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1. Introduction

Clifford analysis (see a.o. [1,3]) is a theory that offers a natural generalization
of complex analysis to higher dimensions. To Rm, the Euclidean space in m
dimensions, we first associate the Clifford algebra C`0,m, generated by the
canonical basis ei , i = 1, . . . , m. These generators satisfy the multiplication
rules eiej + ejei = −2δij .

The Clifford algebra C`0,m can be decomposed as C`0,m = ⊕m
k=0C`k

0,m

with C`k
0,m the space of k-vectors defined by

C`k
0,m = span{ei1···ik = ei1 · · · eik , i1 < · · · < ik}.

More precisely, we have that the space of 1-vectors is given by C`10,m =
span{ei, i = 1, . . . , m} and it is obvious that this space is isomorphic with
Rm . The space of so-called bivectors is given explicitly by

C`20,m = span{eij = eiej , i < j}.

Moreover, the sum of a scalar and a bivector is a so-called parabivector. In
what follows, [a]k denotes the projection of a ∈ C`0,m on C`k

0,m.

We identify the point (x1, . . . , xm) in Rm with the vector variable x
given by x =

∑m
j=1 xjej . The Clifford product of two vectors splits into a
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scalar part and a bivector part: xy = x • y + x ∧ y with

x • y = −〈x, y〉 = −
m∑

j=1

xjyj =
1

2
(xy + yx),

x ∧ y =
∑

j<k

ejek(xjyk − xkyj) =
1

2
(xy − yx).

It is interesting to note that the square of a vector variable x is scalar-
valued and equals the norm squared up to a minus sign: x2 = −〈x, x〉 = −|x|2.

In a similar way we introduce a first order vector differential operator
by ∂x =

∑m
j=1 ∂xjej . This operator is the so-called Dirac operator. Its square

equals, up to a minus sign, the Laplace operator in Rm: ∂2
x = −∆m. In the

sequel, we will also consider the so-called Cauchy-Riemann operator ∂x0 +∂x

for which

(∂x0 + ∂x)(∂x0 − ∂x) = ∆m+1.

A function f(x1, . . . , xm), respectively f(x0 , x1, . . . , xm), defined and contin-
uously differentiable in an open domain of Rm, respectively Rm+1 , and taking
values in C`0,m, is called monogenic in that region if ∂xf = 0, respectively
(∂x0 + ∂x)f = 0.

A monogenic function is called axially monogenic if it is of the “axial
form”

f(x0, x) = A(x0, |x|) +
x

|x|B(x0, |x|),

where A and B are scalar functions. The monogenicity condition

(∂x0 + ∂x)f = 0

then leads to the Vekua system for A and B:

∂x0A − ∂ρB =
m − 1

ρ
B, ∂x0B + ∂ρA = 0, ρ = |x|,

the solution of which leads to numerous special monogenic functions (cf. [14]).

In general, every monogenic function f(x0, x) is determined by its re-
striction f(0, x) to the hyperplane x0 = 0 and, conversely, any given real
analytic function f(x) has a monogenic extension f(x0, x) called Cauchy-
Kowalevski extension (abbreviated CK-extension). Axial monogenics are also
determined by their restriction A(x0, 0) to the x0-axis and, consequently,
starting from a given function A(x0) of one variable, one may establish its
axial CK-extension

A(x0, |x|) +
x

|x|B(x0, |x|).

If one composes this operation with the restriction to x0 = 0 we arrive at a
correspondence

A(x0) 7→ A(0, |x|) +
x

|x|B(0, |x|),

transforming one dimensional functions into higher dimensional ones.
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In Section 2, we study this axial CK-extension and the resulting corre-

spondence in detail for some cases, namely A(x0) = ex0 , A(x0) = e−x2
0/2 and

A(x0) = (1 − x2
0)

α, α ∈ R.

In Section 3, we generalize our result to the case of biaxial mono-
genic functions. These functions originate from the more general splitting
Rm = Rp ⊕ Rq giving rise to two vector variables x =

∑p
j=1 xjej and

y =
∑q

j=1 yjej+p which anti-commute, and the corresponding Dirac oper-
ators

∂x =

p∑

j=1

∂xjej , ∂y =

q∑

j=1

∂yjej+p.

The over-all Dirac operator is ∂x + ∂y and biaxial monogenics are defined as
solutions of

(∂x + ∂y)f(x, y) = 0

of the special form

A +
x

|x|B +
y

|y|C +
xy

|x||y|D,

whereby A, B, C , D are scalar functions of the two radial variables |x| and |y|.
Biaxial monogenics split into biaxial monogenics of vector type x

|x|B +
y

|y|C

and of parabivector type A+
xy

|x||y|D. It may be shown that (see [3]) the pairs

(A, D), (B, C) will also satisfy Vekua-type systems (r = |x|, ρ = |y|)

∂rA +

(
∂ρ +

q − 1

ρ

)
D = 0,

(
∂r +

p − 1

r

)
D − ∂ρA = 0,

resp.
(

∂r +
p − 1

r

)
B +

(
∂ρ +

q − 1

ρ

)
C = 0,

∂rC − ∂ρB = 0.

Similar to axial monogenics, biaxial monogenics are determined by their re-
striction to the first axis Rp given by y = 0 and the second axis Rq given by
x = 0. This leads to a correspondence between functions on Rp and functions
on Rq that will be investigated in a number of examples.

In Section 4, we will produce special axial and biaxial monogenics as
linear superpositions of plane wave type monogenic functions.

In the axial case we start from monogenic plane waves of the simple
form (1− it)h(x0 + i 〈x, t〉), whereby t ∈ Sm−1 is a variable unit vector and h
is a classical holomorphic function of the complex variable x0 + i 〈x, t〉. For
special examples of holomorphic functions h we then consider the integral

∫

Sm−1

(1 − it)h(x0 + i 〈x, t〉) dt
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which may be evaluated using Funk-Hecke’s theorem and which gives rise
to an axial monogenic function whose restriction to the x0-axis is, up to a
constant, simply h(x0).

In the biaxial case, we start from plane wave functions of either form

(t + is)h(i〈x, t〉 − 〈y, s〉) or (1 + its)h(i〈x, t〉 − 〈y, s〉)

with t ∈ Sp−1 , s ∈ Sq−1 being variable orthogonal unit vectors. After integra-
tion of such functions over the bi-sphere (t, s) ∈ Sp−1×Sq−1 , we obtain biax-
ial monogenics of vector-type and of parabivector-type, respectively. We work
out these integrals explicitly for the exponential function exp

(
i〈x, t〉 − 〈y, s〉

)
,

giving rise to integral expressions for the Clifford-Bessel function of biaxial
type.

It is clear that this paper deals with simple, though fundamental, ex-
amples of special monogenic functions and that many more special functions
may be computed using these methods.

For an introduction to Clifford analysis we refer to [1, 3, 5, 6]. Other
papers dealing with axial and biaxial monogenics include [2, 8, 9, 11–13].

2. Cauchy-Kowalevski extensions: the axial framework

2.1. General problem

Any axially symmetric function may be written in the form

f(x0, x) =

∞∑

s=0

csx
sFs(x0)W (x0)

with F0(x0) = 1, whereby the coefficients cs are determined by

∂x[csx
s] = cs−1x

s−1, c0 = 1. (2.1)

For axially monogenic functions (∂x0 + ∂x)[f(x0, x)] = 0, the question is to
determine

f(0, x) =
∞∑

s=0

csx
sFs(0)W (0).

In other words, the restriction to R of the function f , which is monogenic in
the whole of Rm+1 , is given by f(x0, 0) = W (x0). The aim is to determine
its restriction to Rm, i.e., f(0, x).

By means of induction and using the fundamental formula

∂x[xs] =

{
−sxs−1 for s even,

−(s − 1 + m)xs−1 for s odd,
(2.2)

one can prove that the coefficients cs satisfying (2.1) take the form

c2` =
Γ
(

m
2

)

Γ
(

m
2 + `

)
22``!

and c2`+1 = − Γ
(

m
2

)

Γ
(

m
2 + ` + 1

)
22`+1`!

.
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2.2. Examples

2.2.1. W (x0) = ex0 . This example was already considered in [14]. Given

f(x0, x) =

∞∑

s=0

csx
sBs(x0)e

x0

with B0(x0) = 1, cs satisfying (2.1) and f being monogenic in Rm+1 , we look
for f(0, x).

The first step is to determine Bs(x0). From the monogenicity of f , we
obtain consecutively

(∂x0 + ∂x)

[
∞∑

s=0

csx
sBs(x0)e

x0

]
= 0

⇐⇒
∞∑

s=0

B′
s(x0)e

x0csx
s +

∞∑

s=0

Bs(x0)e
x0csx

s +

∞∑

s=1

Bs(x0)e
x0cs−1x

s−1 = 0

⇐⇒
∞∑

s=0

B′
s(x0)e

x0csx
s +

∞∑

s=0

Bs(x0)e
x0csx

s +

∞∑

s=0

Bs+1(x0)e
x0csx

s = 0,

where in the last series we have made the substitution s′ = s − 1.
Hence, functions Bs(x0) must satisfy

Bs+1(x0) = −Bs(x0) − B′
s(x0), B0(x0) = 1,

from which we obtain that B2`(x0) = 1 and B2`+1(x0) = −1.
Consequently, using spherical co-ordinates x = |x|ω, ω ∈ Sm−1 , we find

∞∑

s=0

csx
sBs(0)

=
∞∑

`=0

c2`x
2` −

∞∑

`=0

c2`+1x
2`+1

= Γ
(m

2

) ∞∑

`=0

(−1)`|x|2`

Γ
(

m
2

+ `
)
22``!

+ Γ
(m

2

) |x|
2

∞∑

`=0

(−1)`|x|2`

Γ
(

m
2

+ ` + 1
)
22``!

ω.

Finally, taking into account that

2νJ̃ν(ρ) =

∞∑

`=0

(−1)`ρ2`

`!Γ(ν + ` + 1)22`
, (2.3)

we obtain

f(0, x) =

∞∑

s=0

csx
sBs(0) = Γ

(m

2

)
2m/2−1

(
J̃m/2−1(|x|) + J̃m/2(|x|)x

)
,

which corresponds to the result obtained in [14].

Remark 2.1. Note that the full axial CK-extension f(x0, x) takes the form:

f(x0 , x) = Γ
(m

2

)
2m/2−1

(
J̃m/2−1(|x|) + J̃m/2(|x|)x

)
ex0 .
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2.2.2. W (x0) = e−x2
0/2. As a second example, we consider for W (x0) the

hermite weight function. Hence, given

f(x0 , x) =

∞∑

s=0

csx
sHs(x0)e

−x2
0/2 (2.4)

with H0(x0) = 1, cs again satisfying (2.1) and f being monogenic in Rm+1 ,
the aim is to determine f(0, x).

In a similar way as in the first example, the monogenicity of f in the
whole of Rm+1 leads to the following recurrence relation for the functions
Hs(x0):

Hs+1(x0) = x0Hs(x0) − H ′
s(x0), H0(x0) = 1.

From this recurrence relation we observe that Hs(x0) are the classical Hermite

polynomials on the real line associated with the weight function e−x2
0/2 , which

are defined by the Rodrigues formula

Hs(x0) = ex2
0/2

(
− d

dx0

)s [
e−x2

0/2
]
.

These polynomials satisfy (see e.g. [10, p. 250]):

H2`(0) =
(−1)`(2`)!

`!2`
and H2`+1(0) = 0,

which leads to

f(0, x) =

∞∑

s=0

csx
sHs(0) =

∞∑

`=0

c2`x
2`H2`(0) =

∞∑

`=0

Γ
(

m
2

)

Γ
(

m
2 + `

) (2`)!

(`!)2

( |x|2
8

)`

.

Taking into account (see e.g., [10, p. 3])

Γ
(
` + 1

2

)

Γ
(

1
2

) = 2−2` (2`)!

`!
, (2.5)

we finally arrive at

f(0, x) =
Γ
(

m
2

)

Γ
(

1
2

)
∞∑

`=0

Γ
(
` + 1

2

)

Γ
(
` + m

2

) 1

`!

( |x|2
2

)`

= 1F1

(
1

2
;
m

2
;
|x|2
2

)

where

1F1(a; c; z) =
Γ(c)

Γ(a)

∞∑

`=0

Γ(a + `)

Γ(c + `)

z`

`!

is Kummer’s function.

Remark 2.2. When m = 1, we have f(0, x) = ex2/2 .

Let us now calculate an expression for the full axial CK-extension f(x0, x)
which we will use in subsection 4.3.2.
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Splitting series (2.4) into even and odd parts, we obtain

f(x0, x) = Γ
(m

2

)( ∞∑

`=0

(−1)`|x|2`H2`(x0)

Γ
(

m
2 + `

)
22``!

)
e−x2

0/2

− Γ
(m

2

)( ∞∑

`=0

(−1)`|x|2`+1H2`+1(x0)

Γ
(

m
2

+ ` + 1
)
22`+1`!

)
ωe−x2

0/2

with ω = x
|x|

∈ Sm−1 .

We will now rewrite both series over ` as series in x0 instead of |x|.
Hereto we use the explicit expression of the classical Hermite polynomials
(see e.g., [10, p. 250]):

Hn(x0) = n!

bn
2 c∑

i=0

(−1)ixn−2i
0

i!2i(n − 2i)!
.

Hence, for the first series we obtain:

∞∑

`=0

(−1)`|x|2`H2`(x0)

Γ
(

m
2 + `

)
22``!

=

∞∑

`=0

(−1)`|x|2`

Γ
(

m
2 + `

)
22``!

(2`)!
∑̀

i=0

(−1)ix2`−2i
0

i!2i(2` − 2i)!
.

Substituting j = ` − i and changing the order of summation, we find

∞∑

`=0

(−1)`|x|2`H2`(x0)

Γ
(

m
2 + `

)
22``!

=

∞∑

`=0

(−1)`|x|2`

Γ
(

m
2 + `

)
22``!

(2`)!
∑̀

j=0

(−1)`−jx2j
0

(` − j)!2`−j(2j)!

=

∞∑

j=0

(−1)j

(2j)!
2j




∞∑

`=j

(2`)!

Γ
(

m
2

+ `
)
23``!(` − j)!

|x|2`



x2j
0 .

Next, we interchange the indices ` and j, and rewrite the above expression
as

∞∑

`=0

(−1)`|x|2`H2`(x0)

Γ
(

m
2 + `

)
22``!

=

∞∑

`=0

(−1)`

22`(2`)!
|x|2`




∞∑

j=`

(2j)!|x|2j−2`

Γ
(

m
2

+ j
)
23j−3`j!(j − `)!



 x2`
0 . (2.6)

The series over j yields the Kummer function. Indeed, changing the summa-
tion index as i = j − ` and using relation (2.5), we arrive at

∞∑

j=`

(2j)!|x|2j−2`

Γ
(

m
2 + j

)
23j−3`j!(j − `)!

=
∞∑

i=0

(2i + 2`)!

(i + `)!

|x|2i

Γ
(

m
2 + i + `

)
23ii!

=
22`

√
π

∞∑

i=0

Γ
(
i + ` + 1

2

)

Γ
(

m
2

+ i + `
) 1

i!

( |x|2
2

)i

=
22`

√
π

Γ
(
` + 1

2

)

Γ
(

m
2 + `

) 1F1

(
` +

1

2
;
m

2
+ `;

|x|2
2

)
.
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Substituting the above result into (2.6) and using once more (2.5), we finally
arrive at

∞∑

`=0

(−1)`|x|2`H2`(x0)

Γ
(

m
2 + `

)
22``!

=

∞∑

`=0

(−1)`|x|2`

22``!Γ
(

m
2 + `

) 1F1

(
` +

1

2
;
m

2
+ `;

|x|2
2

)
x2`

0 .

In a similar way we find

∞∑

`=0

(−1)`|x|2`+1H2`+1(x0)

Γ
(

m
2 + ` + 1

)
22`+1`!

=

∞∑

`=0

(−1)`|x|2`+1

22`+1`!Γ
(

m
2 + ` + 1

) 1F1

(
` +

3

2
;
m

2
+ ` + 1;

|x|2
2

)
x2`+1

0 .

We thus conclude that

f(x0, x) =

Γ
(m

2

)( ∞∑

`=0

(−1)`|x|2`

22``!Γ
(

m
2 + `

) 1F1

(
` +

1

2
;
m

2
+ `;

|x|2
2

)
x2`

0

)
e−x2

0/2

− Γ
(m

2

)( ∞∑

`=0

(−1)`|x|2`+1

22`+1`!Γ
(

m
2

+ ` + 1
)

× 1F1

(
` +

3

2
;
m

2
+ ` + 1;

|x|2
2

)
x2`+1

0

)
ωe−x2

0/2. (2.7)

2.2.3. W (x0) = (1 − x2
0)

α, α ∈ R. Next, we take for W (x0) the Gegenbauer
weight function. The axial CK-extension f(x0, x) now takes a slightly differ-
ent form, namely

f(x0, x) =

∞∑

s=0

csx
sGα

s (x0)(1 − x2
0)

α−s.

Again we have that Gα
0 (x0) = 1 and that the coefficients cs satisfy (2.1).

Hence,

f(x0, 0) = (1 − x2
0)

α.

The question is to first determine the functions Gα
s (x0) and then to find the

sum
∑∞

s=0 csx
sGα

s (0).

From the monogenicity relation

(∂x0 + ∂x)[f(x0, x)] = 0,

we derive the recurrence relation

Gα
s+1(x0) = 2(α − s)x0G

α
s (x0) − (1 − x2

0)(G
α
s )

′

(x0), Gα
0 (x0) = 1. (2.8)
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The lower degree polynomials take the form

Gα
0 (x0) = 1,

Gα
1 (x0) = 2αx0,

Gα
2 (x0) = 2α(2α− 1)x2

0 − 2α,

Gα
3 (x0) = 4α(α − 1)(2α − 1)x3

0 − 12α(α − 1)x0,

etc.

Putting

Gα
2t(x0) =

t∑

i=0

b2t,α
2i x2i

0 and Gα
2t+1(x0) =

t∑

i=0

b2t+1,α
2i+1 x2i+1

0 ,

we then have the following result.

Theorem 2.3. For 0 ≤ i ≤ t, one has

b2t,α
2i = (−1)t22t(2t)!

(α − 2t + 1)2t

(2α − 4t + 1)2tΓ(α − 2t + 1
2
)
(−1)i

× 22iΓ(α + 1
2 − t + i)

(t − i)!(2i)!

b2t+1,α
2i+1 = (−1)t22t+1(2t + 1)!

(α − 2t)2t+1

(2α − 4t − 1)2t+1Γ(α − 2t − 1
2 )

(−1)i

× 22i+1Γ(α + 1
2 − t + i)

(t − i)!(2i + 1)!

with (α)` = α(α + 1) · · · (α + ` − 1) = Γ(α+`)
Γ(α) , the Pochhammer’s symbol.

Proof. This result is proved by induction on the degree of the polynomial
and using the recurrence relation (2.8). �

Using the above theorem, we can write Gα
t (x0) in terms of the classical

Gegenbauer polynomials on the real line.

Corollary 2.4. One has

Gα
2t(x0) = 22t(2t)!

(α − 2t + 1)2t

(2α − 4t + 1)2t
C

α−2t+1
2

2t (x0),

Gα
2t+1(x0) = 22t+1(2t + 1)!

(α − 2t)2t+1

(2α− 4t − 1)2t+1
C

α−2t−1
2

2t+1 (x0),

with Cλ
n(x0) being the classical Gegenbauer polynomial on the real line given

explicitly by (see e.g., [10, p. 219])

Cλ
n(x0) =

1

Γ(λ)

bn
2 c∑

i=0

(−1)iΓ(λ + n − i)

i!(n − 2i)!
(2x0)

n−2i, λ > 0. (2.9)
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Proof. This follows immediately from Theorem 2.3 and the explicit expression
(2.9). �

Now, we also easily obtain that Gα
2t+1(0) = 0 and

Gα
2t(0) = b2t,α

0 = (−1)t22t (2t)!

t!

Γ(α + 1)Γ(2α− 4t + 1)Γ(α + 1
2 − t)

Γ(α − 2t + 1)Γ(2α− 2t + 1)Γ(α − 2t + 1
2 )

.

Taking into account (see e.g., [10, p. 3]):

Γ(2z) = π− 1
2 22z−1Γ(z)Γ

(
z +

1

2

)
, (2.10)

the expression for Gα
2t(0) can be simplified to

Gα
2t(0) = (−1)t (2t)!

t!

Γ(α + 1)

Γ(α − t + 1)
.

Hence, we find
∞∑

s=0

csx
sGα

s (0) =

∞∑

`=0

c2`x
2`Gα

2`(0)

=
∞∑

`=0

Γ
(

m
2

)

Γ
(

m
2

+ `
)
22``!

|x|2` (2`)!

`!

Γ(α + 1)

Γ(α − ` + 1)
. (2.11)

Using formula (2.5) and (see e.g., [10, p. 2])

Γ(α + 1 − `) = (−1)`Γ(α + 1)
Γ(−α)

Γ(` − α)
,

expression (2.11) can be simplified to
∞∑

s=0

csx
sGα

s (0) =

∞∑

`=0

Γ
(

m
2

)

Γ
(

m
2

+ `
) Γ
(
` + 1

2

)

Γ
(

1
2

) Γ(` − α)

Γ(−α)

(−|x|2)`

`!

= 2F1

(
1

2
,−α; m/2;−|x|2

)

with

2F1(a, b; c; z) =
∞∑

`=0

Γ(a + `)

Γ(a)

Γ(b + `)

Γ(b)

Γ(c)

Γ(c + `)

z`

`!

being the hypergeometric function.

3. Cauchy-Kowalevski-extensions: the biaxial framework

In this section we consider functions of two vector variables x =
∑p

j=1 xjej

and y =
∑q

j=1 yjep+j . The sum x + y represents a vector variable in Rp+q

equipped with the orthonormal basis (e1, . . . , ep, ep+1, . . . , ep+q). The corre-
sponding Dirac operators take the form

∂x =

p∑

j=1

∂xjej and ∂y =

q∑

j=1

∂yjep+j .
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Note that the vector variables and Dirac operators anti-commute, i.e. xy =
−yx and ∂x∂y = −∂y∂x and that the vector variables are orthogonal, i.e.,〈
x, y
〉

= 0.
In this biaxial framework we consider the analogue CK-problem as in

the previous section.

3.1. First example: Gauss function

Given

f(x, y) =

∞∑

s=0

csy
sHs(x)e−|x|2/2

with H0(x) = 1, ∂y[csy
s] = cs−1y

s−1 , c0 = 1 and

(∂x + ∂y)[f(x, y)] = 0, (3.1)

the question is to determine

f(0, y) =

∞∑

s=0

csy
sHs(0).

In other words, the restriction to Rp of the function f , which is monogenic

in the whole of Rp+q , is given by the Gauss function: f(x, 0) = e−|x|2/2 .
The aim is to determine its restriction to Rq , i.e., to determine f(0, y).
In a completely similar way as in the previous section, we obtain that

the coefficients cs are given by

c2` =
Γ
(

q
2

)

Γ
(

q
2 + `

)
22``!

and c2`+1 = − Γ
(

q
2

)

Γ
(

q
2 + ` + 1

)
22`+1`!

.

From the monogenicity relation (3.1), we obtain consecutively

(∂x + ∂y)

[
∞∑

s=0

csy
sHs(x)e−|x|2/2

]
= 0

⇐⇒
∞∑

s=0

cs(−1)sys
(
−xe−|x|2/2Hs(x) + e−|x|2/2∂x[Hs(x)]

)

+

∞∑

s=1

cs−1y
s−1Hs(x)e−|x|2/2 = 0

⇐⇒
∞∑

s=0

cs(−1)sys
(
−xHs(x) + ∂x[Hs(x)]

)
e−|x|2/2

+

∞∑

s=0

csy
sHs+1(x)e−|x|2/2 = 0,

hence the functions Hs(x) satisfy the recurrence relation

Hs+1(x) = (−1)s(x − ∂x)[Hs(x)], H0(x) = 1.

From this recurrence relation we observe that

H2`(x) = (−1)`HRCH
2` (x) and H2`+1(x) = (−1)`HRCH

2`+1 (x)
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with HRCH
s (x) being the so-called radial Clifford-Hermite polynomials which

were introduced in [14]. Taking into account the expression of these polyno-
mials in terms of the generalized Laguerre polynomials on the real line

HRCH
2` (x) = 2``!L

p/2−1
`

( |x|2
2

)
; HRCH

2`+1 (x) = 2``!L
p/2
`

( |x|2
2

)
x,

and the relation (see e.g., [10, p. 240])

Lα
n(0) =

(α + 1)n

n!
,

we find that

H2`(0) = (−1)`2` Γ
(

p
2 + `

)

Γ
(

p
2

) and H2`+1(0) = 0.

This finally yields

f(0, y) =

∞∑

s=0

csy
sHs(0) =

∞∑

`=0

c2`(−|y|2)`H2`(0)

=
Γ
(

q
2

)

Γ
(

p
2

)
∞∑

`=0

Γ
(

p
2 + `

)

Γ
(

q
2 + `

) 1

`!

(
|y|2
2

)`

= 1F1

(
p/2; q/2; |y|2/2

)
.

Remark 3.1. Let us consider two special cases.

1. p = q

In this case we again obtain a Gauss function, i.e., f(0, y) = e|y|
2/2 , and

as f(x, 0) = e−|x|2/2 we thus have a closed class.
2. p − q = 2n, n ∈ N

In this case we find

Γ
(

p
2 + `

)

Γ
(

q
2

+ `
) =

Γ
(

q
2 + ` + n

)

Γ
(

q
2

+ `
) =

(q

2
+ `
)(q

2
+ ` + 1

)
· · ·
(q

2
+ ` + n − 1

)

= P (`),

P (`) being a polynomial of degree n in `. Consequently, we find that in
this case

f(0, y) =
Γ
(

q
2

)

Γ
(

p
2

)
∞∑

`=0

P (`)
1

`!

(
|y|2
2

)`

=
Γ
(

q
2

)

Γ
(

p
2

)P
(

Ey

2

)[
e|y|

2/2
]

with Ey =
〈
y, ∂y

〉
the Euler operator.

3.2. Second example: Clifford-Bessel function of biaxial type

In this subsection we consider the biaxial CK-extension of the Clifford-Bessel
function without exponential factor, i.e., J̃p/2−1(|x|) + xJ̃p/2(|x|). Put

f(x, y) =

∞∑

s=0

csy
s∂s

x

(
J̃p/2−1(|x|) + xJ̃p/2(|x|)

)
,
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where we take the coefficients cs such that
∑∞

s=0 csy
s∂s

x is monogenic, i.e.,

(∂x + ∂y)

[
∞∑

s=0

csy
s∂s

x

]
= 0.

This leads to the equation

cs∂y[ys] = (−1)scs−1y
s−1.

Since

f(x, 0) = J̃p/2−1(|x|) + xJ̃p/2(|x|),
we also have that c0 = 1. By means of induction, one can prove that in this
case the coefficients cs take the form

c2` =
(−1)`Γ

(
q
2

)

Γ
(

q
2 + `

)
22``!

and c2`+1 =
(−1)`Γ

(
q
2

)

Γ
(

q
2 + ` + 1

)
22`+1`!

. (3.2)

The question is to determine f(0, y). Hereto we start with the following result.

Theorem 3.2. One has

∂s
x

[
J̃p/2−1(|x|) + xJ̃p/2(|x|)

]
= (−1)s

(
J̃p/2−1(|x|) + xJ̃p/2(|x|)

)
.

Proof. By means of the series expansion (2.3), we obtain for the Bessel func-
tion

J̃p/2−1(|x|) + xJ̃p/2(|x|)

= 21−p/2
∞∑

`=0

x2`

`!Γ
(

p
2 + `

)
22`

+ 2−p/2
∞∑

`=0

x2`+1

`!Γ
(

p
2 + ` + 1

)
22`

.

Using the fundamental formula (2.2) and substituting `′ = `−1 into the first
series, we find

∂x

[
J̃p/2−1(|x|) + xJ̃p/2(|x|)

]

= −21−p/2
∞∑

`=1

x2`−1

(` − 1)!Γ
(

p
2 + `

)
22`−1

− 2−p/2+1
∞∑

`=0

x2`

`!Γ
(

p
2 + `

)
22`

= −21−p/2
∞∑

`′=0

x2`′+1

`′!Γ
(

p
2 + `′ + 1

)
22`′+1

− 2−p/2+1
∞∑

`=0

x2`

`!Γ
(

p
2 + `

)
22`

= −
(
J̃p/2−1(|x|) + xJ̃p/2(|x|)

)
,

which yields the desired result. �

Hence, we have

f(x, y) =

∞∑

s=0

csy
s(−1)s

(
J̃p/2−1(|x|) + xJ̃p/2(|x|)

)
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and thus

f(0, y) =

∞∑

s=0

csy
s(−1)s 21−p/2

Γ
(

p
2

)

=
21−p/2

Γ
(

p
2

)
(

∞∑

`=0

c2`y
2` −

∞∑

`=0

c2`+1y
2`+1

)

= 21−p/2 Γ
(

q
2

)

Γ
(

p
2

)
(

∞∑

`=0

|y|2`

Γ
(

q
2 + `

)
22``!

− y

∞∑

`=0

|y|2`

Γ
(

q
2 + ` + 1

)
22`+1`!

)
.

We now obtain different expressions for f(0, y).

Theorem 3.3. One has that

f(0, y) = 2(q−p)/2 Γ
(

q
2

)

Γ
(

p
2

)
(
J̃q/2−1(i|y|) − J̃q/2(i|y|)y

)

= 2(q−p)/2 Γ
(

q
2

)

Γ
(

p
2

) |y|1−q/2

(
Iq/2−1(|y|) −

y

|y|Iq/2(|y|)
)

=
21−p/2

Γ
(

p
2

)
(

0F1

(
q

2
;
|y|2
4

)
−

y

q
0F1

(
q

2
+ 1;

|y|2
4

))

with Iν(z) being the modified Bessel function of the first kind and 0F1(β; z)
being the hypergeometric function.

Proof. This theorem is proved using the series expansion (2.3) and consecu-
tively the following relations (see e.g., [10])

J̃ν(z) = z−νJν(z), Jν(iz) = iνIν(z), 0F1(β; z) =

∞∑

`=0

Γ(β)

Γ(β + `)

z`

`!
.

Remark 3.4. During the calculations we have also obtained a closed form for
the full biaxial CK-extension f(x, y):

f(x, y) = 2q/2−1Γ
(q

2

)(
J̃q/2−1(i|y|) − J̃q/2(i|y|)y

)(
J̃p/2−1(|x|) + xJ̃p/2(|x|)

)

= 2q/2−1Γ
(q

2

)
|y|1−q/2

(
Iq/2−1(|y|) −

y

|y|Iq/2(|y|)
)

× |x|1−p/2

(
Jp/2−1(|x|) +

x

|x|Jp/2(|x|)
)

.

Note that from the monogenicity of f it follows that the vector part of f

[f(x, y)]1 = 2q/2−1Γ
(q

2

)(
J̃p/2(|x|)J̃q/2−1(i|y|)x − J̃p/2−1(|x|)J̃q/2(i|y|)y

)

and the parabivector part of f

[f(x, y)]0 + [f(x, y)]2

= 2q/2−1Γ
(q

2

)(
J̃p/2−1(|x|)J̃q/2−1(i|y|) + J̃p/2(|x|)J̃q/2(i|y|)xy

)
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are also monogenic.

3.3. Third example: Kummer’s function

We now determine the biaxial CK-extension of Kummer’s function

1F1

(
a; c;−|x|2

2

)
=

Γ(c)

Γ(a)

∞∑

n=0

Γ(a + n)

Γ(c + n)

1

n!

(
−|x|2

2

)n

with a, c ∈ R. Like before, we put

f(x, y) =

∞∑

s=0

csy
s∂s

x

[
1F1

(
a; c;−|x|2

2

)]
,

where the coefficients cs take the form (3.2).

We start with the following result.

Proposition 3.5. For n ∈ N one has

∂2n
x

[
1F1

(
a; c;−|x|2

2

)]
=

n∑

i=0

(a)2n−i

(c)2n−i
2i
(p

2
+ n − i

)

i

(
n

i

)

× 1F1

(
a + 2n − i; c + 2n − i;−|x|2

2

)
(−x)2n−2i,

∂2n+1
x

[
1F1

(
a; c;−|x|2

2

)]
=

n∑

i=0

(a)2n+1−i

(c)2n+1−i
2i
(p

2
+ n − i + 1

)

i

(
n

i

)

× 1F1

(
a + 2n + 1 − i; c + 2n + 1 − i;−|x|2

2

)
(−x)2n+1−2i.

Proof. This result is proved by induction on n using the relations

∂x

[
1F1

(
α; β;−|x|2

2

)]
=

α

β
1F1

(
α + 1; β + 1;−|x|2

2

)
(−x)

and

∂x[(−x)`] =

{
`(−x)`−1 for ` even,

(` + p − 1)(−x)`−1 for ` odd.

Taking the restriction to x = 0 of the differential equations in Proposi-
tion 3.5 yields

∂2n
x

[
1F1

(
a; c;−|x|2

2

)]

|x=0

=
(a)n

(c)n
2n
(p

2

)

n
,

∂2n+1
x

[
1F1

(
a; c;−|x|2

2

)]

|x=0

= 0.
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Hence, we find

f(0, y) =

∞∑

n=0

c2ny2n (a)n

(c)n
2n
(p

2

)

n
=

∞∑

n=0

(a)n

(
p
2

)
n

(c)n

(
q
2

)
n

1

n!

(
|y|2
2

)n

= 2F2

(
a,

p

2
; c,

q

2
;
|y|2
2

)
.

Remark 3.6. The restriction f(0, y) is again a Kummer function, i.e., we
obtain a closed class of functions, in the following four cases

1. p = q :

f(0, y) = 1F1

(
a; c;

|y|2
2

)

2. c = p
2 :

f(0, y) = 1F1

(
a;

q

2
;
|y|2
2

)

3. a = q
2 :

f(0, y) = 1F1

(
p

2
; c;

|y|2
2

)

4. a = c :

f(0, y) = 1F1

(
p

2
;
q

2
;
|y|2
2

)

Note that in the latter case f(x, 0) = e−|x|2/2 , hence this is the example
we have considered in subsection 3.1.

Remark 3.7. The above calculations can be generalized to:

f(x, 0) = kF`

(
a1, . . . , ak; c1, . . . , c`;−

|x|2
2

)

with ai ∈ R (i = 1, . . . , k), cj ∈ R (j = 1, . . . , `). In a similar way as above,
we obtain

f(0, y) = k+1F`+1

(
p

2
, a1, . . . , ak;

q

2
, c1, . . . , c`;

|y|2
2

)
.

4. Monogenic plane waves

4.1. General method

For this method we refer to [15]. We first consider the axial case.
Let h(z) be a holomorphic function of z ∈ C. Consider

(1 − it)h(x0 + i 〈x, t〉)
with x0 ∈ R, x ∈ Rm , t ∈ Sm−1 . We have

(∂x0 + ∂x)[(1 − it)h(x0 + i 〈x, t〉)] = h′(x0 + i 〈x, t〉)(1 + it)(1 − it) = 0.
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Hence, (1 − it)h(x0 + i 〈x, t〉) is monogenic in (x0, x) and it is a function of
〈x, t〉, i.e., it is a monogenic plane wave.

From the above, it is clear that the axial CK-extension of h(x0) can be
written in the following integral form:

CK(h)(x0, x) =
Γ
(

m
2

)

2πm/2

∫

Sm−1

(1 − it)h(x0 + i〈x, t〉) dt.

For the functions

h(x0) = ex0 , h(x0) = e−x2
0/2, and h(x0) = (1 − x2

0)
α, α ∈ R,

we know the restriction CK(h)(0, x) from subsection 2.2.
On the other hand, we have

CK(h)(0, x) =
Γ
(

m
2

)

2πm/2

∫

Sm−1

(1 − it)h(i〈x, t〉) dt.

By applying on the right hand side of the above equation the following Funk-
Hecke theorem (see for e.g., [7]),

Theorem 4.1 (Funk-Hecke Theorem). Let Sk be a spherical harmonic of de-
gree k, then
∫

Sm−1

f(〈ω, η〉)Sk(ω) dS(ω) = Am−1Sk(η)

∫ 1

−1

f(t)(1 − t2)(m−3)/2Pk,m(t) dt

where Pk,m(t) denotes the Legendre polynomial of degree k in Rm, expressed
as follows in terms of the Gegenbauer polynomials

Pk,m(t) =
k!(m − 3)!

(k + m − 3)!
C

(m−2)/2
k (t),

and Am−1 = 2π(m−1)/2

Γ(m−1
2 )

the area of the unit sphere Sm−2 in Rm−1.

we will be able to obtain integral expressions for CK(h)(0, x). In other words,
the aim is to derive integral representations for special functions of classical
analysis by using Clifford analysis techniques.

Remark 4.2. The above idea can also be applied to obtain an integral ex-
pression for the full axial CK-extension CK(h)(x0, x).

In the biaxial case monogenic plane waves are of the form

h(i〈x, t〉 − 〈y, s〉)(t + is), t ∈ Sp−1, s ∈ Sq−1

giving vector-valued monogenics, and of the form

h(i〈x, t〉 − 〈y, s〉)(1 + its), t ∈ Sp−1 , s ∈ Sq−1

giving parabivector-valued monogenics. The integration takes place over the
product of spheres Sp−1×Sq−1 and to evaluate the integrals one has to apply
the Funk-Hecke theorem twice.

Let us consider the restrictions for the parabivector-valued monogenics:

fp(x, y) =

∫

Sp−1

∫

Sq−1

h(i〈x, t〉 − 〈y, s〉)(1 + it s) dt ds.
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First, we have that

fp(0, y) =
2πp/2

Γ
(

p
2

)
∫

Sq−1

h(−〈y, s〉) ds

=
4π(p+q−1)/2

Γ
(

p
2

)
Γ
(

q−1
2

)
∫ 1

−1

h(−|y|t)(1 − t2)(q−3)/2 dt,

while the restriction to y = 0 takes the form

fp(x, 0) =
2πq/2

Γ
(

q
2

)
∫

Sp−1

h(i〈x, t〉) dt

=
4π(p+q−1)/2

Γ
(

p−1
2

)
Γ
(

q
2

)
∫ 1

−1

h(i|x|t)(1 − t2)(p−3)/2 dt.

In a similar way, we obtain for the vector-valued monogenics

fv(x, y) =

∫

Sp−1

∫

Sq−1

h(i〈x, t〉 − 〈y, s〉)(t + is) dt ds

the following results:

fv(0, y) =
i4π(p+q−1)/2

Γ
(

p
2

)
Γ
(

q−1
2

)
y

|y|

∫ 1

−1

h(−|y|t)(1 − t2)(q−3)/2t dt,

fv(x, 0) =
4π(p+q−1)/2

Γ
(

q
2

)
Γ
(

p−1
2

) x

|x|

∫ 1

−1

h(i|x|t)(1 − t2)(p−3)/2t dt.

4.2. The axial case: method applied to CK(h)(0, x)

4.2.1. h(x0) = e−x2
0/2 . In this case, we know from subsection 2.2.2 that

CK(h)(0, x) = 1F1

(
1

2
;
m

2
;
|x|2
2

)
.

On the other hand, using spherical coordinates x = rω, r = |x|, ω ∈ Sm−1

and the Funk-Hecke theorem, we have that

CK(h)(0, x) =
Γ
(

m
2

)

2πm/2

∫

Sm−1

(1 − it)e〈x,t〉2/2 dt

=
Γ
(

m
2

)
√

πΓ
(

m−1
2

)
(∫ 1

−1

er2t2/2(1 − t2)(m−3)/2 dt

− iω

∫ 1

−1

er2t2/2(1 − t2)(m−3)/2t dt

)

=
2Γ
(

m
2

)
√

πΓ
(

m−1
2

)
∫ 1

0

e|x|
2t2/2(1 − t2)(m−3)/2 dt

=
Γ
(

m
2

)
√

πΓ
(

m−1
2

)
∫ 1

0

e|x|
2t/2(1 − t)(m−3)/2t−

1
2 dt,
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where in the last step we have substituted t′ = t2 .

Hence, we have obtained the following integral representation for Kum-
mer’s function

1F1

(
1

2
;
m

2
; z

)
=

Γ
(

m
2

)
√

πΓ
(

m−1
2

)
∫ 1

0

ezt(1 − t)(m−3)/2t−
1
2 dt.

This integral expression can also be found, for example, in [10, p. 274].

4.2.2. h(x0) = ex0 . On the one hand, we know from subsection 2.2.1 that

CK(h)(0, x) = Γ
(m

2

)
2m/2−1

(
J̃m/2−1(|x|) + J̃m/2(|x|)x

)
, (4.1)

while on the other hand, using the monogenic plane wave approach we obtain

CK(h)(0, x) =
Γ
(

m
2

)

2πm/2

(∫

Sm−1

ei|x|〈ω,t〉 dt − i

∫

Sm−1

tei|x|〈ω,t〉 dt

)

=
Γ
(

m
2

)
√

πΓ
(

m−1
2

)
(∫ 1

−1

ei|x|t(1 − t2)(m−3)/2 dt

− iω

∫ 1

−1

ei|x|t(1 − t2)(m−3)/2t dt

)
. (4.2)

Equalizing the scalar and vector part of (4.1) and (4.2) yields

|x|1−m/2Jm/2−1(|x|) =
21−m/2

√
πΓ
(

m−1
2

)
∫ 1

−1

ei|x|t(1 − t2)(m−3)/2 dt (4.3)

and

|x|1−m/2Jm/2(|x|) =
21−m/2(−i)√

πΓ
(

m−1
2

)
∫ 1

−1

ei|x|t (1 − t2)(m−3)/2t dt. (4.4)

Expression (4.3) is an application of Poisson’s integral (see e.g. [4, p. 81]):

z−νJν(z) =
2−ν

√
πΓ
(
ν + 1

2

)
∫ 1

−1

eizt(1 − t2)ν− 1
2 dt, Re(ν) > −1

2

and formula (4.4) is an application of the following integral expression which
is derived in [7, pp. 203–204]:

Jn+m/2−1(z) =

(−i)n

√
πΓ
(

m−1
2

)
(z

2

)m/2−1
∫ 1

−1

eiztPn,m(t)(1 − t2)(m−3)/2 dt. (4.5)
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4.2.3. h(x0) = (1 − x2
0)

α, α ∈ R. Let us now consider the last function for
which we know CK(h)(0, x) from subsection 2.2, namely the Gegenbauer
weight function h(x0) = (1 − x2

0)
α, α ∈ R.

Applying the monogenic plane wave approach we find that

2F1

(
−α,

1

2
;
m

2
;−|x|2

)
=

Γ
(

m
2

)

2πm/2

(∫

Sm−1

(1 + |x|2〈ω, t〉2)α dt

− i

∫

Sm−1

t(1 + |x|2〈ω, t〉2)α dt

)

=
Γ
(

m
2

)
√

πΓ
(

m−1
2

)
(∫ 1

−1

(1 + |x|2t2)α(1 − t2)(m−3)/2 dt

− iω

∫ 1

−1

(1 + |x|2t2)α(1 − t2)(m−3)/2t dt

)

=
2Γ
(

m
2

)
√

πΓ
(

m−1
2

)
∫ 1

0

(1 + |x|2t2)α(1 − t2)(m−3)/2 dt

=
Γ
(

m
2

)
√

πΓ
(

m−1
2

)
∫ 1

0

(1 + |x|2t)α(1 − t)(m−3)/2t−
1
2 dt,

where in the last line we have substituted t′ = t2. This is a special case of
the following integral representation of hypergeometric functions, which can
for e.g. be found in [10, p. 54]:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − tz)−a dt,

Re(c) > Re(b) > 0, |arg(1 − z)| < π.

4.3. The axial case: method applied to the full axial CK-extension

4.3.1. h(x0) = ex0 . It is easily seen that this leads to the same integral
equations as in subsection 4.2.2.
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4.3.2. h(x0) = e−x2
0/2. For the Hermite weight function the full axial CK-

extension takes the form

f(x0, x) =
Γ
(

m
2

)

2πm/2
e−

1
2x2

0

(∫

Sm−1

e
1
2 |x|

2〈ω,t〉2e−ix0|x|〈ω,t〉 dt

− i

∫

Sm−1

te
1
2 |x|

2〈ω,t〉2e−ix0|x|〈ω,t〉 dt

)

=
Γ
(

m
2

)
√

πΓ
(

m−1
2

)e− 1
2x2

0

×
(∫ 1

−1

e
1
2 |x|

2t2(cos (x0|x|t) − i sin (x0|x|t))(1 − t2)(m−3)/2 dt

− iω

∫ 1

−1

e
1
2 |x|

2t2(cos (x0|x|t) − i sin (x0|x|t))(1 − t2)(m−3)/2t dt

)

=
2Γ
(

m
2

)
√

πΓ
(

m−1
2

)e− 1
2x2

0

(∫ 1

0

e
1
2 |x|

2t2 cos (x0|x|t)(1 − t2)(m−3)/2 dt

− ω

∫ 1

0

e
1
2 |x|

2t2 sin (x0|x|t)(1 − t2)(m−3)/2t dt

)
.

In order to obtain integral expressions from the comparison of the above
expression with (2.7), we expand the cosine- and sine function and moreover
execute the substitution u = t2 , yielding:

f(x0 , x) =

Γ
(

m
2

)
√

πΓ
(

m−1
2

)e− 1
2x2

0

( ∞∑

`=0

(−1)`

(2`)!
x2`

0 |x|2`

∫ 1

0

e
1
2 |x|

2uu`− 1
2 (1 − u)(m−3)/2 du

− ω

∞∑

`=0

(−1)`

(2` + 1)!
x2`+1

0 |x|2`+1

∫ 1

0

e
1
2 |x|

2uu`+ 1
2 (1 − u)(m−3)/2 du

)
.

By comparing the above expression with (2.7), we obtain the following two
integral equations:

1F1

(
` +

1

2
;
m

2
+ `;

|x|2
2

)
=

1

B
(
` + 1

2 , m−1
2

)
∫ 1

0

e
1
2 |x|

2uu`−1
2 (1−u)(m−3)/2 du

and

1F1

(
` +

3

2
;
m

2
+ ` + 1;

|x|2
2

)

=
1

B
(
` + 3

2 , m−1
2

)
∫ 1

0

e
1
2 |x|

2uu`+ 1
2 (1 − u)(m−3)/2 du,
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which are applications of (see e.g., [10, p. 274]):

1F1(a; c; z) =
1

B (a, c − a)

∫ 1

0

eztta−1(1 − t)c−a−1 dt, Re(c) > Re(a) > 0.

4.4. Monogenic plane wave integrals in the biaxial case

We will illustrate this method for h(z) = ez in order to obtain integral for-
mulas for the Clifford-Bessel function of biaxial type (see subsection 3.2):

fBes(x, y)

= 2q/2−1Γ
(q

2

)(
J̃q/2−1(i|y|) − J̃q/2(i|y|)y

)(
J̃p/2−1(|x|) + xJ̃p/2(|x|)

)
.

Applying Funk-Hecke twice, we obtain for the vector-valued monogenic

fv(x, y) =

∫

Sp−1

∫

Sq−1

ei〈x,t〉−〈y,s〉(t + is) dt ds

=
4π(p+q)/2−1

Γ
(

p−1
2

)
Γ
(

q−1
2

)ω
(∫ 1

−1

ei|x|t(1 − t2)(p−3)/2t dt

)

×
(∫ 1

−1

e−|y|s(1 − s2)(q−3)/2 ds

)

+ i
4π(p+q)/2−1

Γ
(

p−1
2

)
Γ
(

q−1
2

)ξ
(∫ 1

−1

ei|x|t(1 − t2)(p−3)/2 dt

)

×
(∫ 1

−1

e−|y|s(1 − s2)(q−3)/2s ds

)
.

Next, in view of (4.5),

fv(x, y) = i(2π)(p+q)/2

(
J̃p/2(|x|)J̃q/2−1(i|y|)x − J̃p/2−1(|x|)J̃q/2(i|y|)y

)
.

In a similar way, we find for the parabivector-valued monogenic:

fp(x, y) = (2π)(p+q)/2

(
J̃p/2−1(|x|)J̃q/2−1(i|y|) + xyJ̃p/2(|x|)J̃q/2(i|y|)

)
.

From the above calculations and Remark 3.4, we obtain the following result.

Theorem 4.3. The vector and parabivector part of the Clifford-Bessel function
of biaxial type

fBes(x, y)

= 2q/2−1Γ
(q

2

)(
J̃q/2−1(i|y|) − J̃q/2(i|y|)y

)(
J̃p/2−1(|x|) + xJ̃p/2(|x|)

)

can be written as plane wave integrals:

[fBes(x, y)]1 = (−i)
Γ
(

q
2

)

21+p/2π(p+q)/2

∫

Sp−1

∫

Sq−1

ei〈x,t〉−〈y,s〉(t + is) dt ds



CK-Extensions and Monogenic Plane Waves in Clifford Analysis 387

and

[fBes(x, y)]0 + [fBes(x, y)]2

=
Γ
(

q
2

)

21+p/2π(p+q)/2

∫

Sp−1

∫

Sq−1

ei〈x,t〉−〈y,s〉(1 + its) dt ds.

One thus also has that

fBes(x, y) =
Γ
(

q
2

)

21+p/2π(p+q)/2

∫

Sp−1

∫

Sq−1

ei〈x,t〉−〈y,s〉(1 − it + s + its) dt ds.
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