
L (4 +0) 220 g +0+1)2264+100

From the monogenicity relation (3.1), we obtain consecutively

Cop =

and =—
11 C20+1 T (

(0p + 9y) ZCSQSHS@)eWﬂ] -0
s=0
— CS(_l)sgs (_£6*|£|2/2H5(£) + 67@'2/28&[]{5(&)])
s=0

+) co1y* P Hy(z)e 122 = o
s=1
=Y -1y (~zHo(z) + 0, Hy(z)]) e 12/

+3 et Ho (e 27/2 = 0,
s=0

hence the functions Hg(z) satisfy the recurrence relation
Hyi(z) = (-1)°(z - 0y)[Hs(2)],  Ho(z) = 1.
From this recurrence relation we observe that

Hoy(z) = (1) H3" (2) and  Hop(z) = (1) Ha Gt (z)
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with HEYH (z) being the so-called radial Clifford-Hermite polynomials which
were introduced in [14]. Taking into account the expression of these polyno-
mials in terms of the generalized Laguerre polynomials on the real line

2 2
HH (z) = 2'0Ly* (@> . HEGH(2) = 2'0Lh? (%) z,

2
and the relation (see e.g., [10, p. 240])
« _ (O[ + 1)"
L3(0) = a0
we find that
L3+

H%(g):(—nfzfri and  Hary1(0) = 0.

This finally yields

FO.9) = e H0) = > ean(~ly[*) Hae(0)
s=0 =0
q [e%) p 2 l
B igzg 2 ? Ez 12% (%) = 1Fi(p/20/2: 1y*/2) -
2/ ¢=0 2 :

Remark 3.1. Let us consider two special cases.
1. p=gq
In this case we again obtain a Gauss function, i.e., f(0,y) = e'ﬂlz/Q, and

as f(z,0) = e~ 1zI°/2 we thus have a closed class.
2. p—q=2n,neN

In this case we find

L+ _Tlg+len) (+0) (Gresn) o (fre4n-1)

T(Z+0) T(L+0) 2 2
= P({),
P(¢) being a polynomial of degree n in £. Consequently, we find that in
this case
¢
CT@ s L (P TG L (B e
F0,y) = T (2) ;”% (T - r(g)P(7> )

with Fy = <g, 8y> the Euler operator.

3.2. Second example: Clifford-Bessel function of biaxial type

In this subsection we consider the biaxial CK-extension of the Clifford-Bessel
function without exponential factor, i.e., J,/2_1(|z|) + zJp,/2(|2|). Put

o0

faw) =3 a8 (Tpamallal) + 2Ty (lal))

s=0
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where we take the coefficients ¢s such that Y50 ¢,y°95 is monogenic, i.e.,

i csgs(?;] =0

s=0

(0 +9y)

This leads to the equation

Csag[gs] _ (_1)50571g571

Since
f(@,0) = Jp2-1(lz]) + zJp/2(|2]),
we also have that ¢y = 1. By means of induction, one can prove that in this
case the coefficients ¢, take the form
(1T ()
= a. d =
D (2+0)22e “° 0

(=D (3)
I (§40+1)22+10°

(3.2)

C2¢

The question is to determine f(0, y). Hereto we start with the following result.

Theorem 3.2. One has
03 | Tp2r(lzl) + 2y alla)| = (<1)* (21 (l2l) + 2Ty a(la)))

Proof. By means of the series expansion (2.3), we obtain for the Bessel func-
tion
Jpr2-1(]z]) + xJp/2(|33|)

22 p20+1

— 9l-p/2 =
=2 Zé'r( E+2) g2 * z;é'r +é+1)22f'

Using the fundamental formula (2.2) and substituting ¢ = £ —1 into the first
series, we find

Or [Too-1(12]) + 2T, (2]
& x2671 & x2€
=2 Z (0 (E o)1 2z EZ; AT (2 + 0) 220
2e +1 e 22¢
2 Z T (B + a7 1) 220+1 A ;0 wr(g_w

=— (Jp/271(|£|) +£JP/2(|£D) ’

which yields the desired result. O

Hence, we have

o0

fay) =3 e’ (<1 (T (lah) + 27, (1a)))

s=0
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and thus
e 217;0/2
fO,y) =) cy’(=1)°
D= 2ol )
217;0/2 o'} o'}
= > (Z czeg% - Z cze+1g2e+1>
F(§) =0 =0
L) (o~ o . ly**
1-p/2
ST (;; T (Z+0) 2201 Qezr 10+ 1) 220710

We now obtain different expressions for f(0,y).

Theorem 3.3. One has that

q—p 2I‘(‘1) T
f0.9) =20 (Tar2-1Glyl) = To2(Glyy)

_ 2<qp>/2%|g|lq/2 (zq/21<|g|> - %Iq/zugw)

2

21-7/2 lyl? lyl?
= =7 | of1 2 ) -2 0F1 +1;, =
r(%) 2" 4 q 2 4

with I,(z) being the modified Bessel function of the first kind and oF1(8; 2)

being the hypergeometric function.

Proof. This theorem is proved using the series expansion (2.3) and consecu-
tively the following relations (see e.g., [10])

J(z) =27"J,(2), Jy(iz) =i 1,(z), Opl(g;dzzri_',

~
I
o

Remark 3.4. During the calculations we have also obtained a closed form for
the full biaxial CK-extension f(z,y):

Pa,y) = 27270 (£) (Topaalilyl) = TopaGlyy) (T2 + 2T 2(12))

— 94/2~ 1F( ) |y|1 a/2 (Iq/21(|g|) - %Iqﬂ(@))

ly
_ L
<l (sl + Edaliah )
Note that from the monogenicity of f it follows that the vector part of f

- q
el = 27277 (2) (T2l Tasz1lyDz = Tyya-1(12) T2 Gly)y)
and the parabivector part of f

[f(z, 9o + [f(z,y)]2
= 202700 (£) (T2 (1) Taa-1(ilyl) + To/o () Ty 2(ily iy )
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are also monogenic.

3.3. Third example: Kummer’s function

We now determine the biaxial CK-extension of Kummer’s function

(o) - S ermn ()

0

with a, ¢ € R. Like before, we put

o0

2
flz,y) = chgsaz [ 1Fy (a; c; —%)] ;

s=0

where the coefficients ¢, take the form (3.2).
We start with the following result.

Proposition 3.5. For n € N one has

2n |£|2 - (@)27171' i(p ) n
F C,—— = 2 - —
o [1 1(@,0, 9 >] ;(C)%ﬂ_ 2+n i)\
: - |zf? 2n—2i
X 1F; a+2n—z;c+2n—z;—‘7 (—z) "%,

2 n o
gt [1F1 (CL; c;—@>] = MT (E it 1) (n)
- 2 i—0 (¢)2nt1-i 2 i\
|z 2n41-2
X 1F1(CL+2TL+1—1’C+2n+1_l’__7>(_g) nJ’,il'

Proof. This result is proved by induction on n using the relations

2 2
Oz [ 1F1 (04;5; —%>] = % 1F1 (Oé +1L8+1; —%> (—z)
and
P A G for ¢ even,
Ol(-2)]= {(e +p—1)(-2)*! for £ odd.

Taking the restriction to z = 0 of the differential equations in Proposi-
tion 3.5 yields
2
92| F . ._@ — (a)" on (E)
z |: 141 (a:a C; ) |I: (C)n 9 " ’

2
o2l [1F1(a; c;—%)] =0.
z .
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Hence, we find

@ py = @n (B), 1 (1)
F00 =2 eni™ )2 (5)n‘ZW_<T>

n=0 n=0 n )n n!

2

p.q lyl
- L F .o 1.2 .
- 2 2(&,2,0,2 2 )

Remark 3.6. The restriction f(0,y) is again a Kummer function, i.e., we
obtain a closed class of functions, in the following four cases

M

kR

1. p=gq:
2
f(Qag)_ 1F1<CL;C, |g2| )

2. c=1%
ly?
f0,y) = 1F1<a;%;—7

3.a=1%
ly?
f0,y) = 1F1<g;c;—7

4. a=c

Note that in the latter case f(z,0) = e*|£|2/2, hence this is the example
we have considered in subsection 3.1.

Remark 3.7. The above calculations can be generalized to:

|z|?
f(&;g): kFE al;"'aak;cla"'acf;_T

witha, e R (1 =1,...,k), ¢; e R(j=1,...,¢). In a similar way as above,
we obtain

2
f0,y) = k1 Fea (g,al, e A %,cl, o Ce %) '

4. Monogenic plane waves

4.1. General method

For this method we refer to [15]. We first consider the axial case.
Let h(z) be a holomorphic function of z € C. Consider

(1 —it)h(zo +i(z,1))
with 20 € R, z € R™, t € S™ 1. We have
(0o + 02)[(1 = it)h(wo + i (2, 1))] = h'(zo + i (z, 1)) (1 +at)(1 —it) = 0.
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Hence, (1 —it)h(xo + i (z,1t)) is monogenic in (zg, z) and it is a function of
(z,1), i.e., it is a monogenic plane wave.
From the above, it is clear that the axial CK-extension of h(xg) can be
written in the following integral form:
_r(3) _. :
CK(h)(zo,z) = (1 —it)h(zo + i(z, 1)) dt.
27Tm/2 Sgm—1
For the functions
h(zo) = e*°,  h(xg) = efmfz)/Q, and h(zg) = (1 — 23)%, a € R,
we know the restriction CK(h)(0,z) from subsection 2.2.
On the other hand, we have
_TI(3) G
CK(h)(0,z) = (1 —it)h(i(z, 1)) dt.
27Tm/2 Sgm—1
By applying on the right hand side of the above equation the following Funk-
Hecke theorem (see for e.g., [7]),

Theorem 4.1 (Funk-Hecke Theorem). Let Sy be a spherical harmonic of de-
gree k, then

| femsi@ dse) = duasitw [ 100 =22 0@

where Py m(t) denotes the Legendre polynomial of degree k in R™, expressed
as follows in terms of the Gegenbauer polynomials

Ki(m = 3)! (m-2)/2
o —aCk (t),
(k4+m —3)!
and A1 = % the area of the unit sphere S™~2 in R™1,
2
we will be able to obtain integral expressions for CK(h)(0, ). In other words,

the aim is to derive integral representations for special functions of classical
analysis by using Clifford analysis techniques.

P m(t) =

Remark 4.2. The above idea can also be applied to obtain an integral ex-
pression for the full axial CK-extension CK(h)(zg,z).

In the biaxial case monogenic plane waves are of the form
h(i(z,t) — (y,9))(t+is), teSP sesr!
giving vector-valued monogenics, and of the form
h(i(z,t) = (y,8))(1 +its),  te s, se g

giving parabivector-valued monogenics. The integration takes place over the
product of spheres SP~1 x $9-1 and to evaluate the integrals one has to apply
the Funk-Hecke theorem twice.

Let us consider the restrictions for the parabivector-valued monogenics:

Pag= [ [ M - )0 it s deas
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First, we have that

Arpta—1)/2 1
_ A / h(—lylH)(1 — £2) a2 gy,
(5T (%) /1 =

while the restriction to y = 0 takes the form

27ra/2

P = Ty [ Gt )t

4 (Pra—1)/2 1
- % / h(ilz|t)(1 — ¢2)P=3)/2 gy
L(5)r(8) /-

In a similar way, we obtain for the vector-valued monogenics

Paw= [ [ M - @)+ i

the following results:
idn(pra—1)/2

r()r (%)

4r(p+a—1)/2
f“(LQ): T EL)T; |/ (ilz|t) (1 — t2)P=3)/2¢ gy,

NONCS]

4.2. The axial case: method applied to CK(%)(0, )

4.2.1. h(zg) = e~73/2, In this case, we know from subsection 2.2.2 that

CK(h)(0,2) = 1Fy (; ”21 |”;|2>.

1
P, y) = / B(—lylt)(1 — )@=t ar,

|§||<e

On the other hand, using spherical coordinates r = rw, r = |z|, w € S™!
and the Funk-Hecke theorem, we have that

% 2

T3 (/1 22201 _ 12)(m—3)/2
s m— dt
= (L)
_ig/l r2t2/2( )(m 3)/2tdt>
-1
2r (%) / |z|?t? /201 (m—3)/2
RN
e /1 jal?/2 (m=3)/24~ %
al’t/2(1 — ¢)(m=8)/24=% gy,
VAT (5 4=
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where in the last step we have substituted t' = t2.

Hence, we have obtained the following integral representation for Kum-
mer’s function

lﬁ — (%) /1 zt (m—3)/2 _1
1F1(27 25’2) ﬁr(%) o € (l—t) t—2 dt.

This integral expression can also be found, for example, in [10, p. 274].

4.2.2. h(zg) = e€*. On the one hand, we know from subsection 2.2.1 that

CK(n)(0,2) =T (5) 2727 (Tjoallal) + Tpa(lzha) , (41)

while on the other hand, using the monogenic plane wave approach we obtain

I (z . _
CK(h)(0,z) = 2(T2/2 (/ etlzle. dt — z/ Eellﬁl (w,t) di)
T Sm—1 gm—1

\Fr((L) (/11 glelt(] — g2)m=3/2 gy
_@/1 e'lzlt(1 —t2)(m3)/2tdt>. (4.2)

—1

Equalizing the scalar and vector part of (4.1) and (4.2) yields

o 21 m/2 1 it .
2" T ja o (|2)) = m / ) elzlt(p — ¢2)(m=3)/2 gt (4.3)
5 .

and

1-m/2 2t=m/2(—i) ! iz|t 24(m—3)/2
|z| Imy2(|z]) = Noa =0 (1-1%) tdt.  (4.4)
m—l) )

Expression (4.3) is an application of Poisson’s integral (see e.g. [4, p. 81]):

27V Lo oy 1 1
_— L1 —t )2 dt, R ——=
ﬁr(wr%)/le -2y dt Re()> -

and formula (4.4) is an application of the following integral expression which
is derived in [7, pp. 203-204]:

2 VI, (2) =

Jn+m/2fl(z) -
—1)" z\m/2-1 (b, 24 (m—3)/2
771) (5) /7 e Py (t)(1 —t7) dt. (4.5)
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4.2.3. h(zg) = (1 — 23)*, a € R. Let us now consider the last function for
which we know CK(h)(0,z) from subsection 2.2, namely the Gegenbauer
weight function h(zg) = (1 — 23), a € R.

Applying the monogenic plane wave approach we find that

1
- @/ (1+ |z>2) (1 — 2)m=3)/2 dt)
1
- 77711)/ (1+ [aP2)*(1 = )32
0

1
- (e [ sl -noem 92 bar
0

where in the last line we have substituted #' = t2. This is a special case of
the following integral representation of hypergeometric functions, which can
for e.g. be found in [10, p. 54]:

oFi(a,b;c; 2) = L(e) ) /01 (1 — )70 (1 — t2) " dt,

()T (c—b

Re(c) > Re(b) > 0, Jarg(l — 2)| < .

4.3. The axial case: method applied to the full axial CK-extension

4.3.1. h(xzg) = e*. It is easily seen that this leads to the same integral
equations as in subsection 4.2.2.
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4.3.2. h(zg) = ¢~"3/2, For the Hermite weight function the full axial CK-
extension takes the form

f(zo,2) = w(%xﬁ (/ ezl wt)® o—izolzl(w) gt
Sm—1

2rm/2

1
X (/ 712 (cos (zo|z|t) — isin (zo|z[t)) (1 — £2)"3/2 gt
1
L 1 2,2
—iw / =121 (cos (o|z|t) — isin (wo|z|t))(1 —t2)(m3)/2tdt>

2T (& !
= #e*%xﬁ (/ 312" cog (zo|z|t)(1 — 12)(m=3)/2 gy
0

1
- g/ =12 gin (zo|z|t)(1 — £2)(m=3)/2¢ dt).

0

In order to obtain integral expressions from the comparison of the above
expression with (2.7), we expand the cosine- and sine function and moreover
execute the substitution u = t2, yielding:

f(zo,z) =

r (%) (i ( 2e|x|2e/1 e%mz“ue*%(l _ u)(m73)/2 du
V7l (m; — (2 — Jo

e8] 1
2E+1| |2E+1/ e%|£|2uue+%(1 _ u)(m73)/2 du) )
2:2é+1|0 o

£=0

By comparing the above expression with (2.7), we obtain the following two
integral equations:

1 2 1 !
lFl (é + = m + é |x| ) = 7, 1 m—1\ / €%|£|2uUE7%(1—U)(m73)/2 du
B(t+3,75) Jo

and

3 m |z|?
F e 1. —
1 1(€+2,2+€+ '

1
) / ezlalPug 3 (1 — ) (m=3)/2 gy
0
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which are applications of (see e.g., [10, p. 274]):

1
L ) / o1 — )71 dt, Re(c) > Re(a) > 0.
0

Fila:c:z) = _
1Fafa; ¢ 2) B(a,c—a

4.4. Monogenic plane wave integrals in the biaxial case

We will illustrate this method for h(z) = e* in order to obtain integral for-
mulas for the Clifford-Bessel function of biaxial type (see subsection 3.2):

fP (. y)
= 202700 (8) (Typ2-1lyl) = ToseCilyy) (Tojza(lah) + 2 a(lz)))

Applying Funk-Hecke twice, we obtain for the vector-valued monogenic

(z,y) / / 2 (t 4 is) dtds
sp—1 Jga-1
(r+a)/2—-1 L
_ mr (/ ezt (1 — g2) -3z dt)
)T () VA

2 T2
1
X (/ e lUls(1 — §2)la=3)/2 ds)
—1

2—1 1
+i47f+—q”§ (/ elelt(] _ g2)o-)/2 dt)
L (55T (55)= U

1
X (/ e lUls(1 — $2)a=3)/2 ds) .
—1

Next, in view of (4.5),

f”@&)—i(?ﬂ)(p”)/z’( o2 (12) Ty /21 (ilyl)z = Tpy2-1 (1)) Ty o (ilyl)y )

In a similar way, we find for the parabivector-valued monogenic:

Pz, y) = (2m)Pra)/2 (%/21(|£|)jq/21(i|g|) + &gjp/z(@qu/z(i@D)-

From the above calculations and Remark 3.4, we obtain the following result.

Theorem 4.3. The vector and parabivector part of the Clifford-Bessel function
of biaxial type

154 (2, )
= 20200 (£ (TyaaGlyl) = Topalilyhy) (Tpjer(lal) + 2T, a(l2]))

can be written as plane wave integm15'

Bes 1act
7, gl = (=i )QHP/QW(WI)/Q /Sp I/Sq 1 2 (¢ + is) dt ds
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and

[P (@, )]o + [FP (2, y)]2

F(%) i(z,t)—(y,s) .
= /Spil /Sqf 20~ (1 4 its) dt ds.
One thus also has that

I (%) _
Bes _ 2 i(z,t)—(y,s : :
P72y = oo /Spl /5q1€<_ )= W) (1 — it + 5 + its) dt ds.

References

[1] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis. Vol. 76 of Research
Notes in Mathematics. Pitman, Boston, MA, 1982.

[2] F. Colombo, 1. Sabadini and F. Sommen, The Inverse Fueter Mapping Theorem.
Communications on Pure and Applied Analysis, 10, No. 4 (2011), 1165-1181.

[3] R. Delanghe, F. Sommen and V. Souéek, Clifford Algebra and Spinor-Valued
Functions. Kluwer Academic Publishers Group, Dordrecht, 1992.

[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen-
dental Functions 2. McGraw-Hill, New York, 1953.

[5] J. Gilbert and M. Murray, Clifford Algebras and Dirac Operators in Harmonic
Analysis. Cambridge University Press, Cambridge, 1991.

[6] K. Girlebeck, K. Habetha and W. Sprossig, Holomorphic Functions in the Plane
and N-dimensional Space. Birkhauser, Basel, 2008.

[7] H. Hochstadt, The Functions of Mathematical Physics. In: Pure and Applied
Mathematics, Vol. 23, Wiley-Interscience, New York, 1971.

[8] G. Jank and F. Sommen, Clifford Analysis, Biaxial Symmetry and Pseudoana-
lytic Functions. Complex Var. Elliptic Equ. 13 (3-4) (1990), 195-212.

[9] R. Lavicka, A Generalization of Fueter’s Monogenic Functions to Fine Domains.
Rend. Circ. Mat. di Palermo (2) Suppl. 79 (2006), 129-138.

[10] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the
Special Functions of Mathematical Physics. Springer-Verlag, Berlin, 1966.

[11] D. Pefia Penia, T. Qian and F. Sommen, An Alternative Proof of Fueter’s
Theorem. Complex Var. Elliptic Equ. 51(8-11) (2006), 913-922.

[12] D. Pena Pena and F. Sommen, Monogenic Gaussian Distribution in Closed
Form and the Gaussian Fundamental Solution. Complex Var. Elliptic Equ. 54,
No. 5 (2009), 429-440.

[13] T. Qian and F. Sommen, Deriving Harmonic Functions in Higher Dimensional
Spaces. Z. Anal. Anwendungen 22(2) (2003), 275-288.

[14] F. Sommen, Special Functions in Clifford Analysis and Azial Symmetry. J.
Math. Anal. Appl. 130, No. 1 (1988), 110-133. Zbl 0634.30042.

[15] F. Sommen, Clifford Analysis and Integral Geometry. In: Clifford Algebras and
their Applications in Mathematical Physics, A. Micali et al., Kluwer, Dordrecht,
1992, 293-311.



388 Nele De Schepper and Frank Sommen

Nele De Schepper

Ghent University - Department of Mathematical Analysis
Galglaan 2

B-9000 Gent, Belgium

e-mail: nds@cage.ugent .be

Frank Sommen

Ghent University - Department of Mathematical Analysis
Galglaan 2

B-9000 Gent, Belgium

e-mail: fs@cage.ugent.be



