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Summary
Background Although chronic kidney disease (CKD) is associated with high multimorbidity, polypharmacy, morbidity
and mortality, existing classification systems (mild to severe, usually based on estimated glomerular filtration rate,
proteinuria or urine albumin-creatinine ratio) and risk prediction models largely ignore the complexity of CKD, its
risk factors and its outcomes. Improved subtype definition could improve prediction of outcomes and inform
effective interventions.

Methods We analysed individuals ≥18 years with incident and prevalent CKD (n = 350,067 and 195,422 respectively)
from a population-based electronic health record resource (2006–2020; Clinical Practice Research Datalink, CPRD).
We included factors (n = 264 with 2670 derived variables), e.g. demography, history, examination, blood laboratory
values and medications. Using a published framework, we identified subtypes through seven unsupervised
machine learning (ML) methods (K-means, Diana, HC, Fanny, PAM, Clara, Model-based) with 66 (of 2670)
variables in each dataset. We evaluated subtypes for: (i) internal validity (within dataset, across methods); (ii)
prognostic validity (predictive accuracy for 5-year all-cause mortality and admissions); and (iii) medications (new and
existing by British National Formulary chapter).

Findings After identifying five clusters across seven approaches, we labelled CKD subtypes: 1. Early-onset, 2. Late-
onset, 3. Cancer, 4. Metabolic, and 5. Cardiometabolic. Internal validity: We trained a high performing model
(using XGBoost) that could predict disease subtypes with 95% accuracy for incident and prevalent CKD
(Sensitivity: 0.81–0.98, F1 score:0.84–0.97). Prognostic validity: 5-year all-cause mortality, hospital admissions, and
incidence of new chronic diseases differed across CKD subtypes. The 5-year risk of mortality and admissions in
the overall incident CKD population were highest in cardiometabolic subtype: 43.3% (42.3–42.8%) and 29.5%
(29.1–30.0%), respectively, and lowest in the early-onset subtype: 5.7% (5.5–5.9%) and 18.7% (18.4–19.1%).
Medications: Across CKD subtypes, the distribution of prescription medication classes at baseline varied, with
highest medication burden in cardiometabolic and metabolic subtypes, and higher burden in prevalent than
incident CKD.

Interpretation In the largest CKD study using ML, to-date, we identified five distinct subtypes in individuals with
incident and prevalent CKD. These subtypes have relevance to study of aetiology, therapeutics and risk prediction.
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Research in context

Evidence before this study
We searched Pubmed, Web of Science, medRxiv, bioRxiv, and
arXiv on 1 July 2022 for clustering or subtyping of chronic
kidney disease using the terms “CKD”, “kidney”, “renal”,
“dialysis”, “transplant”, “ESRD” in combination with
“clustering”, “subtyping”, “machine learning”, “deep
learning”, “artificial intelligence”, with no language
restrictions. we used the bibliographies of the retrieved
articles for literature review. We identified only one relevant
study of machine learning in CKD (n = 2696). There were no
studies in large-scale, representative, population-level data,
across incident and prevalent CKD, all stages of CKD, and
using multiple ML methods.

Added value of this study
In a large, nationally representative, population-based
dataset, we used seven machine learning methods for
subtyping and risk prediction with 66 of a possible 2670
variables in cohorts of individuals with incident and prevalent

CKD, including all stages of CKD (mild: stage 3a, moderate:
stage 3b, and severe: stages 4 and 5). We identified and
validated (internally and prognostically) five subtypes in
incident and prevalent CKD: (1) early-onset; (2) late-onset; (3)
metabolic; (4) cancer; and (5) cardiometabolic. These
subtypes differentially predicted all-cause hospitalisation and
mortality, which were highest in cardiometabolic subtype:
43.3% (42.3–42.8%) and 29.5% (29.1–30.0%), and lowest in
the early-onset subtype: 5.7% (5.5–5.9%) and 18.7%
(18.4–19.1%), respectively. We also demonstrated clinically
relevant differences across subtypes by new and existing
medications.

Implications of all the available evidence
Identifying clinically relevant subtypes in complex conditions
such as CKD could inform targeted management, healthcare
resource utilization and future clinical trials, and our methods
using machine learning in electronic health records are
transferable to other disease areas.
Introduction
Chronic kidney disease (CKD) has high prevalence
(9.1% globally; affecting 700 million individuals), mul-
timorbidity (as both risk factor and outcome), and
burden of disease (1.2 million annual deaths
worldwide).1–4 A 2017 roadmap highlighted major global
gaps in care, research and policy for CKD, recom-
mending a ten-point action plan, mostly related to better
data and personalised management, such as “improve
understanding of the natural course of CKD”.5 Despite
such calls for “precision nephrology”, existing classifi-
cation systems (mild to severe; usually based on labo-
ratory measures, such as estimated glomerular filtration
rate [eGFR], proteinuria and urine albumin-creatinine
ratio)6 and risk prediction models7 largely ignore the
complexity of CKD and its risk factors.8 Improved sub-
typing of CKD offers potential for improvement in risk
prediction, planning for prevention and policy. More-
over, better subtyping is necessary for new aetiologic
insights and potential therapies for CKD.

Widespread implementation of electronic health re-
cords (EHR) and machine learning (ML) methods pro-
vide opportunities for better subtype definition and risk
prediction across diseases.9 However, observational
studies in CKD have not made full use of available
longitudinal EHR data, focusing on either incident or
prevalent CKD, rather than both,10–13 leading to concerns
about the applicability and quality of existing risk pre-
diction models. Across diseases, ML has been used for
subtype definition and risk prediction,14,15 which could
ultimately facilitate early intervention and better
targeted management. Like heart failure (HF) and many
long-term conditions, CKD is predominantly a broad
diagnosis focused on staging which often ignores aeti-
ology, which is usually based on clinical information
(e.g. diabetic or hypertensive nephropathy) rather than
considering all available EHR data for a given individual
with CKD. Only one study has used ML to identify
subtypes in CKD, but not in a large-scale, population-
based population using routine EHR data. This study
used 72 baseline characteristics in 2696 individuals to
define three distinct subgroups, strongly associated with
future risks of CKD, and cardiovascular events, inde-
pendent of established CKD risk factors.16 Such ML
methods need to be used in larger routine datasets (e.g.,
EHR) which are representative at national level, to
derive generalisable and scalable subtypes of CKD.

Given high rates of multimorbidity and polypharmacy
in individuals with CKD, a better understanding of all
medications being taken at baseline and over time in
CKD may inform research, whether pathophysiology or
targeted intervention trials.8 Moreover, nephrotoxicity is a
common side effect of medications and in the context of
CKD, medications may need to be adjusted or stopped.
For example, the reported worldwide incidence of
nephrotoxicity with non-steroidal anti-inflammatory
drugs (NSAIDs) is 1–5%.17 Although some EHR studies
to-date have considered all prescription medication clas-
ses, they have neither considered specifically CKD, nor
included all such variables in ML analyses.18

Using a published framework for ML studies of
subtype definition and risk prediction,9 we used seven
www.thelancet.com Vol 89 March, 2023
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ML methods, in a UK population-based cohort of
350,067 individuals with incident and prevalent CKD
across 2670 variables, to:

(i) Generate clinically relevant subtypes throughout
the course of CKD and low risk of bias for patient
selection and algorithms.

(ii) Demonstrate validity: internal (across methods)
and prognostic (all-cause hospital admissions,
mortality, incident diseases over five years).

(iii) Investigate distribution of prescription medication
classes at baseline and over time.
Methods
We used our published framework for ML imple-
mentation to inform our methods9 (Fig. S1).

To generate subtypes (development)
Clinical relevance
By aiming to improve diagnostic and prognostic pre-
diction of CKD, our research concerned “patient
benefit”. We used population-based primary care EHR
with validity for CKD research (“target condition appli-
cability”: whether the disease defined in data matches
research questions). Clinical Practice Research Datalink
(CPRD-GOLD), was linked by unique national health-
care identifiers, with hospital admissions (Hospital Ep-
isodes Statistics, HES), and death registry (Office for
National Statistics, ONS). CPRD is representative of the
UK population, with prospective recording and follow-
up (“data suitability”).19

Patients
We ensured “patient applicability” (to study aims),
minimising patient selection bias, including individuals
≥18 years with incident (n = 350,067) and prevalent
CKD (n = 195,422) and ≥1 year of follow-up in CPRD,
registered with a practice from January 2006 to April
2020 in the UK. We defined “prevalent CKD” as having
at least 6 months history of CKD from April 2014, and
“incident CKD” as new onset from January 2006 to April
2020. We used the KDIGO (Kidney Disease Improving
Global Outcomes) definition of CKD (either eGFR
<60 mL/min/1.73 m2 with ≥2 screening measures in 6
months, or diagnosis codes recorded in general prac-
tice), the MDRD-4 algorithm for eGFR, and code list as
previously reported.20 Phenotypes and laboratory mea-
sures were extracted using reproducible, validated al-
gorithms (HDR UK CALIBER Phenotype Library).21

Algorithm
Applying rule-based phenotyping algorithms (n = 75),
and medication chapters based on the British National
Formulary (BNF), we generated 2670 variables, reflect-
ing information before and after index date for 264
distinct factors, including: (I)socio-demographic
www.thelancet.com Vol 89 March, 2023
(e.g. age; n = 7); (II)aetiology (e.g. Type 2 diabetes, T2D3;
n = 48); (III)examination (e.g. blood pressure; n = 27),
and derived events (e.g. High/Low glucose level; n = 31);
and (IV)medication use and persistence (by 90-day
prescription gap over 1 year22) (n = 151). Factors
were excluded if records were incomplete or data were
missing, redundant (high correlation) or highly sparse
(<4% prevalence) and checked with clinical experts
(non-nephrology: AB and nephrology: RC). Events
created based on laboratory measures were treated as 0
if no test result was available or the available measure
was not within clinically normal range; and for condi-
tions without recorded diagnosis codes. We chose
K-means clustering to obtain clusters, refining by
excluding low-associated factors (to the disease sub-
types) using multiple GLM (Generalised Linear Model;
Poisson distribution) models. Clustering was performed
using standard score and relative prevalence for baseline
factors across all subtypes.

To demonstrate validity (validation)
Internal (within dataset and across methods)
Seven clustering algorithms [(K-means, Diana, Hierar-
chical clustering (HC), fuzzy clustering (Fanny), parti-
tion around medoids (PAM), Clara, Model-based] were
used in 30 subsamples of data to investigate best algo-
rithms via analysing stability [average proportion of non-
overlap (APN), average distance between means (ADM),
figure of merit (FOM)], compactness (connectivity,
Dunn, Silhouette), and computational complexity. We
obtained the optimal number of clusters where the
minimum overlap between all pairs of clusters was
maximised jointly for both incident and prevalent CKD.
The external validity (Stability) of subtypes was investi-
gated (a) within clinical stages of CKD by independently
choosing each CKD stage, running the clustering algo-
rithm on, and comparing the resulting clusters with our
identified subtypes using Jaccard similarity, Purity in-
dex, and survival trajectory, and (b) on whole data
comparing with Clara algorithm. Four distinguished
machine learning classifiers (Naïve Bays, KNN, Deci-
sion Tree, XGBoost) were trained and cross validated
(5-fold; Sensitivity, Balanced accuracy, F1-score, No in-
formation rate, Kappa) to predict the identified subtypes
in prevalent and incident CKD in a supervised manner.

Prognostic (predictive accuracy for admissions and all-cause
mortality)
We analysed prevalence of risk factors and diseases in
each cluster at baseline in incident and prevalent CKD,
comparing Kaplan–Meier 5-year hospital admissions
and all-cause mortality (log-rank for differences;
p < 0.01). We also considered new-onset chronic dis-
eases, namely, cardiovascular disease (CVD), cancer,
T2D, dementia, anaemia, asthma, chronic obstructive
pulmonary disease (COPD), gout, lipid disorders and
anaemia. As previously published, we defined CVD as a
3
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composite of heart failure, arrhythmias, acute myocar-
dial infarction, cardiomyopathy, atrial fibrillation, deep
vein thrombosis, isolated calf vein thrombosis, pulmo-
nary embolism, and stroke (ischaemic, transient
ischaemic attack, haemorrhagic, subarachnoid haemor-
rhagic, and non-specified). Obesity was defined as body
mass index (BMI) > 40kg/m2.14,20,21 Details of outcome
definition are in Panel S1.

Investigate distribution of prescription medication
classes at baseline and over time
We examined baseline classes of medications as per
BNF chapters (using methods in a previous study23),
including the absolute and relative prevalence of the
most commonly prescribed medications vs medications
selected based on the standard score. The rate of new
prescription was investigated for medication classes.

Ethical approval
Study approvals were by: (i) MHRA Independent Sci-
entific Advisory Committee [18_217R]: Section 251
(NHS Social Care Act 2006), (ii) Scientific Review
Committee [17THIN038-A1] and (iii) UKB 15422: Pa-
tient informed consent was not required or provided.

Data availability
All data produced in the present work are contained in
the manuscript.

Role of funders
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Results
Development
Clinical relevance and patients
The study (Fig. S1) included 350,067 individuals (Age:
74.2 ± 11.9, 60.1% female, CKD stages 3a: n = 315,792,
3b: n = 10,289, 4: n = 17,373, 5: n = 6613) with incident
CKD and 195,422 individuals (72.2 ± 11.8, 59.8%, 3a:
n = 152,158, 3b: n = 21,244, 4: n = 15,726, 5: n = 6294)
with prevalent CKD.

Algorithm
We selected 66 out of 2670 available variables after
dimensionality reduction. The selected factors had sig-
nificant associations with at least one of the disease sub-
types (Table S1). Characterising clusters (Fig. S2) based on
baseline aetiologic factors (Table 1) demonstrated distinct
comorbidity profiles across the subtypes (Fig. 1).

Validation
Internal
The optimal number of clusters with minimum overlap
was 5 (Table S2, Figs. S3 and S4). In the stability
analysis, identified clusters were (a) representative
within clinical stages of CKD in terms of similarity
(Jaccard: Incident: 83.9–99.2%, Prevalent: 82.6–95.1%,
Table S3) and prognosis (Fig. S5), and (b) reproducible
using at least one other clustering algorithm (Jaccard:
Incident 84.6%, Prevalent 70%, Table S4). In terms of
generalisability, we identified a high performing model
using XGBoost that could predict disease subtypes with
95% accuracy for incident and prevalent CKD (Sensi-
tivity: 0.81–0.98, F1:0.84–0.97, Table 2).

Five clusters were identified based on demography,
risk factor burden, CKD severity, medications and lab-
oratory factors. We labelled clusters as subtypes, after
studying each cluster’s characteristics: (1) early-onset;
(2) late-onset; (3) metabolic; (4) cancer and (5) car-
diometabolic. Among individuals with incident and
prevalent CKD respectively, the proportions of subtypes
were 16.9% and 14.1% for early-onset, 43.1% and 37.8%
for late-onset, 12.1% and 16.6% for metabolic, 15.0%
and 16.4% for cancer, and 12.9% and 15.1% for car-
diometabolic subtypes (Table 1).

Age and sex varied across subtypes (oldest: Late-
onset; youngest: early-onset; most females: late-onset;
and least females: cardiometabolic). Severe CKD was
more common in the early-onset subtype (9.2%) and
least common in the late-onset subtype (5.2%). Preva-
lence of CVD was highest in the cardiometabolic sub-
type, e.g. in incident CKD, CVD: 99.9%, HF: 35.8%, and
AF: 49.3%. Prevalence of hypertension (79.4%), obesity
(6.8%) and T2D (99.2%) were highest in the metabolic
subtype (Table 1, Fig. 1). Age, laboratory measures, BMI
and blood pressure did not discriminate well between
subtypes (Table 1, Table S5).

Prognostic
In incident CKD, 10-year mortality risks for early-onset,
late-onset, metabolic, cancer and cardiometabolic sub-
types were 14.1% (95% CI 13.7–14.5%), 57.4%
(57.1–57.8%), 56.4% (55.7–57.0%), 66.1% (65.5–66.7%)
and 71.1% (70.5–71.6%), respectively (Fig. S5). The
5-year risk of mortality and admissions in the overall
incident CKD population were highest in car-
diometabolic subtype: 43.3% (42.3–42.8%) and 29.5%
(29.1–30.0%) (Fig. 1) respectively, and lowest in the
early-onset subtype: 5.7% (5.5–5.9%) and 18.7%
(18.4–19.1%). By CKD stage, 5-year risk of mortality and
admissions was 62.9% (61.2–64.6%) and 34.5%
(32.7–36.3%) in severe; 46.3% (43.4–49.1%) and 27.2%
(25.0–29.7%) in moderate; 40.7% (40.2–41.2%) and
29.1% (28.6–29.7%) in mild CKD for the car-
diometabolic subtype; and 11.0% (10.0–11.9%) and
27.3% (26.0–28.5%) in severe; 9.0% (6.2–11.6%)
and 17.9% (14.6–21.2%) in moderate; 5.1% (4.9–5.3%)
and 17.9% (17.5–18.2%) in mild CKD, for the early
onset subtype. Risk of mortality and admission was
higher in incident than prevalent CKD, across subtypes,
diverging over time (Fig. 2, Figs. S5 and S6). Compared
www.thelancet.com Vol 89 March, 2023
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Risk Factor % CKD Cohort

Incident Prevalent

Early-onset Late-onset Metabolic Cancer Cardiometabolic Overall Early-onset Late-onset Metabolic Cancer Cardiometabolic Overall

N (%) 59,134 (16.9) 151,053 (43.1) 42,208 (12.1) 52,546 (15.0) 45,126 (12.9) 350,067 27,521 (14.1) 73,885 (37.8) 32,357 (16.6) 32,085 (16.4) 29,574 (15.1) 195,422

Age (mean ± SD) 56.0 ±9.5 79.2 ±7.3 73.0 ±9.0 78.5 ± 9.1 77.7 ±8.6 74.2 ±11.9 53.0 ±10 76.6 ±7.5 70.8 ±9.8 76.2 ±9.0 76.1 ±8.6 72.2 ±11.8

>70 years (%) 0.01 88.3 64.5 82.0 81.3 68.7 0.01 77.6 56.3 75.7 77.2 62.8

Female 57.5 69.1 55.0 58.5 40.3 60.1 57.5 70.5 53.8 59.1 42.3 59.8

CKD stage, eGFR < 60 mL/min/1.73 m2

Stage 3a, eGFR 45–59) 89.7 92.6 84.5 90.5 88.1 90.2 84.8 84.2 64.2 80.2 67.9 77.9

Stage 3b, eGFR 30–44) 1.1 2.3 7.5 2.8 3.5 2.9 2.2 9.0 19.5 10.2 4.8 10.9

Stage 4 (eGFR 15–29) 3.5 4.4 6.5 5.3 7.1 5.0 3.9 5.6 12.3 7.4 13.8 8.05

Stage 5 (eGFR <15) 5.8 0.79 1.60 1.37 1.36 1.90 9.0 1.1 3.9 2.1 3.4 3.2

Severe (4,5, eGFR<30) 9.2 5.2 8.1 6.7 8.4 6.9 13.0 6.8 16.3 9.6 17.3 11.3

Smoking

Smoker 21.8 14.2 20.5 14.0 21.0 17.1 18.5 11.0 16.3 11.0 15.3 13.6

Ever smoker 41.9 50.7 58.1 53.5 58.1 51.5 47.3 57.6 65.5 60.5 67.3 59.4

Non-smoker/NA 36.3 35.1 21.4 32.5 20.9 31.4 34.2 31.4 18.2 28.5 17.4 27.0

Ethnicity (unknown: 45.6% for incident CKD, 50.4% for prevalent CKD)

White 51.3 51.2 53.9 54.2 53.4 52.3 45.6 46.8 44.8 50.0 50.6 47.4

Black 2.6 0.5 1.7 0.4 0.3 1.0 2.7 0.6 1.6 0.4 0.4 1.0

Asian 2.0 0.7 2.6 0.3 1.1 1.1 2.0 0.7 2.4 0.4 1.1 1.2

Index of multiple deprivation (unknown: 68.8% for incident CKD, 73.2% for prevalent CKD)

1 (most deprived) 21.2 20.4 17.2 22.9 18.6 20.3 21.2 20.4 16.4 22.4 18.8 20.1

2 19.8 21.5 19.8 22.1 20.6 21.0 19.1 20.9 18.0 21.8 19.8 20.1

3 22.0 24.1 22.3 24.7 23.5 21.0 21.7 24.3 22.5 24.6 23.7 20.1

4 20.0 19.6 21.7 17.7 20.0 21.0 20.2 20.2 23.2 18.4 21.2 20.1

5 (least deprived) 16.9 14.4 19.1 12.5 17.3 21.0 17.4 14.2 19.9 12.5 16.6 20.1

Circulatory disease

Overall CVD 13.0 37.0 44.5 41.0 99.9 42.6 13.8 37.6 38.6 43.3 99.7 46.4

Heart failure (HF) 1.8 6.1 9.5 8.0 35.8 9.9 1.7 4.6 9.4 6.6 38.8 10.5

Atrial fibrillation (AF) 3.1 13.3 15.0 17.0 49.3 17.0 3.2 13.0 16.9 17.3 59.3 20.0

Any stroke 3.8 12.3 12.8 12.6 21.9 12.2 4.3 13.0 13.7 13.8 25.4 13.9

Coronary Heart Disease (CHD) 3.4 10.5 18.0 12.5 78.7 19.3 3.8 9.8 20.1 13.3 79.8 21.8

Myocardial infarction (MI) 0.8 0.2 2.1 1.9 72.3 10.1 1.1 0.9 5.6 2.6 58.6 10.8

Venous thromboembolism (VTE) 3.0 5.0 5.3 7.2 7.3 5.3 3.6 5.7 6.4 8.2 8.9 6.4

Cardiac Valve disorder 1.7 4.8 4.4 5.9 13.7 5.5 2.1 5.1 5.3 6.4 9.2 7.1

Unstable angina (UA) 0.7 1.2 2.8 1.9 16.5 3.4 0.7 1.2 3.2 1.9 17.2 4.0

Peripheral Vascular Disease and
Abdominal aortic aneurysm (PAD)

1.5 5.0 10.0 5.8 16.3 6.6 1.5 4.9 10.7 6.1 18.0 7.6

Stable angina (SA) 5.4 13.4 22.3 15.5 73.8 21.3 5.9 13.3 25.3 15.9 74.0 23.8

Hypertension 50.3 68.9 79.4 66.4 68.8 66.7 57.2 75.2 83.4 74.7 77.6 74.3

Bradycardia or Tachycardia 2.3 4.4 17.1 6.1 14.3 7.1 2.8 5.4 20.4 7.5 19.0 9.9

Cancer

Any Cancer 2.4 0.0 9.2 100 15.8 18.6 3.2 0.0 17.1 100 20.9 22.9

Cancer – Charlson indexed 1.2 0.0 5.3 73.0 8.8 12.9 1.5 0.0 11.3 72.0 11.2 15.6

Cancer – non-Charlson 1.2 0.0 4.3 36.1 8.2 7.2 1.8 0.0 7.2 39.0 11.7 9.6

Skin Biopsy 21.9 23.1 24.3 30.1 31.1 25.5 22.5 21.4 22.6 27.0 29.5 23.9

(Table 1 continues on next page)
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Risk Factor % CKD Cohort

Incident Prevalent

Early-onset Late-onset Metabolic Cancer Cardiometabolic Overall Early-onset Late-onset Metabolic Cancer Cardiometabolic Overall

(Continued from previous page)

Respiratory disease

Asthma 15.0 12.7 15.5 13.4 16.2 14.0 17.2 14.2 17.7 15.0 18.0 15.9

COPD 3.4 8.2 7.7 8.8 14.3 8.2 4.2 9.5 10.1 10.3 17.0 10.1

Endocrine, nutritional, metabolic

Type 2 Diabetes 6.9 4.5 99.2 1.5 20.8 19.5 8.2 8.7 99.2 13.5 27.6 27.2

Lipid disorders 15.0 17.5 27.4 18.0 34.3 20.0 18.0 23.2 32.9 23.9 39.0 26.7

Chronic Anaemia 5.4 8.2 10.4 10.1 11.2 8.7 7.7 9.9 17.4 12.2 16.6 12.2

Thyroid disorders 11.7 15.5 14.7 14.1 14.5 14.4 13.8 18.2 17.3 16.5 18.2 17.2

Obesity: BMI ≥ 40 3.1 0.8 6.8 0.9 1.3 2.0 3.2 0.9 7.3 0.9 1.5 2.4

Underweight: BMI≤18.5 0.5 1.1 0.5 1.0 1.0 0.9 0.5 1.2 0.4 1.2 1.1 1.0

Skin and subcutaneous tissue diseases

Lupus 4.4 4.0 4.8 4.5 5.0 4.4 5.3 4.7 5.9 5.2 6.0 5.3

Systemic lupus erythematosus (SLE) 0.5 0.2 0.2 0.2 0.2 0.3 0.8 0.8 0.2 0.3 0.3 0.3

Musculoskeletal diseases

Rheumatoid arthritis 5.9 4.3 5.8 5.5 5.8 5.4 9.4 0.8.0 8.5 8.1 9.7 8.6

Osteoarthritis 19.2 40.3 37.1 41.3 41.8 36.7 22.4 45.5 42.6 46.6 49.1 42.5

Gout 6.8 7.4 11.0 9.0 15.1 9.0 10.6 10.3 15.3 13.0 24.4 13.8

Other risk factors

History of Influenza 8.8 15.8 19.9 17.7 23.5 16.4 16.3 23.1 30.7 25.7 33.6 25.4

Dementia 0.6 7.9 4.2 7.5 7.1 6.1 0.8 11.5 6.9 10.4 11.1 9.0

Albumin to creatinine ratio: 89.9% for incident CKD, 56.6% for prevalent CKD)

uACR >30 mg/g 0.67 0.23 2.8 0.38 0.70 0.69 2.0 1.22 7.6 2.0 3.60 2.90

Table 1: Baseline characteristics by subtype in incident (n = 350,067) and prevalent (n = 195,422) chronic kidney disease.
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Fig. 1: Baseline characteristics by disease subtype for incident and prevalent chronic kidney disease.

Articles
with the early-onset subtype, the relative risk for 5-year
mortality was highest for the cardiometabolic subtype
(Relative risk [RR] 8.38, 8.14–8.63, and 11.80,
11.15–12.51 for incident and prevalent CKD respec-
tively) and lowest for the late-onset subtype (5.56,
5.41–5.72 and 6.68, 6.31–7.07 for incident and prevalent
CKD respectively) (Table S6).

Generally, risk of developing new chronic disease
was greater in prevalent CKD than incident CKD, except
for heart failure, atrial fibrillation, stroke and lipid dis-
orders. In incident CKD, 5-year risk of developing any
cancer (7.2%, 14.5%, 13.1%, 0.0% and 15.9%), CVD
(10.0%, 24.4%, 25.4%, 26.0% and 0.0%), heart failure
(1.9%, 7.6%, 9.4%, 9.0% and 17.0%), atrial fibrillation
(3.4%, 11.8%, 11.2%, 12.9% and 16.5%), coronary heart
disease (4.1%, 6.5%, 9.0%, 7.7% and 27.4%), stroke
(2.8%, 7.9%, 8.1%, 8.6% and 11.4%) and anaemia
(3.9%, 6.9%, 11.3%, 8.2% and 9.9%) varied across early-
onset, late-onset, metabolic, cancer and cardiometabolic
subtypes, respectively (Fig. S7).

Medications
Across CKD subtypes, the distribution of prescription
medication classes at baseline varied, with highest
medication burden in cardiometabolic and metabolic
subtypes, and higher burden in prevalent than incident
CKD. For example, for hypertension and heart failure
medications, across early-onset, late-onset, metabolic,
cancer and cardiometabolic subtypes, the prescription
www.thelancet.com Vol 89 March, 2023
rate was 24.3% and 39.8%, 36.3% and 49.5%, 69.1% and
78.2%, 36.3% and 48.4%, and 64.3% and 71.4%,
respectively in incident (overall: 41.0%) and prevalent
(overall: 56.0%) CKD (Table S7).

The most commonly prescribed medication class
differed by CKD subtype: early-onset: psychoses and
hormones; late-onset: musculoskeletal and joint dis-
eases; metabolic: hypertension and heart failure, and
endocrine, genito-urinary disorders; cancer: immuno-
suppression and local anaesthesia; and cardiometabolic:
hypertension and heart failure, antiarrhythmics and
anticoagulants (Fig. 3, Fig. S8). Overall, the most
commonly prescribed medication classes were hyper-
tension and heart failure, lipid-regulating drugs, anal-
gesics, antibacterial drugs, antisecretory drugs, nitrates
and calcium channel blockers, antiplatelet drugs, beta-
adrenoceptor blockers, diuretics, rheumatic diseases
and gout, and antidepressant drugs, and the highest use
of these medications was generally in cardiometabolic
and metabolic subtypes (Fig. 3 and Fig. S9). In general,
the baseline medication distribution was similar across
late-onset and cancer subtypes, and across metabolic
and cardiometabolic subtypes.

In terms of new prescription medication classes over
5 years, the rates for antibacterial drugs (69.1% and
56.5%); analgesics (57.3% and 43.3%); anti-secretory
drugs and mucosal protectants (43.0% and 30.5%); hy-
pertension and heart failure (35.9% and 18.7%); di-
uretics (30.9% and 22.2%); lipid-regulating drugs
7
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Cohort Classifier Metric Subtypes All-data

Early-onset Late-onset Metabolic Cancer Cardiometabolic Overall accuracy Kappa

Incidentb NIR: 0.4315 P< ε Naïve Bays Sensitivity 0.844 0.616 0.307 0.152 0.221 0.624 (0.57–0.65) 0.307 (0.26–0.32)

F1-score 0.826 0.687 0.616 0.120 0.443

B-Accuracy 0.945 0.785 0.720 0.554 0.586

KNN Sensitivity 0.967 0.967 0.444 0.484 0.546 0.777 (0.75–0.79) 0.676 (0.66–0.69)

F1-score 0.861 0.833 0.592 0.628 0.682

B-accuracy 0.955 0.849 0.718 0.737 0.769

Decision Tree Sensitivity 0.915 0.957 0.883 0.972 0.772 0.920 (0.90–0.93) 0.889 (0.88–0.90)

F1-score 0.915 0.943 0.883 0.956 0.831

B-accuracy 0.949 0.951 0.934 0.981 0.880

XGBoost Sensitivity 0.959 0.965 0.921 0.980 0.842 0.945 (0.94–0.95) 0.924 (0.92–0.93)

F1-score 0.951 0.957 0.924 0.974 0.934

B-Accuracy 0.973 0.963 0.955 0.987 0.915

Prevalant NIR: 0.3781 P< ε Naïve Bays Sensitivity 0.810 0.530 0.256 0.233 0.270 0.574 (0.55–0.59) 0.212 (0.20–0.22)

F1-score 0.847 0.654 0.616 0.09 0.547

B-Accuracy 0.888 0.764 0.756 0.521 0.575

KNN Sensitivity 0.498 0.500 0.975 0.959 0.563 0.751 (0.73–0.77) 0.657 (0.64–0.67)

F1-score 0.629 0.637 0.847 0.794 0.702

B-accuracy 0.740 0.744 0.960 0.841 0.778

Decision Tree Sensitivity 0.900 0.801 0.889 0.935 0.882 0.897 (0.87–0.92) 0.864 (0.84–0.88)

F1-score 0.927 0.787 0.900 0.926 0.900

B-accuracy 0.945 0.881 0.941 0.942 0.936

XGBoost Sensitivity 0.959 0.814 0.954 0.965 0.926 0.933 (0.93–0.94) 0.916 (0.91–0.92)

F1-score 0.960 0.844 0.945 0.950 0.936

B-Accuracy 0.976 0.897 0.972 0.962 0.958

aFive-fold cross validation. bNIR denotes “No Information Rate” for the data set. B-accuracy denotes balanced accuracy i.e., the average of sensitivity plus specificity per class. KNN is the K-nearest neighbour
algorithm. P<ε denotes p-value <0.0001 using 5-fold cross validation.

Table 2: Performance of four supervised machine learning models for predicting disease subtypes in incident (n = 350,067) and prevalent (n = 195,422) chronic kidney diseasea.
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(30.8% and 18.5%); nitrates, calcium-channel blockers
(29.4% and 19.2%); and medications used in rheumatic
diseases and gout (27.4% and 19.4%) were high in
incident and prevalent CKD respectively. Other than
medications used in rheumatic diseases and gout
(highest in the late-onset subtype), and hypertension
and heart failure (highest in the metabolic subtype),
rates of new prescription were highest across medica-
tion classes in the cardiometabolic subtype and lowest in
the early onset subtype, for incident and prevalent CKD
(Fig. 4).

Discussion
In the largest and most representative study to-date of
machine learning-informed subtype definition and risk
prediction in CKD, we have three major findings. First,
we identified five distinct subtypes across incident and
prevalent CKD with clinically important differences
across baseline characteristics: early-onset, late-onset,
metabolic, cancer and cardiometabolic subtypes, with
rigorous internal validation. Second, we highlighted
high 5-year rates of all-cause hospital admissions, mor-
tality and incident chronic diseases in individuals with
both incident and prevalent CKD and demonstra-
ted important differences across subtypes. Third, we
comprehensively showed high medication burden, with
differences across CKD subtypes and across incident
and prevalent CKD.

Classification systems for severity of CKD are well-
established in guidelines and in clinical practice,6,7 like
subtypes in other disease areas, such as left ventricular
ejection fraction-based classification in heart failure.14

However, there is substantial scope for improvement
for clinical, public health and research applications in
primary and secondary prevention, including precision
medicine.13 Based on easily available clinical character-
istics from routine EHR, including socio-demographic,
aetiologic and laboratory investigation variables, we
developed 5 subtypes with validity which we showed in
incident and prevalent CKD, the overall population and
subgroups (mild vs severe CKD). Whether epidemiology
during the pandemic22 or novel therapeutic approaches
for chronic diseases (e.g. SGLT2-inhibitors24), links
across traditional, organ- and disease-specific silos are
becoming more apparent. Our ML-informed subtypes
signal the focus for integrated CKD primary prevention:
T2D, hypertension, CVD,1,5 cancer2 and age.

The internal validation conducted in our study is
robust and reproducible; using multiple ML methods
(n = 7), variables (n = 66, selected from n = 2670
www.thelancet.com Vol 89 March, 2023
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Fig. 2: Five-year risk of all-cause hospitalisation and mortality by disease subtypes in prevalent and incident chronic kidney disease.
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variables derived from 264 factors), classifiers (n = 4)
and metrics (n = 3), following our framework for use of
ML in subtyping and risk prediction research.9 It is now
important to conduct external validation of these sub-
types in an independent dataset. Moreover, as we have
suggested for subtypes in HF,14 genetic validation of
the CKD subtypes may help to understand the impor-
tance and role of particular aetiologic factors. For
example, apolipoprotein L1 (APOL1) is a relevant ge-
notype25 associated with albuminuria, subclinical
atherosclerosis, incident myocardial infarction, and
mortality26; with two kidney risk variants (APOL1 G1
and G2) associated with nondiabetic CKDs specially in
people with African origin.27 The cardiometabolic sub-
type with highest incidence of CVD, MI and mortality
may have an association with these genetic loci. To show
clinical utility of this subtype classification, we will need
www.thelancet.com Vol 89 March, 2023
to assess the effectiveness and cost-effectiveness. The
methodology and framework we used is applicable,
generalisable and scalable to other diseases where
EHR data are available, particularly where there are al-
ready existing subtype classifications with scope for
improvement.

The cardiometabolic subtype has the worst prog-
nosis: associated with relatively higher incidence of
cancer, CVD, and highest mortality (5- and 10-year
mortality rates of 43.3% and 71.1%), in line with exist-
ing data supporting mutual associations between
severity of CKD and CVD.2–4 Relatively lower rate of
comorbidities, admissions and mortality in the late-
onset subtype, which accounts for two-fifths of inci-
dent and prevalent CKD, suggests that age alone is an
important predictor of onset and progression of CKD.
Current criteria for CKD using the same eGFR
9
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Fig. 3: Relative prevalence of British National Formulary sections of prescribed medication by disease subtype for incident and prevalent chronic
kidney disease.

Articles

10
threshold for all ages “may result in overestimation of
the CKD burden in an aging population, overdiagnosis,
and unnecessary interventions in many elderly people
who have age-related loss of eGFR”, based on analyses
showing similar rates of progression to end-stage renal
disease as the non-CKD population is individuals >65
years.28 Our finding of relatively lower all-cause mortal-
ity in the late-onset subtype (especially in prevalent
CKD) supports these analyses. Further research should
prospectively test and validate predictive accuracy of
subtypes and outcomes, and the preventable burden of
disease following CKD diagnosis, perhaps informing
clinical guidelines and resource allocation. Like our
prior study,20 we showed higher risk of mortality and
admission in incident than prevalent CKD. Potential
explanations are greater severity and progression
at CKD incidence, lower rates of treatment in incident
disease and better control of comorbidities in prevalent
CKD (e.g. hypertension, CVD), which future studies
must address. Guidelines already emphasise early
diagnosis and targeted management of hypertension,
T2D and CVD,5 but not necessarily in cancer or other
chronic diseases. As in primary prevention, our analyses
support personalised, multidisciplinary approaches to
secondary prevention in those with CKD at individual
and population levels.

We show the scale of prescribed medication burden
at baseline and over 5 years after diagnosis in people
with CKD, which highlights the multimorbidity and
complexity of management of CKD and associated
comorbidities and underlines the need for more evi-
dence to inform management guidelines.29 Moreover, in
combination with data about new prescribing and inci-
dent chronic disease, we believe there are four applica-
tions for these data. First, such data could help
clinicians and policymakers in planning care and
resource utilisation for people with CKD. Second, the
large-scale data regarding new and existing medications,
and new and existing diseases by CKD stage and CKD
subtype could have direct clinical applications and
inform guidelines, where inappropriate prescribing
before and after diagnosis are common.30,31 Third,
epidemiology and data science approaches in such large-
scale longitudinal data could facilitate knowledge and
action to prevent medication-induced kidney disease,
e.g. the “6R framework” (risk, recognition, response,
renal support, rehabilitation and research30), and could
help in understanding trajectory and pathophysiology of
CKD. Fourth, the fact that new and existing medications
seem to vary by our identified CKD subtypes is of in-
terest, showing cross-medication analysis as a potential
form of validation of ML-informed subtypes.

Strengths and limitations
This is the largest study to-date to develop and validate
ML-informed subtypes in CKD. Moreover, we used
www.thelancet.com Vol 89 March, 2023
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Fig. 4: New prescribed medication rate by disease subtype for most commonly prescribed medication classes in individuals with chronic kidney
disease over 5 years.
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rigorous ML methods, a published framework for
implementation of ML in subtype definition and risk
prediction, a large number of variables, and a large,
nationally representative study population. However,
there were several limitations. First, we did not
externally validate our subtypes or undertake genetic
analyses as in our previous work in HF subtypes.14

Second, we investigated neither the acceptability and
clinical utility of the CKD subtypes nor their effective-
ness and cost-effectiveness, which future research
should consider. Third, we considered all-cause
www.thelancet.com Vol 89 March, 2023
mortality and hospital admissions and therefore cannot
comment on specific causes. Fourth, we analysed by
medication chapters in the BNF and did not evaluate
individual medications. Fifth, we emphasised mortality,
hospitalisation and incidence of other chronic diseases,
but did not consider renal replacement therapy, which is
important clinically,32 and should be considered as an
outcome in future validation analyses. Sixth, although
we have labelled subtypes as “early onset” and “late
onset”, it is important to note that early or late presen-
tation may, at least partially, be due to differences in
11
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health-seeking behaviour, social deprivation or access to
primary care as much as physiological differences, but
were not investigated in this study. Seventh, our data
may not represent all populations, e.g. ethnic minorities
were under-represented. Finally, misclassification of
diseases due to incorrect coding is possible as in any
electronic health record study, although the risk and
impact is likely to be minimal in such a large-scale
dataset.

Conclusion
Current classifications of CKD do not capture the
complexity of comorbidities, medications, disease tra-
jectory and outcomes for research or clinical practice. In
the largest study of machine learning in CKD to-date, we
confirmed high burden of comorbidities and medica-
tions, poor prognosis by mortality, admissions and new
chronic disease, and defined and validated five subtypes,
which may have both academic and clinical applications.
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