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AI systems often need to deal with inconsistencies. One way of getting information 
about inconsistencies is by measuring the amount of information in the knowledgebase. 
In the past 20 years numerous inconsistency measures have been proposed. Many of 
these measures are syntactic measures, that is, they are based in some way on the 
minimal inconsistent subsets of the knowledgebase. Very little attention has been given 
to semantic inconsistency measures, that is, ones that are based on the models of the 
knowledgebase where the notion of a model is generalized to allow an atom to be 
assigned a truth value that denotes contradiction. In fact, only one nontrivial semantic 
inconsistency measure, the contension measure, has been in wide use. The purpose of this 
paper is to define a class of semantic inconsistency measures based on 3-valued logics. 
First, we show which 3-valued logics are useful for this purpose. Then we show that the 
class of semantic inconsistency measures can be developed using a graphical framework 
similar to the way that syntactic inconsistency measures have been studied. We give 
several examples of semantic inconsistency measures and show how they apply to three 
useful 3-valued logics. We also investigate the properties of these inconsistency measures 
and show their computation for several knowledgebases.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Inconsistency is a key issue for intelligent agents operating in the real world. Routinely, we are faced with inconsistencies 
when we go about our everyday lives. So if we are to build software systems that are capable of handling inconsistency in 
information, opinions, requirements, desires, plans, etc., for instance when making decisions, then we need to understand 
the formal nature of inconsistency when assessing and acting on it [19,9,22].

A key aspect of understanding inconsistency is the ability to measure it. Application areas being investigated for incon-
sistency measures include software engineering [56,36], network intrusion detection [38], ontology systems [47,55], knowl-
edgebase systems [37,44,42], databases [16,4,5,43,35,34], temporal information [25], spatio-temporal information [12,23], 
probabilistic information [13,46], finance [18], process specifications [11], and answer set programming [39,53].

A number of proposals for inconsistency measures have been made [24,33,30,32,26,20,40,47,21,55] and some inter-
relationships established (e.g. [22,50]). Some comparison of these approaches has been possible through the proposal for 
axioms for the minimal properties of such inconsistency measures [27,28,6]).
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More recently, a general framework for comparing syntactic inconsistency measures has been proposed [14]. Syntactic 
measures are based on the inconsistent subsets of a knowledgebase and as a consequence these measures are sensitive to 
the syntactic form of the formulae. The framework uses the construction of an inconsistency bigraph for each knowledge-
base, together with a hierarchy of the abstractions to classify a range of inconsistency measures.

However, there is a variety of measures that cannot be captured by inconsistency graphs including what are sometimes 
called semantic measures (e.g. [30–32,20,21]). As semantic inconsistency measures are defined using models, and inconsis-
tent knowledgebases have no models (in classical 2-valued logic), semantic inconsistency measures use models with more 
than two truth values. These are models of the knowledgebase obtained using paraconsistent logics such as Priest’s 3-valued 
LPm logic [45], Belnap’s 4-valued logic [3], and quasi-classical logic [8]. In these logics, the notion of a model is general-
ized to allow an atom to be assigned a truth value that denotes contradiction. The contension measure for a knowledgebase, 
which is the most common kind of semantic inconsistency measure, is the lowest number of atoms assigned a contradictory 
truth value from amongst the models of the knowledgebase using LPm logic.

To address the lack of a general framework for semantic measures, the aim of this paper is to delineate semantic mea-
sures and to investigate the space of possible semantic measures. We propose a framework that can be used to generate and 
study a class of semantic inconsistency measures. We show how 3-valued logics can be used to define a class of semantic 
inconsistency measures, give several examples, and show their computation on several knowledgebases.

Considering semantic measures is important because the way that they analyse inconsistency differs from the more 
widely considered syntactic measures. As argued in [28], two key approaches for measuring inconsistency are formula-
centric measures, which are exemplified by measures based on the minimal inconsistent subsets of the knowledgebase, and
atom-centric measures, which are exemplified by measures based on the number of atoms that are assigned an inconsistent 
truth value in a 3-valued logic for paraconsistent reasoning.

A key advantage of atom-centric measures is the ability to “look inside” formulas. So all of the subformulas are taken 
into account when determining the amount of inconsistency of a formula or set of formulas. This is in contrast with the 
formula-centric measures for which the inconsistency measure of a formula does not take into account its subformulas other 
than to determine whether a subset of formulas is inconsistent or not. For example, knowledgebases �1 = {a ∧ ¬a ∧ b} and 
�2 = {a ∧ b, ¬a ∧ b, ¬a} are treated differently when considering the minimal inconsistent subsets, but are treated the same 
way when considering 3-valued models. This is because �1 has one minimal inconsistent subset and �2 has two minimal 
inconsistent subsets, but the semantic approach recognizes that the problem is with the atom a and not with the atom b
in both knowledgebases. More generally, the semantic approach can avoid syntax sensitivity where uncontroversial atoms 
may be “locked” into a controversial formula (such as in �1). The atom-centric approach therefore appears to offer some 
benefits for better understanding inconsistency in some applications.

Despite the utility of an atom-centric approach offered by semantic measures, our understanding of them is less de-
veloped than the formula-centric approach offered by syntactic measures. As we will review in this paper, there are few 
specific proposals in the literature. Also, their general nature is less well understood. This is particularly remarkable given 
that there is an interesting space of alternative definitions if we consider different logics that can be used as the basis of 
the measures. This in turn raises the question of what are the possible logics we can use, and if the choice of the logic 
affects the measure. We will attempt to investigate these and further questions.

The plan for the rest of this paper is as follows. In Section 2, we provide the needed background for inconsis-
tency measures, give several examples, and discuss properties, called rationality postulates, for inconsistency measures. 
Section 3 introduces syntactic inconsistency bigraphs that were proposed in [14] for providing a framework for syn-
tactic inconsistency measures. Then, in Section 4, we show which 3-valued logics are useful for defining seman-
tic inconsistency measures. We present the concept of minimal L-atomic subsets, the key concept for defining se-
mantic inconsistency measures in Section 5. Section 6 describes semantic inconsistency bigraphs used to define se-
mantic inconsistency measures in a way that is similar to the use of syntactic inconsistency bigraphs for syntactic 
inconsistency measures. The concept of semantic inconsistency measures is defined and illustrated in Section 7. The satis-
faction of postulates for semantic inconsistency measures is investigated in Section 8. Then, in Section 9, we add some new 
postulates that are more appropriate for semantic inconsistency measures. The paper is summarized in Section 10.

2. Inconsistency measures and rationality postulates

We assume a propositional language L(A) of formulas composed from a countable set of propositional atoms A and 
the logical connectives ∧, ∨, ¬. We use φ and ψ for arbitrary formulas and a, b, c, . . . for atoms. A knowledgebase K is a 
finite set of formulas. We let � denote the classical consequence relation, and write K � ⊥ to denote that K is inconsistent. 
Also Atoms(K ) gives the atoms used in the formulas of K . We write K for the set of all knowledgebases (in some presumed 
language L(A). Also we write R≥0 for the set of nonnegative real numbers and R≥0∞ for R≥0 ∪ {∞}.

For a knowledgebase K , MI(K ) is the set of minimal inconsistent subsets (MISs) of K. Also, if MI(K ) = {M1, ..., Mn} then 
Problematic(K ) = M1 ∪ ... ∪ Mn is the set of problematic formulas in K , and Free(K ) = K \ Problematic(K ) is the set of free 
formulas in K . The set of formulas in K that are individually inconsistent is given by the function Selfcontradictions(K ) =
{φ ∈ K | {φ} � ⊥}).

In classical 2-valued logic an interpretation i for L(A) maps each atom to a truth value, that is, i : A → {T , F } By using 
the standard truth tables in Table 1 we extend i from the atoms to arbitrary formulas.
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Table 1
The truth tables for classical 2-valued logic.

α F T B

¬α T F B

∧ F T

F F F

T F T

∨ F T

F F T

T T T

We write i |= φ if the truth value of φ is T for interpretation i and say that i is a model of φ. Then, i is a model of 
knowledgebase K , written i |= K iff i |= φ for all φ ∈ K . When dealing with a specific knowledgebase K , the atoms not in K
are irrelevant; hence we will just deal with the portion of the interpretation that is applied to Atoms(K ). For knowledgebases 
K and K ′ we say that K (logically) implies K ′ iff every model of K is a model of K ′ . Then, K is (logically)-equivalent to 
K ′ iff K implies K ′ and K ′ implies K .

An inconsistency measure is a function that assigns a nonnegative real value or infinity to every knowledgebase. The only 
requirement is that all and only inconsistent knowledgebases have a positive value.

Definition 1. A function I :K →R≥0∞ is an inconsistency measure iff the following condition holds for all K ∈K:

Consistency I(K ) = 0 iff K is consistent.

Next we review seven inconsistency measures that have been presented by various researchers in the literature. These 
are key examples of syntactic measures of inconsistency. We leave coverage of semantic measures of inconsistency until 
Section 7.

Definition 2. For a knowledgebase K , the inconsistency measures I B , IM , I P , I R , Ia , I P (r) and Ia(r) are such that

• I B(K ) = 1 if K � ⊥ and I B(K ) = 0 if K � ⊥
• IM(K ) = |MI(K )|
• I P (K ) = |Problematic(K )|
• I R(K ) = min{|X | | X ⊆ K and ∀M ∈ MI(K )(X ∩ M �=∅)}
• Ia(K ) = |Atoms(Problematic(K ))|
• I P (r)(K ) = I P (K )

|K |
• Ia(r)(K ) = Ia(K )

|Atoms(K )|

We explain the measures as follows: I B is a limiting case that does not distinguish among inconsistent knowledgebases. 
Thinking of an MIS as a unit of inconsistency, IM counts the number of units of inconsistency. I P counts the number of 
formulas directly involved in at least one inconsistency. I R , the repair measure, is the minimal number of formulas whose 
deletion restores consistency. Ia counts the number of atoms directly involved in at least one inconsistency. I P (r) finds the 
ratio of the number of formulas involved in at least one inconsistency with the total number of formulas. Ia(r) finds the 
ratio of the number of distinct atoms involved in at least one inconsistency with the total number of distinct atoms in the 
KB.

I B , IM , I P , I R , I P (r) can be calculated from the structure of the minimal inconsistent subsets as we will show in the 
next section. Such inconsistency measures are called syntactic inconsistency measures. I P (r) and Ia(r) relativize I P and Ia
respectively to obtain a ratio. Such inconsistency measures are called relative inconsistency measures and were investigated 
in [7]. I B , IM , I P , I R , and Ia measure the totality, in some way, of the inconsistency. Such inconsistency measures are called 
absolute inconsistency measures.

To evaluate how appropriate a function is to be considered an inconsistency measure, rationality postulates were in-
troduced. A rationality postulate is a condition that intuitively an inconsistency measure should satisfy. However, some 
postulates may be appropriate for some types of measures, but not others. In particular, the distinction between postulates 
for absolute and relative inconsistency measures is considered in detail in [7]. Here we list three examples each of three 
types of postulates: ones that deal with deletion from a knowledgebase, ones that deal with the union of knowledgebases, 
and ones that use logical implication.

Definition 3. The following are rationality postulates for propositional inconsistency measures.

Monotony If K ⊆ K ′ then I(K ) ≤ I(K ′).
Free-Formula Independence If φ ∈ Free(K ), then I(K ) = I(K \ {φ}).
Penalty If φ ∈ Problematic(K ), then I(K ) > I(K \ {φ}).
Super-Additivity If K ∩ K ′ = ∅, then I(K ∪ K ′) ≥ I(K ) + I(K ′).
MI-Separability If MI(K ∪ K ′) = MI(K ) ∪ MI(K ′) and MI(K ) ∩ MI(K ′) = ∅, then I(K ∪ K ′) = I(K ) + I(K ′).
Relative Separability If I(K ) < I(K ′) (resp. I(K ) = I(K ′)) and Atoms(K ) ∩Atoms(K ′) = ∅ then I(K ) < I(K ∪ K ′) < I(K ′) (resp. 

I(K ) = I(K ∪ K ′) = I(K ′)).
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Table 2
Status of postulates for inconsistency measures.

Inconsistency measures I B IM I P I R Ia I P (r) Ia(r)

Monotony ✓ ✓ ✓ ✓ ✓ ✗ ✗

Free-Formula Independence ✓ ✓ ✓ ✓ ✓ ✗ ✗

Penalty ✗ ✓ ✓ ✗ ✗ ✓ ✗

Super-Additivity ✗ ✓ ✓ ✓ ✗ ✗ ✗

MI-Separability ✗ ✓ ✗ ✗ ✗ ✗ ✗

Relative Separability ✗ ✗ ✗ ✗ ✗ ✓ ✓

Dominance ✓ ✗ ✗ ✗ ✗ ✗ ✗

Exchange ✓ ✗ ✗ ✗ ✗ ✗ ✗

Adjunction Invariance ✓ ✗ ✗ ✗ ✗ ✗ ✗

✓: satisfied, ✗: not satisfied.

Dominance If φ �⊥ and φ � ψ then I(K ∪ {φ} ≥ I(K ∪ {ψ}).
Exchange If K ′ �⊥ and K ′ ≡ K ′′ then I(K ∪ K ′) = I(K ∪ K ′′).
Adjunction Invariance I(K ∪ {φ, ψ}) = I(K ∪ {φ ∧ ψ}).

All of these postulates, except for Relative Separability, are discussed in [52] where references are given for them. Relative 
Separability was introduced in [7] for relative measures, meaning that the proportion of inconsistency in the union of two 
knowledgebases is between the proportion of inconsistency in them separately. We can group these postulates three ways. 
Monotony, Free-Formula Independence, and Penalty consider the case where one knowledgebase is a subset of another 
one. Super-Additivity, MI-Separability, and Relative Separability consider the case of the union of knowledgebases. Finally, 
Dominance, Exchange, and Adjunction Invariance concern cases where logical implication is used. Table 2 shows the status 
of the postulates defined in Definition 3 for the inconsistency measures of Definition 2. Most of these results are taken from 
[52].

3. Syntactic inconsistency bigraphs

The use of bigraphs to study primarily syntactic inconsistency measures was introduced in [14]. This section reviews the 
basic definitions of bigraphs and their use for syntactic inconsistency measures.

Definition 4. Bigraphs and labeled bigraphs.

1. A bigraph is a tuple G = 〈U , V , E〉 where U and V are sets, U ∩ V = ∅, and E = U × V .
2. A labeled bigraph is a tuple LG = 〈U , V , E, L〉 where the first 3 components form a bigraph and L is a function L :

U ∪ V → S , where S is a set of labels.

We will use u with subscripts for elements of U and v with subscripts for elements of V . For ease of presentation, 
when we draw bigraphs we will assume that U = {u1, . . . , um} and V = {v1, . . . , vn}. We draw a bigraph using small circles 
without labels representing the vertices in two rows: the ones on the upper row represent the vertices in U , that we 
assume to be u1, . . . , um from left to right, while the ones on the lower row represent the vertices in V , that we assume 
to be v1, . . . , vn from left to right, and the edges are lines between the circles. For a labeled bigraph we use boxes for the 
vertices with the labels inside. The ordering of the vertices is arbitrary: U and V are sets, not tuples; while a reordering 
would make the picture look different, it would represent the same (labeled) bigraph.

The following is a brief review of commonly used definitions about bigraphs. We write G for an arbitrary bigraph. An 
edge e = (u, v) is said to connect (be incident to) u and v , which are then called adjacent vertices. We write Adj(u) (resp. 
Adj(v)) for the set of vertices adjacent to u (resp. v). A vertex is said to be isolated if there is no edge incident to it. Then 
Deg(u) = |Adj(u)| (resp. Deg(v) = |Adj(v)|).

Consider a situation where a set of elements S is given as well as a property P that a nonempty subset may satisfy. We 
are interested in minimal subsets of S that have property P , that is, subsets S1 ⊆ S such that there is no S2 ⊂ S1 such that 
S2 has property P . For such a case we construct a bigraph (the unlabeled version) G = 〈U , V , E〉 where U = S , V is the 
minimal subsets that satisfy P and E is the set of pairs (u, v) where v represents a minimal subset that contains u. We call 
such a bigraph a minimal subset bigraph. Note that in a minimal subset bigraph no vertex in V can be isolated because it 
cannot represent the empty set. Also, on account of minimality, for any v �= v ′ , Adj(v) � Adj(v ′).

A minimal subset bigraph was introduced in [14] where S is the set of elements of a knowledgebase and the subset 
property is “inconsistent”. Thus U = K and V = MI(K ). In this paper we call such a bigraph a syntactic inconsistency 
bigraph. Next we give the definition both for the labeled and the unlabeled versions.

The following definition defines labeled syntactic inconsistency bigraphs.

Definition 5. The labeled syntactic inconsistency bigraph for KB K , where K = {φ1, . . . , φm} and MI(K ) = {�1, . . . , �n}, is 
the labeled minimal subset bigraph G = 〈U , V , E, L〉 such that
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a ∧ ¬a b ¬b b ∧ ¬c c ∨ d ¬d c ∨ e

{a ∧ ¬a} {b,¬b} {¬b,b ∧ ¬c} {b ∧ ¬c, c ∨ d,¬d}

Fig. 1. The labeled syntactic inconsistency bigraph for K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e}.

Fig. 2. The syntactic inconsistency bigraph for K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e}.

• U = {u1, . . . , um}
• V = {v1, . . . , vn}
• E = {(ui, v j) | φi ∈ � j} (every edge corresponds to the set membership relation between a problematic formula φi ∈ K

and a minimal inconsistent subset � j ∈ MI(K ) such that φi ∈ � j )
• L : U ∪ V →L ∪K: L(ui) = φi for all i, 1 ≤ i ≤ m, and L(v j) = � j for all j, 1 ≤ j ≤ n.

In the next example, Fig. 1 shows a labeled syntactic inconsistency bigraph for a propositional knowledgebase.

Example 1. Let K = {a ∧ ¬a, b, ¬b, b ∧ ¬c, c ∨ d, ¬d, c ∨ e}. Then MI(K ) = {{a ∧ ¬a}, {b, ¬b}, {¬b, b ∧ ¬c}, {b ∧ ¬c, c ∨ d, ¬d}}.

Next, we remove the labels to obtain the syntactic inconsistency bigraph for the K of Example 1 in Fig. 2.
Our interest is in the unlabeled case; we showed the labeled version only to make things clear. The importance of 

syntactic inconsistency bigraphs is that they can be used to define a class of inconsistency measures, called syntactic in-
consistency measures. That is, for a given knowledgebase K we construct its syntactic inconsistency bigraph and apply a 
function on it to obtain the result. In fact, five of the seven inconsistency measures are syntactic inconsistency measures as 
we now demonstrate.

Definition 6. The following are types of syntactic inconsistency measure.

• I B(K ) = 1 if V �= ∅ and I B(K ) = 0 if V = ∅
• IM(K ) = |V |
• I P (K ) = |u ∈ U | such that Deg(u) �= 0
• I R(K ) = min{|U ′| | U ′ ⊆ U and ∀v ∈ V ∃u′ ∈ U ′ such that u′ ∈ Adj(v)}
• I P (r)(K ) = I P (K )

|U |

Ia and Ia(r) are not syntactic measures because from the syntactic inconsistency bigraph there is no way to tell how 
many atoms are in the problematic formulas. In the next example, we use the syntactic inconsistency bigraph for the 
knowledgebase of Example 1 to calculate the values of the five syntactic inconsistency measures.

Example 2. Continuing with Example 1 we obtain from the syntactic inconsistency bigraph of Fig. 2 that I B(K ) = 1, IM(K ) =
4, I P (K ) = 6, I R(K ) = 3 and I P (r) = 6

7 .

As mentioned earlier, a syntactic inconsistency bigraph is a special case of a minimal subset bigraph. The following 
important result gives an important completeness result for syntactic inconsistency bigraphs.

Theorem 1 (From [14]). For every minimal subset bigraph G there is a knowledgebase K for which G is the inconsistency bigraph.

In conclusion, syntactic inconsistency bigraphs provide a general framework for situating many inconsistency measures 
from the literature, and for identifying new inconsistency measures. However, they do not account for semantic approaches 
to measuring inconsistency.
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Table 3
Truth values needed for all the connectives.

α F T B

¬α ? ? ?

∧ F T B

F ? ? ?
T ? ? ?
B ? ? ?

∨ F T B

F ? ? ?
T ? ? ?
B ? ? ?

4. 3-Valued logics

We would like to think of semantic inconsistency measures as ones that are defined using the models of a 
knowledgebase. But this does not work in 2-valued logic because an inconsistent knowledgebase does not have a model. 
As the idea of an inconsistency measure is to evaluate inconsistent knowledgebases, in order to obtain models we must 
extend the logic in some way. In this paper we use three-valued logics, writing the letter B for the third truth value. Then 
we use B as a designated truth value, that is, a truth value that is considered acceptable for models, just like T . Having 
two designated truth values out of three, instead of one out of two, enlarges the space of models, allowing inconsistent 
knowledgebases to have models that can then be used to define semantic inconsistency measures. For the rest of the paper 
an interpretation i will be a 3-valued interpretation, that is, i : A → {T , F , B}. For the examples, involving atoms a, b, c, d, 
etc., we may also represent an interpretation i as tuple where the first item is i(a), the second item is i(b), and so on (e.g. 
(T , F , B, T ) represents i(a) = T , i(b) = F , i(c) = B , and i(d) = T ). In order to extend i from atoms to formulas we need the 
three-valued truth tables for negation, conjunction, and disjunction. That is, we need to fill in each entry of the truth tables 
as shown in Table 3.

The specification of the truth tables results in a logic L. For every interpretation i every formula gets assigned a truth 
value using the truth tables in the standard way. We write iL(φ) for the interpretation of the formula φ in L. We write 
i |=L φ iff i(φ) ∈ {T , B} and say that i is a model of φ. For a knowledgebase K , i is a model of K iff i |=L φ for every φ ∈ K . 
We say that K is equivalent to K ′ and write K ≡L K ′ iff K and K ′ have the same models, that is, for every interpretation 
i, i |=L K iff i |=L K ′ . As there are 21 entries to fill in for the truth tables, and each entry can take on one of three values, 
potentially there are 321 truth tables to consider. However, only a small number of these can be considered a genuine logic. 
We now show that by requiring some reasonable properties we drastically reduce the number of possibilities. We consider 
the following properties that constrain the interpretations.

1. Supraclassical property. The 3-valued logic extends classical 2-valued logic (i.e. if i(α), i(β) ∈ {T , F }, then i(α∧β), i(α∨
β), and i(¬α) have the same values as in classical logic).

2. Double negation property. The rule of double negation holds (i.e. i(¬¬α) = i(α) holds).
3. Input-output property. Conjunction and disjunction result in one of the input values (i.e. i(α ∧ β), i(α ∨ β), ∈

{i(α), i(β)}).
4. Commutativity law. Conjunction and disjunction are commutative (i.e. i(α ∧ β) = i(β ∧ α) and i(α ∨ β) = i(β ∨ α)).
5. De Morgan’s laws. De Morgan’s laws hold (i.e. i(¬(α ∧ β)) = i(¬α ∨ ¬β) and i(¬(α ∨ β)) = i(¬α ∧ ¬β)).
6. And-or property. If a conjunction yields a designated value, so must the corresponding disjunction (i.e. if i(α ∧ β) ∈

{T , B}, then i(α ∨ β) ∈ {T , B}).

We have focused on these properties as they capture some desirable properties for reasoning with inconsistency in 
applications (such as reasoning with inconsistent requirement specifications in software engineering or reasoning with in-
consistent reports in intelligence analysis): supraclassicality ensures that we have classical reasoning when the information 
is consistent; the double negation property, the commutativity law, and De Morgan’s law are valuable for ensuring natural 
behaviour of the negation, conjunction and disjunction operators; the input-output property ensures that the assignment to 
a formula is based on the assignment to subformulas; and the and-or property ensures that the assignment to conjunction 
cannot be better, in terms of designated values, than the assignment to disjunction.

Theorem 2. There are three 3-valued logics whose truth tables satisfy the supraclassical property, the double negation property, the 
input-output property, the commutativity law, De Morgan’s laws, and the and-or property.

Proof. We go through the six conditions one by one showing how each diminishes the number of possible truth tables.

1. Supraclassical property This means that the values in the truth tables conform to the ones in Table 1. This fills in 10
entries reducing the number of possibilities to 311. This is represented by Table 4.

2. Double negation property Double negation states that ¬¬Z = Z for every truth value Z . This fills in 1 entry reducing 
the number of possibilities to 310. This is represented by Table 5.

3. Input-output property This means that, for example, T ∨ B = F is not allowed. In particular it specifies that B ∧ B =
B ∨ B = B , which assures that i(a ∧ ¬a) = i(a ∨ ¬a) = i(a). So this takes care of 2 entries. Furthermore, the other 8
entries are restricted to 2 possible values. This leaves 28 possibilities. We to use V 1?V 2 to indicate that the unknown 
value must be either V 1 or V 2. This is represented by Table 6.
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Table 4
Truth tables after Step 1.

α F T B

¬α T F ?

∧ F T B

F F F ?
T F T ?
B ? ? ?

∨ F T B

F F T ?
T T T ?
B ? ? ?

Table 5
Truth tables after Step 2.

α F T B

¬α T F B

∧ F T B

F F F ?
T F T ?
B ? ? ?

∨ F T B

F F T ?
T T T ?
B ? ? ?

Table 6
Truth tables after Step 3. Each question mark represents one of the two adjacent truth values.

α F T B

¬α T F B

∧ F T B

F F F F ?B

T F T T ?B

B F ?B T ?B B

∨ F T B

F F T F ?B

T T T T ?B

B F ?B T ?B B

Table 7
Truth tables after Step 4. X is either F or B , Y is either T or B , U is either F
or B , and V is either T or B .

α F T B

¬α T F B

∧ F T B

F F F X

T F T Y

B X Y B

∨ F T B

F F T U

T T T V

B U V B

4. Commutativity law On account of commutativity, filling in the bottom row automatically fills in the last column. In 
the following table we use X , Y , U , and V for the possible values, reducing the number of possibilities to 24. This is 
represented by Table 7.

5. De Morgan’s Laws The equalities are ¬(Z1 ∧ Z2) = ¬Z1 ∨ ¬Z2 and ¬(Z1 ∨ Z2) = ¬Z1 ∧ ¬Z2. At this point, omitting 
the cases for the classical truth values, we can write each truth table in the form XYUV. For example, BTFT means that 
F ∧ B = B , T ∧ B = T , F ∨ B = F , and T ∨ B = T . Next, we list the 16 remaining truth tables in alphabetical order.

1 : B B B B 2 : B B BT 3 : B B F B 4 : B B F T
5 : BT B B 6 : BT BT 7 : BT F B 8 : BT F T
9 : F B B B 10 : F B BT 11 : F B BT 12 : F B F T

13 : F T B B 14 : F T BT 15 : F T F B 16 : F T F T .

To show how we can examine these cases, consider case 2 (BBBT). So F ∧ B = X = B , T ∧ B = Y = B , F ∨ B = U = B , and 
T ∨ B = V = T . Focusing on V , we see that T ∨ B = T implies ¬(T ∨ B) = F and focusing on X , we see that F ∧ B = B
implies ¬T ∧ ¬B = B . So ¬(T ∨ B) = F �= ¬T ∧ ¬B = B , and hence De Morgan’s law is violated.
It turns out that 12 of the 16 cases violate De Morgan’s Laws as we now demonstrate by giving an appropriate coun-
terexample that may apply to several at one time.
2:, 8: ¬(T ∨ B) = F �= ¬T ∧ ¬B = B
3:, 4: ¬(T ∧ B) = B �= ¬T ∨ ¬B = F
5:, 6: ¬(T ∧ B) = F �= ¬T ∨ ¬B = B
9:, 11:, 13: ¬(F ∧ B) = T �= ¬F ∨ ¬B = B
12:, 15: ¬(F ∨ B) = T �= ¬F ∧ ¬B = B
14: ¬(F ∨ B) = B �= ¬F ∧ ¬B = T
This leaves 4 possibilities: BBBB, BTFB, FBBT, and FTFT.

6. And-or property We think of designated values as higher than nondesignated values and would like to distinguish 
between conjunction and disjunction so that conjunction cannot give a higher value than disjunction. This eliminates 
BTFB where F ∧ B = B while F ∨ B = F , leaving 3 logics. �

We assign these three logics the names A-logic, B-logic, and C-logic. That is, using the numbering scheme in the proof, A-
logic is 10:FBBT, B-logic is 1:BBBB, and C-logic is 16:FTFT. A-logic was proposed as a logic for indeterminates by Łukasiewicz 
around 1920 and for paradoxes by Priest [45] as the Logic of Paradox. B-logic was proposed in the 1939 by Bochvar for 
dealing with paradoxes. See [48] for detailed background and references on these logics. C-logic was proposed by Sobociński 
[49] and used for conditional events in [54] and [17]. The truth tables for them are given in Tables 8 to 10.
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Table 8
The truth tables for A-logic.

α F T B

¬α T F B

∧ F T B

F F F F

T F T B

B F B B

∨ F T B

F F T B

T T T T

B B T B

Table 9
The truth tables for B-logic.

α F T B

¬α T F B

∧ F T B

F F F B

T F T B

B B B B

∨ F T B

F F T B

T T T B

B B B B

Table 10
The truth tables for C-logic.

α F T B

¬α T F B

∧ F T B

F F F F

T F T T

B F T B

∨ F T B

F F T F

T T T T

B F T B

Proposition 1. In A-logic and B-logic every formula can be converted into Conjunctive Normal Form (CNF) and Disjunctive Normal 
Form (DNF) in such a way that the truth values are the same for all interpretations.

Proof. In addition to the six conditions mentioned in Theorem 2, A-logic and B-logic also satisfy the associative laws: 
Z1 ∧ (Z2 ∧ Z3) = (Z1 ∧ Z2) ∧ (Z1 ∧ Z3) and Z1 ∨ (Z2 ∨ Z3) = (Z1 ∨ Z2) ∨ (Z1 ∨ Z3) and the distributive laws: Z1 ∧ (Z2 ∨ Z3) =
(Z1 ∧ Z2) ∨ (Z1 ∧ Z3) and Z1 ∨ (Z2 ∧ Z3) = (Z1 ∨ Z2) ∧ (Z1 ∨ Z3). CNF and DNF can then be constructed for any formula 
using all these laws of logic the same way as in classical 2-valued logic. �

The distributive laws do not hold in C-logic. Consider the case where a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c). Let i(a) = F , i(b) = T , 
and i(c) = B . Then iC (a ∨ (b ∧ c)) = F ∨ T = T �= iC ((a ∨ b) ∧ (a ∨ c)) = T ∧ F = F where iC denotes the interpretation 
i extended to formulae according to C-logic. The same i can be used to give different truth values to a ∨ (b ∧ c) and 
(a ∨ b) ∧ (a ∨ c).

Another type of property to consider is identity. For disjunction, identity ensures that if one disjunct is assigned T, 
then the disjunction is assigned T (i.e. if i(α) = T or i(β) = T , then i(α ∨ β) = T ), and for conjunction, identity ensures 
if one conjunct is assigned T , then the conjunction takes the truth value of the other conjunct (i.e. if i(α) = T , then 
i(α ∧ β) = i(β)). A-logic satisfies both these identities, whereas B-logic only satisfies conjunction identity, and C-logic only 
satisfies disjunction identity.

We may think of these logics as follows. A-logic uses the ordering of the truth values as F < B < T where conjunction 
gives the lower value and disjunction the higher value. In B-logic the truth value B absorbs every other truth value for 
conjunction and disjunction. In a way, C-logic is the opposite of B-logic: here the B value is ignored for both conjunction 
and disjunction, as long as the other value is not also B . We think that A-logic has an advantage over the other two 
logics because it distinguishes conjunction and disjunction when exactly one of the truth values is B . We put B-logic as a 
better choice than C-logic because it obeys the distributive laws. Nevertheless, all three logics appear appropriate for further 
consideration.

The three logics offer different options in practice. B-logic is the most skeptical. A disjunction (respectively conjunction) 
is assigned B whenever a disjunct (respectively conjunct) is assigned B. Hence, a B assignment to a formula is propagated 
to any formula that contains it as a subformula. The least skeptical is C-logic. Here a disjunction (respectively conjunction) 
is assigned B only in the case that both disjuncts (respectively conjuncts) are assigned B. So C-logic sets a higher threshold 
for a formula to be assigned B based on its subformulas.

Next we show that a model of a formula in one of the three logics need not be a model of the same formula in a 
different logic. Consider the interpretation i where i(a) = F and i(b) = B . Let φ = a ∧ b. Then, iC (φ) = i A(φ) = F , while 
iB(φ) = B . Hence i is a B-model of φ but not an A-model or a C-model. Let ψ = a ∨ b. Then, i A(ψ) = iB(ψ) = B while 
iC (ψ) = F . Here, i is an A-model and B-model of ψ but not a C-model.

We end this section by giving some connections between these three logics.

Proposition 2. For every formula φ , (1) if iC (φ) = B then i A(φ) = B and (2) if i A(φ) = B then iB(φ) = B.

Proof. We proceed by induction on the number of connectives in the formula. In the base case, where φ is an atom, say 
a, the result is immediate as iC (a) = i A(a) = iB(a). In the inductive step, for both (1) and (2) there are three subcases: (a) 
φ = ¬ψ , (b) φ = ψ1 ∧ ψ2, and (c) φ = ψ1 ∨ ψ2, where by the inductive hypothesis the condition holds for ψ , ψ1, and ψ2. 
Case (a) is immediate because of the truth table for negation: ¬B = B . Thus it suffices to consider subcases (b) and (c) for 
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(1) and (2). The proofs are the same for cases (b) and (c) for both (1) and (2).
(1) Suppose that iC (φ) = B . Then iC (φ1) = iC (φ2) = B . Hence i A(ψ1) = i A(ψ2) = B . Therefore, I A(φ) = B .
(2) Suppose that i A(φ) = B . Then either i A(ψ1) = B or i A(ψ2) = B (or both). Hence either iB(ψ1) = B or iB(ψ2) = B . For 
both cases i A(φ) = B . �
Theorem 3. For every formula φ and interpretation i, (1) if i |=C φ then i |=A φ and (2) if i |=A φ then i |=B φ .

Proof. By Proposition 2 it suffices to show that (1) if iC (φ) = T then i |=A φ and (2) if i A(φ) = T then i |=B φ.
(1) We prove a stronger result: (a) if iC (φ) = T then i A(φ) �= F and (b) if iC (φ) = F then i A(φ) �= T simultaneously by 
induction on the number of connectives in the formula.
In the base case, where φ is an atom, say a, the result is immediate as iC (a) = i A(a). In the inductive step, for both (a) and 
(b) there are three subcases: (i) φ = ¬ψ , (ii) φ = ψ1 ∧ ψ2, and (iii) φ = ψ1 ∨ ψ2, where by the inductive hypothesis the 
condition holds for ψ , ψ1, and ψ2.
Subcase (i) The inductive hypothesis yields that if iC (ψ) = T then i A(ψ) �= F and if iC (ψ) = F then i A(ψ) �= T . Suppose that 
iC (φ) = T . Then iC (ψ) = F ; hence i A(ψ) �= T , yielding iC (φ) �= F . Next, if iC (φ) = F then iC (ψ) = T ; hence i A(ψ) �= F , so 
i A(φ) �= T .
Subcase (ii) The inductive hypothesis yields that for i = 1, 2 if iC (ψi) = T then i A(ψi) �= F and if iC (ψi) = F then i A(ψi) �= T . 
Suppose that iC (φ) = T . We may assume that iC (ψ1) = T and (iC (ψ2) = T or iC (ψ2) = B). Hence i A(ψi) �= F . Thus iC (φ) �= F . 
Next, if iC (φ) = F then we may assume that iC (ψ1) = F . So i A(ψ1) = F and then i A(φ) = F �= T ,
Subcase (iii) The inductive hypothesis yields that for i = 1, 2 if iC (ψi) = T then i A(ψi) �= F and if iC (ψi) = F then i A(ψi) �= T . 
Suppose that iC (φ) = T . We may assume that iC (ψ1) = T . Therefore i A(ψ1) �= F . But this implies that i A(φ) �= F . Next, if 
iC (φ) = F we may assume that iC (ψ1) = F and iC (ψ2) �= T . Hence i A(ψ1) �= T and i A(ψ2) �= T . Therefore, iC (φ) �= T .
(2) A similar reasoning as for (1) can be done. However, there is a shorter proof. Use Proposition 1 to put φ into CNF. Hence, 
φ = C1 ∧ . . . ∧ Ck where Ci = �i1 ∨ . . . ∨ �iti . As each � is a literal, i A(�) = iB(�). As i A(φ) = T , i A(Ci) = T for all 1 ≤ i ≤ k. 
This means that for each Ci there is some literal in Ci , say �i j such that i(�i j) = T . Therefore i |=B Ci for all 1 ≤ i ≤ k and so 
i |=B φ. �

There is a wide variety of interesting 3-valued logics. For reviews, see [2,10]. However, only some of these logics use 
the third truth value for a notion of contradiction. By focusing on the six properties considered in Theorem 2, we can 
concentrate on three 3-valued logics for reasoning with inconsistent information. We will consider other 3-valued logics in 
the discussion section at the end of the paper.

5. Minimal L-atomic subsets

In order to define semantic inconsistency measures we will deal with the models of the three logics we defined pre-
viously. We start by specifying a set of atoms A = {a1, . . . , an} for which we define 3-valued interpretations. In general, 
A = Atoms(K ) for the knowledgebase under consideration because the interpretation of an atom not in Atoms(K ) is ir-
relevant. For what follows it will be convenient to think of A as a sequence, A = (a1, . . . , an), as then we can write an 
interpretation i as a sequence of truth values (V 1, . . . , Vn) where each V j ∈ {F , T , B} and i(a j) = V j . Recall that for each 
logic an interpretation also assigns a truth value to every formula. Let S ⊆ A.

Next, we introduce a notation that will be useful when we define semantic inconsistency measures. We use S to define 
an interpretation based on i that assigns B to every atom in S as follows.

i[S](a) =
{

B if a ∈ S
i(a) otherwise

So the interpretation i[S] is obtained from the interpretation i by making the changes specified by the atoms in S . This 
notation allows us to consider minimal changes to i by considering minimal sets S that make i[S] into a model. In the rest 
of this section, we will investigate the nature of these modified interpretations, and then, in subsequent sections, we will 
use the notation for defining semantic inconsistency measures.

Our interest is in knowledgebases but it is easier to work with single formulas. It turns out that for A-logic and C-logic 
that is all that is needed.

Proposition 3. For L ∈ {A, C}, i |=L K where K = {φ1, . . . , φm} iff i |=L φ1 ∧ . . . ∧ φm.

Proof. (→) By definition, i |=L K iff i |=L φ j for 1 ≤ j ≤ m. Thus, iL(φ j) ∈ {B, T } for 1 ≤ j ≤ m. By the truth tables for A-logic 
and C-logic, i |=L φ1 ∧ . . . ∧ φm .
(←) Suppose that i |=L φ1 ∧ . . . φm , that is, iL(φ1 ∧ . . . φm) ∈ {T , B}. By the truth tables for A-logic and C-logic, iL(φ j) = F is 
not possible for any j, 1 ≤ j ≤ m. Hence iL(φ j) ∈ {T , B} for all j, 1 ≤ j ≤ m, and so i |=L φ j for all j, 1 ≤ j ≤ m, which means 
that i |=L K . �

This proposition does not apply to B-logic. The reason is that in B-logic B ∧ F = B . For example, let K = {a, b} and 
i(a) = B and i(b) = F . Here, i �|=B K but i |=B a ∧ b. So the proposition means that for A-logic and C-logic it suffices to deal 
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with the models of a single formula but for B-logic we must deal with the models of a set of formulas. In the following we 
will usually deal with a single formula and explain what else needs to be done for B-logic.

If a knowledgebase K is inconsistent, there is no i such that i |=L K and for each atom a, i(a) = T or i(a) = F , because 
each logic L is an extension of classical 2-valued logic. However, there is always an interpretation i[S] such that i[S] |=L K
for each logic. We can always choose S = A because if every atom gets the value B , every formula also gets the value B . 
But, in general, subsets of A smaller than S suffice for this purpose.

Example 3. Consider K = {a, ¬a ∨ ¬b, b, c}. Also consider the following two valued interpretations: i1 = (T , T , T ), i2 =
(T , T , F ), i3 = (T , F , T ), i4 = (T , F , F ), i5 = (F , T , T ), i6 = (F , T , F ), i7 = (F , F , T ), i8 = (F , F , F ). So for all L, we have the 
following:

• If S ∈ {{}, {c}}, then there is no i ∈ {i1, . . . , l8} such that i[S] |=L K ;
• If S is {a}, and i ∈ {i1, i5}, then i[S] |=L K ;
• If S is {b}, and i ∈ {i1, i3}, then i[S] |=L K ;
• If S is {a, b}, and i ∈ {i1, i3, i5, i7}, then i[S] |=L K ;
• If S is {a, c}, and i ∈ {i1, i2, i5, i6}, then i[S] |=L K ;
• If S is {b, c}, and i ∈ {i1, i2, i3, i4}, then i[S] |=L K ;
• If S is {a, b, c}, and i ∈ {i1, i2, i3.i4, i5, i6, i7, i8}, then i[S] |=L K .

Whenever for some classical 2-valued interpretation i, i[S] |=L K , we say that S is an L-atomic subset for K . In particular, 
if K is consistent, there is always some classical interpretation i for which ∅ is an L-atomic subset. The following result 
shows a connection among the L-atomic subsets of the three logics. When we introduce the inconsistency measures later, 
we will see how this result gives insights into the relationships among the measures.

Proposition 4. (1) Every C-atomic subset of a knowledgebase K is an A-atomic subset of K . (1) Every A-atomic subset of a 
knowledgebase K is a B-atomic subset of K .

Proof. Immediate from Theorem 3. �
The following result allows us to deal only with some of the L-atomic subsets. Our motivation for investigating this is 

that we want to focus on minimal L-atomic subsets which we define below.

Theorem 4. Let K be a knowledgebase and i a classical 2-valued interpretation.
(1) If i[S] |=A K and S ⊆ S ′ then i[S ′] |=A K . (2) If i[S] |=B K and S ⊆ S ′ then i[S ′] |=B K .

Proof. By Proposition 3 for A-logic it suffices to deal with a single formula.
(1) By Proposition 1 we may assume that i[S] |=A φ where φ is in DNF. So, φ = D1 ∨ . . .∨ Dk where each D j = � j1 ∧ . . .∧� jt j

and each � is a literal. We get that i[S] |=A D j for some j, 1 ≤ j ≤ k and then i[S] |=A � jt for all literals in D j . Then, for S ′
where S ⊆ S ′ , some additional atoms may get the truth value B . Such a change does not change things in the sense that 
i[S ′] |=A � j for each literal in D j . Therefore, i[S ′] |=A φ.
(2) In this case we must deal with the whole knowledgebase K . Let K = {φ1, . . . , φn}. Consider any φt for 1 ≤ t ≤ n. As 
i[S] |=B K , i[S] |=B φt also. We will show that i[S ′] |=B φt . By Proposition 1 we may assume that φt is in DNF, so that 
φt = D1 ∨ . . . ∨ Dk where D j = � j1 ∧ . . . ∧ � jt j and each � is a literal. The rest of the proof follows the same reasoning as for 
(1). �

This theorem does not work for C-logic. Let φ = a ∨ b and consider the 2-valued interpretation i(a) = T and i(b) = F . 
Then i[∅] |=C φ. So here S = ∅. But for S ′ = {a}, i[S ′] �|=C φ because in C-logic B ∨ F = F .

Definition 7. We say that S is a minimal L-atomic subset of K iff S is an L-atomic subset of K and there is no classical 2-
valued interpretation i′ and set S ′ ⊂ S such that i′[S ′] |=L K . We write MASL(K ) for the set of all minimal L-atomic subsets 
of K .

These concepts were defined originally for A-Logic in [41]. Specifically, a minimal A-atomic subset of K is written as 
ω!(K ) for some ω ∈ MinModL P (K ). Then, MASA(K ) is called BA(K ) there.

By Theorem 4, in the case of A-logic and B-logic it suffices to know the minimal L-atomic subsets to get all L-atomic sub-
sets. Although this result does not hold for C-logic, minimal L-atomic subsets are a convenient way to study the semantics 
of inconsistencies for all three logics.

The following result shows a connection among the minimal L-atomic subsets of the three logics.

Proposition 5. (1) If S ∈ MASC (K ) then there is an S ′ ⊆ S such that S ′ ∈ MASA(K ). (2) If S ∈ MASA(K ) then there is an S ′ ⊆ S such 
that S ′ ∈ MASB(K ).
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a b c d e

{a,b, c} {a,b,d}

Fig. 3. The labeled semantic inconsistency bigraph for K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e} in A-logic.

Proof. (1) If S ∈ MASC (K) then, by Proposition 4 (1) S is a C-atomic subset of K . Hence, either S ∈ MASA(K ) or there is an 
S ′ ⊆ S such that S ′ ∈ MASA(K ).
(2) Same as (1) with the substitution of “A” for “C” and “B” for “A” using Proposition 4 (2). �
Example 4. This example uses an iceberg inconsistency (see [15]). Let K1 = {a ∧ ¬a ∧ b, ¬b}. From the syntactic point of 
view, ¬b is a free formula and so is mostly irrelevant for calculating a syntactic inconsistency measure except if the total 
number of formulas is used. This misses the fact that there is a hidden inconsistency between the two formulas. In fact, ¬b
is quite relevant from the semantic point of view. K1 has one minimal C-atomic subset, S = {a, b} which is also the single 
minimal A-atomic subset. However, K1 has 2 minimal B-atomic subsets: {a} and {b}. In both cases we can use i = (T , F ).

Example 5. This example is a slight modification of the previous example. Let K2 = {a ∧¬a ∧b, ¬b ∨ (c ∧¬c)}. Here also the 
second formula is free. K2 has one minimal C-atomic subset, S = {a, b, c}. But K2 has 2 minimal A-atomic subsets, {a, b} and 
{a, c} using the interpretations i1 = (T , F , T ) and i2 = (T , T , T ) respectively. Finally, K2 has the same 2 minimal B-atomic 
subsets as K1, namely {a} and {b} using the interpretation i = (T , F , T ) for both.

In conclusion, we have introduced the notion of a subset of atoms in the language being an L-minimal subset of a 
knowledgebase K . We will use this notion in the rest of this paper to allow us to focus on where inconsistencies lie in the 
knowledgebase K , and thereby use it as the basis of analysing K .

6. Semantic inconsistency bigraphs

As we explained earlier, the aim of measuring inconsistency is to obtain an evaluation of the imperfections in a set of 
formulas. This evaluation may then be used to help decide on some course of action, such as rejecting some of the formulas, 
resolving the inconsistency, seeking better sources of information, etc. Many inconsistency measures have been proposed 
for this purpose. Each has its rationale. But given the diversity of measures, it is beneficial to delineate the space of options 
for measures and to classify measures systematically.

In Section 3, we reviewed previous work on syntactic inconsistency bigraphs. These are a special case of minimal subset 
bigraphs where the set is the formulas of the knowledgebase and the property for a subset is that it is inconsistent. Syntactic 
inconsistency measures are functions on such bigraphs. In this section we show that an analogous definition can be used 
to define semantic inconsistency bigraphs. In the next section we will show how to use these bigraphs to define semantic 
inconsistency measures.

In the following definition, we use a bigraph to represent both the atoms in the formulae in a knowledgebase and 
the nature of the inconsistencies in terms of the minimal L-atomic subsets. While for clarity we define both labeled and 
unlabeled semantic inconsistency bigraphs, later we will use only the unlabeled versions. By using the unlabeled version, 
we will abstract away from the specific atoms and focus on the structure of the bigraphs that will then be used to define 
the semantic inconsistency measures.

Definition 8. The labeled semantic inconsistency bigraph for KB K and logic L where Atoms(K ) = {a1, . . . , am} and 
MASL(K ) = {S1, . . . , Sn}, is the labeled minimal subset bigraph G = 〈U , V , E, L〉 such that

• U = {u1, . . . , um}
• V = {v1, . . . , vn}
• E = {(ui, v j) | ai ∈ S j} (every edge corresponds to the set membership relation between an atom ai ∈ Atoms(K ) and a 

minimal L-atomic subset S j ∈ MASL(K ) such that ai ∈ S j)
• L : U ∪ V → Atoms(K ) ∪ MASL(K ): L(ui) = ai for all i, 1 ≤ i ≤ m, and L(v j) = S j for all j, 1 ≤ j ≤ n.

Example 6. Consider the knowledgebase K from Example 1: K = {a ∧ ¬a, b, ¬b, b ∧ ¬c, c ∨ d, ¬d, c ∨ e}. Fig. 1 is the labeled 
syntactic inconsistency bigraph of K . We obtain Atoms(K ) = {a, b, c, d, e, f }. The three logics yield different minimal atomic 
subsets: MASA(K ) = {{a, b, c}, {a, b, d}}, MASB(K ) = {{a, b}}, and MASC (K ) = {{a, b, c, d}}. So for A-logic, either the atoms 
{a, b, c} are in conflict or the atoms {a, b, d} are in conflict; whereas in B-logic, only the atoms {a, b} are in conflict; and in 
C-logic, all the atoms in {a, b, c, d} are in conflict. We show the labeled semantic inconsistency bigraph in Fig. 3 for A-logic.
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Fig. 4. The semantic inconsistency bigraph for K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e} in A-logic.

Fig. 5. The semantic inconsistency bigraph for K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e} in B-logic.

Fig. 6. The semantic inconsistency bigraph for K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e} in C-logic.

Just as in the case of syntactic inconsistency bigraphs, when we remove the labels now we obtain the semantic incon-
sistency bigraphs. The next three figures represent the semantic inconsistency bigraphs for the three logics.

We mentioned in Section 3 that every minimal subset bigraph represents the syntactic inconsistency bigraph for some 
knowledgebase. We now consider the same issue for the semantic inconsistency bigraphs for our three logics. It turns out 
that the same result holds for A-logic and B-logic but not for C-logic.

Theorem 5. For every minimal subset bigraph G there is a knowledgebase whose semantic inconsistency bigraph for A-logic is G.

Proof. Let G = 〈U , V , E〉 be a minimal subset bigraph. If U = ∅, set K = ∅. Otherwise, let U = {u1, . . . , um} and V =
{v1, . . . , vn}. Using U , set Atoms(K ) = {a1, . . . , am}. For each ui such that Adj(ui) = ∅, make the atom a j a formula 
of K . Finally, construct a formula in DNF of the form D1 ∨ . . . ∨ Dn and add it to K as follows. For each v j , let 
Adj(v j) = {u j1, . . . , u jk}. Set D j = {a j1 ∧ ¬a j1 ∧ . . . ∧ a jk ∧ ¬a jk}. K will then have G as its semantic inconsistency bigraph
for A-logic. �
Example 7. Consider the minimal subset bigraph of Fig. 4. The construction yields K = {a5, (a1 ∧¬a1 ∧a2 ∧¬a2 ∧a3 ∧¬a3) ∨
(a1 ∧ ¬a1 ∧ a2 ∧ ¬a2 ∧ a4 ∧ ¬a4)}.

Theorem 6. For every minimal subset bigraph G there is a knowledgebase whose semantic inconsistency bigraph for B-logic is G.

Proof. Let G = 〈U , V , E〉 be a minimal subset bigraph. If U = ∅, set K = ∅. Otherwise, let U = {u1, . . . , um} and V =
{v1, . . . , vn}. Using U , set Atoms(K ) = {a1, . . . , am}. For each ui such that Adj(ui) = ∅, make the atom a j a formula of K . Find 
all sets Tk that are minimal with respect to the property that Tk ∩ Adj(v j) �= ∅ for all 1 ≤ j ≤ n. Obtain the sets T1, . . . , T� . 
Thus each Tk ⊆ Atoms(K ). Suppose that Tk = {uk1, . . . , ukr}. Set K = {φ1, . . . , φ�} where φk = ak1 ∧ ¬ak1 ∧ . . . ∧ akr ∧ ¬akr . K
will then have G as its semantic inconsistency bigraph for B-logic. �
Example 8. Consider the minimal subset bigraph of Fig. 5. Here, U = {u1, . . . , u5} and Adj(v1) = {u1, u2}. Thus, T1 = {u1}
and T2 = {u2}. So, K = {a1 ∧ ¬a1, a2 ∧ ¬a2, a3, a4, a5}

Example 9. In Example 7 we constructed a knowledgebase whose semantic inconsistency bigraph for A-logic was Fig. 4. 
We now use the same figure to construct a knowledgebase for B-logic. Here U = {u1, . . . , u5}, Adj(v1) = {u1, u2, u3}, and 
Adj(v2) = {u1, u2, u4}. Thus, T1 = {u1}, T2 = {u2}, and T3 = {u3, u4}. So, K = {a1 ∧ ¬a1, a2 ∧ ¬a2, a3 ∧ ¬a3 ∧ a4 ∧ ¬a4, a5}.

Finally, we get to C-logic.
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Fig. 7. The semantic inconsistency bigraph for K = {φ} where φ = (a ∧ ¬a ∧ b) ∨ (¬b ∧ c ∧ ¬c) ∨ (a ∧ ¬b ∧ d ∧ ¬d ∧ e) in A-logic.

Fig. 8. The semantic inconsistency bigraph for K = {φ} where φ = (a ∧ ¬a ∧ b) ∨ (¬b ∧ c ∧ ¬c) ∨ (a ∧ ¬b ∧ d ∧ ¬d ∧ e) in B-logic.

Theorem 7. A minimal subset bigraph is the semantic inconsistency bigraph for some knowledgebase in C-logic iff it satisfies at least 
one of the following conditions: 1) G = ∅, 2) it has at least one element ui ∈ U such that Deg(ui) = 0, 3) |V | = 1.

Proof. We show how to construct a knowledgebase for each of these three cases and why otherwise no such knowledgebase
exists.
1) Let K = ∅.
2) Let G = 〈U , V , E〉 be a minimal subset bigraph where U = {u1, . . . , um}, V = {v1, . . . , vn}, and Deg(um) = 0. Using U , set 
Atoms(K ) = {a1, . . . , am}. For each ui such that Deg(ui) = 0, make the atom a j a formula of K . In particular, am is such an 
atom. Then, construct a formula of the form D1 ∨ . . .∨ Dn and add it to K as follows. For each v j , let Adj(v j) = {u j1, . . . , u jk}. 
Set D j = a j1 ∧ ¬a j1 ∧ . . . ∧ a jk ∧ ¬a jk ∧ am . K will then have G as its semantic inconsistency bigraph for C-logic. The reason 
for using am in each disjunct, D j , is that an interpretation i such that i(am) = T and i(a jk) = B for all a jk ∈ D j makes 
i(D j) = T .
3) We must construct a knowledgebase for a minimal subset bigraph G = 〈U , V , E〉 where U �= ∅ and for every u ∈ U , 
Deg(u) > 0. This condition means that K must be inconsistent. By Proposition 3 we can restrict the construction to a single 
formula φ where Atoms(φ) = {a1, . . . , am}. As C-logic obeys De Morgan’s Laws, we may assume that all negations are applied 
to atoms. So the formula must contain only conjunctions and disjunctions of literals. Now we proceed to characterize such 
a formula φ. First of all, there cannot be any atoms that appear in φ only as positive atoms or only as negated atoms, 
because for them in G, there would be a u such that Deg(u) = 0. Consider now what it would mean if |V | = 2. Starting the 
construction of such a formula, there must be formulas ψ1 and ψ2 such that for their semantic inconsistency bigraphs, G1 =
〈U1, V 1, E1〉 and G2 = 〈U2, V 2, E2〉, |V 1| = 1, and |V 2| = 1. Therefore, φ must be either ψ1 ∧ψ2 or ψ1 ∨ψ2. In either case, we 
must set all the atoms for both ψ1 and ψ2 to B because otherwise we would have either B ∧ F or B ∨ F or F ∧ B or F ∨ B , all 
of which in C-logic yield F . Thus, no matter how complex is the formula φ, for its semantic inconsistency graph G , |V | = 1. 
Then, for G = 〈{u1, . . . , um}, {v1}, {(u1, v1), . . . , (um, v1)} the corresponding formula is φ = a1 ∧ ¬a1 ∧ . . . ∧ am ∧ ¬am . �
Example 10. Consider the minimal inconsistency graph of Fig. 3. We construct a knowledgebase K for which this graph is 
the semantic inconsistency bigraph for C-logic. This is an example of Case 2). We obtain K = {(a1 ∧ ¬a1 ∧ a2 ∧ ¬a2 ∧ a3 ∧
¬a3 ∧ a5) ∨ (a1 ∧ ¬a1 ∧ a2 ∧ ¬a2 ∧ a4 ∧ ¬a4 ∧ a5)}.

Example 11. Let K = {φ} where φ = (a ∧¬a ∧ b) ∨ (¬b ∧ c ∧¬c) ∨ (a ∧¬b ∧ d ∧¬d ∧ e). In this case we start with a classical 
interpretation i where i(e) = T . We must set S = {a, b, c, d}. Hence the semantic inconsistency bigraph for C-logic is the 
same as the one in Fig. 6. We show the semantic inconsistency bigraphs for A-logic and B-logic in Figs. 7 and 8 respectively.

We obtain the following result concerning the various semantic inconsistency bigraphs for a knowledgebase.

Proposition 6. Let K be a knowledgebase whose semantic inconsistency bigraph for L-logic is G L = 〈U L, V L, E L〉 for L ∈ {A, B, C}. 
Then
(1) If v ∈ V C then there is v ′ ∈ V A such that Adj(v ′) ⊆ Adj(v).
(2) If v ∈ V A then there is v ′ ∈ V B such that Adj(v ′) ⊆ Adj(v).

Proof. This follows from Proposition 5 and the construction of the semantic inconsistency bigraphs. �
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In Section 4 we gave a reason to give a preference to A-logic over B-logic and C-logic. The issue was that for B values 
A-logic distinguishes ∧ and ∨, while B-logic and C-logic do not. From this section we see an advantage of B-logic (and 
A-logic) over C-logic in the sense that it has a vastly larger range of semantic inconsistency bigraphs, and therefore it is 
more discriminating. Nonetheless, we see that each of these logics has a role in analysing inconsistency, and in the next 
section we will investigate inconsistency measures based on each.

7. Definition and examples of semantic inconsistency measures

We start by defining the concept of semantic measure using semantic inconsistency bigraphs.

Definition 9. A semantic inconsistency measure of a knowledgebase K for logic L is a function that is applied to the 
semantic inconsistency bigraph of K for L that satisfies Definition 1.

This definition is analogous to the definition of a syntactic inconsistency measure which is a function on the syntactic 
inconsistency bigraph of the knowledgebase as defined in Section 3. For a given function on the syntactic inconsistency 
bigraph there is a unique syntactic inconsistency measure. But as the semantic inconsistency bigraphs are, in general, dif-
ferent for different logics, a unique semantic inconsistency measure requires the identification of the logic in addition to the 
function. The following is a basic result about semantic inconsistency measures.

Proposition 7. If K1 ≡L K2 then for any semantic inconsistency measure I for L, I(K1) = I(K2).

Proof. K1 ≡ K2 means that K1 and K2 have the same models for L. Thus, they have the same minimal L-atomic subsets 
and hence the same semantic bigraphs for L. �

Next, we define several semantic inconsistency measures. We will indicate the logic as a superscript, for instance, I L
x

means Ix for logic L. First we note that the syntactic inconsistency measure I B (see Definition 1) is also a semantic 
inconsistency measure with the same definition for all logics L. Hence we will not deal with I B separately as a seman-
tic inconsistency measure. The important question is which functions on the semantic inconsistency bigraphs are intuitively 
good inconsistency measures. Here we define three functions, thereby getting nine inconsistency measures.

Definition 10. The following three functions define semantic inconsistency measures:

• I L
P (K ) = |{u ∈ U | Deg(u) > 0}|

• I L
P (r)(K ) = 0 if V = ∅ and I L

P (K )

|U | otherwise

• I L
R(K ) = 0 if V = ∅ and min{Deg(v)|v ∈ V } otherwise

I L
P is the semantic counterpart of the syntactic problematic inconsistency measure, I P . But while I P counts the number 

of problematic formulas, that is, the ones that appear in some minimal inconsistent subset, I L
P counts the number of prob-

lematic atoms, that is, the ones that appear in some minimal atomic subset of K for the logic L. The relativized version of 
I L

P , I L
P (r) , is the ratio of the problematic atoms and the total number of atoms. Finally, I L

R is the semantic counterpart of the 
syntactic repair inconsistency measure, I R . But while I R counts the minimal number of formulas that must be deleted to 
make the knowledgebase consistent, I L

R counts the minimal size of the set of atoms S that must be given the value B such 
that for some 2-valued interpretation i, i[S] |=L K . The contension measure, originally defined in [32], and usually written as 
IC , which is usually given as the main example of a semantic inconsistency measure, turns out to be I A

R using our notation. 
We think of it as the semantic repair measure for A-logic.

We did not include a semantic counterpart for IM which counts the number of minimal inconsistent subsets. This is 
I L

M(K ) = |V | and counts the number of different minimal sets of atoms whose change for a 2-valued interpretation to the 
value B resolves the inconsistency of the knowledgebase for logic L. In other words, it counts the number of alternatives 
we have for repairs, but it does not reflect how many repairs (in contrast to counting the number of minimal inconsistent 
subsets), and so we think I L

R (K ) defined above is more useful for considering repairs. As I L
M does not seem to be as useful in 

the semantic case as its syntactic version, we do not consider it further in this paper. Nonetheless, I L
M (K ) = |V | may reflect 

the complexity of resolving the inconsistencies; as the size of V increases, the difficulty of how to make that selection 
increases. We will investigate this alternative measure in further work.

Consider now the difference between Ia given in Definition 1 and I L
P . Recall that Ia counts the number of atoms in the 

problematic formulas. The problem with Ia is that problematic formulas may contain many atoms that cause no problems 
at all. Let K = {a ∧ b ∧ c ∧ d, ¬a ∧ e}. Both formulas are problematic; hence Ia(K ) = 5. But really, only one atom causes the 
problem, namely a. Hence I L

P (K ) = 1 for each logic we considered. Intuitively, this seems to be a better way to measure the 
number of problematic atoms. There is also a big difference for the relative case where Ia(r)(K ) = 1 while I L

P (r) = 0.2 for all 
these logics.
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Next, we revisit some examples we considered earlier and compute the nine semantic inconsistency measures given in 
Definition 10 for them.

Example 12. We continue with Example 6 where we constructed the semantic inconsistency bigraphs for K = {a ∧
¬a, b, ¬b, b ∧ ¬c, c ∨ d, ¬d, c ∨ e} and obtained graphs in all cases with U = {u1, . . . , u6}. For A-logic |V | = 2, while for 
B-logic and C-logic |V | = 1. We obtain the following values for the measures.

L = A L = B L = C

I L
P 4 2 4

I L
P (r)

4
5

2
5

4
5

I L
R 3 2 4

Example 13. We continue with Example 11 where K = {(a ∧ ¬a ∧ b) ∨ (¬b ∧ c ∧ ¬c) ∨ (a ∧ ¬b ∧ d ∧ ¬d ∧ e)} and the 
semantic inconsistency graph for C-logic is given in Fig. 6. We draw the semantic inconsistency graphs for A-logic and 
B-logic in Figs. 7 and 8 respectively. We obtain the following values for the measures.

L = A L = B L = C

I L
P 3 5 4

I L
P (r)

3
5 1 4

5

I L
R 1 1 4

We now consider an example involving analysing conflicting witness reports in order to indicate how these measures 
might be useful in practice.

Example 14. Consider the following example taken from [15]. The police is investigating a robbery on a jewellery shop 
that occurred on a weekday, during working hours. The investigators have taken testimony from all employees who were 
working on the day of the crime. The witnesses’ statements include the following:

• Salesperson: “I did not open the safe, and the criminals carried no guns!”
• Head of security: “Only the manager or the salesperson could have opened the safe, and the criminals carried guns.”
• Shop manager: “I did not open the safe.”

As the police conceives the possibility of some of the employees having been complicit, they look for contradictions among 
the versions given. Inconsistent testimonies would imply some witnesses are lying, raising suspicions of complicity against 
them. The head of security and the salesperson are clearly contradicting each other, but is the manager involved in some 
contradiction? From the statements above, can one infer that it is possible that the manager is lying?
Consider the following atomic propositions: s stands for the salesperson opened the safe, m stands for the manager opened 
the safe, and g stands for the criminals carried guns. Now suppose we have the following testimonies.

• Salesperson: φ = ¬s ∧ ¬g
• Head of security: ψ = (s ∨ m) ∧ g
• Store manager: θ = ¬m

From these testimonies, we can consider the knowledgebase {φ, ψ, θ}, whose semantic inconsistency bigraphs are drawn in 
Figs. 9 to 11. Then we calculate the following inconsistencies measures.

L = A L = B L = C

I L
P 3 3 3

I L
P (r) 1 1 1

I L
R 2 1 3

From these measures, we can see that irrespective of which logic is chosen, the number of problematic atoms, namely 3, 
is the same. But in terms of repairs, the values are different for the three logics with B-logic giving the lowest number of 
atoms requiring repair, while C-logic gives the highest number of atoms requiring repair.
For comparison, if we use a syntactic inconsistency measure that is based on minimal inconsistent subsets, such as IM , then 
the analysis is based on the subset {φ, ψ}; so θ is not considered. Hence the potential for the atom m to be problematic 
is ignored. In contrast, using a semantic measure allows us to analyse the potential for m to be problematic, and thereby 
recognize that the store manager should also be considered under suspicion.
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m g s

{m, g} {g, s}

Fig. 9. The labeled semantic inconsistency bigraph for the knowledgebase from Example 14 where K = {¬s ∧ ¬g, (s ∨ m) ∧ g,¬m} in A-logic.

m g s

{m} {g} {s}

Fig. 10. The labeled semantic inconsistency bigraph for the knowledgebase from Example 14 where K = {¬s ∧ ¬g, (s ∨ m) ∧ g,¬m} in B-logic.

m g s

{m, g, s}

Fig. 11. The labeled semantic inconsistency bigraph for the knowledgebase from Example 14 where K = {¬s ∧ ¬g, (s ∨ m) ∧ g,¬m} in C-logic.

Table 11
Status of postulates for semantic inconsistency measures.

Inconsistency measures I A
P I A

P (r) I A
R I B

P I B
P (r) I B

R IC
P IC

P (r) IC
R

Monotony ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓

Free-Formula Independence ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Penalty ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Super-Additivity ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MI-Separability ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Relative Separability ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗

Dominance ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Exchange ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Adjunction Invariance ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

✓: satisfied, ✗: not satisfied.

Semantic inconsistency measures offer some useful tools for analysing inconsistent information (such as inconsistent re-
quirements specifications in software engineering and conflicting reports in intelligence analysis). Furthermore, as illustrated 
by the above example, semantic inconsistency measures provide complementary insights compared to syntactic measures. 
The latter focus on the formulas, and consider which formulas are involved in inconsistencies, whereas the former focus on 
the atoms in the language, and consider which atoms are involved in inconsistencies.

8. Satisfaction of postulates for semantic inconsistency measures

In Table 2 we showed the satisfaction of some postulates for the inconsistency measures given earlier. In this section we 
write a similar table, Table 11, for the 9 inconsistency measures introduced in the previous section.

Theorem 8. The satisfaction of the postulates for the semantic inconsistency measures introduced in the previous section is as given 
in Table 11. The symbol K is used throughout for different knowledgebases as explained for each item.

Proof. We show the results individually for each inconsistency measure, by explaining why a postulate holds or giving a 
counterexample. As I A

R , the semantic repair measure for A-logic, is identical to the contension measure, IC , whose satis-
faction of postulates, except for Relative Separability, is already known (see [52]), we deal only with a single postulate for 
it.
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• I A
P

– (Monotony) The addition of a formula cannot reduce the number of problematic atoms.
– (Free-Formula Independence) Let K = {a ∧ ¬a ∧ b, ¬b}. As mentioned earlier, this is an example of an iceberg incon-

sistency. The formula ¬b is free. But I A
P (K ) = 2 �= I A

P (K \ {¬b}) = 1.
– (Penalty) Let K = {a ∧b, ¬a ∧¬b, ¬a ∧b}. The formula ¬a ∧b is problematic. Then I A

P (K ) = 2 while I A
P (K \{¬a ∧b}) = 2

also.
– (Super-Additivity) Let K1 = {a ∧ b, ¬a ∧ ¬b} and K2 = {¬a ∧ b, a ∧ ¬b}. Then K1 ∩ K2 = ∅, but I A

P (K1 ∪ K2) = 2 �
I A

P (K1) + I A
P (K2) = 4.

– (MI-Separability) Let K1 = {a ∧ ¬a ∧ c ∧ d} and K2 = {b ∧ ¬b ∧ ¬c}. Then the MI-Separability condition holds but 
I A

P (K1 ∪ K2) = 3 �= I A
P (K1) + I A

P (K2) = 2.
– (Relative Separability) Let K1 = {a ∧ ¬a} and K2 = {b ∧ ¬b ∧ c ∧ ¬c}. Then the Relative Separability condition holds 

but I A
P (K1) = 1 < I A

P (K2) = 2 while I A
P (K1 ∪ K2) = 3 which is not between 1 and 2.

– (Dominance) Let K = {¬a, ¬b}, φ = a, ψ = a ∨ b. The Dominance condition is satisfied but I A
P (K ∪ {φ}) = 1 � I A

P (K ∪
{ψ}) = 2.

– (Exchange) By Propositions 1 and 3 we may assume that K , K ′ , and K ′′ are all in CNF. The equivalence of K ′ and 
K ′′ means that essentially they have the same CNF, meaning that the differences are trivial, such as the order of the 
clauses. But then the CNF for K ∪ K ′ and K ∪ K ′′ are also essentially the same and hence the semantic inconsistency 
graphs for K ∪ K ′ and K ∪ K ′′ must be the same.

– (Adjunction Invariance) This follows from Proposition 3 as the single version of {φ, ψ} is φ ∧ ψ .
• I A

P (r)

– (Monotony) Let K1 = {a, ¬a} and K2 = K1 ∪ {b}. Then, K1 ⊂ K2 but I A
P (r)(K1) = 1 � I A

P (r)(K2) = 1
2 .

– (Free-Formula Independence) The same example can be used as for I A
P . I A

P (r)(K ) = 1 �= I A
P (r)(K \ {¬b}) = 1

2 .

– (Penalty) The same example can be used as for I A
P . Then I A

P (r)(K ) = 1 while I A
P (r)(K \ {¬a ∧ b}) = 1 also.

– (Super-Additivity) The same example can be used as for I A
P . Then I A

P (r)(K1 ∪ K2) = 1 � I A
P (r)(K1) + I A

P (r)(K2) = 2.

– (MI-Separability) The same example can be used as for I A
P . Then I A

P (r)(K1 ∪ K2) = 3
4 �= I A

P (r)(K1) + I A
P (r)(K2) = 5

6 .

– (Relative Separability) Let I A
P (r)(K ) = a

b < I A
P (r)(K ′) = c

d . Using the condition about the atoms, I A
P (r)(K ∪ K ′) = a+c

b+d and 
indeed, a

b < a+c
b+d < c

d . The case for = is similar but simpler.

– (Dominance) The same example can be used as for I A
P . Then I A

P (r)(K ∪ {φ}) = 1
2 � I A

P (r)(K ∪ {ψ}) = 1.

– (Exchange) Let K = {a}, K ′ = {¬a}, and K ′′ = {¬a, b ∨ ¬b}. Then, K ′ ≡ K ′′ but I A
P (r)(K ∪ K ′) = 1 �= I A

P (r)(K ∪ K ′′) = 1
2 .

– (Adjunction Invariance) K ∪ {φ, ψ} and K ∪ {φ ∧ ψ} both have the same number of problematic atoms and atoms.
• I A

R
– (Relative Separability) Let K1 = {a ∧ ¬a} and K2 = {b ∧ ¬b}. Then the Relative Separability condition holds but 

I A
R (K1) = I A

R (K2) = 1 and I A
R (K1 ∪ K2) = 2.

• I B
P

– (Monotony) The addition of a formula cannot reduce the number of problematic atoms.
– (Free-Formula Independence) Let K = {φ1, . . . , φm, φm+1} where φm+1 is free.

If Atoms({φ1, . . . , φm} ∩ Atoms({φm+1}) = ∅ then the result is clear. Otherwise, let a ∈ Atoms({φ1, . . . , φm} ∩
Atoms({φm+1}. If a ∈ S where S ∈ MAS(K ) then S ∈ MAS(K \ {φm+1}) because a must be a part of a formula and in 
B-logic it suffices to give any atom the value B to resolve the inconsistency in a formula. If a /∈ S for any S ∈ MAS(K ), 
then a is not a problematic atom. In all cases I B

P (K ) = I B
P (K \ {φm+1}).

– (Penalty) The same example can be used as for I A
P .

– (Super-Additivity) The same example can be used as for I A
P .

– (MI-Separability) The same example can be used as for I A
P . Now I B

P (K1 ∪ K2) = 3 �= I B
P (K1) + I B

P (K2) = 5.
– (Relative Separability) The same example can be used as for I A

P .
– (Dominance) Let K = {¬b}, φ = b, and ψ = b ∧ (a ∨ ¬a). Then the conditions for Dominance hold but I B

P (K ∪ {φ}) =
1 � I B

P (K ∪ {ψ}) = 2.
– (Exchange) The same example can be used as for Dominance except that now K ′ = {φ} and K ′′ = {ψ}.
– (Adjunction Invariance) Let K = {¬b}, φ = b, and ψ = a ∨ ¬a. Then, I B

P (K ∪ {φ, ψ}) = 1 �= I B
P (K ∪ {φ ∧ ψ}) = 2.

• I B
P (r)

– (Monotony) The same example can be used as for I A
P (r) .

– (Free-Formula Independence) Let K = {a ∧ ¬a, b}. In K the formula b is free but I B
P (r)(K ) = 1

2 �= I B
P (r)(K \ {b}) = 1.

– (Penalty) The same example can be used as for I A
P (r) .

– (Super-Additivity) The same example can be used as for I A
P (r) .

– (MI-Separability) The same example can be used as for I A
P (r) . But now I B

P (r)(K1 ∪ K2) = 1 �= I B
P (r)(K1) + I B

P (r)(K2) = 2.

– (Relative Separability) The same reasoning can be used as for I A
P (r) .

– (Dominance) The same example can be used as for I A .
P (r)
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– (Exchange) The same example can be used as for I A
P (r) .

– (Adjunction Invariance) The same example can be used as for I B
P . But now I B

P (K ∪ {φ, ψ}) = 1
2 �= I B

P (K ∪ {φ ∧ ψ}) = 1.
• I B

R
– (Monotony) The addition of a formula cannot reduce this value.
– (Free Formula Independence) The same reasoning can be used as for I B

P .
– (Penalty) The same example can be used as for I B

P but now I B
R (K ) = 1 = I B

R (K \ {¬a ∧ b}).
– (Super Additivity) The same example can be used as for I B

P but now I B
R (K1 ∪ K2) = 1 � I B

R (K1) + I B
R (K2) = 2.

– (MI-Separability) The same example can be used as for I B
P but now I B

R (K1 ∪ K2) = 1 � I B
R (K1) + I B

R (K2) = 2.
– (Relative Separability) The same example can be used as for I B

P , but now I B
R (K1) = I B

R (K2) = 1, while I B
R (K1 ∪ K2) = 2.

– (Dominance) Let K = {a, b ∧ ¬b}, φ = {¬a}, and ψ = {¬a ∧ (b ∨ ¬b). The condition for Dominance is satisfied, but 
I B

R (K ∪ {φ}) = 2 �= I B
R (K ∪ {ψ)} = 1.

– (Exchange) The same example can be used as for Dominance with K ′ = {φ} and K ′′ = {ψ}.
– (Adjunction Invariance) Let K = {a, b ∧ ¬b}, φ = ¬a, and ψ = b ∨ ¬b. Then I B

R (K ∪ {φ, ψ}) = 2 �= I B
R (K ∪ {φ ∧ ψ}) = 1.

• IC
P

– (Monotony) The addition of a formula cannot reduce this value.
– (Free Formula Independence) The same example can be used as for I A

P .
– (Penalty) The same example can be used as for I A

P .
– (Super-Additivity) The same example can be used as for I A

P .
– (MI-Separability) The same example can be used as for I A

P .
– (Relative Separability) The same example can be used as for I A

P .
– (Dominance) Let K = {¬a, ¬c}, φ = a ∨ (b ∧ c), and ψ = (a ∨ b) ∧ (a ∨ c). Then the Dominance condition is satisfied, 

but IC
P (K ∪ {φ}) = 1 � IC

P (K ∪ {ψ}) = 2. For the former knowledgebase the problematic atom is c; for the latter, both 
a and c are problematic.

– (Exchange) Use the same example as for dominance except that K ′ = {φ} and K ′′ = {ψ}. Then the Exchange condition 
is satisfied but IC

P (K ∪ K ′}) = 1 �= IC
P (K ∪ K ′′) = 2.

– (Adjunction Invariance) The proof for I A
P can be used.

• IC
P (r)

– (Monotony) The same example can be used as for I A
P (r) .

– (Free Formula Independence) The same example can be used as for I B
P (r) .

– (Penalty) The same example can be used as for I B
P (r) .

– (Super-Additivity) The same example can be used as for I A
P (r) .

– (MI-Separability) The same example can be used as for I A
P (r) .

– (Relative Separability) The same reasoning can be used as for I A
P (r) .

– (Dominance) The same example can be used as for I A
P (r) .

– (Exchange) The same example can be used as for I A
P (r) .

– (Adjunction Invariance) The proof for I A
P can be used.

• IC
R

– (Monotony) The addition of a formula cannot reduce this value.
– (Free Formula Independence) The same example can be used as for I A

P .
– (Penalty) The same example can be used as for I A

P .
– (Super-Additivity) The same example can be used as for I A

P .
– (MI-Separability) The same example can be used as for I A

P .
– (Relative Separability) The same example can be used as for I A

P .
– (Dominance) The same example can be used as for IC

P .
– (Exchange) The same example can be used as for IC

P .
– (Adjunction Invariance) The proof for I A

P can be used. �

Considering Tables 2 and 11 we note first that Monotony is appropriate for absolute inconsistency measures and Relative 
Separability is appropriate for relative inconsistency measures; it does not matter if the measure is syntactic or semantic. 
But for the other postulates the syntactic inconsistency measures are more likely to satisfy the first group of postulates 
that involve relationships concerning sets of formulas while the semantic inconsistency measures are better at satisfying 
the last group that involves logical implication. The reason for this is that the first group of postulates can be thought of 
as syntactic postulates giving conditions about sets of formulas, while the second group deals with the semantics of the 
knowledgebase.
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9. Additional postulates for semantic measures

As the semantic inconsistency measures were defined using the interpretation of the atoms, it is not surprising that they 
are not good at satisfying properties concerning sets of formulas. There is a similarity here with an approach to measuring 
inconsistency in spatio-temporal databases (see [23]) where the data has dimensions. For that reason new dimensional in-
consistency measures were proposed that are more appropriate in that case. But the new inconsistency measures did not 
satisfy the standard postulates, so we proposed new postulates that took the dimensionality into account. In this section 
we define new postulates that are based on sets of atoms, like the semantic inconsistency measures, rather than on sets 
of formulas. In particular we rewrite the first four properties as semantic properties. This is similar to the way that we 
reformulated syntactic inconsistency bigraphs to semantic inconsistency bigraphs. As we can write each of these postu-
lates in terms of the deletion of a set of formulas, we need to find the analogous operation for the semantic case. In a 
knowledgebase it is possible to delete formulas and so we need a counterpart for atoms. It turns out that the right choice 
is to substitute for the deletion of a set of formulas the modification of the interpretation of a set of atoms to give them 
the B value as we explain next.

In Section 5 we started with a classical 2-valued interpretation i and introduced the notation i[S] for the interpretation 
that assigns every atom in the set of atoms S the value B . In order to define the semantic postulates it is convenient to be 
able to start with an interpretation that is only partly classical: it allows three truth values for some atoms.

Definition 11. Let D be a set of atoms (in Atoms(K)) and let i be a 2-valued interpretation. We write iD for the interpretation 
that is 2-valued except that for the elements of D it is 3-valued.

iD(a) =
{

B if a ∈ D
i(a) otherwise

Then the bracket notation is used as before. For sets of atoms D and S ,

iD [S](a) =
{

B if a ∈ S
iD(a) otherwise

In particular, if for some interpretation iD , iD [S] |=L K , we say that S is an L-atomic subset for K given D . An alternative 
notation will be useful here. Namely we write i[S] |=L K D and say that S is an L-atomic subset for K D . If there is no S ′ ⊂ S
such that S ′ is an L-atomic subset for K D , then S is a minimal L-atomic subset for K D . We use the notation MASL(K D) to 
indicate the set of all minimal L-atomic subsets for K given D .

We use the notation K D to reflect how the set of atoms D needs to be taken into account when an interpretation is 
considered for the knowledgebase K . So for instance, if we have K D1 and K D2, then we have the same knowledgebase (i.e. 
K ) but if D1 �= D2, then the interpretations do not necessarily treat the knowledgebases in the same way. Our motivation 
for this notation will become clearer later when we introduce atomic versions of rationality postulates in Definition 12.

Even though the role of the set D is different from the role of the set S , as we shall make clear below, there is an 
interplay between the sets of atoms D and S as shown by the following result.

Proposition 8. If D ∪ S = D ′ ∪ S ′ , then iD [S] |=L K iff iD ′ [S ′] |=L K .

Proof. Assume D ∪ S = D ′ ∪ S ′ . Let i be a classical 2-valued interpretation. By Definition 11

iD∪S(a) =
{

B if a ∈ D ∪ S
i(a) otherwise

Thus, if D ∪ S = D ′ ∪ S ′ then for all atoms a, iD∪S(a) = iD ′∪S ′ (a). Hence, for every formula φ, iD∪S(φ) = iD ′∪S ′ (φ). So, 
iD [S] |=L φ iff iD ′ [S ′] |=L φ, from which the result follows. �

We can extend the concept of semantic inconsistency bigraph to cover this more general case. That is, we can use the 
minimal L-atomic subsets for K D . For illustration we redraw Figs. 4 - 6 to Figs. 12 - 14. We omit the atoms in D as they 
are no longer atoms whose truth values may have to be changed. To make things clearer we leave the space for the deleted 
atoms. Essentially, it is just a matter of removing the nodes and edges associated with the atoms in D . However, in the case 
of Fig. 12 we also delete an edge that no longer represents a minimal L-atomic subset.

The semantic inconsistency measures are defined as in Definition 10, except that now we use the semantic inconsistency 
bigraphs given for the appropriate logic and set. This allows for defining the semantic versions of the postulates involving 
sets of formulas in Definition 12. This involves changing a deletion of a formula to the deletion of an atom by using the given 
D . We previously introduced the concept of a problematic atom in Section 7. Now we formulate this concept and its opposite 
in terms of the semantic inconsistency graph. We write FreeAtoms(K D) for the set of free atoms in K D : these are the atoms 
whose corresponding ui in the semantic inconsistency graph for K D have Deg(ui) = 0. We write ProblematicAtoms(K D) for 
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Fig. 12. The semantic inconsistency bigraph for K{a,c} where K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e} in A-logic.

Fig. 13. The semantic inconsistency bigraph for K{a,c} where K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e} in B-logic.

Fig. 14. The semantic inconsistency bigraph for K{a,c} where K = {a ∧ ¬a,b,¬b,b ∧ ¬c, c ∨ d,¬d, c ∨ e} in C-logic.

Table 12
Status of semantic postulates for semantic inconsistency measures.

Inconsistency measures I L
P I L

P (r) I L
R

Atomic Monotony ✓ ✗ ✓

Free-Atom Independence ✓ ✗ ✓

Atomic Penalty ✓ ✓ ✗

Atomic Super-Additivity ✓ ✗ ✗

✓: satisfied, ✗: not satisfied.

the set of problematic atoms whose corresponding ui in the semantic inconsistency graph for K D have Deg(ui) > 0. In the 
next definition we provide the semantic counterpart to four postulates. Free-Atom Independence is the semantic counterpart 
to Free-Formula Independence.

Definition 12. The following are atomic versions of rationality postulates for semantic inconsistency measures.

Atomic Monotony If D ′ ⊆ D then I(K D) ≤ I(K D ′ ).
Free-Atom Independence If a ∈ FreeAtoms(K D), then I(K D) = I(K D∪{a}).
Atomic Penalty If a ∈ ProblematicAtoms(K D), then I(K D) > I(K D∪{a}).
Atomic Super-Additivity If {D1, D2} is a partition of Atoms(K ) then I(K ) ≥ I(K D1 ) + I(K D2 ).

Our first result is that the identity of the logic for the satisfaction of these postulates is irrelevant.

Proposition 9. A semantic inconsistency measure either satisfies or violates a semantic postulate for all three logics.

Proof. These postulates refer to changes in the semantic inconsistency bigraph. Once this bigraph is created for the logic, 
the postulates refer only to specified changes in the bigraph. �

Using this proposition, when we consider the satisfaction of the semantic postulates we need to consider only three 
semantic inconsistency measures, namely I L

P , I L
P (r) , and I L

R . Our final result shows that the semantic inconsistency measures 
are more likely to satisfy the semantic versions of postulates than the standard syntactic versions.

Theorem 9. The satisfaction of the semantic postulates for the semantic inconsistency measures is as given in Table 12. That is, I L
P

satisfies Atomic Monotony, Free-Atom Independence, Atomic Penalty, and Atomic Super-Additivity; I L
P (r) satisfies Atomic Penalty; and 

I L satisfies Atomic Monotony and Free-Atom Independence.
R
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Proof. It will be convenient to do the proof separately for each semantic postulate.

• (Atomic Monotony) In the case of D ′ ⊆ D , the inconsistency bigraph for K D is obtained from the inconsistency bigraph 
for K D ′ by possibly deleting some of the elements of U as well as the corresponding edges and possibly elements of V . 
While the elements deleted need not correspond to problematic atoms, I L

P (K D) ≤ I L
P (K D ′ ). Also, as elements are deleted 

from U , min{Deg(v)|v ∈ V } cannot increase. Hence I L
R (K D) ≤ I L

R(K D ′ ). But consider a case such as the one in Fig. 6. Let 
D = {e} and D ′ = ∅. Then I L

P (r)(K D) = 1 � I L
P (r)(K D ′ ) = 4

5 .

• (Free-Atom Independence) The deletion of an element u ∈ U for which Deg(u) = 0 does not change I L
P (the number 

of problematic atoms) or I L
R (the minimal degree of an element of V). However, it does change I L

P (r) , as shown in the 
example for Atomic Monotony, because |U | decreases by 1 but |V | stays the same.

• (Atomic Penalty) In this case the element u ∈ U that is deleted corresponds to a problematic atom. This reduces the 
number of problematic elements. Hence I L

P satisfies this postulate. So does I L
P (r) because the total number of elements 

deleted is at least 1; hence the fraction is reduced. The situation is different for I L
R . For example, in the case of Fig. 7, if 

a is deleted, I L
R does not change.

• (Atomic Super-Additivity) As D1 ∩ D2 = ∅, the sum of the number of problematic elements in the two portions is at 
most the number of problematic elements in the inconsistency bigraph for K . Consider now the same example as for 
Atomic Monotony where D1 = {a, b, c, d} and D2 = {e}. Then the condition is satisfied but I L

P (r)(K ) = 4
5 � I L

P (r)(K D1 ) +
I L

P (r)(K D2 ) = 1. For I L
R consider Fig. 7 with D1 = {a, b} and D2 = {c, d, e}. Again the condition is satisfied, but I L

R(K ) =
1 � I L

R(K D1 ) + I L
R(K D2 ) = 2. �

In this section, we have introduced four new postulates. Each of them is intended to capture how semantic modifica-
tions to the knowledgebase affect the inconsistency measures. Using these new postulates we can distinguish between the 
three types of semantic inconsistency measures, and furthermore, one type of the measures, namely I L

P , satisfies all four 
postulates.

10. Summary and future work

In this paper, we have provided a novel framework for comparing semantic inconsistency measures based on 3-valued 
logics. Existing proposals for inconsistency measures fit into this framework, and we have used the framework to iden-
tify novel inconsistency measures. The framework is based on the notion of inconsistency bigraphs and is analogous to 
inconsistency bigraphs for syntactic measures. However, in contrast to the syntactic measures, which tend to be based on 
classical logic, here we have considered three different 3-valued logics. So we see the framework as being applicable to a 
variety of many-valued logics. As part of the analysis the novel inconsistency measures, we have used existing postulates for 
inconsistency measures. We have also introduced new postulates that have been developed to give insights into semantic 
inconsistency measures. These postulates allow us to compare and contrast different inconsistency measures.

As we have argued in the introduction, an atom-centric approach to inconsistency measures, as exemplified by semantic 
inconsistency measures, has some advantages over a formula-centric approach to inconsistency measures. Yet there is much 
more investigation of formula-centric approaches in the literature. So this paper is a contribution to filling in the gap in our 
understanding of atomic-centric approaches.

Through the investigations in this paper, we have a better understanding of the underlying nature of measuring in-
consistency based on 3-valued logics, and we have some novel alternatives for inconsistency measures. Furthermore, we 
have some insights into how the choice of the 3-valued logic affects the inconsistency measure. This investigation may 
therefore facilitate the uptake of semantic inconsistency measures in applications where there is a need to avoid syntax 
sensitivity, and where syntactic approaches lack discrimination between those atoms that are potentially responsible for an 
inconsistency, and those that are “uninvolved” in a conflict.

So the semantic measures considered in this paper provide a valuable alternative to the better-known syntactic mea-
sures. We have shown via analysis of the postulates, that they differ in various ways. Nonetheless, further comparison with 
syntactic approaches would be valuable including with those based on generalized consequence relations [15].

Given that our framework allows different logics to be used as the basis of inconsistency measures, it would be desirable 
to consider relations between types of logic, and properties of the inconsistency measures that are based on them. For 
instance, the following is a relation between logics.

L is more relaxed than L′ iff for all φ, and for all interpretations i, if i |=L φ, then i |=L′ φ

Then using this relation, we could consider a property of inconsistency measures such as the following which assumes that 
more relaxed logics lead to lower values for inconsistency measures.

If L is more relaxed than L′, then for all K , I L(K ) ≤ I L′
(K )
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Table 13
A four-valued logic by Belnap [3] where B denotes that truth value is both T and F , and N denotes 
that truth value is neither T or F . For this, T is ranked higher than B and N and N and B are 
ranked higher than F (i.e. T > B , T > N , B > F , and N > F ). Below are the truth tables for negation 
(left), conjunction (centre), and disjunction (right).

α N F T B

¬α N T F B

∧ N F T B

N N F N F

F F F F F

T N F T B

B F F B B

∨ N F T B

N N N T T

F N F T B

T T T T T

B T B T B

However, this is not a property that holds for the 3-valued logics and inconsistency measures considered in this paper. 
Nonetheless, it will be worthwhile in future work to consider properties of inconsistency measures based on the underlying 
logic.

In future work, we will also investigate further possibilities for inconsistency measures based on the structure of the se-
mantic inconsistency bigraph (U , V , E) for a knowledgebase K . These include counting the number of edges (i.e. I(K ) = |E|) 
or counting the number of minimal L-atomic subsets (i.e. I(K ) = |V |). These measure the “complexity” of the inconsistencies 
in a knowledgebase, and reflect the work that is required for understanding the inconsistencies, perhaps prior to deciding 
on resolution actions.

Finally, in future work, we will consider other 3-valued logics to see what happens if some of the six properties of 
Theorem 2 are relaxed and extend the approach to 4-valued and many valued logics. For instance, Belnap’s logic (see 
Fig. 13) and QC logic [29] are 4-valued logics that can be used as the basis of inconsistency measures using the notion of 
contension [30,20]. By extending the proposals in this paper to incorporate 4-valued and many-valued logics, we will have a 
richer range of options for analysing inconsistency. There are advantages of 4-valued logic over 3-valued logic for reasoning 
with inconsistent information (see for example [1]). We will also consider connections with previous work on measuring 
inconsistency in many valued logics (see [51].
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