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ABSTRACT

In nature, it is common to observe water wave crests with a droplet at their tip. This fascinating configuration remains unexplained from the
physical point of view. The present study explores such a unique local configuration numerically. Solitary waves that propagate at the
interface between two layers of irrotational fluids are considered. Extending the work of Guan et al. [“A local model for the limiting
configuration of interfacial solitary waves,” J. Fluid Mech. 921, A9 (2021)], the density ratio has been decreased to a very small value equal to
0.001, which is close to the air/water density ratio at sea level (0.0013). A highly accurate solution for the limiting configuration of solitary
waves is obtained by solving the irrotational Euler equations using the boundary integral method and Newton’s iterations. It is confirmed
that the limiting configuration consisting of a droplet sitting on a crest with a 120� angle exists for very small density ratios. This limiting
configuration obviously does not exist for surface waves with a void on the top, thus stressing the crucial role played by the air. The droplet
is stationary in a frame of reference moving with the wave and experiences intense shear at its tip. From the energy point of view, the
formation of a crest with a droplet is accompanied by a remarkable drop of kinetic and potential energies of water in the vicinity of the crest.
Furthermore, we present a simple set of scaling relations for the fall of the droplet.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0131944

I. INTRODUCTION

Water waves with a droplet on their crest can be observed on the
open ocean, on the seashore, and on lakes. Figure 1 shows some exam-
ples observed on the seashore in south Dublin, Ireland, and one may
also refer to the field observation in Ref. 1 (Fig. 5). This common, yet
unexplained, phenomenon may be related to wave breaking as these
droplets quickly bend and splash on the sea surface, thus generating
foam and spume. At the end of their experimental study, Villermaux
and Pomeau1 commented that the formation of droplets on the crest
may be relevant to the superfall of wave crests. Superfall means here
that the fluid can experience accelerations that are larger than the
acceleration due to gravity only. However, their experiments were car-
ried out with a different model than that of water waves, i.e., free fall of
water filling a vertical tube with expanding cross-section and open
ends. They did observe a concentrated “nipple” on the top of the
essentially flat base solution and attributed it to the instability of the
interface due to a pressure gradient during the superfall.

In fact, the droplet-type crest could be one of the limiting config-
urations of water waves. The investigation of the limiting configura-
tion of wave crests goes back to the conjecture made by Stokes one
and a half centuries ago about the crest profile of periodic traveling
waves when they reach their maximal amplitude. They are known as
the Stokes highest waves. After many years of discussion from asymp-
totic, numerical, and analytical perspectives,2–4 it is now widely
accepted that the limiting configuration of the Stokes highest wave is a
stagnation point at the crest with an enclosed angle of 120�. At the
same time, the limiting configuration of solitary waves has also been
investigated. It has been shown that extreme solitary waves have the
same limiting configuration as the periodic waves.5–8 Indeed, the limit-
ing configuration at the very tip is localized and independent of wave-
length and water depth.2 Comparing this limiting configuration
obtained with a surface wave model to the droplet-type crest, it looks
like the surface wave model can hardly reproduce and explain the for-
mation of a droplet on the crest. One possible reason is that the

Phys. Fluids 35, 012101 (2023); doi: 10.1063/5.0131944 35, 012101-1

VC Author(s) 2023

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0131944
https://doi.org/10.1063/5.0131944
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0131944
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0131944&domain=pdf&date_stamp=2023-01-03
https://orcid.org/0000-0002-5227-4631
https://orcid.org/0000-0002-7594-4861
https://orcid.org/0000-0003-4430-6389
https://orcid.org/0000-0002-5123-4929
mailto:frederic.dias@ucd.ie
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0131944
https://scitation.org/journal/phf


influence of air which has been neglected so far turns out to be more
important than originally thought.

In this paper, we take air into account and investigate the limiting
configuration of interfacial waves between two layers of homogeneous
fluids. The aforementioned sharp crest of 120� is no longer possible.
Otherwise, the fluid velocity in the upper layer near the crest would
become infinite.9 A wave profile with a vertical tangent was initially
regarded as the configuration of the highest-possible interfacial
wave.10 Later, the existence of overhanging configurations was found
numerically.11,12 Meiron and Saffman9 asserted that these overhanging
solutions would continue to exist until the interface becomes self-
intersecting. Finally, a stagnant fluid “bubble” on the top of a 120�

angle was proposed by Grimshaw and Pullin13 as the limiting configu-
ration of interfacial waves. Recently, a highly accurate numerical inves-
tigation of the limiting configuration of interfacial waves was
conducted (see Ref. 14, Fig. 7), in which the smallest density ratio used
was 0.01. This configuration being localized, it is also valid for solitary
interfacial waves.15,16 In fact, the limiting configuration of a stagnant
fluid bubble on a wave crest is highly similar to the droplet-type crest.
This similarity led us to wonder about their connections.

The density ratio q could be the most crucial number for the
localized configuration of the crest under the precondition that the
depth allows the wave to develop freely. However, the aforementioned
investigations are restricted to moderate values of q. Although

interfacial waves with q ¼ 10�4 were examined in Ref. 17, the over-
hanging profile with the smallest value of q is only given for q ¼ 0:15.
Recently, Guan et al.18 revisited the limiting configuration of solitary
waves and decreased the value of q to 0.01. To overcome the rapid
shrinking of the local limiting configuration when decreasing q even
further, a simplified model was proposed. In that study, it was found
that the formation of the limiting configuration is always accompanied
by a decrease in the amplitude. It seems to be consistent with the con-
cept that nipples are caused by the superfall of the crest, see Ref. 1.
Considering that the actual density ratio of air to water is of the order
of Oð10�3Þ, that is at least one order of magnitude smaller than the
values used in the existing studies. For such a low density ratio, the
existence of a limiting configuration with a stagnant fluid bubble on
the crest is still an open question. If this limiting configuration does
exist, the actual solution has not been presented yet, and the possible
relationship with the droplet-type crests has not been discussed yet.

In the present study, solitary interfacial waves are investigated.
We follow Ref. 18 and decrease the value of q to the air–water density
ratio (�10�3). It turns out that the limiting configuration with a stag-
nant droplet on the wave crest does exist for such a low density ratio.
The actual configuration, the velocity field and the shear along the
interface are presented. The variation in the kinetic and potential ener-
gies of the fluid in the crest region along the solution branch is dis-
cussed. It is shown that the decrease in the wave amplitude is not a

FIG. 1. Wave crests with a droplet at their tip observed on the seashore in south Dublin, Ireland: (a) an example of a dense distribution and (b)–(g) view of the typical local
forms from different angles.
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necessary condition for reaching the limiting configuration. Instead,
the remarkable drop of mechanical energy inside the crest is.
Furthermore, a simple set of scaling relations is introduced for estimat-
ing the splash of the main droplet. Our results may be helpful for
understanding the common, yet unexplained, droplet-type crest
phenomenon.

II. FORMULATION OF THE PROBLEM

We consider a two-dimensional air layer of density q2 and thick-
ness h2 over a water layer of density q1 and thickness h1, as illustrated
in Fig. 2. The top and bottom boundary conditions are solid horizontal
walls. The stratification is overall stable as q1 > q2. An interfacial soli-
tary wave travels at speed c along the x-axis from the left (x ! �1)
to the right (x ! 1), and it is symmetric with respect to the vertical
y-axis. The system of coordinates moves with the wave, and the level
y¼ 0 is the undisturbed level of the interface. Gravity acts in the nega-
tive y direction. The quantities h1, c, and q1 are used as length, velocity,
and density units, respectively, to nondimensionalize the system.

Under the assumption of irrotational flow, the motion of water
and air can be described by the Laplace equation

@2/j

@x2
þ @2/j

@y2
¼ 0 in Xj; j ¼ 1; 2: (1)

/j is the nondimensional velocity potential, and Xj is the fluid domain
shown in Fig. 2. Here and hereafter, the subscripts j¼ 1 and 2 corre-
spond to the water layer and the air layer, respectively.

The two kinematic and the dynamic boundary conditions on the
interface read

@/j

@y
� @/j

@x
@g
@x

¼ 0; j ¼ 1; 2 (2)

and

qjr/2j2 � jr/1j2 þ 2ðq� 1Þ g
F2

¼ q� 1: (3)

Here, q ¼ q2=q1 represents the air/water density ratio, g is the nondi-
mensional elevation of the interface, F ¼ c=

ffiffiffiffiffiffiffi
gh1

p
is the Froude num-

ber, and g is the acceleration due to gravity.

The two fluid layers are bounded by the horizontal upper and
bottom walls. The corresponding boundary conditions can be
expressed as

@/1

@y
¼ 0 at y ¼ �1;

@/2

@y
¼ 0 at y ¼ h:

(4)

The depth ratio h is defined as h2=h1.
In the frame of reference moving with the wave speed, the

boundary conditions at infinity for the solitary wave are

@/j

@x
! �1;

@/j

@y
! 0; g ! 0 at x ! 61; j ¼ 1; 2: (5)

The solitary waves are characterized by three dimensionless
parameters: h, q, and F. The impact of h is insignificant when it is large
so that the wave can develop freely. According to Kataoka (Ref. 17,
Table I), the threshold value is of the order of h> 5 for small q. In this
study, h is fixed at 80. This implies that when q will be further fixed at
10�3, a value close to the air/water density ratio, there will be only one
governing parameter: the Froude number F.

III. NUMERICAL METHOD

The numerical method closely follows the numerical method
used in Ref. 18. Some details are repeated for the sake of completeness,
and the differences are emphasized. The interface is parameterized by
the arc length s as x ¼ XðsÞ and y ¼ gðsÞ. It gives the arc length
equation

X0ðsÞ2 þ g0ðsÞ2 ¼ 1: (6)

Let s¼ 0 at x¼ 0. There are two conditions for X and g

Xð0Þ ¼ 0; gð0Þ ¼ A: (7)

Here, A is the nondimensional wave amplitude.
Following Refs. 18 and 19, the Laplace equation (1) can be refor-

mulated using the Cauchy integral formula. Let u and v denote the
horizontal and vertical velocities, respectively. Introducing WjðzÞ
¼ ujðzÞ � ivjðzÞ þ 1, which is an analytic function of z ¼ x þ iy, the
Cauchy integral formula gives

Wjðz0Þ ¼ 1
pi

þ
@Xj

WjðzÞ
z � z0

dz; j ¼ 1; 2; (8)

for z0 on the boundary of the integration domainXj.
We use the Schwarz reflection principle to satisfy the boundary

conditions on the upper and bottom walls (4). The integration domain
in (8) for water can be X1 plus its reflection about the bottom wall,
which is bounded by g and gR;1. Similarly, for the air, its integration
domainX2 is bounded by g and gR;2. gR;j are expressed as

gR;j ¼
�2� g when j ¼ 1;

2h� g when j ¼ 2:

(
(9)

Based on the arc length parameterization, the integration in (8)
carried out in the original plus reflected domains can be rewritten as

FIG. 2. Schematic of the crest of a solitary wave on the air–water interface. The
wave y ¼ gðxÞ propagates at a constant velocity c. It lies between two layers of
fluids with density qi and depth hi, i¼ 1, 2, with q1 > q2. The crest domain X

0 is a
square of length l. The wave shown is a numerical solution y ¼ gðxÞ with
q ¼ 0:001, h¼ 80.
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Wjðs0Þ ¼ 1
pi

þ
gþgR;j

WjðsÞ X0 þ iY 0½ �
XðsÞ � Xðs0Þ½ � þ i YðsÞ � Yðs0Þ½ � ds; j ¼ 1; 2:

(10)

According to (5),Wj ! 0 when x ! 1. Thus, the integral above
can be calculated in s 2 ð�L; LÞ with large L. Using the symmetry of
the interface with respect to the y-axis and taking the real part, (10)
can be finally simplified as

ujðs0Þþ1¼þ
ðL
0

u1ðsÞþ1ð ÞX0ðsÞþv1ðsÞg0ðsÞ
� �

gðsÞ�gðs0Þ½ ��g0ðsÞX�
X2�þ gðsÞ�gðs0Þ½ �2 dsþ

ðL
0

u1ðsÞþ1ð ÞX0ðsÞþv1ðsÞg0ðsÞ
� �

gðsÞ�gðs0Þ½ ��g0ðsÞXþ
X2þþ gðsÞ�gðs0Þ½ �2 ds

�
ðL
0

u1ðsÞþ1ð ÞX0ðsÞþv1ðsÞg0ðsÞ
� �

gR;jðsÞ�gðs0Þ
� �þg0ðsÞX�

X2�þ gR;jðsÞ�gðs0Þ
� �2 ds�

ðL
0

u1ðsÞþ1ð ÞX0ðsÞþv1ðsÞg0ðsÞ
� �

gR;jðsÞ�gðs0Þ
� �þg0ðsÞXþ

X2þþ gR;jðsÞ�gðs0Þ
� �2 ds:

(11)

Here, X6 ¼ XðsÞ6Xðs0Þ and j¼ 1, 2.
Meanwhile, the kinematic boundary condition (2) can also be

written in the parameterized form

vjðsÞX0ðsÞ � ujðsÞg0ðsÞ ¼ 0; j ¼ 1; 2: (12)

The integration domain s 2 ð0; LÞ is divided into N� 1 elements
by seeds sk, where k ¼ 1; 2; 3;…;N . The length of the kth element dsk
is equal to skþ1 � sk, and the middle point of each element rk is equal
to ðskþ1 þ skÞ=2, where k ¼ 1; 2; 3;…;N � 1. In Ref. 18, uniform
meshes were used. However, as the size of the droplet-type crest
decreases significantly with the decrease in q, nonuniform meshes are
adopted in the integral domain in the present paper. More specifically,
uniform finer meshes for the crest region, uniform larger meshes in
the tail, and meshes with fixed stretching ratio dsk=dsk�1 ¼ 1:004 in
between the crest and tail are used.

The midpoint rule is applied for the integral equations (11) to avoid
the singularities. It gives 2N � 2 algebraic equations. The boundary condi-
tions of the interfaces (3), (6), and (12) are discretized on the seeds, which
gives 2N, N, and N algebraic equations, respectively. Using the boundary
condition (7), the number of unknown variables can be reduced to 6N,
which are x0ðskÞ; g0ðskÞ; ujðskÞ; vjðskÞ; k ¼ 1; 2; 3;…;N . Together
with the conditions g0ð0Þ ¼ 0 and u1ðLÞ ¼ �1, we are ready to search
the branch of steady solutions in the F� A plane.

Lagrange second-order interpolation is adopted for the deriva-
tives. Iterations are carried out by Newton’s method with a maximum
residual error less than 10�9. When the first turning point on the

branches appears, Lagrange third-order interpolation and a maximum
residual error threshold of 10�11 are adopted.

The solution branches are explored by the following procedures:
(i) a Gaussian profile with infinitesimal amplitude is produced as an
initial guess of the solitary wave, and then, the first solution, a point on
the branch, can be obtained by iteration; (ii) the former solution is
used as the initial guess for the next step with a slight change of A (or
F); thus, the next new solution can be obtained by iteration; (iii) repeat
step (ii) until the droplet-type configuration develops; and (iv) the
solution branch in the F � A plane is then built by collecting all the
solutions.

Figure 3 shows that the mesh size at the crest ds1 has a significant
impact on the crest profile, whereas the domain size L mainly affects
the profile of the tail of the wave and the wave amplitude. Using 1900
elements with ds1 ¼ 1:0� 10�3 and L¼ 9.2 was found to be a good
balance between computational cost and precision.

IV. RESULTS AND DISCUSSION
A. Limiting configuration

Figure 4 presents the branch of solitary wave solutions in the
F� A plane. Eight typical solutions marked by the red circles along the
branch are selected. They are S1 (1.0957, 0.2042), S2 (1.1830, 0.4125),
S3 (1.2558, 0.6166), S4 (1.2974, 0.8095), S5 (1.2949, 0.8320), S6
(1.2916, 0.8530), S7 (1.2922, 0.8590), and S8 (1.2929, 0.8608). Halves of
the symmetric crests are plotted in Fig. 5. It is shown that the angle of
the crest decreases and converges to 120� along the branch. Figure 5(b)

FIG. 3. Sensitivity test of the mesh size
ds and the integral domain L on the profile
of the interface at the crest and in the tail:
(a) wave crest and (b) wave tail.
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confirms that the droplet-type crest does exist for the small density
ratio q ¼ 0:001 and that it develops after the second turning point S6.

Figure 4 also shows that the wave amplitude increases monotoni-
cally along the solution branch. However, for the solution branches
with larger values of the density ratio q (see Fig. 14 for q¼ 0.1 and
illustrations for other density ratios in Ref. 18), the amplitudes always
steepen along the solution branch to reach the highest wave and then
decrease to form the droplet-type crest. Moreover, Villermaux and
Pomeau1 conjectured that the nipples on the wave crest may be caused
by its superfall. It may give an illusion that the formation of the
droplet-type crest is always accompanied by the decrease in A.
However, the case q ¼ 0:001 considered in the present study indicates
that a decrease in A is not a necessary condition for the formation of
the limiting configuration.

To extend the solution branch past S8, much finer meshes are
needed as the length of the neck region of the droplet crest will
decrease further. In Ref. 18, a simplified model was introduced: the
crest was replaced by two straight solid walls intersecting at the origin
with an angle of 120� and a closed fluid bubble with a flat bottom on
the top of the angle. It was found that the profiles for different values
of the density ratio q are geometrically similar. The limiting

configuration obtained with the local model is also presented for q ¼
0:001 in Fig. 5(b). Comparing the S8 profile with the local model, it is
seen that the neck region may shrink further, leading to self-
intersection after S8 and the local model may still be a good represen-
tation of the true solution.

Next, we explore the velocity fields. The velocity components in
the moving frame at any location zi in Xj, j¼ 1, 2, are calculated again
using the Cauchy integral formula, yielding

ujðziÞ ¼ Re
1
2pi

þ
gþgR;j

WjðzÞ
z � zi

dz

" #
� 1;

vjðziÞ ¼ �Im
1
2pi

þ
gþgR;j

WjðzÞ
z � zi

dz

" #
:

(13)

Let us take S4 and S8 as solutions that are representative of
the classical and droplet-type crests, respectively. Their velocity fields
with the wave and interfacial shear velocity are plotted in Fig. 6.
The components of the interfacial shear velocity (Du; Dv) are
(u1 � u2; v1 � v2). Figures 6(a) and 6(c) show that the most intense
shear occurs at the tips because of the significant slowdown of the
water (in the moving frame) and speedup of air around the crest, and
the shear velocity can be more than twice the wave speed. For the
droplet-type situation, Fig. 6(b) indicates that the droplet at the wave
tip is almost stationary. The most severe shear still occurs at the crest.
However, it has been further strengthened to be more than five times
larger than the wave speed, see Fig. 6(d). It is interesting that there
exists a segment on the interface without shear, denoted by Sb, which
corresponds to the segment labeled by the blue line at the bottom of
the droplet, see Fig. 6(b). In fact, the velocity components at segment
Sb vanish as well.

The ratio between the speed of the water particle at the tip
and the wave speed, u1t þ 1, along the solution branch is plotted in
Fig. 7(a). It can be seen that the speed of water at the tip
approaches the wave speed with an obvious speedup after point S4 along
the solution branch. According to the kinematic wave breaking criterion
(e.g., Ref. 20), it suggests that breaking won’t occur for the droplet-type
crest if 1.0 is regarded as the threshold ratio between the particle speed at
the tip and the wave speed. Note that the value of 1.0 was revisited by
Barthelemy et al.21 and brought down to 0.85, in which case breaking
would occur. Figure 7(b) shows the square of the shear velocity at the tip,
along the solution branch. It seems that there is a simple exponential
relation

FIG. 4. Solution branch in the F � A plane for q ¼ 0:001 and h¼ 80. The points
labeled S1–S8 correspond to typical solutions selected to observe the wave profile
and the shear at the interface.

FIG. 5. Shape of the half symmetric wave
crest of eight selected typical solutions
S1–S8 (see Fig. 4). A is the wave ampli-
tude, q ¼ 0:001, and h¼ 80: (a) waves
S1, S2, S3, and S4; (b) waves S5, S6,
S7, S8, and solution obtained with the
local model in Ref. 18 with q ¼ 0:001.
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ðu2t � u1tÞ2 � Aa; (14)

with a ¼ 2:1 for small and moderate amplitude and a ¼ 42:5 for
extreme high amplitude.

B. Crest mass and energies

The kinetic and potential energies in a domain X0 around the
crest, called the “crest domain” hereafter, are of interest as the limiting
configuration is localized. The kinetic energy ET;j, the potential energy
EP;j, and the massMj of water and air in that domain are calculated as

ET;j ¼ 1
2

ð ð
X0

j

qj ðuj þ 1Þ2 þ v2j

h i
F2dxdy; (15)

EP;j ¼
ð ð

X0
j

qjydxdy; (16)

Mj ¼
ð ð

X0
j

qjdxdy; (17)

where j¼ 1, 2. It is noteworthy that ET;j is calculated in the still frame
of reference, and all the energies are nondimensionalized by q1gh

3
1.

The mass and energy can be influenced by the shape and size of
the crest domain. In practice, the crest domain is a square domain of
length l, and the wave tip is located at the height 5=6l and the horizon-
tal center as marked by the domain X0 in Fig. 2. Five different values
of l, namely, 0.06 [as shown by the domain in Fig. 6(b)], 0.12, 0.24,
0.48, and 0.96, are examined. The results indicate that the variation

FIG. 6. Velocity fields in the frame moving
with the wave and shear velocity at the
interface, for q ¼ 0:001 and h¼ 80: (a)
and (c) correspond to solution S4 with a
normal crest, and (b) and (d) correspond
to solution S8 with a droplet-type crest. Sb
denotes the segment on the interface
without shear.

FIG. 7. Ratio between the speed of the
water particle at the tip of the crest and
wave speed (a) and shear velocity at the
very tip of the wave (b). ujt ¼ uj (s¼ 0),
j¼ 1, 2, q ¼ 0.001 and h¼ 80.
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trends ofMj, ET;j, and EP;j along the solution branch are insensitive to
l, but not the locations of their extrema. The results corresponding to
the crest domain with l¼ 0.06 are presented first.

With increasing wave amplitude along the solution branch
shown in Fig. 4, the wave crest steepens from an initially flat interface
and finally develops into a droplet-type crest. This means that part of
the water in the crest domain is replaced by air, resulting in the
decrease in M1. Figure 8 shows that up to 38% of water has been lost
along the solution branch. The sharp decrease starts at S4, the first
turning point in the solution branch.

In general, the kinetic and potential energies of water and air are
divided into two stages along the solution branch, i.e., a gentle varia-
tion stage followed by a sharp rise/drop stage, see Figs. 9 and 10.
However, the turning points are not synchronized exactly. In fact, the
size of the crest domain l can also influence the location of the turning
point slightly. Figure 9 indicates that ET;1 and EP;1 drop significantly
during the formation of the droplet-type crest, although the wave
amplitude does not decrease.

With the increase in the velocity of water at the tip, the kinetic
energy of water in the crest domain first increases. The sharp drop of
ET;1 in Fig. 9(a) between S6 and S8 is mainly due to the remarkable
decrease in the water mass in the crest domain, see Fig. 8. This implies
that the variation in the kinetic energy of water is a result of the com-
petition between an increase in the velocity and a decrease in the mass

in the crest domain. The sharp drop of EP;1 in Fig. 9(b) is also due to
the decrease inM1.

The monotonic increase in ET;2 and EP;2 is straightforward,
because the velocity of air at the tip keeps increasing up to more than
five times larger than the wave speed [see Fig. 6(d)], and up to 38% of
water is monotonically replaced by air (see Fig. 8) along the solution
branch. The insignificant difference of ET;2 between S7 and S8 is due
to the flow of air by the side of the neck, i.e., the region between the
profiles of S7 and S8 [see Fig. 5(b)] is characterized by small velocities.

The total energy of water and air, E ¼ RET;j þ REP;j, in the crest
domain (“crest energy” hereafter) is plotted vs F in Fig. 11. The maxi-
mum value of the crest energy as a function of F is marked with a red
cross. Figures 11(a)–11(d) show that the location of the maximum of
the crest energy is sensitive to the size of the crest domain and shifts
from S4 to S6 when l decreases. This is because the energy of the
smaller crest domain tends to reflect more the energy variation of the
very tip. The droplet-typed crest formed at the very tip after S6 is
accompanied by a significant energy drop. Overall, the formation of a
droplet-type crest won’t occur before that maximum.

Solitary waves can be regarded as waves with infinite wavelength.
Therefore, the wavelength of any disturbance will be shorter than the
solitary wave. The stability of the basic wave to disturbances with a
smaller wavelength is called superharmonic instability.22 The exchange
of superharmonic instability occurs at stationary values of the total
wave energy relative to the wave speed, as first found numerically by
Tanaka23 for periodic gravity waves in deep water. It was then analyti-
cally proved24 and extended to surface solitary waves.25 However, the
situation is subtle for waves in water of finite depth. Indeed, Kataoka26

showed that the exchange of stability for surface gravity waves occurs
when the total wave energy becomes stationary as a function of the
wave speed for fixed mean surface height and not for fixed Bernoulli’s
constant. Kataoka17 showed that the energy criterion is also valid for
interfacial waves. The application of the criterion for exchange of
superharmonic instability to the branch of solutions computed in the
present work is left for future work that will be fully dedicated to the
stability of the present solitary waves.

We now present the results on the total energy in the whole com-
putation domain as they are interesting in themselves, even without
mentioning stability. This energy, which we call the “global energy”
hereafter, is calculated as

EG ¼ REGT;j þ REGP;j in Xj; j ¼ 1; 2: (18)

EGT;j and EGP;j are the global kinetic energy in the still frame of refer-
ence and global potential energy, respectively. Using the kinematic

FIG. 8. Mass of water in the crest domain along the solution branch. q ¼ 0:001
and h¼ 80. The length l of the crest domain is set equal to 0.06. The crest corre-
sponding to solution S8 is shown in Fig. 5(b).

FIG. 9. Energies of water in the crest
domain: (a) kinetic energy measured in
the still frame and (b) potential energy, the
reference being the undisturbed free sur-
face. The parameters are the same as in
Fig. 7.
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boundary condition and (6), and nondimensionalizing by q1gh
3
1, the

energies are expressed as

EGT;j ¼ ð�1Þj�1 qj
2
F2

ðL
�L
ð/j þ xÞ @ð/j þ xÞ

@n

����
y¼g

ds

¼ ð�1ÞjqjF2
ðL
0

ðs
0
ðujðsÞX0ðsÞ þ VjðsÞg0ðsÞÞdsþ XðsÞ

� �
g0ds

(19)

and

EGP;j ¼ ð�1Þj�1qj

ðL
0
gðsÞ2X0ðsÞds: (20)

Here, n is the normal to the interface.
The global energy along the branch with fixed Bernoulli’s con-

stant is presented in Fig. 12. The global energy is insensitive to L as

long as L is large enough. Indeed, ujx¼L ¼ vjx¼L � 0, so there is no
contribution to the kinetic energy. As for the potential energy, it is on
the undisturbed free surface, and the constant term has been dropped
during integration. The first stationary point ðdEG=dF ¼ 0Þ occurs
before S4, and the second stationary point occurs around S6.

Comparing Fig. 12 with Fig. 11, we conclude that the energy will
first reach its maximum globally and then locally at the tip along the
solution branch.

C. Fall of the droplet

So far, we considered only stationary solutions in the frame of
reference moving with the wave. In this section, we imagine that
we consider time-dependent solutions. As time increases, the
droplet will fall on the front side of the wave under gravity, consid-
ering the weak support from the neck, and finally, it will splash on
the interface forming foam resulting in intense energy transfer and

FIG. 10. Energies of air in the crest
domain: (a) kinetic energy measured in
the still frame and (b) potential energy, the
reference being the undisturbed free sur-
face. The parameters are the same as in
Fig. 7.

FIG. 11. Maximum values (red crosses)
of the total wave energy in the crest
domain with different sizes of the crest
domain. l ¼ (a) 0.06, (b) 0.12, and (c)
0.24. (d) is the location of the maximum
value of E on the branch when varying l.
q ¼ 0:001 and h¼ 80.
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dissipation. At the same time, the wave will experience stretching
as shown by the red profile in the sketch of Fig. 13. The stretched
water body may turn into a thin film. This thin film can encounter
significant aerodynamic effects and air entrainment and may fur-
ther break into some micro-droplets released to the air.

There exist two different scenarios: one is that the droplet can fall
a distance approximately equal to A, designated as uninterrupted fall,
and the other one is that the droplet splashes on the slope profile of
the wave itself with a fall that is much smaller than A, designated as
interrupted fall. During the short period of the fall of the droplet, we
introduce the following assumptions: (i) the limiting configuration of
the wave consists of a droplet on the top, a main water body of the
wave which is confined by two flat interfaces intersecting with an angle
of 120�, and a neck region in between connecting them, as illustrated
by the black dash line in Fig. 13; (ii) the droplet falls freely under grav-
ity, and the aerodynamic force is much smaller than the gravity force;
and (iii) the main water body of the wave propagates at a speed much
slower than the wave speed with insignificant deformation. In fact, the
last two assumptions imply that intense stretching would occur at the

neck region. Based on the assumption of free fall, the timescale for the
main droplet to fall a distance sv is ð2svh1=gÞ1=2, where sv is normal-
ized by h1 and 0 < sv < A. If cð2svh1=gÞ1=2 is always larger than
svh1 tan ðp=3Þ, it goes to the uninterrupted fall. Otherwise, it goes to
the interrupted fall. That gives a criterion identifying these two scenar-
ios, which reads

A. 2
3
F2: (21)

The criterion (21) has been plotted in the F � A plane with the
solution branches of q ¼ 0:001 and 0.1, as shown in Fig. 14. It sug-
gests that the main droplet will experience an uninterrupted fall for
the case of q ¼ 0:001, whereas an interrupted fall of the main droplet
can occur for a larger density ratio as indicated by the solution branch
of q ¼ 0:1.

Using the fact that the droplet falls a distance A without interrup-
tion, the length scale of the droplet and its impacting velocity and
angle can be further estimated. As discussed in Fig. 6(d), we have
u1t ¼ v1t ¼ v2t ¼ 0 at the top of the droplet (Sa) and u1 ¼ v1 ¼ u2
¼ v2 ¼ 0 at the bottom (Sb, see Fig. 13). Accordingly, the dynamic
boundary condition (3) can be simplified, which gives the vertical
coordinates of Sa and Sb as 1=2F2 þ 1=2qu22tF

2=ð1� qÞ and 1=2F2,
respectively. Their difference gives the following dimensional length
scale ls for the droplet:

ls � q
2ð1� qÞ u

2
2tF

2h1: (22)

This relationship for the length scale is valid as long as the droplet-
type solution exists, whatever the value of the density ratio is.
However, measuring the speed u2t is usually not easy. We may esti-
mate u2t using the exponential relation in (14), u22t � Aa, with
a ¼ 42:5, according to Fig. 7(b).

Based on the free fall timescale ð2Ah1=gÞ1=2 and on the wave
speed, we can also obtain the scales of the dimensional impact velocity
Vs and of the angle hs. They read

FIG. 12. Global wave energy EG as a function of the Froude number F in the whole
computation domain. q ¼ 0:001 and h¼ 80.

FIG. 13. Sketch of the time-dependent evolution of the droplet-type crest.
FIG. 14. Regions for the fall of the main droplet. Uninterrupted fall: A. 2=3F2;
interrupted fall: AZ 2=3F2.
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Vs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gAh1 þ c2

p
;

hs � tan�1
ffiffiffiffiffiffiffiffiffiffi
gAh1

p
=c

� 	
:

(23)

The combination of (22) and (23) may lead to a quantitative
analysis of the splashing event using the corresponding splashing
models.

V. CONCLUSION

The local limiting crest configuration of progressive solitary inter-
facial waves confined by two walls parallel to the undisturbed interface
is fully determined by three dimensionless numbers: the depth ratio,
the density ratio, and the Froude number. In this study, the density
ratio is set equal to the small value of 0.001 that corresponds roughly
to that of the air–water situation at sea level; the depth ratio is fixed at
80—it is large enough to allow the solitary waves to develop freely.
The irrotational flows in both layers are numerically solved using the
boundary integral equation method and Newton’s iteration method.
The solution branch in the amplitude-Froude number plane is
obtained, and a highly accurate solution of the limiting configuration
with the maximum residual error less than 10�11 is presented.

Along the solution branch, there exist two different stages. In the
first stage, the wave has a non-overhanging crest and the energy
increases. Then, a limiting configuration characterized by a droplet sit-
ting on the wave crest with an angle of 120� can be observed. The for-
mation of the droplet-type crest is accompanied by a remarkable drop
of both kinetic and potential energies of the water in the crest. This
limiting configuration experiences intense shear at the tip, and the shear
velocity can be more than five times larger than the wave speed.
Furthermore, a simple set of scaling relations is also presented for the
fall of the droplet, including the length scale of the droplet and
the scales of its impacting velocity and angle. Our results confirm that
the droplet-type crest exists even for the low air–water density ratio,
without the presence of surface tension. It may be helpful for under-
standing the common, yet unexplained, phenomena of water waves
with a droplet on their crest. The stability analysis is left for future work.
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