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ABSTRACT
Molecule- and particle-based simulations provide the tools to test, in microscopic detail, the validity of classical nucleation theory. In this
endeavor, determining nucleation mechanisms and rates for phase separation requires an appropriately defined reaction coordinate to
describe the transformation of an out-of-equilibrium parent phase for which myriad options are available to the simulator. In this article,
we describe the application of the variational approach to Markov processes to quantify the suitability of reaction coordinates to study crys-
tallization from supersaturated colloid suspensions. Our analysis indicates that collective variables (CVs) that correlate with the number of
particles in the condensed phase, the system potential energy, and approximate configurational entropy often feature as the most appropri-
ate order parameters to quantitatively describe the crystallization process. We apply time-lagged independent component analysis to reduce
high-dimensional reaction coordinates constructed from these CVs to build Markov State Models (MSMs), which indicate that two barriers
separate a supersaturated fluid phase from crystals in the simulated environment. The MSMs provide consistent estimates for crystal nucle-
ation rates, regardless of the dimensionality of the order parameter space adopted; however, the two-step mechanism is only consistently
evident from spectral clustering of the MSMs in higher dimensions. As the method is general and easily transferable, the variational approach
we adopt could provide a useful framework to study controls for crystal nucleation.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139842

I. INTRODUCTION
Crystal nucleation marks the emergence of long-range order

in a parent liquid or gas phase that may only display short-range
symmetry at the scale of constituent monomers. In particle or
molecular systems, the size of the critical nucleus—the smallest
collection of monomers with crystalline order that can lead to
bulk crystals—is typically many orders of magnitude smaller than
Avogadro’s number.1 Combined with the fact that nucleation is a
rare event, this makes investigating nucleation mechanisms in situ
particularly challenging.

Computer simulations employing Molecular Dynamics (MD)
algorithms have provided significant insights into crystallization
pathways, especially since the advent of methods to enhance the
sampling of rare events.2 To monitor the crystallization process and
establish nucleation kinetics in these types of simulations, a suitable
reaction coordinate (RC) is needed to reduce the 6N (N being the

number of monomers) dimensional phase space to just a handful
of collective variables (CVs) that completely capture the emergence
of long-range order.3,4 All other degrees of freedom can be ignored
when determining relative nucleation rates.

Classical Nucleation Theory (CNT) adopts the size of an
embryo of a new thermodynamic phase, usually its radius, as an
RC for phase transformation.5 With respect to crystallization, the
number of monomers in the new phase is a more appropriate
metric for this size, given the highly faceted and non-spherical
geometry of crystals, even at small sizes. As several studies have
demonstrated, however, a one-dimensional RC can be unsuitable
to describe the evolution of a crystallizing system.6–9 For example,
our own work demonstrates that a two-dimensional RC, quantify-
ing both the size of emerging clusters and their crystalline order,
is helpful to describe the formation of crystals from metastable
solutions.10–12 Still, no obvious definition for these variables can
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have consequences for understanding nucleation mechanisms and
predicting crystallization rates.3,4,13

Common CVs to approximate RCs for crystallization are func-
tions of the positional coordinates of a collection of particles. These
must be continuous and differentiable if used in biased enhanced
sampling schemes, but typically this is not a prerequisite for analysis
purposes. A simple example CV used in this context is the first-
sphere coordination number; however, this typically fails to capture
the local symmetry of a crystal lattice and, therefore, might not be
suitable to distinguish dense amorphous phases and crystal poly-
morphs. Bond orientational order parameters can achieve this by,
for example, making use of spherical harmonic functions to quan-
tify the relative position of monomers in a coordination sphere with
respect to one another.14 Alternatively, if a reference structure is
known, one can compute the relative distance between particles
in simulations and this reference in topography space, or perform
topological graph analyses, with nodes in the graph representing
monomers, to identify crystal structures.15,16 Accurate classification
of monomers at crystal surfaces and defects is challenging in all of
these methods due to under-coordination at these sites.

No generally applicable procedure exists to choose order para-
meters to study multi-step crystal nucleation; this often comes down
to chemical/physical intuition on behalf of the researcher. A useful
review on the topic was provided by Peters,3 who remarks “[h]uman
intuition remains the best source of trial coordinates and mechanis-
tic hypotheses, and there is no procedure for having an epiphany.”
There are, however, methods available to test the suitability of the
RC. These include, for example, likelihood maximization17 and
committor analyses.18

The Variational Approach to Markov Processes (VAMP)19 is a
generalized version of the Variational Approach to Conformational
Dynamics (VAC)20 that has been successfully applied to determine
suitable RCs in systems with stochastic dynamics, including protein
folding and problems associated with molecular and crystallization
kinetics.21,22 Here, we apply VAMP to test the suitability of thou-
sands of potential RCs defined by combining sets of CVs typically
used to study crystallization pathways in monoatomic solids. VAMP
allows us to quantify the effectiveness of the RCs to capture the slow
dynamic modes associated with crystallization and identify which
combinations of CVs best describe emerging order. To this aim, we
perform simulations of metastable colloid suspensions that undergo
crystallization, use VAMP to identify the most suitable combination
of CVs for every set of dimensionality to define RCs, perform dimen-
sionality reduction using TICA, and construct Markov state models
to quantify kinetics and transformation mechanisms. In Sec. II,
we provide a brief overview of the salient features of the methods
employed, with an emphasis on VAMP. For a more involved discus-
sion, including associated Markov modeling methods, see Refs. 19,
23, and 24.

II. THEORETICAL BACKGROUND
Projections of the highly nonlinear evolution of a system

in phase space onto a low-dimensional representation are often
employed to understand physicochemical processes. When ana-
lyzing transitions in nonlinear dynamical systems, the Koopman
operator, K, which is linear in a space of infinite observables, com-
pletely describes the time evolution of a system. If a system occupies

states in phase space at x1 at time t, K is an operator that acts on
the function g to determine the expectation of the system being in
states at x2 at t + τ (τ being some lag-time), given the conditional
probability density of states, p(x1, x2)

[Kg](x) = ∫ p(x1, x2)g(x2)dx2 = E[g(xt+τ)]. (1)

Its spectral decomposition, therefore, completely characterizes
(meta)stable states and transitions between them.20 With a finite
number of functions characterizing the time evolution for the pro-
cess of interest, a good approximation of K is the propagator,
K, which in principle allows the determination of the transition
probabilities and timescales associated with crystallization in closed
thermodynamic systems (where the partition function is bounded
by the finite number of particles in the simulations).

Given a set of functions of the configurational space of the sys-
tem of interest, f(r) = ( f1(r), f2(r), . . . , fn(r)), i.e., CVs that project
the full 3N configurational coordinates of N atoms/particles in a sys-
tem, r, onto an n-dimensional RC, the time-dependent Markovian
dynamics can be predicted according to

E[f(r, t + τ)] ≈ K⊺E[f(r, t)], (2)

where E is the expectation value evaluated for an average trajec-
tory and f is the array of CVs that approximates the eigenfunctions
characterizing transitions between (meta)stable states. VAMP can be
applied to optimize the dimensionality and choice of f. This involves
computing the time-dependent covariance matrices,

C00 =
1

T − τ

T−τ
∑
t=0
[f(r, t) − f0(r)][f(r, t) − f0(r)],

C11 =
1

T − τ

T

∑
t=τ
[f(r, t) − f1(r)][f(r, t) − f1(r)],

C01 =
1

T − τ

T−τ
∑
t=0
[f(r, t) − f0(r)][f(r, t + τ) − f1(r)],

(3)

where f0(r) and f1(r) are the mean CV values in t = 0→ (T − τ) and
t = τ → T time windows, respectively. K is simply given by C−1

00 C01,
and singular values of the half-weighted propagator provide a met-
ric to determine how well f(r) approximates the eigenvectors that
capture the slow modes for crystallization,

R2(f, r) = ∥C−
1
2

00 C01C−
1
2

11 ∥
2, (4)

R2 is known as the VAMP-2 score and is used in this work to judge
the appropriateness of RCs to describe two-step colloid crystalliza-
tion. Cross-validation25 is carried out to ensure that the dynamical
model is not overfitted. This is done by partitioning the CV time
series into training and test data, building the model on the training
subset, and validating it with the remaining data. It is then possible
to compute R2 from multiple partitions of training and test data.19

In Secs. III and IV, we use VAMP to identify the best combina-
tions of CVs to determine the crystallization kinetics. In stochastic
dynamical systems, one can construct models based on Markovian
dynamics to map the evolution of systems in these low-dimensional
coordinates to extract mechanisms and timescales for the processes
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of interest. First, we use time-lagged independent component anal-
ysis (TICA)26,27 to project the CVs onto one or two components by
solving

C(τ)f(r, t) = λC00f(r, t), (5)

where λ are eigenvalues that determine the slowness of the
transitions in the system dynamics.

After TICA, we partition the sampled data into discrete parti-
tions {s2, s2, . . . , sN }. The probability weights for each partition are a
function of the stationary distribution, μ,

πi = ∫
x∈si

μ(x)dx, (6)

so that combining simulation trajectories that sample reasonably
well the local TICA space centered on different partitions allows us
to determine the relative probability for the system to occupy these
partitions and evaluate free energy differences. In addition, counting
the transitions between partitions in the TICA trajectories allows us
to evaluate K,

K(τ)π = π, (7)

and, therefore, provides kinetic information for the crystallizing
system.

III. COMPUTATIONAL DETAILS
We performed simulations using the LAMMPS (v. 7Aug2019)

MD simulator.28 To prepare the initial configurations, 388 spheri-
cal particles were randomly assigned to a 10 × 10 × 10 face-centered
cubic lattice (where the reduced lattice density was 0.005σ−3 and the
lattice constant was 9.283 177σ) in a simulation cell with a reduced
particle density, ρ∗ = 0.000 485. The resulting cubic simulation cell
lengths were 92.831 77σ and ∼90% of the lattice sites were vacant.
Particle interactions were modeled using a colloid/Yukawa29,30

potential to simulate van der Walls attraction and electrostatic
repulsion between colloid particles in simulations adopting three-
dimensional periodic boundaries. The pair potential coefficients
with the force field implemented in LAMMPS were A∗ = 53, d∗ = 5,
and B∗ = 20, representing the Hamaker constant, particle diameter,
and prefactor of the Yukawa potential, respectively, which approx-
imate a surrounding electrolyte solution as a continuum field.
Interactions were truncated at a reduced distance of 12.5σ. Parti-
cle velocities were assigned at random from a Maxwell–Boltzmann
distribution with mean reduced temperature, T∗ = 2. The simula-
tions were performed for 2 × 107 steps with a timestep Δt∗ = 0.005,
during which particle velocity rescaling was carried out every 100
steps to maintain a constant temperature, and particle positions were
recorded every 100 steps for subsequent analyses. We performed
1000 simulations where the initial velocity assignment was ran-
domized, but all other simulation details remained the same. While
condensation was observed in all simulations, only 11 of the simula-
tions resulted in crystallization, as indicated by a potential energy per
particle threshold: E∗ < −10ε. It was these crystallizing trajectories
that were used for analyses of RCs.

A total of 19 CVs were computed either during time integration
or by post-processing simulation trajectories using the PLUMED

TABLE I. Collective variables (CVs) computed in this work.

CV Label

Mean first-sphere coordination number cn.mean
Number of particles in a condensed phase (CN > 3) ncl
Number of particles in a solid-like phase (CN > 6) ncs
Number of particles in the largest cluster34 nclust1
Mean Q4 Steinhardt bond order14 Q4.mean
Mean local Q4 bond order q4.mean
Number of coordinated particles with local Q4 < 0.3 ncnq4
Local average35 Q4 bond order laQ4.mean
Mean Q6 Steinhardt bond order14 Q6.mean
Mean local Q6 bond order q6.mean
Number of coordinated particles with local Q6 > 0.7 ncnq6
Local average35 Q6 bond order laQ6.mean
Pair entropy function36 ent
System potential energy ene
Number of particles not identified as fcc/hcp/bcc/icoa non
Number of face-centered cubic particlesa fcc
Number of hexagonal close-packed particlesa hcp
Number of body-centered cubic particlesa bcc
Number of icosahedral particlesa ico

aEvaluated using polyhedral template matching (PTM).15

software (v. 2.5.1).31 These are useful indicators for phase separa-
tion and/or crystallization and are potential order parameters that
can be used to construct RCs. Table I provides the list of CVs and
their labels adopted herein. The CVs can be classified into one of
three categories: (i) average properties of all particles in the system
regardless of their local environment (ene, ent, cn.mean, Q4.mean,
and Q6.mean); (ii) average properties of all particles in the system
according to their local structure (q4.mean, laQ4.mean, q6.mean,
and laQ6.mean); and (iii) total numbers of particles according to
some geometric criteria of their local structure (ncl, ncs, ncnq4,
ncnq6, nclust1, non, fcc, hcp, bcc, and ico). Please see Sec. S1 in the
supplementary material for a detailed description and mathematical
definition of the CVs.

The VAMP and Markov state model (MSM) analyses were per-
formed using the PyEMMA (v. 2.5.11)32 and deeptime (v. 0.4.1)33

Python libraries. See the Data Availability section for information on
how to access interactive Python notebooks used in this work and to
download input files used to perform simulations and generate the
CV time series data.

IV. RESULTS
A. Two-step colloid crystallization

In all 1000 independent simulations, an initial phase separation
resulted in a finite-sized droplet of a condensed disordered phase
in pseudo-equilibrium with a diluted vapor-like phase characterized
by a significantly lower density cf. the initial one. In all simulations,
the emergent phase was liquid-like: colloid particles in the dense
liquid droplet (DLD) were highly mobile, and there was a frequent
exchange between monomers in the DLD and the surrounding low-
density phases. The condensation is indicated by a change in the
average reduced potential energy per particle from an initial value
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FIG. 1. (a) Mean reduced potential energy per particle, E∗, as a function of step
number in four different crystallizing trajectories, as indicated by the colors. Raw
data are shown by the shaded regions, while the solid lines result from a third-order
polynomial Savitzky–Golay filtering37 of the raw values using a window length of
2 × 104 trajectory frames. The inset shows snapshots of the largest cluster (indi-
cated by the white transparent surface) in the trajectory shown by the blue curve.
The blue spheres highlight colloid particles with CN > 6. (b) Probability densities
for E∗ from the trajectory data in A, as indicated by the colors. (c) Average hcp/fcc
fraction in crystals as a function of the average potential energy per particle in
the final 5000 frames of each trajectory. Error bars indicate uncertainties of one
standard deviation in the data. Circle, square, and triangle data points highlight
different clusters of crystal structures. (d) Snapshots of example crystal structures
were taken from the end of simulation trajectories. Red domains/spheres indicate
hcp-like particles, blue domains/spheres are fcc-like particles, green spheres are
icosahedral-like particles, and the transparent white surface indicates all other
types of particles that reside at the crystal surface. In iii, the crystal transparent
surface is removed, and the fcc domain is made transparent for clarity. The same
structure is projected perpendicular and parallel to the plane formed by icosahedral
particles in the top and bottom boxes, respectively.

of E∗ ≈ −2ε that reaches a plateau corresponding to E∗ ≈ −7ε, as
shown in Fig. 1 for four example crystallizing trajectories. The time
for this transition varies, as expected for an activated process of
condensation.

Analyzing the behavior of E∗ throughout the trajectories rep-
resented in Fig. 1(a) reveals the presence of one additional step
change in E∗, marking the emergence of a crystal phase within the
DLD. Crystallization occurred in ∼1% of simulations, with long-
range order consistently emerging within the DLDs, indicative of a
two-step crystallization pathway. This behavior is not unexpected.
Indeed, two-step crystallization was identified both in simulations
and experiments in a range of systems, demonstrating that this
pathway to crystals is more prolific than once assumed.2,38

In the seminal work of ten Wolde and Frenkel,6 simulations
indicated that colloid crystallization occurs in dense fluids when the
simulation conditions approach those associated with the fluid–fluid
critical point. In their work, the free energy landscape for crystalliza-
tion was projected onto a two-dimensional RC characterizing the
total size of monomer clusters and the size of the crystalline regions
in clusters. While the lowest energy crystallization pathway evolved

with a near–linear correlation in the two RC variables away from the
critical point, large amorphous clusters emerge before the onset of
crystalline order close to this point. It is important to note, though,
that this roundabout pathway to crystals involves a single energy bar-
rier in the 2D RC space and is not necessarily consistent with the
observations in this work, where two activated events are involved
in the crystallization of the initial fluid.

To consider the proximity of the initial system conditions to
the fluid–fluid critical point in our model, we performed an addi-
tional 15 simulations. Each of these was prepared using the same
random distribution of particles on a sparse face centered cubic lat-
tice with ρ∗ = 0.000 485, but where the reduced temperature was
T∗ = 1.8 − 2.2. From the densities of the emerging DLDs and
nanocrystals in (pseudo-)equilibrium with vapor phases (see Sec. S2
in the supplementary material for details), we constructed a T∗ − ρ∗
phase diagram, shown in Fig. S1 in the supplementary material. This
indicates that the simulations in this study at T∗ = 2 are initiated in
the immiscible region of the phase diagram and close to the (upper)
vapor–fluid critical temperature, T∗c ≈ 2.05; hence, T∗/T∗c ≈ 0.976.

As for the nucleation of the DLD, the times associated with
the nucleation of a crystalline domain within the DLD are stochasti-
cally distributed and are marked by a significant variation in E∗ [see
Fig. 1(a)]. While an escape probability could be built based on the
time taken to observe such a sudden change in E∗, given the limited
statistics, alternative methods to evaluate crystal nucleation times are
necessary. They will be discussed in Subsections IV B and IV C.

Another noteworthy observation from the crystallizing tra-
jectories is that despite crystallization conditions being consistent
throughout the entire set of simulations, the structures sponta-
neously emerging from crystal nucleation appear to differ. In
Fig. 1(b), the density of energy states representing the crystal in
equilibrium with a low-density vapor phase is misaligned in differ-
ent simulations. Some systems have a much lower average potential
energy than others, despite the crystal phase emerging relatively
early on in the trajectories. These different crystals, character-
ized by different potential energy levels, result from stacking faults
introduced during the rapid propagation of order in the DLD.

By performing polyhedral template matching (PTM),15 we can
estimate the numbers of colloids in the single crystals with face-
centered cubic (fcc), hexagonal close-packed (hcp), body-centered
cubic (bcc), and icosahedral (ico) local symmetries. Considering the
latter stages of trajectories, PTM points to nanocrystals rich in fcc
and hcp local environments, while negligible levels of bcc are found.
Figure 1(c) shows the relative hcp/fcc content as a function of the
system potential energy (which at equilibrium is dominated by the
potential energy of the crystal). Crystals with lower hcp/fcc con-
tent have the most negative potential energy. Figure 1(d) provides
example snapshots for three crystals with system potential energies
provided inset. These crystals contain large domains of fcc and hcp
particles, though, as is clear in Fig. 1(d-ii and iii), defects are appar-
ent. The crystal in Fig. 1(d-i) displays planar fcc and hcp domains
with a large hcp core, while the crystal in Fig. 1(d-ii) displays a
fivefold hcp symmetric axis with hcp protrusions encompassing fcc
domains.

The lowest energy crystals form a cluster in the data in Fig. 1(c)
at the more negative end of E∗. None of these crystals contain icosa-
hedral particles. A higher energy cluster of points centered around
E∗ ≈ −13.5ε, however, include crystals, all of which contain two
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to three icosahedral particles. Figure 1(d-iii) provides an example
structure where three icosahedral particles introduce a trifold sym-
metry in the crystal structure. This motif was a common feature of
the crystals in this cluster and seemed to minimize the extent to
which fcc and hcp domains grow. For example, 31% of particles were
identified as fcc or hcp in the lowest energy crystals, while this was
18% in the higher energy clusters, on average. A more poorly crys-
talline structure was found for the system where E∗ = −11ε and four
icosahedral particles emerge in the solid, associated with a very lim-
ited propagation of the crystal lattice: 10% of particles in this system
can be recognized as matching a crystal structure at the end of the
trajectory, and these were nearly all hcp-like.

Different types of defects emerging consistently possibly sug-
gest similar growth patterns for crystals in the DLDs. The force field
used in this work was chosen for efficiency purposes: in order to
sample multiple crystallizing trajectories, crystallization must occur
over a reasonable simulation timescale. The result, however, is that
even in very small crystals, relaxation of the crystal structure does
not readily occur; hence, the defects are locked into the final crystal
in the steady state that was sampled.

B. Crystallization CVs and VAMP
In Sec. IV A, E∗ and the number of crystal-like particles evalu-

ated using PTM were used to describe phase separation and different
crystal structures. These, however, are only some of the possible CVs
that can be used to monitor and describe the crystallization process.
As described in Sec. III, we computed a total of 19 CVs, listed in
Table I, which may provide good metrics to monitor the evolution
of a crystallizing system, such as the one adopted in this work.

The concatenated CV time series obtained from 11 crystalliz-
ing trajectories are shown in Fig. S2 in the supplementary material.
In addition, the CV histograms for one of the trajectories are
provided in Fig. S3 in the supplementary material. The two-step
nucleation process is clearly identifiable in cn.mean, ncl, Q4.mean,
laQ4.mean ent, nlcust1, and ene CVs, where step changes in these
variables separate time windows where the data are approximately
constant within noise. Some CVs are better suited to identify crys-
tal phases from amorphous ones, and these include ncs, ncnq4,
ncnq6, q6.mean, non, fcc, and hcp CVs. Other CVs are best suited
to identify condensed phases from vapor phases, such as q4.mean,
Q6.mean, and laQ6.mean. Finally, CVs that do not clearly differenti-
ate the probability distributions of states between at least two phases
observed in the trajectories are bcc and ico.

In order to determine which CVs best describe the crystalliza-
tion dynamics, we constructed RCs containing all possible combina-
tions of CVs as well as those containing a single CV. The number of
possible RCs is given by 2max(n)

− 1, where n is the number of CVs
and, therefore, the maximum number of dimensions in any RC. For
this analysis, we did not include the ico and bcc CVs; hence, the
maximum n was 17, providing a total of 131 071 RCs. Figure 2(a)
provides a histogram for the number of RCs according to the dimen-
sionality of the order parameter space. Using VAMP, R2 scores were
evaluated for each of these RCs with a lag-time, τ = 20 000 simula-
tion steps (this equates to a simulation time, t∗ = 100). Analysis of a
range of τ values indicated that the R2 scores were relatively insensi-
tive to the choice of τ up to around τ = 50 000. We also chose not to
limit the total number of dynamic processes for the given τ; hence,

FIG. 2. (a) Total number of RCs, i.e., combinations of the CVs for every RC dimen-
sion, n, ranging from 1 to 17. (b) Probability densities for the R2 scores for all RCs
according to their dimensionality on the y axis. The distributions were evaluated
using Gaussian kernel density estimation with a bandwidth of 0.05. (c) Top: R2
scores for RCs constructed from one CV. Error bars highlight uncertainties in the
scores. Bottom: The number of CV occurrences, f , in the highest ranking RCs
when n = 1–17.

all eigenvalues are used to compute the VAMP-2 scores. In this anal-
ysis, the trajectory that led to a poorly crystalline solid was neglected,
and the f(r, t) arrays were constructed using absolute, normalized
CV values, such that CVs range from zero to one. The distributions
for these rescaled CVs from the combined trajectories are provided
in Fig. S4 in the supplementary material.

Figure 2(b) provides the distributions of R2 scores for all of the
RCs. For monodimensional RCs (n = 1), the R2 scores are provided
for each CV in Fig. 2(c) (top panel). All R2 scores are greater than
the minimum of one, which would indicate invariant sampling of
the RC. The best scoring CV is ncs with R2 = 1.991 ± 0.001; within
statistical uncertainties, however, ncs, cn.mean, ncl, ncnq6, ent, and
ene are equal. Not all of these CVs were identified as best suited
to follow the two-step mechanism, but they all identify the emer-
gence of a crystalline phase. Apart from cn.mean, ene, and ent, the
10 highest scoring CVs are determined by counting the number of
particles according to the density or symmetry of their local coordi-
nation environment. When a monodimensional RC is used to study
crystal nucleation, such as in CNT-based seeding methods,39–41 CVs
quantifying the size of the emerging phase based on local struc-
ture are adopted. Our analysis here validates that these features (i.e.,
total numbers of particles with solid-like first-sphere coordination
numbers or particles with high local coordination symmetries rem-
iniscent of the crystal) are good indicators for the slow dynamics
of the system. This is consistent with the results from likelihood
maximization (and validated using committor analysis), which iden-
tified that the best 1D reaction coordinate to study crystallization
in Lennard–Jones liquid was a product of the nucleus size and the
local Q6 CVs.42 Monodimensional RCs based on fourth-order Stein-
hardt parameters, as well as Q6.mean, in our work, are low-ranking
indicators for crystallization; this is perhaps unsurprising in the case
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of Q4-based CVs, given that crystals display fcc and hcp particle
packing.

As discussed in Sec. I, some simulation studies of crys-
tallization adopt RCs constructed from two CVs to investigate
pathways in systems where crystalline order emerges from amor-
phous clusters.6,7,9–12 In such cases, the RCs characterize cluster
size/density and relative cluster crystalline order in orthogonal
degrees of freedom to evaluate pathways from supersaturated solu-
tions to crystals. Provided this context, we consider 2D combina-
tions of CVs that rank highly in the VAMP analysis. Given the 136
possible combinations of CVs used to propose a two-dimensional
RC candidate here, three scored equally highly; these were {ncl,
ncnq6}, {ncs, ncnq6}, and {ncnq6, ene}, where Rc = 2.939 ± 0.006.
These were followed by a second tier set with Rc = 2.929 ± 0.011:
{ncnq6, nclust1}, {ncl, fcc}, {cn.mean, ncnq6}, {ene, fcc}, {cn.mean,
fcc}, {ncnq6, ent}, and {ent, non}.

Generally, the highest ranking 2D RCs combine CVs, one of
which distinguishes well the two-step pathway and another which
clearly identifies the emergence of crystalline order. It is notable
that the ncnq6 variable appears in six of the ten highest scoring
RCs. This is the only CV that is zero in the absence of a crystalline
phase and perfectly resolves any degeneracy between disordered
and ordered clusters. As in the case of the monodimensional RCs,
many of the CVs listed above scale with the size of emerging phases.
In our previous work on NaCl crystallization, we adopted an RC
using two CVs to characterize the size of dense ion clusters and
the level of crystalline order in these regions to follow crystal-
lization where multiple pathways to crystals are evident, including
those where order emerges in liquid-like intermediates.12 The clos-
est RC analog in this work to the one adopted previously is {ncl,
ncnq6}, which is among the highest scoring set of 2D CVs and
indicates that, for the specific problem at hand, a choice driven
by observation and intuition was able to identify a good set of
candidate CVs.

Across the entire range of n, adding more descriptors for col-
lective particle features leads to shifting of the R2 distributions to
higher values [see Fig. 2(b)]: log(R̃2) = −0.03(log n)2

+ 0.46 log n
+ 0.3, where R̃2 indicates the median, and the coefficient deter-
mining the fit is 0.99. In the case of the highest ranking RCs, R2
converges to a maximum around 6.5 when n = 15–17; here, log(R2)

= −0.3(log n)2
+ 0.79 log n + 0.3. Thus, adding more descriptors for

crystallization increases the VAMP-2 score and provides RCs that
more accurately capture the slow modes. Given the small increases
to max(R2), however, for large values of n, it is possible to trade off
computational efficiency with accuracy to determine the kinetics for
these transitions.

The best performing RCs when n = 1–17 tend to comprise CVs
such as ncs (i.e., CVs that identify the size of crystalline regions) as
well as ene and ent (see Table S2 in the supplementary material).
Indeed, the highest scoring CVs in monodimensional RCs feature
in the highest ranking multidimensional RCs, as shown in Fig. 2(c)
(bottom). While this observation is general, there are notable excep-
tions in the case of cn.mean and non. This is perhaps not surprising,
given that the time-dependent ncs and ncl values are highly cor-
related with cn.mean. Similarly, fcc and hcp time series are highly
correlated with non. Generally, however, the analysis of the full
spectrum of possible CV combinations identified some CVs as bet-
ter than others at monitoring a two-step crystallizing system. Our

analysis supports the conclusions from previous simulation studies
demonstrating that CVs that better characterize the local symmetry
in the first-coordination sphere and those that quantify the size of
emerging phases are the best candidates to describe and follow the
crystallization process.35,41,43–45

In Subsections IV C 1 and IV C 2, we further assess the
performance of RCs obtained by combining different CVs by con-
structing Markov state models and using them to compute nucle-
ation rates, mechanisms, and associated free energies of the relevant
(meta)stable states.

C. Markov state models
With knowledge of the VAMP-2 scores, it is interesting to see

how the rates for crystal nucleation compare when evaluated using
RCs constructed from the highest scoring CV combinations. In this
section, we build Markov state models (MSMs) for all of the high-
est scoring RCs for n = 1 to n = 17 to identify (meta)stable states
and transitions between them. Furthermore, in order to compare the
system representation across RCs with different dimensionality, we
use TICA to project the high-dimension RCs onto just two coor-
dinates that best separate the states of interest. As TICA quantifies
the variance in the crystallization kinetics, the dimensionality reduc-
tion produces a reaction coordinate where the distance between
(meta)stable states is a function of the system’s time evolution.27

1. MSM from n = 17 RC data
We begin by discussing the general features arising from a

Bayesian MSM constructed using the highest ranking RCs follow-
ing the protocol below. In this case, the RC comprised 17 CVs;
the best performing RCs when n = 14–17 had the same R2 score
within statistical uncertainties. As for the calculation of R2 values,
we used the absolute, scaled CV coordinates to build the MSM.
To reduce the uncertainty in the estimate of the slowest timescales,
following an initial analysis, we complemented the set of ten reac-
tive trajectories discussed in Subsections IV A and IV B with an
additional five simulations, four of which produced a DLD and
another that led to a crystal with mean E∗ = −17.282 ± 0.157ε. The
addition of these data resulted in no qualitative differences in the
MSMs but did facilitate a more accurate determination of crystalliza-
tion kinetics—the slowest implied timescales were 1.078–2.198 × 107

steps and 1.164–1.789 × 107 steps within a 95% confidence interval
(CI) before and after including the additional simulation trajecto-
ries. Note that in what follows, we report the timescales and rates in
terms of numbers of trajectory steps, with each step corresponding
to Δt∗ = 0.005.

First, we applied TICA to project the time-dependent 17 CV
values from 15 simulation trajectories onto the {ϕ1, ϕ2} TICA RC
where τ = 10 000 steps in the evaluation of the time-lagged com-
ponents. Although the calculation of VAMP-2 scores was rather
insensitive to the choice of τ when τ < 50 000 steps, identifying the
fastest processes in the system dynamics requires a smaller value
of the lagtime (as discussed below, the implied timescales from
the model shown in Fig. S6 in the supplementary material indicate
that this was a reasonable choice to distinguish all of the relevant
transitions). The concatenated ϕ1 and ϕ2 trajectories resulting from
TICA are provided in Fig. S5 in the supplementary material. These
indicate that ϕ2 clearly separates different crystal states resulting
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from crystallization. On the other hand, ϕ1 shows distinct
time windows where dense amorphous phases i.e., DLDs, are
present.

Figure 3(a) shows the cumulative sampled probability density
of states as a function of {ϕ1, ϕ2}. A small peak for states in the
VP is observed at ϕ1 ≈ −1.4, ϕ2 ≈ −1.8, while a much more pro-
nounced peak at ϕ1 ≈ −0.6, ϕ2 ≈ 0.6 accounts for microstates in the
DLD. Two to three broad peaks highlighted on the plot are observed
for states where crystals are present. The wide distribution of the
states highlights the slow time evolution of the crystals during the
simulations.

To construct the MSM, the sampled configurations were
mapped onto a discrete set of partitions in the {ϕ1, ϕ2} space using

FIG. 3. Results from a Bayesian MSM constructed from 17 CVs evaluated for 15
independent simulation trajectories projected onto two TICA coordinates: ϕ1 and
ϕ2. (a) The relative probability density (highlighted by the color scale) of the sam-
pled states in the 2D TICA RC, with (meta)stable vapor phase (VP), dense liquid
droplet (DLD), and crystal peaks (C) indicated by the arrows. The positions for
119 partition centers used in the construction of the MSMs are overlaid and shown
as yellow circles. (b) Relative free energies (ΔF∗) in units of kBT∗ computed
from the Bayesian weighted stationary distribution projected onto the sampled
states; labels a, b, c, and d identify the four lowest energy minima in the land-
scape when determined using the approach discussed in the text. (c) Projections
of right eigenvectors 2 − 4 onto the sampled states and with partitions also high-
lighted. (d) Committor probabilities, highlighting the probabilities for partitions to
commit to either the DLD or C3 basins indicated by the yellow circles. (e) Snap-
shots of microstates from a single trajectory, which are associated with the partition
in D where the committor probability is ≈0.5 (see Fig. 1 caption for a description of
the representation). (f) Transitions between the four PCCA+ (meta)stable states:
VP (0), DLD (1), C2 (3), and C4 (4). The labels indicate the rates, also provided in
Table II, and the width of the arrows indicates the fastest transitions.

regular space clustering with a minimum distance of ϕ = 0.2 between
cluster centers. The attribution of microstates to a partition was car-
ried out by Voronoi tessellation of the sampled data.46 Partition
centers are shown in Fig. 3(a). This procedure generates trajectories
describing transitions between discrete partitions, which can be used
to construct a transition matrix. We confirmed that the resulting
119 partitions were fully connected in the MSM, and all transitions
between partitions were used to determine kinetic information from
the fully connected network of partitions.

The probability density weights associated with partitions
determine the stationary distribution of states, which can be
Boltzmann-inverted to generate the free energy landscape in {ϕ1, ϕ2},
provided in Fig. 3(b). The landscape indicates a narrow reactive
pathway associated with the VP to DLD transition, corresponding
to the condensation process. Instead, the path from the DLD to dif-
ferent crystal states is less constrained in the RC space. The model
accurately determines the relative stability of the different crystalline
nuclei observed in simulations. Crystals with the lowest potential
energy, in fact, correspond to the global minimum in the free energy
landscape [see point a in Fig. 3(b)]. The two metastable states cor-
responding to local minima of the free energy (determined using
moving 20 × 20 windows in a 150 × 150 grid of the RC space) and
identified by labels b and c, also represent crystal nuclei associ-
ated with a ΔF∗ = 0.26 and 1.17kBT∗, respectively. The difference
in the free energies between a DLD and the most stable crystal,
ΔF∗ ≈ 3kBT∗ and, though not shown in the Figure, ΔF∗ for the
basin representing VP microstates is 6kBT∗ (the energies are shifted
so that at the global minimum, F∗ = 0). Therefore, the ranking of
relative stabilities of the VP, DLD, and crystals, which can be qual-
itatively inferred by observing the dynamic trajectories, is captured
well by the MSM.

The eigenfunctions of the MSM approximate the transitions
between (meta)stable states in the system. The eigenvalues associ-
ated with these functions determine their importance when predict-
ing the time evolution of the system. Figure S6 in the supplementary
material provides the implied timescales for the 12 slowest tran-
sitions as a function of different τ values, which are computed as
ti = −τ/ln∣λi(τ)∣ and where λi is the eigenvalue for process i. These
implied timescales all increase as a function of τ but plateau when
τ ≈ 100 steps; indeed, this analysis was used to identify the appro-
priate value of τ in a series of trial and improvement cycles. Several
orders of magnitude separate the implied timescales for the slow-
est and fastest transitions, which is not surprising given the reaction
under consideration.

By projecting the right eigenfunctions with the largest eigen-
values onto the TICA RC, we can visualize the slowest modes in the
system. Figure 3(c) shows that the slowest transition is from crys-
talline partitions to the VP; the second slowest process is one that
goes from the VP to higher energy crystals via the lowest energy
crystal partitions; while the third slowest process is a transition from
condensed phases to a VP. It is important to note that, though
we never observe these transitions in the forward reactive trajec-
tories generated in the simulations, the construction of the MSM
through the partitioning of states in energy minima and transi-
tion state regions means that we can predict these slow modes.
Provided the free energy landscape in Fig. 3(b) and physical intu-
ition, these slowest transitions are to be expected with the model
assumption of ergodicity. To test the accuracy of the model pre-
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dictions, we performed a Chapman–Kolmogorov test46 using four
(meta)stable states, the results for which are shown in Fig. S7 in
the supplementary material. This test evaluates the left- and right-
hand sides of the equation T(kτ) = Tk

(τ), where T is the transition
matrix and k is the number of trajectory steps we adopt in the
calculation. The results in Fig. S7 in the supplementary material
indicate that the model predictions and estimates from the data are
consistent.

The second and third eigenvectors in Fig. 3(b) highlight the
approximate transition between amorphous and crystalline states.
To explore this more accurately for the forward transition associated
with the onset of crystalline order within the DLD, we performed a
committor probability analysis considering the DLD and the most
stable crystal minimum as end states, as shown by the yellow cir-
cles in Fig. 3(d). The partitions in the Figure are colored blue to
red according to their probability of committing to the crystal basin.
The transition state ensemble projection onto {ϕ1, ϕ2} corresponds
to the region of CV space approximately identifying the isocom-
mittor. In particular, the partition highlighted by a green circle in
Fig. 3(d) has a committor probability of 0.5, providing the closest
approximation of the transition state (TS) associated with the crys-
tal nucleation transition. Figure 3(e) provides snapshots of the dense
phase at the beginning and end of a portion of a single trajectory
crossing the TS partition, where the crystal-like particles are identi-
fied using PTM. It is clear that the number and local density of the
particles with crystal-like local environments increases [highlighted
by the colors in Fig. 3(e)]. Moreover, their arrangement appears to
become more ordered, in line with what is expected for the second
step in a two-step crystallization mechanism.

To determine the rates in two-step crystallization, we per-
formed a spectral clustering of the partitions using Robust Perron
Cluster Cluster Analysis (PCCA+)47 to cluster partitions according
to the eigenvectors of the transition matrix associated with the MSM;
Fig. S8 in the supplementary material highlights the weights for each
partition assignment to states. The assignment of partitions to four
(meta)stable states, ω, using this approach is shown in Fig. 3(f), and
the fraction of microstates associated with ω = 0, 1, 2, and 3 was
0.0004, 0.0104, 0.2487, and 0.7405, respectively. These states repre-
sent the VP, DLD, C2, and C3 in order of increasing ω, where C2
are crystals with higher potential energy and C3 are the more stable
crystals.

The mean first passage times (MFPTs) between (meta)stable
states can be determined from the transition matrix of the MSM.
Rates computed from these MFPTs and their uncertainties deter-
mined within a 95% CI are provided in Table II, which indicate that
the fastest transition is the condensation of the VP to form a DLD.
The fastest transitions following this are the emergence of order in
the DLD to form higher energy crystals (C2) and the transforma-
tion of C2 to C3 crystals. We did not observe this latter transition
during the simulations, as already discussed, and so the quantitative
predictions of the model here should be further tested. The slowest
transitions are those already identified as transformations of crystals
to the VP and DLD phases. Faster transitions occur from the VP to
crystals; however, the distribution of states indicates that the system
must first go via the DLD. Indeed, following the forward reaction,
the MSM indicates that the crystallization pathway proceeds accord-
ing to VP → DLD → C2 → C3, and, in general, the predictions
of the MSM are consistent with the pathways and relative kinetics

TABLE II. Transitions between the (meta)stable states in a 2D TICA RC constructed
using 17 CVs, ranked according to their rates calculated from MFPTs. 95% confidence
intervals (CI) in the rates are also provided and the units are (σ3 steps)−1.

Transition Rate 95% CI

1 VP → DLD 1.85 × 10−12 1.47 − 2.36 × 10−12

2 C2 → C3 1.18 × 10−13 0.87 − 1.58 × 10−13

3 DLD→ C2 1.13 × 10−13 0.85 − 1.43 × 10−13

4 VP→ C2 9.59 × 10−14 0.77 − 1.16 × 10−13

5 DLD→ C3 8.58 × 10−14 0.68 − 1.05 × 10−13

6 VP→ C3 7.55 × 10−14 6.12 − 9.07 × 10−14

7 C3 → C2 3.41 × 10−14 2.47 − 5.26 × 10−14

8 C2 → DLD 1.77 × 10−15 1.08 − 2.67 × 10−15

9 C3 → DLD 1.72 × 10−15 1.06 − 2.57 × 10−15

10 DLD→ VP 5.92 × 10−16 3.76 − 9.22 × 10−16

11 C2 → VP 3.98 × 10−16 2.64 − 5.75 × 10−16

12 C3 → VP 3.96 × 10−16 2.62 − 5.71 × 10−16

of transitions that are to be expected for a two-step crystallizing
system.

2. MSMs for n = 1–17 RCs
The approach laid out above for n = 17 can be applied to

describe the mechanisms and compute the crystallization rates with
other combinations of CVs. Therefore, we constructed MSMs for all
of the n = 2–16 highest R2 scoring CV combinations. To ensure a
fair comparison of model results, minimal changes were made dur-
ing the construction of MSMs; hence, we first projected the CVs
onto two TICA coordinates using τ = 10 000 steps and computed
the stationary distributions and transition matrices by sampling dis-
crete partitions in a TICA 2D RC space. As before, we ensured
that the value of τ and the partitioning of states led to converged
implied timescales for the slowest modes, along with fully connected
partitions, as well as model predictions for transitions that were
consistent with sampled data in Chapman–Kolmogorov tests of the
constructed MSMs.

In general, the MSMs when n = 2–16 identified the same quali-
tative and quantitative features identified and discussed for n = 17.
Some notable differences were that the relative free energy dif-
ferences between the (meta)stable states fluctuate within ∼2kBT∗,
particularly for smaller values of n. Nevertheless, when n = 6–17,
ΔF∗ for the DLD to crystal transition converges to −3.1 ± 0.3kBT∗.
For our purposes, however, amorphous phases were always higher
in energy than crystalline states, and the forward reaction, i.e., VP
→ crystal, was always predicted to be significantly faster than the
reverse reaction in all of the MSMs. In addition, while there was
some reordering of the implied timescales for state-to-state transi-
tions, the relative ranking of the transitions involved in the forma-
tion of crystals from the VP was consistent throughout, regardless of
the choice of CVs used to construct the RC. This is a good sign of the
robustness of the kinetic models to capture the slow transitions with
reasonable choices for the CVs that can describe the time-dependent
structural evolution of the system.

Figure S9 in the supplementary material provides the state
maps evaluated when n = 2–17 from each Bayesian MSM and
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PCCA + to identify the (meta)stable states. These reflect the small
change in the assignment of partitions to (meta)stable states and
the order of state-to-state transitions when n > 5. As n decreases,
the extent of ϕ1 and ϕ2 in the 2D TICA RC tends to increase,
resulting in more partitions of the sampled data. Despite this, the
fraction of partitions assigned to the VP state decreased. It was nec-
essary to increase the minimum distance between partitions from
ϕ = 0.2 to ϕ = 0.22 in the regularly spaced clustering algorithm when
n = 2–5. Also, when there is a reduction in the number of partitions
for the VP phase, the expansion of the TICA coordinate range is
concomitant with a broadening of the crystal state regions (see the
relative areas for ω0/ω1 and ω2/ω3 in Fig. S9 in the supplementary
material). Another interesting feature is that when n ≤ 4, Fig. S9 in
the supplementary material shows that the TICA projection of states
is reflected in ϕ2 such that VP microstates are found when ϕ2 is at
positive values, unlike in Fig. 3.

In the case of n = 2, the area in the state map for the VP and
DLD is very small, and the number of partitions representing these
states is substantially decreased cf. n = 17 (though the fraction of
states in amorphous phases remains constant at around 0.011). Due
to the small number of partitions, particularly in the VP region,
spectral clustering can capture only three (meta)stable states, where
ω0, in this case, includes all of the non-crystalline microstates. This
model was constructed using a 2D TICA projection of {ncs, ncnq6}
where both CVs are designed to identify the emergence of crystals.

Equally highly scoring R2 2D RCs were {ncl, ncnq6} and {ene,
ncnq6}; hence, we constructed Bayesian MSMs using 2D TICA
projections of these sampled CVs. As shown in Fig. S10 in the
supplementary material, the RCs constructed from ncl and ene
(along with ncnq6) are very similar to those constructed from the
highest scoring CV pair. Applying PCCA+ to the partitions, how-
ever, does result in four (meta)stable states with a separation of the
VP and DLD, and with a forward transition between amorphous
states on the order of 1 × 1012

(σ3steps)−1, consistent with MSMs
built from RCs capturing greater numbers of degrees of freedom.
Here, the rates for crystal nucleation in the DLD were 0.98–1.87
× 1013 and 1.13 − 1.89 × 1013

(σ3steps)−1, respectively, with 95%
statistical confidence in the values, compared to the rate of
0.78 − 1.39 × 1013

(σ3steps)−1 predicted in the case of {ncs, ncnq6}.
Although there is overlap in the rate predictions, {ncs, ncnq6} results
in a slower nucleation rate.

It is possible to compute a VAMP-2 score for the time series of
TICA coordinates that we label RTICA

2 . The RTICA
2 for the three reac-

tion coordinates {ncl, ncnq6}, {ncs, ncnq6}, and {ene, ncnq6}, were
1.964 ± 0.002, 1.961 ± 0.005, and 1.96 ± 0.002, respectively, reflect-
ing the earlier observation that all CV combinations are able to
capture the slow variations in the underlying system dynamics.
Despite this, the mechanistic insight provided by the three models
differs, and this is somewhat sensitive to the method used to dis-
cretize trajectories and identify (meta)stable states. Care should be
taken, therefore, when assessing model outcomes.

In the case of n = 1—ncs provided the highest R2 scoring
CV—only one TICA coordinate (ϕ1) was used to construct a
Bayesian MSM. For this reason, we used a minimum distance
ϕ1 = 0.04 to generate partitions during regular space clustering,
resulting in 59 partitions. The probability density of states in ϕ1 is
provided in Fig. 4(a), with the VP, DLD, C2, and C3 crystal states
clearly apparent in the TICA projection of ncs. Figure 4(b) provides

FIG. 4. Results from a Bayesian MSM constructed from the ncs CV evaluated
for 15 independent simulation trajectories and projected onto a TICA coordinate,
ϕ1. (a) Probability densities for ϕ1 states with partition centers used in the MSM
indicated by the yellow circles. Peaks indicate the (meta)stable states that are
labeled. (b) A single trajectory plotted as a function of ene and ϕ1; the color scale
indicates the scaled simulation time. (c) Relative free energy (in units of kBT∗) as a
function of ϕ1 with the inset frame showing ΔF∗ at small values of ϕ1. The circles
indicate the partition centers, colored according to their probability to commit to the
yellow partition center in the C3 minimum from the DLD minimum. States identified
using PCCA+ are labeled 0, 1, and 2, with arrows between the states indicating
the rate for transitions computed using MFPTs.

the time-dependent trace in {ene, ϕ1} for a single crystallizing tra-
jectory, highlighting how the TICA coordinate values are correlated
with CV values. In the case of ene, there is a clear non-linearity
in the data, as was also observed, e.g., for {ncnq6, ϕ1} and {ent,
ϕ1}, while {ncs, ϕ1} shows a near-perfect linear correlation in the
coordinates. In all of these high R2 scoring CVs, the distribution of
TICA coordinates clearly distinguishes crystal and non-crystalline
microstates.

Figure 4(c) provides the free energy profile, determined from a
1D MSM using ncs data, aligned such that ΔF∗ = 0 for the vapor. A
small energy barrier separates the VP from the DLD, while a more
pronounced energy barrier separates the DLD from the crystalline
states. In the latter, there is good agreement between the position
of the maximum in ΔF∗ and the partition committor probabilities
to commit to either the DLD or C3. It is clear that the choice of
CV affects the relative weights associated with states and, therefore,
their ΔF∗ values, since this is a function of the stationary distribution
computed using Bayesian MSM weights. For example, a 1D MSM
constructed using a 1D TICA reduction of the ncl CV data pro-
vides a free energy profile shown in Fig. S11 in the supplementary
material; here, ΔF∗ between the minimum representing the VP and
DLD is around 2.5kBT∗, compared with ∼0.5kBT∗ from Fig. 4(c).
Qualitatively, the order in the stability of the VP, DLD, C2, and C3
is consistent across the entire n = 1–17 range, but the ΔF∗ values for
DLD→ crystal change from ∼1 to ∼8kBT∗ depending on the choice
of CVs and the level of reduction in the dimensionality. Despite this,
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the free energy difference between the VP and crystals is approxi-
mately consistent with the ΔF∗ when additional CVs are included in
the constriction of MSMs (ΔF∗ ≈ −8kBT∗ in the monodimensional
RC for the forward reaction, compared to ΔF∗ = −5.8 ± 0.5kBT∗

when n = 6–17).
Where the 1D MSM does provide consistent quantitative infor-

mation with MSMs constructed using additional CV dimensions, is
in the overall crystallization rate. When the highest scoring CVs were
used to construct the MSM, we found that the transition rate from
the DLD to crystals was around 1 × 10−13

(σ3steps)−1. As for the
n = 2 case, spectral clustering provided only one amorphous state,
centered in the DLD and marked by 0 in Fig. 4(c), to determine
state-to-state transitions—this was a general observation for MSMs
constructed for all of the high scoring 1D RCs. The rates indicate
that the C2 → C3 transition is the fastest between the three identified
(meta)stable states.

A 1D representation of the free energy pathways to crystals
from the supersaturated vapor phase demonstrates how the picture
for crystal nucleation differs from one expected for a single-step
transformation of the vapor to a crystal following established nucle-
ation theories based on the earliest ideas of Gibbs.5 The two energy
barriers may be perceived as a clear departure from a CNT-based
model for phase separation; however, one can interpret the two bar-
riers as two distinct steps, each of which can be reasonably well
described using CNT-based theories. The interfacial tension used
to predict the crystal nucleation barrier in CNT must account for
the crystal lattice’s emergence in a DLD. This phase separation pro-
cess is consistent with Ostwald’s rule of stages,48 where the first
product from nucleation is a thermodynamic phase with chemical
potential closest to the parent phase, and which subsequently under-
goes further transformations to more stable states. Furthermore,
the pathway is distinct from those where amorphous intermediates
do not occupy states representing a depression in the free energy
landscape.8

Multi-step crystallization pathways are known experimentally
for colloidal systems,44,49 and pathways to crystals via amorphous
intermediates were reported for other crystallizing systems.38,50

These pathways may also include intermediate crystal phases; how-
ever, we believe that the different crystal minima in our work are
the result of the stacking faults already discussed and not thermody-
namically distinct phases at equilibrium, which are a feature of, e.g.,
binary colloid mixtures.43,45

In all of the MSMs constructed, the slowest process to crys-
tallization is the second step, i.e., the emergence of order in the
liquid. Figure 5(a) provides the nucleation rates for this step, J, which
are roughly constant as a function of n. Assuming that the highest
dimension CV description of the crystallization dynamics is the best
choice to predict the kinetics as indicated by the higher VAMP-2
score, the most significant departure in the mean rates computed
using MFPTs occurs when n ≈ 9–13. However, the clear overlap of
the 95% confidence intervals of the rate estimates allows us to con-
fidently determine the rates within the same order of magnitude,
indicating that all of the TICA RCs, constructed from a basis of
high-scoring CVs of increasing dimensionality, predict consistent
nucleation times.

Figure 5(b) shows how DLD→ crystal nucleation rates change
as a function of the RTICA

2 scores. The TICA RCs that have a
smaller RTICA

2 value are in the range n = 9–13, where J is higher,

FIG. 5. (a) Top: Crystal nucleation rate, J, determined from the MFPT for transitions
from an amorphous phase to a crystalline one in the Bayesian MSMs as a function
of n, the number of CVs used to generate the TICA trajectories. Bottom: The slow-
est implied timescales from the MSM as a function of n. Solid lines mark the mean
data for the n = 17 case. (b) Logarithm of the rates in A are plotted against the
RTICA

2 score for the TICA RC. The dashed line is a fit to the data. Shaded regions
indicate a 95% CI in the mean points throughout.

and the slowest implied timescales in the model [see Fig. 5(a)]
show a departure from the solid line marking the mean val-
ues for n = 17, while the highest RTICA

2 score was for n = 1. The
dashed line in the Figure is a fit to the data with functional
form log10(J) = −3.89(RTICA

2 )
2
+ 13.85(RTICA

2 ) + 25.18. This indi-
cates that the RCs, which best capture the slowest dynamics in the
system, also predict slower mean rates for the nucleation of crystals
in the DLD. It is important to reiterate, however, that the uncer-
tainties mean that the crystallization rates are predicted consistently
in the MSMs, regardless of the CVs chosen to characterize the pro-
cess and the projection of these onto their time-lagged independent
components.

V. CONCLUSIONS
VAMP analysis of the CV time series data from crystallizing

trajectories indicates that CVs characterizing the size of emerg-
ing phases in the system often feature in the highest scoring CV
combinations that best describe the slow dynamics for crystalliza-
tion. These CVs, along with, e.g., system potential energy and the
configurational entropy, often feature in high VAMP-2 scoring crys-
tallization RCs, provide validation that the characterization of these
processes, often adopted in simulations,2,4,6,11,12,41 provide good CVs
to reduce the high-dimension configuration space to a handful of
relevant degrees of freedom and extract kinetic information. In
more complex systems, it may be necessary to incorporate addi-
tional CVs into the RC to describe how, for example, non-spherical
monomers (perhaps with internal degrees of freedom), explicit sol-
vent, and impurities/additives affect nucleation. As there is no stan-
dard procedure to choose the best CVs to gain thermodynamic and
kinetic information, trials of suitable functions to define (collective)
molecular features must be performed. CV accuracy can be affirmed
using the analyses described in this work and elsewhere.3,4 Gener-
ally, the distribution of CV values representing the reactant, product,
and any intermediate states in a multi-step reaction pathway must be
clearly distinguishable in CV space; hence, a multi-modal probabil-
ity density of states should be apparent in the reaction coordinate.
This is no guarantee, however, that the reaction coordinate is a good
one to determine mechanisms and rates.
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The fact that the nucleation rates for the emergence of crys-
talline order in dense liquid intermediates are consistent regardless
of the number of CVs used to construct MSMs and determine
timescales for these transitions, is a testament to the robustness
of kinetic models constructed from CV combinations with a high
VAMP-2 score. A general conclusion from our analyses is that
despite kinetic information being remarkably consistent in the
MSMs constructed using TICA projections of n = 1–17 CVs, quan-
titative thermodynamic information and mechanistic insight are
only accurately gained when a sufficiently large number of CVs are
considered.

From the majority of the MSMs constructed in this work, we
were able to identify a crystallization pathway progressing from the
vapor phase to crystals via a dense liquid intermediate, with com-
mittor probabilities, spectral analysis, and stationary distributions
all indicating two bottlenecks to the formation of crystals: the con-
densation of the vapor to the liquid and rearrangement of particles
in the liquid to form a crystal lattice, with the latter representing
the rate-determining step. Each of these two steps could, in prin-
ciple, be described using their respective thermodynamic driving
forces for nucleation, which form the basis of CNT. However, while
a straightforward application of Gibbs’ theory for nucleation might
be possible to characterize the first step, the capillary approxima-
tion is likely to fail for crystal nucleation in the liquid, where we
observed a population of nuclei with different defect densities and
local crystalline arrangements.

The model agreement across the range of dimensionalities
(n = 1–17) of CV spaces, and particularly the consistent predic-
tion of nucleation rates, is a remarkable result that highlights the
value of selecting combinations of crystallization CVs that, for
every n, maximize the VAMP-2 score. We believe this approach is
general and sufficiently transferable to support the study of other
crystallization or dissolution processes (where these events can be
observed within reasonable simulation timescales) or to guide the
choice of CVs used in enhanced sampling simulations of nucleation
processes.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed description of the
collective variables (S1), the phase diagram of the colloidal system
studied (S2), a summary of the highest scoring CV combinations
(S3), and additional figures (S4).
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