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Abstract

The main aim of this paper is to construct explicitly orthogonal bases

for the spaces H
s

k(R
m) of k-homogeneous polynomial solutions of the

Hodge-de Rham system in the Euclidean space R
m which take values in

the space of s-vectors. Actually, we describe even the so-called Gelfand-

Tsetlin bases for such spaces in terms of Gegenbauer polynomials. As an

application, we obtain an algorithm how to compute an orthogonal basis

of the space of homogeneous solutions of a generalized Moisil-Théodoresco

system in R
m
.
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1 Introduction

In what follows, we are interested mainly in the spaces Hs
k(R

m) of k-homogeneous
polynomial solutions of the Hodge-de Rham system in the Euclidean space Rm

which take values in the space of s-vectors. As is well known (see [34, 24]),
the space Hs

k(R
m) can be viewed naturally as an irreducible finite dimensional

module over the orthogonal group O(m). Moreover, even for any irreducible
finite dimensional module even over a general classical simple Lie algebra, an
abstract definition of the Gelfand-Tsetlin (GT for short) basis is given, see e.g.
[43, 29]. The main aim of this paper is to describe an explicit construction of
GT bases for the spaces Hs

k(R
m). Let us emphasize that the GT basis is always

orthogonal with respect to any invariant inner product on the given module.
For the spaces Hs

k(R
m), bases (not always orthogonal) were so far constructed

and studied only in some special cases (e.g., for s = 1 or in low dimensions), see
[20, 21, 22, 19, 39, 48, 44, 31]. We work within the frame of Clifford analysis
but all the results of the paper can be easily translated into the language of
differential forms, as is explained in [7].

Clifford analysis can be considered as a refinement of harmonic analysis (see
e.g. [8, 23, 30]). It studies mainly solutions of the Dirac equation in Rm which
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take values in the Clifford algebra Cℓm over Rm. As such solutions are real
analytic an important step is to understand first the structure of homogeneous
polynomial solutions. On the space of Cℓm-valued polynomials in Rm, we can
consider the so-called L-action. The role of building blocks are then played by
the spaces of homogeneous spinor valued solutions which are irreducible in this
case. An explicit construction of orthogonal (or even GT) bases for these spaces
in any dimension was explained in [2]. Let us remark that, for the construction,
the so-called Cauchy-Kovalevskaya (CK for short) method developed already in
[23, Theorem 2.2.3, p. 315] was used. In the introduction to the paper [2], more
details on history of this topic are available. For the classical case we can refer
further to [3, 4, 5, 6, 14, 15, 16, 19, 17, 40, 18, 27, 28, 32, 33, 36, 38, 41, 42,
44, 45, 46]. Analogous results in Hermitean Clifford analysis are described in
[10, 11, 12, 13].

On the other hand, on the space of Clifford algebra valued polynomials
the H-action, defined in (1) below, can be considered. In a series of papers
[21, 22, 24, 26, 35], generalized Moisil-Théodoresco (GMT for short) systems
have been studied. The spaces of homogeneous solutions of a GMT system
are important examples of modules under the H-action. More explicitly, let
S ⊂ {0, 1, . . . ,m} be given and put

CℓSm =
⊕

s∈S

Cℓsm,

where Cℓsm is the space of s-vectors in Cℓm. Moreover, denote by MS
k (R

m) the set
of k-homogeneous solutions of the Dirac equation in Rm (that is, spherical mono-
genics) which take values in CℓSm. It is clear that, for S = {0, 1, . . . ,m}, the space
MS

k (R
m) coincides with the space of all k-homogeneous Clifford algebra valued

spherical monogenics in Rm. Moreover, for S = {s}, MS
k (R

m) = Hs
k(R

m). Ac-
tually, it turns out that basic building blocks for the space MS

k (R
m) are just the

spaces Hs
k(R

m) of homogeneous solutions of the Hodge-de Rham system (see
Theorem 5).

The main result of this paper is an explicit construction of orthogonal (or
even GT) bases of the spaces Hs

k(R
m). In Section 2, we recall briefly the Fischer

decomposition for the H-action and the notion of GT basis at least for the
orthogonal groups. We can construct the GT bases of the spaces Hs

k(R
m) using

the CK method analogously as in the case of spinor valued spherical monogenics.
But we need first to adapt the CK method for this case, which is done in Section
3. Finally, in Section 4, we describe an algorithm how to express GT bases of
the spaces Hs

k(R
m) in terms of Gegenbauer polynomials by induction on the

dimension m (see Theorem 4). Moreover, we give explicit examples of these
bases in dimensions 3 and 4 at least for small values of k. As an application,
we obtain an algorithm how to compute explicitly an orthogonal basis of the
space MS

k (R
m) of homogeneous solutions for an arbitrary GMT system. In

this paper, we just describe a construction of these bases. A detailed study of
properties of the constructed bases will be given in a next paper.
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2 Notations and known facts

Let the vectors e1, . . . , em form the standard basis of the Euclidean space Rm.
Denote by R0,m the real Clifford algebra over Rm satisfying the basic multipli-
cation relations

eiej + ejei = −2δij

and by Cm the corresponding complex Clifford algebra. In what follows, Cℓm
means either R0,m or Cm.

The Clifford algebra Cℓm can be viewed naturally as the graded associative
algebra

Cℓm =

m
⊕

s=0

Cℓsm.

Here Cℓsm stands for the space of s-vectors in Cℓm. As usual, we identify a vector
(x1, . . . , xm) of Rm with the 1-vector x1e1+ · · ·+xmem of Cℓ1m. For a 1-vector u
and an s-vector v, the Clifford product uv splits into the sum of an (s−1)-vector
u • v and an (s+ 1)-vector u ∧ v. Indeed, we have that

uv = u•v+u∧v with u•v =
1

2
(uv−(−1)svu) and u∧v =

1

2
(uv+(−1)svu).

By linearity, we extend the so-called inner product u • v and the outer product
u ∧ v for a 1-vector u and an arbitrary Clifford number v ∈ Cℓm.

In what follows, we deal with the space P∗ = P∗(Rm) of Cℓm-valued poly-
nomials in the vector variable x = (x1, . . . , xm) of Rm. Denote by P∗

k the space
of k-homogeneous polynomials of P∗ and by Ps

k the space of s-vector valued
polynomials of P∗

k . In general, for V ⊂ P∗ put Vk = V ∩ P∗
k and Vs

k = V ∩ Ps
k.

The Fischer decomposition for the H-action On the space P∗ of Clifford
algebra valued polynomials we can consider the so-called H-action of the Pin
group Pin(m), given by

[H(r)P ](x) = r P (r−1
x r) r−1, r ∈ Pin(m), P ∈ P∗ and x ∈ R

m. (1)

Recall that the group Pin(m) is a double cover of the orthogonal group O(m).
Obviously, the multiplication by the vector variable x = e1x1 + · · ·+ emxm and
the Dirac operator

∂ = e1∂x1
+ · · ·+ em∂xm

(both applied from the left) are examples of invariant linear operators on the
space P∗ with the H-action. On the other hand, we can split the left mul-
tiplication by a 1-vector x into the outer multiplication (x ∧) and the inner
multiplication (x •), that is,

x = (x ∧) + (x •).
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Analogously, the Dirac operator ∂ can be split also into two parts ∂ = ∂+ + ∂−

where

∂+P =

m
∑

j=1

ej ∧ (∂xj
P ) and ∂−P =

m
∑

j=1

ej • (∂xj
P ).

Actually, the operators ∂+, ∂−, (x ∧) and (x •) are, in a certain sense, basic
invariant operators for the H-action (see [26] for more details). Moreover, denote
by Hs

k = Hs
k(R

m) the space of polynomials P ∈ Ps
k satisfying the Hodge-de

Rham system of equations

∂+P = 0, ∂−P = 0. (2)

It is easily seen that
Hs

k = {P ∈ Ps
k| ∂P = 0}.

Let Ω be the set of all non-trivial words in the letters (x ∧) and (x •). Note
that (∂+)2 = 0, (∂−)2 = 0, (x ∧)2 = 0 and (x •)2 = 0. In particular, we have
that the set Ω looks like

Ω = {1, (x ∧), (x •), (x ∧)(x •), (x •)(x ∧), (x ∧)(x •)(x ∧), . . .}. (3)

Then the right analogue of the Fischer decomposition for the H-action reads as
follows (see [25, 37]).

Theorem 1. The space P∗ of Cℓm-valued polynomials in Rm decomposes as

P∗ =

m
⊕

s=0

∞
⊕

k=0

⊕

w∈Ω

wHs
k. (4)

Remark 1. (i) In addition, we have that Hs
k = {0} just for s ∈ {0,m} and k ≥ 1.

In the case when Cℓm = R0,m (resp. Cm), we have that H0
0 = R (resp. C) and

Hm
0 = R eM (resp. C eM ) with eM = e1e2 · · · em. Moreover, under the H-action,

all non-trivial modules Hs
k are irreducible and mutually inequivalent.

(ii) It is easy to see that wHs
k = {0} if either s = 0 and the word w begins

with the letter (x •) or s = m and the word w begins with the letter (x ∧).
Otherwise, each module wHs

k is equivalent to the module Hs
k.

Invariant inner products Recall that, on each (finite-dimensional) irre-
ducible representation of Pin(m) there is always an invariant inner product
determined uniquely up to a positive multiple. In what follows, we describe two
well-known realizations of the invariant inner product on the spaces Hs

k(R
m),

namely, the L2-inner product and the Fischer inner product. First, for each
P,Q ∈ P∗

k (R
m), we define the L2-inner product of P and Q as

(P,Q)1 =

∫

Sm−1

[P (x)Q(x)]0 dΣ(x) (5)
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where Sm−1 is the unit sphere in Rm and dΣ is the elementary surface element
on Sm−1. Here, for each Clifford number a ∈ Cℓm, a stands for its Clifford
conjugate and [a]0 for its scalar part.

Now we introduce the Fischer inner product. Each P ∈ P∗
k (R

m) is of the
form

P (x) =
∑

|α|=k

aαx
α

where the sum is taken over all multi-indexes α = (α1, . . . , αm) of Nm
0 with

|α| = α1+ · · ·+αm = k, all coefficients aα belong to Cℓm and x
α = xα1

1 · · ·xαm
m .

For P,Q ∈ P∗
k (R

m), we define the Fischer inner product of P and Q as

(P,Q)2 =
∑

|α|=k

α! [aαbα]0 (6)

where α! = α1! · · ·αm!, P (x) =
∑

aαx
α and Q(x) =

∑

bαx
α. It is easily seen

that

(P,Q)2 = [(P (
∂

∂x
)Q)(0)]0 with P (

∂

∂x
) =

∑

|α|=k

aα
∂|α|

∂xα
.

Here ∂|α|/∂xα = (∂α1/∂xα1

1 ) · · · (∂αm/∂xαm
m ) as usual.

The Gelfand-Tsetlin bases In this paper, we are interested in a construction
of GT bases for the spaces Hs

k(R
m). It is well-known that, under the H-action,

the spaces Hs
k(R

m) are examples of irreducible modules with the highest weights
consisting entirely of integers, see [24]. Hence the spaces Hs

k(R
m) can be viewed

as irreducible modules over the orthogonal group O(m). Let us briefly recall
how to construct a GT basis for the given space Hs

k(R
m).

The first step consists in reducing the symmetry to the group O(m − 1),
realized as the subgroup of orthogonal transformations of O(m) fixing the last
vector em. It turns out that, under the action of the group O(m − 1), the
space Hs

k(R
m) is reducible and decomposes into a multiplicity free direct sum

of irreducible O(m− 1)-submodules

Hs
k(R

m) =
⊕

µm−1

H(µm−1). (7)

Since this irreducible decomposition is multiplicity free the decomposition is ob-
viously orthogonal with respect to any invariant inner product given on the mod-
ule Hs

k(R
m). Moreover, as an irreducible O(m−1)-module, each piece H(µm−1)

is uniquely characterized by its label consisting of the highest weight for the
corresponding SO(m− 1)-module and a number of {0,±1} (see [24] for the la-
bels of the spaces Hs

k(R
m)). Hence we could use the label of H(µm−1) as its

index µm−1. Let us remark that the decomposition (7) is a special case of the
so-called branching law from representation theory.

Of course, we can further reduce the symmetry to the group O(m − 2),
the subgroup of orthogonal tranformations of O(m) fixing the last two vectors
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em−1, em. Then we can again decompose each piece H(µm−1) of the decompo-
sition (7) into irreducible O(m− 2)-submodules H(µm−1, µm−2) and so on.

Hence we end up with the decomposition of the given O(m)-module Hs
k(R

m)
into irreducibleO(2)-modules H(µ). Moreover, any such module H(µ) is uniquely
determined by the sequence of labels

µ = (µm−1, . . . , µ2). (8)

To summarize, we decompose the given module Hs
k(R

m) into the direct sum of
irreducible O(2)-modules

Hs
k(R

m) =
⊕

µ

H(µ). (9)

Moreover, with respect to any given invariant inner product on the module
Hs

k(R
m), the decomposition (9) is obviously orthogonal. Now it is easy to obtain

an orthogonal basis of the space Hs
k(R

m). Indeed, each irreducible O(2)-module
H(µ) is either one-dimensional or two-dimensional. In the latter case, the space
H(µ) decomposes further as

H(µ) = H(µ+)⊕H(µ−)

where H(µ±) are one-dimensional SO(2)-modules with the highest weights ±j
for some natural number j. Hence we even get an orthogonal decomposition of
the given module Hs

k(R
m) into one-dimensional SO(2)-modules H(µ̃), µ̃ ∈ P.

Now we construct easily a basis of the space Hs
k(R

m) by taking a non-zero vector
e(µ̃) from each one-dimensional piece H(µ̃). The obtained basis

E = {e(µ̃) : µ̃ ∈ P}

is called a GT basis of the module Hs
k(R

m). It is easily seen that the vector e(µ̃)
is uniquely determined by its index µ̃ up to a scalar multiple. Moreover, by
construction, the GT basis E is orthogonal with respect to any invariant inner
product, including the L2-inner product (5) and the Fischer inner product (6).

3 The Cauchy-Kovalevskaya method

As was explained, to construct explicitly the GT basis of an O(m)-module
Hs

k(R
m) it is first necessary to decompose the module Hs

k(R
m) into irreducible

O(m− 1)-submodules, cf. (7). Now we show that such a decomposition can be
obtained using the Cauchy-Kovalevskaya method (CK for short).

So let a polynomial p of Hs
k(R

m) be given. Then p is a Cℓsm-valued k-
homogeneous polynomial in the vector variable x ∈ Rm which solves the Dirac
equation ∂p = 0. In what follows, we split the vector variable x of Rm into the
first m− 1 variables x = e1x1 + · · ·+ em−1xm−1 and the last one xm. Moreover,
put

∂ = e1
∂

∂x1
+ · · ·+ em−1

∂

∂xm−1
.

6



As is well-known, the CK extension operator CK = eemxm∂ reconstructs the
monogenic polynomial p(x) from the initial polynomial p0(x) = p(x, 0), that is,
p = CK(p0). In Theorem 2 below, we give compatibility conditions on these
initial polynomials. Namely, we can always write the initial polynomial p0 as

p0(x) = u0(x) + v0(x)em

for some polynomials u0 ∈ Ps
k(R

m−1) and v0 ∈ Ps−1
k (Rm−1). Then we show

that the initial polynomial p0 satisfies the compatibility conditions

∂+u0 = 0 and ∂−v0 = 0.

In Theorem 2 below, we prove even that, under the action of O(m− 1), the CK
extension operator CK is an invariant isomorphism of the module

Is
k = Kersk ∂

+ ⊕ (Kers−1
k ∂−)em

onto the module Hs
k(R

m). Here Kersk ∂
± = {u ∈ Ps

k(R
m−1) | ∂±u = 0}.

To realize the branching law (7) for the module Hs
k(R

m) it is now sufficient
to have an irreducible decomposition

Is
k =

⊕

µm−1

I(µm−1)

of the module of initial polynomials under the action of O(m − 1). Indeed, we
then have that

Hs
k(R

m) =
⊕

µm−1

CK(I(µm−1))

gives a realization of the branching law (7) for the module Hs
k(R

m). Finally,
in Theorem 3 below, we describe irreducible decompositions of the O(m − 1)-
modules Kersk ∂

± and thus also Is
k.

The Cauchy-Kovalevskaya extension Now we characterize restrictions of
polynomials of the spaces Hs

k(R
m) to the hyperplane xm = 0 in Rm.

Theorem 2. (i) The Cauchy-Kovalevskaya extension operator

CK = eemxm∂

is an isomorphism from the module

Is
k = Kersk ∂

+ ⊕ (Kers−1
k ∂−)em

onto the module Hs
k(R

m) which intertwines the H-action of Pin(m− 1).

(ii) Moreover, let u0 ∈ Kersk ∂
+ and let v0 ∈ Kers−1

k ∂−. Then we have that

CK(u0 + v0em)(x) =

k
∑

j=0

xj
m

j!
uj(x) +

k
∑

j=0

xj
m

j!
vj(x)em (10)
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where

uj =

{

(∂+∂−)tu0, j = 2t,

(−1)s−1(∂+∂−)t∂+v0, j = 2t+ 1,
(11)

vj =

{

(∂−∂+)tv0, j = 2t,

(−1)s−1(∂−∂+)t∂−u0, j = 2t+ 1.
(12)

Proof. First it is well-known that the operator CK is an isomorphism from the
space of Cℓm-valued k-homogeneous polynomials in R

m−1 onto the space

Mk(R
m) = {p ∈ P∗

k (R
m) | ∂p = 0}

of k-homogeneous monogenic polynomials in Rm (see [23, p. 152]). Moreover,
the operator CK obviously intertwines the H-action of Pin(m − 1) since for
each polynomial p ∈ Mk(R

m), we have that

p(x) = (eemxm∂p0)(x) =

k
∑

j=0

xj
m

j!
(em∂)jp0(x) with p0(x) = p(x, 0).

Now it only remains to show that CK(Is
k) = Hs

k(R
m).

Let p ∈ Hs
k(R

m) and let p0(x) = p(x, 0). We prove that the initial polynomial
p0 belongs to the space Is

k. For each j = 1, . . . , k, put

pj(x) = (em∂)jp0(x).

Of course, we can always write

pj(x) = uj(x) + vj(x)em

for some polynomials uj ∈ Ps
k−j(R

m−1) and vj ∈ Ps−1
k−j (R

m−1). Then, for each
j = 1, . . . , k, we show that

uj = (−1)s−1∂+vj−1, vj = (−1)s−1∂−uj−1, ∂+uj−1 = 0, ∂−vj−1 = 0. (13)

Indeed, we have that

pj = em∂ pj−1 = em∂−uj−1 + (−1)s−1∂+vj−1 and ∂+uj−1 = 0, ∂−vj−1 = 0

and this since ∂+uj−1 ∈ Ps+1
k−j (R

m−1) and ∂−vj−1 ∈ Ps−2
k−j (R

m−1). Hence, by
(13), we easily get that p0 ∈ Is

k and the formulæ (11) and (12).
On the other hand, for a given p0 ∈ Is

k, we show that the polynomial CK(p0)
belongs to the space Hs

k(R
m). But, in this case, it is easy to get the formulæ

(10), (11) and (12), which finishes the proof.
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The Fischer decompositions of the spaces Kersk ∂
± Let us first define the

Euler operator E and the fermionic Euler operators ∂+⌋ and ∂−⌉ by

E =

m
∑

j=1

xj∂xj
, ∂+⌋ = −

m
∑

j=1

(ej ∧)(ej •) and ∂−⌉ = −
m
∑

j=1

(ej •)(ej ∧).

(14)
If P ∈ Ps

k, then it is easy to see that

EP = kP, ∂+⌋P = sP and ∂−⌉P = (m− s)P

(see [7] for details). Putting A = E + ∂+⌋ and B = E + ∂−⌉, we have that
for each P ∈ Ps

k, AP = (s + k)P and BP = (m − s + k)P. Furthermore, in a
classical way the Laplace operator ∆ in Rm is defined by

∆ =

m
∑

j=1

∂2
xj
.

Now we are ready to describe the Fischer decompositions of the spaces Kersk ∂
±.

Theorem 3. Let 1 ≤ s ≤ m− 1. Then the following statements hold:

(i) Under the H-action, the space Kersk ∂
+ has the multiplicity free irreducible

decomposition

Kersk ∂
+ = Hs

k ⊕

[(k−1)/2]
⊕

j=0

x
2j(x ∧)Hs−1

k−2j−1 ⊕

[(k−2)/2]
⊕

j=0

ẏ2j+2H
s
k−2j−2 (15)

where ẏ2j+2 = x
2j+1((x •)(A+ 2j + 2) + (x ∧)A) with A = E + ∂+⌋.

(ii) Under the H-action, the space Kersk ∂
− has the multiplicity free irreducible

decomposition

Kersk ∂
− = Hs

k ⊕

[(k−1)/2]
⊕

j=0

x
2j(x •)Hs+1

k−2j−1 ⊕

[(k−2)/2]
⊕

j=0

ŷ2j+2H
s
k−2j−2 (16)

where ŷ2j+2 = x
2j+1((x ∧)(B + 2j + 2) + (x •)B) with B = E + ∂−⌉.

Remark 2. It is easy to see that Ker0k ∂
− = P0

k , Ker0k ∂
+ = H0

k, Kermk ∂+ = Pm
k

and Kermk ∂− = Hm
k .

Before proving Theorem 3 we need some lemmas.

Lemma 1. If for linear operators T and S acting on the space P∗ we put
{T, S} = TS + ST, then we have that

{(x ∧), (x ∧)} = 0, {(x •), (x •)} = 0, {(x ∧), (x •)} = x
2,

{∂+, ∂+} = 0, {∂−, ∂−} = 0, {∂+, ∂−} = −∆,

{(x •), ∂+} = −A, {(x ∧), ∂−} = −B, {(x •), ∂−} = 0 = {(x ∧), ∂+}.
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Proof. See e.g. [7].

Using Lemma 1, it is easy to prove the next relations.

Lemma 2. If for linear operators T and S acting on the space P∗ we put
[T, S] = TS − ST, then we have that

[∂+,x2j+1(x •)] = x
2j(x ∧)A, [∂+,x2j+1(x ∧)] = −x

2j(x ∧)(A+ 2j + 2),

[∂−,x2j+1(x ∧)] = x
2j(x •)B, [∂−,x2j+1(x •)] = −x

2j(x •)(B + 2j + 2),

[∂+,x2j ] = −2j x2(j−1)(x ∧), [∂−,x2j ] = −2j x2(j−1)(x •),

{∂+,x2j+2(x •)} = ẏ2j+2, {∂−,x2j+2(x ∧)} = ŷ2j+2.

In addition, on the space Hs
k−2j−2, we have that

∂−
ẏ2j+2 = −(2j + 2)(m+ 2k − 2j − 2) x2j(x •), ∂+

ẏ2j+2 = 0;

∂+
ŷ2j+2 = −(2j + 2)(m+ 2k − 2j − 2) x2j(x ∧), ∂−

ŷ2j+2 = 0.

In the proof of the Fischer decompositions of the spaces Kersk ∂
±, we shall

also use the next decompositions.

Proposition 1. We have that

Ps
k = Kersk ∂

+ ⊕ (x •)Kers+1
k−1 ∂

+.

Moreover, the projection P+ of the space Ps
k onto the space Kersk ∂

+ is given by

P+ = −(s+ k)−1∂+(x •).

Proof. Obviously, using the relation {(x •), ∂+} = −A of Lemma 1, we have
that

Kersk ∂
+ ∩ (x •)Kers+1

k−1 ∂
+ = {0}.

Furthermore, if for a given polynomial p ∈ Ps
k, we put

p+ = −∂+(x •)A−1p and p− = −(x •)∂+A−1p,

then it is easily seen that p = p++p− with p+ ∈ Kersk ∂
+ and p− ∈ (x •)Kers+1

k−1 ∂
+.

This completes the proof.

Of course, we can prove an analogous proposition for the operator ∂−.

Proposition 2. We have that

Ps
k = Kersk ∂

− ⊕ (x ∧)Kers−1
k−1 ∂

−.

Moreover, the projection P− of the space Ps
k onto the space Kersk ∂

− is given by

P− = −(m− s+ k)−1∂−(x ∧).

10



Proof of Theorem 3. Using the Fischer decomposition for the H-action (see
Theorem 1), we get the next irreducible (not multiplicity free) decomposition
of the space Ps

k :

Ps
k = Hs

k ⊕

[(k−1)/2]
⊕

j=0

x
2j(x ∧)Hs−1

k−2j−1 ⊕

[(k−1)/2]
⊕

j=0

x
2j(x •)Hs+1

k−2j−1⊕

⊕

[(k−2)/2]
⊕

j=0

x
2j+1(x •)Hs

k−2j−2 ⊕

[(k−2)/2]
⊕

j=0

x
2j+1(x ∧)Hs

k−2j−2.

Applying the projections P± of Propositions 1 and 2 to this decomposition,
we easily get the required decompositions of the spaces Kersk ∂

±. Indeed, by
Lemmas 1 and 2, we have that P±(Ps

k) = Kersk ∂
±, P±(Hs

k) = Hs
k,

P+(x2j(x ∧)Hs−1
k−2j−1) = x

2j(x ∧)Hs−1
k−2j−1,

P+(x2j+1(x •)Hs
k−2j−2) = ẏ2j+2H

s
k−2j−2,

P−(x2j(x •)Hs+1
k−2j−1) = x

2j(x •)Hs+1
k−2j−1,

P−(x2j+1(x ∧)Hs
k−2j−2) = ŷ2j+2Hs

k−2j−2.

Moreover, the projections P± vanish on the remaining pieces, which finishes the
proof.

4 Explicit description of GT bases

In this section, we use the CK method explained in the previous section to
construct quite explicitly GT bases for the spaces Hs

k of solutions of Hodge-de
Rham systems.

Induction step First we explain how to construct GT bases for solutions
of the Hodge-de Rham systems in Rm when we already know these bases in
Rm−1. To do this we need some lemmas. But first recall that the Gegenbauer
polynomial Cν

j is defined as

Cν
j (z) =

[j/2]
∑

i=0

(−1)i(ν)j−i

i!(j − 2i)!
(2z)j−2i with (ν)j = ν(ν + 1) · · · (ν + j − 1). (17)

Lemma 3. Let j ∈ N0 and let Pk ∈ Mk(R
m−1). Then we have that

CK(xjPk(x)) = Xj
k(x, xm)Pk(x)

where X0
k = 1 and, for j ∈ N, the polynomial Xj

k is given by

Xj
k(x, xm) = µj

kr
j

(

C
m/2+k−1
j (

xm

r
) +

m+ 2k − 2

m+ 2k + j − 2
C

m/2+k
j−1 (

xm

r
)
emx

r

)

ejm

11



with r = (x2
1 + x2

2 + · · ·+ x2
m)1/2, µ2l

k = (C
m/2+k−1
2l (0))−1 and

µ2l+1
k =

m+ 2k + 2l− 1

m+ 2k − 2
(C

m/2+k
2l (0))−1.

Proof. In [23, p. 312, Theorem 2.2.1], the corresponding polynomial we denote
here by X̃j

k is computed for the Cauchy-Riemann operator. Fortunately, there
is an obvious relation between these two polynomials. Indeed, we have that

Xj
k(x, xm) =

{

X̃j
k(emx, xm), j even,

X̃j
k(emx, xm)em, j odd.

To complete the proof it is sufficient to use the explicit formula for the polyno-
mial X̃j

k.

Lemma 4. Let either P ∈ Hs
k(R

m−1) or P = Qem for some Q ∈ Hs
k(R

m−1).

(i) We have that CK(xj−1(x ∧)P (x)) = X̂jP (x) where

X̂j = X̂s,k
j = Xj−1

k+1(x ∧) + (1− c) (Xj
k −Xj−1

k+1x)

with c = (s+ k)(m− 1 + 2k)−1.

(ii) We have that CK(xj−1(x •)P (x)) = ẊjP (x) where

Ẋj = Ẋs,k
j = Xj−1

k+1(x •) + c (Xj
k −Xj−1

k+1x)

with the constant c being the same as in (i).

(iii) We have that CK(ẏ
2j+2

P (x)) = Ẏ2j+2P (x) where

Ẏ2j+2 = Ẏ s,k
2j+2 = (s+ k)X2j+2

k + (2j + 2)Ẋ2j+2.

Here ẏ
2j+2

= x
2j+1((s+ k + 2j + 2)(x •) + (s+ k)(x ∧)).

(iv) We have that CK(ŷ
2j+2

P (x)) = Ŷ2j+2P (x) where

Ŷ2j+2 = Ŷ s,k
2j+2 = (m− 1− s+ k)X2j+2

k + (2j + 2)X̂2j+2.

Here ŷ
2j+2

= x
2j+1((m+ 1− s+ k + 2j)(x ∧) + (m− 1− s+ k)(x •)).

In addition, we have that X̂s,k
j + Ẋs,k

j = Xj
k and that

Ŷ s,k
2j+2 + Ẏ s,k

2j+2 = (m+ 1 + 2k + 2j)X2j+2
k .

Proof. We prove the formula in (i). Obviously, the polynomial H(x) = x∧P (x)
is harmonic and, as is well-known, we then have that H(x) = M0(x) + xM1(x)
for some monogenic polynomials M0 and M1. It may be easily checked that

M1(x) = (1− c)P (x) and M0(x) = ((x ∧)− (1 − c) x)P (x).

12



Moreover, by Lemma 3, we get that

CK(xj−1H(x)) = CK(xj−1M0(x))+CK(xjM1(x)) = Xj−1
k+1M0(x)+Xj

kM1(x),

which easily completes the proof.
Of course, we can show the formula in (ii) in quite an analogous way. The

remaining relations in (iii) and (iv) are then obvious.

Now we are ready to prove the following theorem.

Theorem 4. Let 1 ≤ s ≤ m − 1 and let k ∈ N0. Furthermore, let for each
t = s−1, s and l = 0, . . . , k, Bt,m−1

l stand for a GT basis of the space Ht
l(R

m−1).
Then the space Hs

k(R
m) has a GT basis Bs,m

k = B+ ∪ B− where

B+ = Bs,m−1
k ∪

[(k−1)/2]
⋃

j=0

X̂2j+1B
s−1,m−1
k−2j−1 ∪

[(k−2)/2]
⋃

j=0

Ẏ2j+2B
s,m−1
k−2j−2 and

B− = Bs−1,m−1
k em ∪

[(k−1)/2]
⋃

j=0

Ẋ2j+1B
s,m−1
k−2j−1em ∪

[(k−2)/2]
⋃

j=0

Ŷ2j+2B
s−1,m−1
k−2j−2 em.

Here we denote, for example, X̂2j+1B
s−1,m−1
k−2j−1 = {X̂2j+1P | P ∈ Bs−1,m−1

k−2j−1 } and

Bs−1,m−1
k em = {Pem| P ∈ Bs−1,m−1

k }.

Proof. By Theorem 2, we know that the CK extension operator is an invariant
isomorphism from the space

Is
k = Kersk ∂

+ ⊕ (Kers−1
k ∂−)em

of initial polynomials onto the space Hs
k(R

m). Moreover, Theorem 3 tells us
that the space Is

k has a basis bsk = b+ ∪ b− where

b+ = Bs,m−1
k ∪

[(k−1)/2]
⋃

j=0

x
2j(x ∧)Bs−1,m−1

k−2j−1 ∪

[(k−2)/2]
⋃

j=0

ẏ
2j+2

Bs,m−1
k−2j−2 and

b− = Bs−1,m−1
k em ∪

[(k−1)/2]
⋃

j=0

x
2j(x •)Bs,m−1

k−2j−1em ∪

[(k−2)/2]
⋃

j=0

ŷ
2j+2

Bs−1,m−1
k−2j−2 em.

As we explained before, we get the GT basis Bs,m
k for the space Hs

k(R
m)

by applying the CK extension operator to the elements of the basis bsk, i.e.,
CK(bsk) = Bs,m

k . To finish the proof it is now sufficient to use Lemma 4.

Examples For Cℓm = Cm (resp. Cℓm = R0,m), we describe below GT bases
Bs,m
k (resp. B̃s,m

k ) of the spaces Hs
k(R

m) of solutions of the Hodge-de Rham
system in some special cases. If we construct GT bases for a particular space
Hs

k(R
m) in various ways we do not claim that all of these bases are identical.

On the other hand, we know, by the definition, that the corresponding elements
of these bases must be the same up to non-zero multiples.

13



Example 1. We can put B0,m
0 = {1}, Bm,m

0 = {eM} with eM = e1e2 · · · em and,
for s ∈ {0,m} and k > 0, we have that Bs,m

k = ∅.

Example 2. The Riesz system (i.e., the case when s = 1): Assume first that
Cℓm = Cm. It is well-known (see [47, p. 460] for more details) that a canonical
basis (i.e., a GT basis) Bm

k+1 of the space Harmk+1(R
m) of complex valued

spherical harmonics of degree k + 1 in Rm is formed (up to normalization) by
the polynomials

Ξk+1
µ,± = (x1 ± ix2)

km−2

m−3
∏

j=0

r
kj−kj+1

m−j C
(m−j−2)/2+kj+1

kj−kj+1

(

xm−j

rm−j

)

(18)

where r2m−j = x2
1 + · · · + x2

m−j and µ is an arbitrary sequence of integers
(k1, . . . , km−2) such that k + 1 = k0 ≥ k1 ≥ . . . ≥ km−2 ≥ 0. Then we can
put

B1,m
k = {∂ Ξ | Ξ ∈ Bm

k+1}.

Indeed, it is easy to see that the Dirac operator ∂ (or also ∂+) is an invariant
isomorphism from the O(m)-module Harmk+1(R

m) onto the module H1
k(R

m).
Actually, these bases are well-known (see [20]). Furthermore, we can take

Bm−1,m
k = {∂ Ξ eM | Ξ ∈ Bm

k+1}.

Moreover Bs,m
k eM is a GT basis of Hm−s

k (Rm) whenever Bs,m
k is a GT basis of

Hs
k(R

m).

In the case when Cℓm = R0,m, we construct the GT bases B̃1,m
k and B̃m−1,m

k

in quite an analogous way using, of course, in this case the canonical basis

B̃m
k+1 = {ℜΞk+1

µ,+ ,ℑΞk+1
µ,+ }

of the space of real valued spherical harmonics of degree k + 1. Here, µ is as in
(18) and for a complex number z, ℜz is its real part and ℑz is its imaginary
part.

Example 3. Let Cℓm = Cm. We explain now how to construct GT bases Bs,m
k

using the CK method. In the case when the dimension m = 2, we know, by
Example 1 and Example 2, that

B0,2
0 = {1}, B2,2

0 = {e12} and B1,2
k = {zk±w±} (19)

where z± = x1 ± ix2 and w± = e1 ± ie2. Obviously, we can obtain GT bases
in higher dimensions inductively with the help of Theorem 4. For example, in
dimension 3 we have that

B1,3
0 = {w±, e3},

B1,3
1 = {z±w±, (z−w+ + z+w−)/2− 2x3e3, −z±e3 − x3w±},

B1,3
2 = {z2±w±, −2x3z±w± − z2±e3,

(8x2
3 − 4z+z−)e3 − 4x3(z−w+ + z+w−),

8x3z±e3 − z2±w∓ + (4x2
3 − 2z+z−)w±}.
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Moreover, we know that B2,3
k = B1,3

k e123.
By Theorem 4, we can, for example, compute the following GT bases of

bivector valued monogenic polynomials in dimension 4:

B2,4
0 = {e12, e34, w±e3, w±e4},

B2,4
1 = B2,3

1 ∪ B1,3
1 e4 ∪

{(z+w− + z−w+)e3/2 + 2x4e34, −x3w±e3 ± iz±e12 + 2x4w±e4,

i(z−w+ − z+w−)e4/2 + 2x4e12, −z±e34 + x3w±e4 + 2x4w±e3},

B2,4
2 = B2,3

2 ∪ B1,3
2 e4 ∪

{−x3z±w±e3 ± z2±ie12 + 3x4z±w±e4,

(3/2)(z−w+ + z+w−)(x4e4 − x3e3)− 6x3x4e34,

x2
3w±e3 − (z±/2)(z−w+ + z+w−)e3 ∓x3z±ie12 − 3x4z±e34 − 3x3x4w±e4,

i(z−w+ − z+w−)(5x4e4 − x3e3)− (4z+z− + 2x2
3 − 10x2

4)e12,

(10x2
4−4x2

3−3z+z−)w±e3+10x3x4w±e4−z2±w∓e3±2x3z±ie12−10x4z±e34,

x2
3w±e4 ∓ (z±/2)(z−w+ − z+w−)e4 −x3z±e34 ± 3x4z±ie12 +3x3x4w±e3,

x3z±w±e4 − z2±e34 + 3x4z±w±e3,

(3/2)i(z−w+ − z+w−)(x3e4 + x4e3) + 6x3x4e12,

(10x2
4−4x2

3−3z+z−)w±e4−10x3x4w±e3+z2±w∓e4+2x3z±e34±10x4z±ie12,

(z−w+ + z+w−)(5x4e3 + x3e4)− (4z+z− + 2x2
3 − 10x2

4)e34}.

To summarize we have an algorithm how to obtain any particular GT basis
Bs,m
k by induction on the dimension m. Actually, all explicit examples in this

paper were computed using the mathematical software Maple and the Maple
package Clifford (see [1]).

Now it remains to deal with the case when Cℓm = R0,m. Let us notice that all
the polynomials X̂2j+1, Ẋ2j+1, Ŷ2j+2 and Ẏ2j+2 are R0,m-valued. When we thus
start with the GT bases (19) in dimension 2, the explained construction gives
us GT bases Bs,m

k with the following property: Each basis Bs,m
k consists partly

of R0,m-valued basis elements Pα and partly of pairs of complex conjugate basis
elements P±

β . Obviously, we can make a ’real’ GT basis B̃s,m
k from the ’complex’

basis Bs,m
k just by replacing each pair of complex conjugate basis elements P±

β

of the basis Bs,m
k with the pair ℜP+

β and ℑP+
β .

Generalized Moisil-Théodoresco systems Now we construct orthogonal
bases for spaces of homogeneous solutions of GMT systems. Let S be a subset
of {0, 1, . . . ,m}. Recall that MS

k (R
m) stands for the space of k-homogeneous

CℓSm-valued spherical monogenics in Rm, where

CℓSm =
⊕

s∈S

Cℓsm.

The following decomposition of this space is known (see [25, 35]).
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Theorem 5. Let S ⊂ {0, 1, . . . ,m} and S′ = {s : s ± 1 ∈ S}. Under the
H-action, the space MS

k (R
m) decomposes into inequivalent irreducible pieces as

MS
k (R

m) =

(

⊕

s∈S

Hs
k

)

⊕

(

⊕

s∈S′

((k − 1 +m− s)(x •)− (k − 1 + s)(x ∧))Hs
k−1

)

.

A direct consequence of Theorem 5 is

Corollary 1. The space MS
k (R

m) has a basis

BS,m
k =

(

⋃

s∈S

Bs,m
k

)

∪

(

⋃

s∈S′

((k − 1 +m− s)(x •)− (k − 1 + s)(x ∧))Bs,m
k−1

)

.

Here Bs,m
k is a GT basis of the space Hs

k(R
m). In particular, the space Mk(R

m)
of k-homogeneous Cℓm-valued spherical monogenics in Rm has an orthogonal
basis BM,m

k with M = {0, 1, . . . ,m}.

Moreover, the basis BS,m
k is orthogonal with respect to any invariant inner

product, including the L2-inner product (5) and the Fischer inner product (6).

Example 4. Assume that Cℓm = Cm. According to Corollary 1, an orthogonal
basis BS,m

k for the corresponding GMT system includes partly GT bases Bs,m
k

of spaces Hs
k(R

m) for s ∈ S and partly subsets of the form

Vs,m
k = ((k − 1 +m− s)(x •)− (k − 1 + s)(x ∧))Bs,m

k−1, s ∈ S′.

Of course, here Vs,m
0 = ∅. Moreover, we have that (up to a normalization)

Vm−s,m
k = Vs,m

k eM . Hence, using Example 3, to describe explicitly the orthogo-
nal bases for all GMT systems in dimension 3 with k = 0, 1, 2 it is sufficient to
compute just the following sets:

V1,3
1 = {−2z± + x3w±e3 ∓ z±ie12, −2x3 − (z−w+ + z+w−)e3/2},

V1,3
2 = {−3z2± + 2x3z±w±e3 ∓ 2z2±ie12, 6x2

3 − 3z+z− + 3(z−w+ + z+w−)x3e3,
6x3z± ± 2x3z±ie12 + (z+z− − 2x2

3)w±e3 + z2±w∓e3}.

Actually, we have again an algorithm how to obtain any particular orthogonal
basis BS,m

k . Furthermore, the case when Cℓm = R0,m can be dealt with as in
Example 3.
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