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ABSTRACT The ancestral recombination graph (ARG) is a structure that describes the joint genealogies of sampled DNA
sequences along the genome. Recent computational methods have made impressive progress towards scalably estimating
whole-genome genealogies. In addition to inferring the ARG, some of these methods can also provide ARGs sampled from a
defined posterior distribution. Obtaining good samples of ARGs is crucial for quantifying statistical uncertainty and for estimating
population genetic parameters such as effective population size, mutation rate, and allele age. Here, we use standard neutral
coalescent simulations to benchmark the estimates of pairwise coalescence times from three popular ARG inference programs:
ARGweaver, Relate, and tsinfer+tsdate. We compare 1) the true coalescence times to the inferred times at each locus; 2) the
distribution of coalescence times across all loci to the expected exponential distribution; 3) whether the sampled coalescence
times have the properties expected of a valid posterior distribution. We find that inferred coalescence times at each locus are
most accurate in ARGweaver, and often more accurate in Relate than in tsinfer+tsdate. However, all three methods tend to
overestimate small coalescence times and underestimate large ones. Lastly, the posterior distribution of ARGweaver is closer
to the expected posterior distribution than Relate’s, but this higher accuracy comes at a substantial trade-off in scalability. The
best choice of method will depend on the number and length of input sequences and on the goal of downstream analyses, and
we provide guidelines for the best practices.
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The full ARG is a structure that encodes all coalescence and
recombination events resulting from the stochastic process

of the coalescent with recombination. Hudson (1983) first de-
scribed a stochastic process that combines recombination and
coalescence to generate genealogies. At each given site, the
genealogy resulting from this process is equivalent to the one
generated by the single-locus coalescent model (Kingman 1982),
but because recombination breaks loci apart (Figure 1A), the
local genealogies can differ between sites.

Representations of the ARG
The full ARG can be represented as a directed graph with two
types of nodes: 1) coalescence nodes, where two or more edges
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merge into one (backwards in time) and 2) recombination nodes,
where one edge splits in two (backwards in time) (Figure 1B).
Alternatively, the full ARG can also be represented as an ordered
collection of marginal coalescence trees, annotated with the re-
combination nodes. These marginal trees are embedded in the
graph representation (Figure 1B,C).

In some representations, the collection of trees may or may
not contain all the information from the full ARG, depending on
whether the times of recombination events (red crosses in Figure
1) are stored with the trees (Rasmussen et al. 2014), and whether
the internal nodes of the tree are labelled so they can be explicitly
shared between adjacent trees. Furthermore, in some cases only
topology changing recombination events are represented, and
thus information regarding recombination events that do not
lead to topology changes can be lost (Kelleher et al. 2019). Finally,
some representations of ARGs as a collection of local trees al-
low more than one recombination event between trees (Speidel
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Figure 1 Schematic representations of the genealogy of a sam-
ple of two diploid individuals. Colors denote the four haplo-
types sampled, and black lines indicate lineages or sequence
tracts where at least one coalescence has occurred. Dark red
crosses indicate recombination events. (A) The genealogy
embedded in a pedigree. (B) An ancestral recombination
graph (ARG) that fully represents all genealogical relation-
ships shown in A, assuming that recombination events are
annotated with the sequence coordinates. (C) An equivalent
representation of the full ARG as a set of local trees separated
by a single recombination event. (D) A set of trees that does
not correspond to the full ARG. Instead, the second tree is an
average of the local trees at that region.This set of trees is miss-
ing a recombination event that does not change topology, but
changes the coalescence time. Other types of recombination
events that could me missing in a partial ARG are: i) recom-
bination followed by coalescence in the same branch, which
does not change topology or other coalescence times and ii)
topology changing recombination events.

et al. 2019). In the latter two cases, each tree will potentially be
an average of multiple coalescence trees. Figure 1D shows an
example of a collection of local trees that does not correspond to
the underlying full ARG, since one of its local trees is an average
of two adjacent trees with identical topologies.

Collections of local trees with labelled internal nodes, re-
gardless of whether they represent a full ARG or not, can be
represented efficiently in computer memory by noting that each
branch is part of many marginal trees (note repeated node num-
bers across trees in Figure 1C)). This property has been explored
in the "tree sequence" format (Kelleher et al. 2018).

The full ARG contains all the information in a sample of
DNA sequences regarding demography. Specifically, for a set
of demographic parameters θ, parameters of the mutational
process µ, sequence data x, and ARG G, p(x|θ, µ, G) = p(x|µ, G),
i.e. if G is known there is no more information in the data
about θ. A similar statement can be made for recombination and
selection, if the leaf nodes of G are augmented with the allelic
state at the selected loci. Therefore, the ARG is necessarily at
least as informative as the combination of any and all summary
statistics traditionally used to infer evolutionary processes (such
as FST , π, Tajima’s D, or EHH). Knowledge of the ARG is key
for constructing powerful methods for extracting population
genetic information from DNA sequencing data.

Inferring ARGs
Unfortunately, ARGs cannot be directly observed but must be
inferred from the data. Together with an estimate of the ARG,
it is desirable to quantify the uncertainty around the inferred
ARG, for example by obtaining samples of ARGs according to
their posterior probabilities under a given model (we discuss
examples of these models in the next section). Such samples can
be used to quantify uncertainty regarding ARG inferences in
downstream analyses. Accurate sampling from the posterior dis-
tribution is especially relevant for downstream methods that rely
on importance sampling to infer evolutionary parameters from
ARGs. In essence, these methods weight parameter inference
under each sampled ARG by the ARG probability and therefore
require that the samples of ARGs accurately reflect their proba-
bility distribution. These types of methods can be used to infer
population size history, selection (Stern et al. 2019), migration
(Osmond and Coop 2021), mutation rates and recombination
rates.

Inferring full ARGs and quantifying inference uncertainty by
sampling from the posterior distribution is a challenging prob-
lem computationally. It requires navigating a high-dimensional
distribution of ARGs, which are themselves a complicated data
structure. For this reason, inferring ARGs and sampling from
their posterior distribution seemed like a nearly impossible en-
deavour some years ago, but important methodological develop-
ments now allow us to do so. Today, there are several methods
available to estimate the full ARG or approximations of it, in-
cluding ARGweaver (Rasmussen et al. 2014), Relate (Speidel et al.
2019) and tsinfer+tsdate (Kelleher et al. 2019; Wohns et al. 2022).

Approximations of the coalescent with recombination
The classical way to include recombination in coalescence mod-
els is to consider the temporal process of lineage splitting caused
by recombination and lineage merger caused by coalescences
as one moves backwards in time (Hudson 1983; Griffiths and
Marjoram 1997) (Figure 1A,B). Wiuf and Hein (1999) considered
instead the spatial process of recombination along a sequence.
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In this formulation, the ARG is constructed as a sequence of
local coalescent trees along a genome, where each tree is sepa-
rated from adjacent trees by recombination events (Figure 1C).
At each recombination breakpoint, a new tree is formed from the
immediately preceding tree. To form the next tree, first one of
the branches in the current tree is detached. Next, a point earlier
than the detachment point is randomly chosen from any of the
branches in any of the previous trees in the sequence. Finally,
the detached branch coalesces to this chosen point.

To improve the computational efficiency in simulations,
McVean and Cardin (2005) proposed approximating the spatial
process as a Markovian process called the Sequentially Marko-
vian Coalescent (SMC). In the SMC, when a lineage is detached
from a tree at a recombination event, it can only coalesce back
to one of the other lineages present at the current tree. Marjo-
ram and Wall (2006) proposed an improved approximation, the
SMC’, in which the detached lineage can coalesce to any branch
in the current tree, including the one it was detached from. This
means that some recombination events in this model do not gen-
erate a different local coalescent tree. This simple modification
significantly improves the model in terms of approximating the
full coalescent (Marjoram and Wall 2006; Wilton et al. 2015).

A heuristic approximation to the coalescence with recombina-
tion proposed by Li and Stephens (2003), extending ideas from
Stephens and Donnelly (2000), approximates the coalescent with
recombination using a copying process where one sequence is
modeled as a copy of other sequences in the sample, with errors
representing mutations and switches in the copying template
representing recombination events. While this model has disad-
vantages, such as a dependence on the input order of sequences,
it has proven computationally convenient for many purposes,
including demography inference, introgression detection, and
more (Sheehan et al. 2013; Steinrücken et al. 2018, 2019).

The formulation of the coalescent with recombination approx-
imated as a Markovian process generating tree sequences in the
SMC (McVean and Cardin 2005) and SMC’ (Marjoram and Wall
2006) and as a copying process of individual sequences by Li and
Stephens (2003), paved the way for more scalable ARG inference
methods. Notably, ARGweaver (Rasmussen et al. 2014) based
on the SMC or SMC’ model, and Relate (Speidel et al. 2019) and
tsinfer+tsdate (Kelleher et al. 2019; Wohns et al. 2022) based on
the model by Li and Stephens (2003).

ARGweaver
ARGweaver uses Markov Chain Monte Carlo (MCMC) to sam-
ple ARGs from the posterior distribution under the SMC or
SMC’. It relies on a discretization of time (such that all recom-
bination and coalescence events are only allowed to happen at
a discrete set of time points) which makes the state space of
ARGs finite countable and allows the use of discrete state-space
Hidden Markov Models (HMMs). It then uses a lineage thread-
ing approach, which is a Gibbs sampling update, to sample the
history of a single lineage or haplotype from the full conditional
posterior distribution given the rest of the ARG connecting all
other haplotypes.

Relate
Relate simplifies the problem of ARG inference by inferring
marginal coalescence trees, instead of full ARGs. Inference is
divided into 2 steps. First, the Li and Stephens (2003) haplotype
copying model is used to calculate pairwise distances between
samples in order to infer local tree topologies. Next, it uses

MCMC under a coalescent prior to infer coalescence times on
those local trees. Relate is able to output samples of coales-
cence times from the posterior distribution using this MCMC
approach, but it does so for the same fixed sequence of tree
topologies. This is different from the ARGweaver MCMC sam-
pling, which also samples the tree topology space (Table 1).

tsinfer, tsdate, and the tree sequence framework
Tsdate (Wohns et al. 2022) is a method that estimates coalescence
times of tree sequences. Here, we used this method to date tree
sequences inferred by tsinfer (Kelleher et al. 2019). Similarly to
Relate, tsinfer is also based on the copying process from Li and
Stephens (2003). A key innovation of tsinfer is a highly efficient
tree sequence data structure which stores sequence data and
genealogies (Kelleher et al. 2016, 2018, 2019; Ralph et al. 2020).
Tsinfer performs inference in two steps. First, it recreates ances-
tral haplotypes based on allele sharing between samples. Next,
it uses an HMM to infer the closest matches between ancestral
haplotypes and the sampled haplotypes using an ancestral copy-
ing process modified from the classical Li and Stephens (2003)
model to generate the tree topology. Finally, nodes in tree se-
quences inferred by tsinfer can be dated by tsdate. Tsdate uses
a conditional coalescent prior, where the standard coalescent is
conditioned on the number of descendants of each node on a
local tree. Like ARGweaver, tsdate also discretizes time for com-
putational efficiency. This framework infers a fixed topology and
coalescence time, but it has the potential to sample coalescence
times.

Benchmarking of ARG inference methods
Here, we use standard neutral coalescent simulations to bench-
mark coalescence time inferences in ARGweaver (Rasmussen
et al. 2014), Relate (Speidel et al. 2019), and tsinfer+tsdate (Kelle-
her et al. 2019; Wohns et al. 2022). We focus mainly on ARG-
weaver and Relate because they report measures of uncertainty
in inference by allowing the user to output multiple samples
from the posterior distribution. Sampling from the posterior is
not currently implemented in tsdate (Table 1), but we include
it in this evaluation because it is a promising framework for
very fast tree-sequence inference, and it will likely provide an
option to output samples from the posterior distribution of tree-
sequences in future updates.

We focus our analyses on coalescence times not only because
they are a very informative statistic about evolutionary pro-
cesses, but also because they can be fairly compared across all
methods. More specifically, ARGweaver and tsdate allow for
polytomies (i.e., more than two branches coalesce at the same
node). Relate, on the other hand, does not allow polytomies.
Comparing topologies with and without polytomies could bias
our results depending on how we chose to deal with polytomies,
so we decided to focus on coalescence times only.

We run coalescent simulations on msprime (Kelleher et al.
2016) and compare the true (simulated) ARGs to the ARGs in-
ferred by ARGweaver, Relate, and tsinfer+tsdate. We compare
the ARGs with respect to their pairwise coalescence times using
three different types of evaluation (Figure 2). First, we compare
the true pairwise coalescence time at each site to the inferred
time. Second, we compare the overall distribution of pairwise
coalescence times across all sites and all MCMC samples to the
expected distribution. In Bayesian inference, the data averaged
posterior distribution is equal to the prior. Since data are sim-
ulated under the standard coalescent with recombination the
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Table 1 Genome-wide genealogy inference programs compared.

Program
Samples

topologies

Samples

coalescence times

Supports

demographic model

Scalability

(number of genomes)

Outputs

full ARG

Supports

unphased data

ARGweaver Yes Yes No ∼50 Yes Yes

ARGweaver-D∗ Yes Yes Yes ∼50 Yes Yes

Relate No Yes No ∼ 103 No No

tsinfer+tsdate No No No ∼ 105 No No

∗ Hubisz et al. (2020)

data averaged posterior should be exponential with rate 1 in co-
alescence time units (2Ne generations, where Ne is the effective
population size). Third, we used simulation-based calibration
(SBC) (Cook et al. 2006; Talts et al. 2020) to evaluate if the poste-
rior distributions sampled by ARGweaver and Relate are well
calibrated (see details in Methods).

Methods

Simulations
We simulated tree sequences and SNP data with msprime ver-
sion 0.7.4 (Kelleher et al. 2016). For simulations with Jukes and
Cantor (1969) mutational model, we used msprime version 1.0.2
(Baumdicker et al. 2021) to add mutations to trees simulated un-
der msprime 0.7.4, because the Jukes and Cantor (1969) model
option was not available in msprime 0.7.4. Unless otherwise
noted, simulations were done under the standard neutral coa-
lescent (Hudson model in msprime) and using the following pa-
rameters: 4 diploid samples (i.e. 8 haplotypes), total map length
R = 20000 and mutation to recombination rate ratio µ/ρ = 1. In
practice, we used the following parameter values in msprime:
effective population size of 10,000 diploids (2Ne = 20, 000), mu-
tation rate and recombination rate of 2× 10−8 per base pair per
generation and a total sequence length of 100Mb.

We varied these standard simulation scenarios in several
ways: using SMC and SMC’ models, different numbers of sam-
ples (4, 16, 32 and 80 haplotypes), a 10-fold increase and 10-fold
decrease in the mutation to recombination ratio (in each case
changing either the mutation or the recombination rates), and
changing the total length of input sequence from 100Mb to 5Mb
and 250kb. These simulated sequences were then divided into
20 equally sized segments, so that ARGweaver could be run
on each in parallel (see below). The minimum length of total
simulated sequence (250kb) was chosen such that the average
number of pairwise differences between each of the 20 segments
was 10, given a mutation rate of 2× 10−8.

We extracted coalescence times at all sites in the simulated
trees in BED format (columns: chromosome, start position, end
position, coalescence time), with one BED file for each pair
of samples. Figure 2 shows an overview of the metrics ex-
tracted from simulated ARGs and from ARGs estimated by
tsinfer+tsdate or sampled from the posterior by ARGweaver
and Relate.

ARGweaver
VCF files from msprime were converted to ARGweaver sites
format using a custom python script. We ran ARGweaver’s
arg-sample program to sample ARGs. This was done in parallel

Figure 2 Methods overview. (A) Data (ARGs and DNA se-
quences) were simulated from the coalescent with recombina-
tion. In the model and simulated data, pairwise coalescence
times (CT) are exponentially distributed (Figure S3). T1 rep-
resents the CT between samples 0 and 1, at position P in the
simulated data. T̂1,k is the CT between samples 0 and 1 at posi-
tion P, in each ARG sample k. Point estimates T∗1 are obtained
as the mean of T̂1,k, and the rank statistic is computed as the
number of T̂1,k that are smaller than the true value T1. (B) We
compare estimated to simulated values of the CT of each pair
of samples, at each position of the genome. (C) We compare
the distribution of sampled CT across all sampled ARGs, all
sites and all pairs of samples to the expected exponential dis-
tribution. (D) We compare the distribution of ranks to the
expected uniform distribution.
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on 20 segments of equal size, using the –region option. We used
the same values used in the msprime simulations (–mutrate and
–recombrate 2e-8 and –popsize 10000) and except where otherwise
noted, we ran ARGweaver using the SMC’ model (–smcprime
option). We ran ARGweaver with 1200 or 2200 iterations (–iters)
(with burn-in of the first 200 or 1200 iterations, respectively),
depending on how long it took to converge. Assessment of
convergence is described below and in the Supplementary Mate-
rials, Evaluating MCMC Convergence. We extracted 100 MCMC
samples from every 10th iteration among the last 1,000 iterations
(default –sample-step 10).

We extracted all pairwise coalescence times in BED format
with the program arg-summarize using options –tmrca and –subset,
and we used bedops (version 2.4.35 (Neph et al. 2012)) to match
the times sampled by ARGweaver to the simulated ones at each
sequence segment. Finally, we used a custom Python script to
calculate the ranks of simulated pairwise coalescence times on
ARGweaver MCMC samples per site.

Time discretization

In ARGweaver, time is discretized such that recombination and
coalescence events are only allowed to happen at a user-defined
number of time points, K (default value is 20) (Rasmussen et al.
2014). These time points sj (for 0 <= j <= K− 1) are given by
the function

sj = g(j) =
1
δ

{
e

j
K−1 log(1+δsK−1) − 1

}
(1)

where δ is a parameter determining the degree of clustering of
points in recent times. Small values of δ lead to a distribution of
points that is closer to uniform between 0 and sK−1, and higher
values increase the density of points at recent times (default
value is 0.01) (Hubisz and Siepel 2020). Equation 1 ensures
that s0 is always 0, and sK−1 (or smax) is user defined by the
parameter –maxtime (default value is 200,000).

Rounding of continuous times into these K time points is
done by defining bins with breakpoints between them, such that
the breakpoint between times sj and sj+1 is sj+ 1

2
= g(j + 1

2 ). All
continuous values in the bin between sj− 1

2
and sj+ 1

2
are assigned

the value sj. We note that for the first and last intervals, the
values assigned (s0 and sK−1) do not correspond to a midpoint in
the time interval but rather to its minimum (s0 = 0) or maximum
(sK−1 = smax)

Here, when reporting results in bins, we use the same time
discretization as defined by the ARGweaver breakpoints (sj+ 1

2
).

However, we change the value assigned to times in these bins:
instead of using sj, we define tj as the median of the exponential
distribution with rate 1 at the interval between sj− 1

2
and sj+ 1

2
.

To this end, we first calculate the cumulative probability of the
exponential distribution with rate 1 up to the median of the jth
interval

pj =

sj− 1
2∫

0

e−x dx +
1
2

sj+ 1
2∫

sj− 1
2

e−x dx

=1−
(

e
−sj− 1

2 + e
−sj+ 1

2

2

)
(2)

We then take the inverse CDF of the exponential distribution
with rate 1, at the point pj, to find the time tj = −ln(1− pj)
corresponding to the median value for the interval.

This step is relevant for the simulation-based calibration (see
below), where we take the rank of true (simulated) coalescence
times relative to the values sampled by ARGweaver. If we used
sj, coalescence times in the first or last ARGweaver time interval
would not be represented by a midpoint. We correct for that by
using tj, so that all time intervals are comparable.

Relate does not use time discretization, and tsdate uses a
discretization scheme where the time points are the quantiles
of the lognormal prior distribution on node ages (Wohns et al.
2022). Here, we always apply the ARGweaver time discretiza-
tion scheme when comparing results in bins.

Relate
VCF files generated with msprime were converted to Relate haps
and sample files using RelateFileFormats –mode ConvertFromVcf
and Relate’s PrepareInputFiles script. We ran Relate (version 1.1.2)
using –mode All with the same mutation rate (-m 2e-8) and effec-
tive population size (-N 20000) used in the msprime simulations,
as well as a recombination map with constant recombination
rate along the genome, with the same rate used in msprime
(2e-8).

We used Relate’s SampleBranchLengths program to obtain
1000 MCMC samples of coalescence times for the local trees
inferred in the previous step in anc/mut output format (–num-
samples 1000 –format a). Similarly to the ARGweaver analysis,
we also performed this step in 20 sequence segments of 5Mb,
and we thinned the results to keep only every 10th MCMC sam-
ple. Finally, we extract pairwise coalescence times and calculate
the ranks of true pairwise coalescence times relative to the 100
MCMC samples. Due to the large number of pairwise coales-
cence times, for the simulations with 80 and 200 samples, we
extracted coalescence times from a subset of 210 pairs of samples.
We extracted coalescence times for every 4th vs. every 4+1th
sample in the case of 80 samples, and 10th vs. every 10+1th
sample in the case of n=200.

tsinfer and tsdate
VCF files generated by msprime were provided as input to the
python API using cyvcf2.VCF and converted to tsinfer samples
input object using the add_diploid_sites function described in the
tsinfer tutorial (https://tsinfer.readthedocs.io/en/latest/tutorial.html#
reading-a-vcf). Genealogies were inferred with tsinfer (version
0.2.0 (Kelleher et al. 2019)) with default settings and dated with
tsdate (version 0.1.3 (Wohns et al. 2022)) using the same parame-
ter values as in the simulations (Ne=10000, mutation_rate=2e-8),
with a prior grid of 20 timepoints.

Pairwise coalescence times were extracted from the tree se-
quences using the function tmrca() from tskit (version 0.3.4 (Kelle-
her et al. 2018)), and output in BED format, with one file for each
pair of samples. Finally, coalescence times at each site, for each
pair of samples were matched to the simulated ones (also in BED
format) using bedops (Neph et al. 2012).

MCMC convergence
We evaluated MCMC convergence of Relate and ARGweaver
through 1) visual inspection of trace plots, 2) autocorrelation
plots, 3) effective sample sizes and 4) the Gelman-Rubin con-
vergence diagnostics based on potential scale reduction factor
(Gelman and Rubin 1992; Brooks and Gelman 1998). Trace plots
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were also used to determine the number of burn-in samples, and
autocorrelation plots were used to determine thinning of the
samples. See Evaluating MCMC Convergence in Supplementary
Materials for details.

Point estimates of pairwise coalescence times

We estimated pairwise coalescence times from the MCMC sam-
ples from Relate and ARGweaver by taking the average of 100
samples at each site (Figure 2). Since tsdate does not output mul-
tiple samples of node times, we use its point estimate of pairwise
coalescence times directly. Point estimates of coalescence times
were compared to the simulated values for each pair of samples,
at each site along the sequence.

Mean squared error (MSE) of point estimates was calculated
from each point estimate of coalescence time (for each pair of
samples, at each site), as well as per bin of size 0.1 of the simu-
lated coalescence times (in units of 2Ne generations) for Figure
S2. We also report Spearman’s rank correlation (r2) of the point
estimates of pairwise times in each tree against the simulated
tree, averaged over all positions in the genome.

Simulation-based calibration

In addition to comparing MCMC point estimates to the true
simulated values, we use simulation methods proposed by Cook
et al. (2006) and Talts et al. (2020) to assess whether Bayesian
methods are sampling correctly from the true posterior distribu-
tion. Cook et al. (2006) proposed simulating data using parame-
ters sampled from the prior. The posterior, when averaged over
multiple simulated data sets, should then equal the prior.

In our case, we sample ARGs, G, from the full coalescence
process with recombination with a known implicit prior of pair-
wise coalescence times, P(t) = e−t. We simultaneously simulate
sequence data, x, on the simulated ARGs from the distribution
p(x) =

∫
p(x|G)dP(G). The distribution of the averaged pos-

terior of G, pave(G) =
∫

p(G|X)dP(x) should then equal the
prior for G (Talts et al. 2020), and hence the prior distribution
for the pairwise coalescence times, t, should equal the averaged
posterior distribution for t. Here, all population parameters re-
lating to mutation, effective population sizes, etc., are kept fixed
and suppressed in the notation. One way we will examine the
accuracy of the posterior inferences is, therefore, to compare the
average of the posterior of t to the exponential distribution. In
practice, we simulate data using msprime (Kelleher et al. 2016)
and pipe the data to the MCMC samplers (ARGweaver and
Relate) for inference of the posterior distribution. ARGweaver
uses an approximation (SMC’) of the model (coalescent with
recombination) used in the data simulations, and Relate uses a
heuristic method based on the Li and Stephens model. Thus, in-
adequacies of the fit of the posteriors could potentially be caused
by this discrepancy between the model used in simulations and
the models used for inference.

However, even if the averaged posterior resembles an expo-
nential, the inferences for any particular value of t may have a
posterior that is too narrow or too broad. For a closer examina-
tion of the accuracy of the posterior, we use a method proposed
by Cook et al. (2006) and Talts et al. (2020) that compares each
posterior to the true value. To this end, we compare each true
(simulated) pairwise coalescence time to the corresponding pos-
terior for the same pair of haplotypes. If the posterior is correctly
calculated, the rank of the true value relative to the samples
from the posterior should be uniformly distributed (Cook et al.

(2006), Talts et al. (2020)). We use 100 MCMC samples from ARG-
weaver and Relate for each data set, meaning our ranks take
values from 0 to 100. Deviations from the uniform distribution
of ranks quantifies inaccuracies in estimation of the posterior.
For example, an excess of low and high ranks indicates that the
inferred posterior distribution is underdispersed relative to the
true posterior.

Results

Comparison of simulated to estimated coalescence time per
site
We compared coalescence times estimated by ARGweaver, Re-
late and tsinfer+tsdate to the true values known from msprime
simulations. In all three methods, estimates of coalescence time
per site are biased (Figure 3 and S2). Small values of coalescence
times are generally overestimated, while large values tend to
be underestimated (Fig S2). In tsinfer+tsdate, point estimates
are apparently bounded to a narrow range (Figure 3G). The
mean squared error (MSE) of point estimates is larger in Re-
late (MSE=0.625) and tsinfer+tsdate (MSE=1.631) than in ARG-
weaver (MSE=0.397), showing that point estimates of pairwise
coalescence times at each site are closer to the true value in ARG-
weaver. Spearman’s rank correlation is also highest in ARG-
weaver (rs=0.761), but in this metric tsinfer+tsdate (rs=0.705)
perform better than Relate (rs=0.669).

For ARGweaver and Relate, the point estimates of coales-
cence times are obtained as the means of samples from the pos-
terior. These Bayesian estimates are not designed to be unbi-
ased and unbiasedness of the point estimator is arguably not an
appropriate measure of performance for a Bayesian estimator.
Therefore, we also evaluate the degree to which the posterior
distributions reported by ARGweaver and Relate are well cali-
brated, i.e. represent distributions that can be interpreted as valid
posteriors, and the degree to which the data-averaged posterior
distributions of coalescence times equals the prior exponential
distribution.

Posterior distribution of coalescence times
We simulated data under the standard coalescent model, where
the distribution of pairwise coalescence times (in units of 2Ne
generations, where Ne is the diploid effective population size)
follows an exponential distribution with rate parameter 1 (Figure
S3). As argued in the Methods section, the same is true for the
data-averaged posterior.

We compared the expected exponential distribution of co-
alescence times to the observed distribution of coalescence
times across all sites inferred by ARGweaver, Relate, and tsin-
fer+tsdate (Figure 4). For ARGweaver and Relate, we output
100 MCMC samples from the posterior distribution and plot the
distribution of pairwise coalescence times across all sites and
MCMC samples.

To facilitate visual comparison of the distributions between
methods, we discretized Relate and tsinfer+tsdate coalescence
times into the same bins as ARGweaver (Figure 4D,G, see dis-
tributions without discretization in Figure S4 and see Methods
for a description of ARGweaver time discretization). Because
the time discretization breakpoints are regularly spaced on a log
scale, we use a log scale on the x-axis for better visualization.

Distributions of coalescence times from ARGweaver and Re-
late (Figure 4A and D) show an excess around 1, when compared
to the expected exponential distribution. However, that bias is
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Figure 3 Point estimates of coalescence times in ARGweaver (A-C), Relate (D-F) and tsinfer+tsdate (G-I). Left column: µ = ρ =
2× 10−8; middle column: µ/ρ = 10, ρ = 2× 10−9; right column: µ/ρ = 10, µ = 2× 10−7. For ARGweaver and Relate, point
estimates are the means of 100 MCMC iterations. Note that axes are in log scale. See Figure S1 for the data in plots A,D,G plotted in
linear axes. Diagonal line shows x=y. MSE: Mean squared error; rs: Spearman’s rank correlation.
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Figure 4 Distribution of coalescence times inferred by ARGweaver (A-C), Relate (D-F) and tsinfer+tsdate (G-I). Left column: µ =
ρ = 2 ∗ 10−8; middle column: µ/ρ = 10, ρ = 2 ∗ 10−9; right column: µ/ρ = 10, µ = 2 ∗ 10−7. Plots D and G show the same data as in
Figure S4, using different binning.

Figure 5 Counts of ranks from simulation-based calibration in ARGweaver (a-c) and Relate (d-f). Horizontal line shows expected
uniform distribution. Left column: µ = ρ = 2 ∗ 10−8; middle column: µ/ρ = 10 decreasing recombination rate (ρ = 2 ∗ 10−9); right
column: µ/ρ = 10 increasing mutation rate (µ = 2 ∗ 10−7). Horizontal line shows expected uniform distribution.

8 Brandt et al.



more pronounced in Relate than ARGweaver. In tsinfer+tsdate,
the distribution is truncated at 1.6, and it deviates more strongly
from the expected exponential distribution (Figure 4G). We note
that the plots from ARGweaver and Relate are not directly com-
parable to those of tsinfer+tsdate, since there are 100 coalescence
time samples at each site from the former two programs but only
one from tsdate.

Simulation-based calibration

In this section, we use simulation-based calibration to evaluate
whether ARGweaver and Relate are generating samples from a
valid posterior distribution of coalescence times (see Methods).
To that end, we simulated coalescence times at multiple sites
following the standard coalescent prior distribution, and we
generated 100 MCMC samples from the posterior distribution
using both ARGweaver and Relate. Finally, we analyse the
distribution of the ranks of the simulated coalescence times
relative to the 100 sampled values at each site.

In the previous section, we showed that the posterior distri-
butions of ARGweaver and Relate are similar to the theoretically
expected exponential distribution. However, in that analysis we
have not evaluated the distribution of MCMC samples relative
to each simulated value. The results of simulation-based calibra-
tion are informative about that distribution and can reveal if the
posterior distribution is well calibrated.

The distribution of ranks from ARGweaver (Figure 5A,
Kullback-Leibler Divergence (KLD) =0.027) is closer to uniform
than that of Relate (Figure 5D, KLD=0.602). However, both show
an excess of low and high ranks. The excess of low and high
ranks indicates that the sampled posterior distribution is un-
derdispersed (Talts et al. 2020), i.e. the posterior has too little
variance and does not represent enough uncertainty regarding
the coalescence times.

One possible cause for this type of deviation from the uniform
distribution could be MCMC convergence, i.e., samples being
autocorrelated, resulting in effective sample size is lower than
the number of samples taken, the MCMC chain not mixing well
and/or the MCMC chain not being run long enough to achieve
convergence.

We show detailed results for MCMC convergence in Relate
and ARGweaver in the Supplementary Materials. Briefly, we
have not found these types of convergence issues in ARGweaver
or Relate with simulations of 8 haplotypes and mutation to
recombination ratio of 1. Potential scale reduction factor (PSRF)
from Gelman-Rubin convergence diagnostic statistics are all
close to 1 (Tables S2, S3), and effective sample sizes are almost all
larger than 100. Therefore, MCMC convergence does not seem
to explain why the rank distributions are not uniform.

Increased mutation to recombination ratio

When inferring an ARG from sequence data, the information
for inference comes from mutations that cause variable sites
in the sequence data. The lower the recombination rate, the
longer the span of local trees will be and the more mutations
will be available to provide information about each local tree.
More generally, an increased mutation to recombination ratio
is expected to increase the amount of information available to
infer the ARG.

In our standard simulations presented so far, the mutation
to recombination ratio is one (µ = ρ = 2 ∗ 10−8). We increased
the simulated mutation to recombination ratio to 10, both by

decreasing the recombination rate (ρ) tenfold and also by in-
creasing the mutation rate (µ) tenfold. We expected that these
scenarios would improve inference of ARGs, and consequently
the estimates of pairwise coalescence times. Point estimates are
better with increased mutation to recombination ratio in ARG-
weaver (Figure 3B,C), Relate (Figure 3E,F) and tsinfer+tsdate
(Figure 3H,I).

The coalescence times distribution in Relate (Figure 4E,F) are
closer to the expected with µ/ρ = 10 relative to µ/ρ = 1 (Fig
4D), and the simulation-based calibration also improved (Figure
5D-F, KLD=0.492 and 0.498 compared to KLD=0.602).

The results from ARGweaver with µ/ρ = 10 were more sur-
prising, with the simulation-based calibration showing a more
pronounced underdispersion of the posterior distribution (Fig-
ure 5B,C, KLD=0.286 and 0.350, compared with KLD=0.027 for
µ/ρ = 1 ). The overall distribution of coalescence times, how-
ever, showed little change (Figure 4B,C). One possible explana-
tion for ARGweaver results being worse with higher mutation to
recombination ratio might be that MCMC mixing is worse under
those conditions, leading to convergence issues not observed
for the previous scenario. Examining convergence diagnostics
seems to confirm this with more coalescence times showing low
effective sample size, and with a potential scale reduction factor
showing evidence of lack of convergence of some coalescence
times (see Evaluating MCMC Convergence in Supplementary
Materials).

We show additional simulation results in the Supplemen-
tary Materials, including simulations with reduced µ/ρ, which
could be a realistic scenario around recombination hotspots (Fig-
ures S5 and S6) and ARGweaver results on simulations with
intermediate values of µ/ρ (2 and 4), under the SMC and SMC’
genealogy models, and with the Jukes-Cantor mutation model
in the Supplementary Materials.

Number of samples

Next, we evaluate ARG inference with simulations with differ-
ent sample sizes. Our standard sample size used so far was 8
haplotypes, and here we change it to 4, 16 and 32. For Relate
and tsinfer+tsdate, which are scalable to larger sample sizes, we
also evaluated inference with 80 and 200 sampled haplotypes.

For ARGweaver, increasing sample sizes decreased the MSE
of point estimates (Figure 6A-C), distributions of coalescence
times remained similar (Figure 7A-C), but underdispersion of
the posterior distribution increased (Figure 8A-C). As mentioned
in the previous section, this could be caused by an MCMC mix-
ing problem. In particular, a larger number of samples will
contribute to an increasing number of states for ARGweaver
to explore, possibly leading to poor MCMC convergence (see
Evaluating MCMC Convergence).

With a smaller sample size (n=4 haplotypes), the coalescence
time distribution from Relate showed an excess around the mean
value (coalescence time of 1) (Fig 7D). With increasing sample
sizes, it became more similar to the expected distribution (Fig
7E-H). Calibration of the posterior distribution improved with
increasing sample sizes up to 32 haplotypes (Figure 8D-H).

Both the point estimates and posterior distribution of coa-
lescence times in tsinfer+tsdate do not consistently improve or
worsen with increasing sample sizes in the range tested here
(Figures 6I-M and 7I-M).

Evaluation of ARG inference methods 9



Figure 6 Point estimates of ARGweaver (A-C), Relate (D-H) and tsinfer+tsdate (I-M). Columns show different number of simulated
samples 4, 16, 32, 80 or 200 haplotypes. Mean squared error (MSE) is shown for each plot. Note that ARGweaver is not scalable for
simulations with larger sample sizes. * indicate results for a subset of 210 pairs of samples, instead of all pairwise coalescence times.
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Figure 7 Distribution of coalescence times in ARGweaver (A-C), Relate (D-H) and tsinfer+tsdate (I-M). Columns: sample sizes of 4,
16, 32, 80, 200 haplotypes. * indicate results for a subset of 210 pairs of samples, instead of all pairwise coalescence times.

Figure 8 Simulation-based calibration for ARGweaver (A-C) and Relate (D-H). Columns: sample sizes of 4, 16, 32, 80, 200 haplo-
types. Horizontal line shows expected uniform distribution. Note that the y-axis is centralized on different values but always has
the same length. * indicate results for a subset of 210 pairs of samples, instead of all pairwise coalescence times.
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Length of input sequence
Point estimates of all programs remained similarly accurate
when a much shorter input sequence was provided (5mb and
250kb, Figure S7A-C and S8A-C, compared with 100Mb in previ-
ous analyses). The distribution of coalescence times with 5Mb in-
put sequence remained similar to the ones inferred with 100Mb
input sequence (Figure S7D-F). However, distributions from
simulations with only 250kb input sequence are visibly more
deviated from the expected exponential distribution (Figure
S8D-F). Distributions of ranks are noisier with decreasing in-
put sequence length, but KLD remained similar (Figure S8 and
S7H,G).

Runtime
We point out that runtimes differ widely among the programs
compared here, and this factor should be taken into account
for users making decisions on what method to use for their
applications. For example, in the simulations with mutation rate
equal to recombination rate, with sample size of 8 haplotypes
and taking 1000 MCMC samples, ARGweaver took a total of
641 computing hours while Relate took 17 hours. The clock time
was reduced by running both programs in parallel for segments
of 5Mb of the total 100Mb sequence, meaning that ARGweaver
took approximately 35h. However, this still could be a significant
amount of time for the user, depending on their utilization of
the algorithm. For a systematic comparison of runtimes between
Relate and ARGweaver, see Speidel et al. (2019). Impressively,
tsinfer and tsdate took only 5 minutes.

Discussion

ARG inference promises to be a tremendously useful tool for
inferences of evolutionary history, such as natural selection or
demography. However, it is also a very hard computational
problem. We compared methods that use different approaches to
this problem and evaluated their accuracy using simulated data
and comparisons of three aspects of coalescence time estimates:
1) individual point estimates of each pairwise coalescence time;
2) the overall distribution of coalescence times across all sites; 3)
the calibration of the reported posterior distributions.

Ancestral recombination graphs are extremely rich in infor-
mation, including topological information of individual coales-
cence trees and information regarding the distribution of recom-
bination events. We have not evaluated these aspects of inferred
ARGs but have instead only focused on pairwise coalescence
times. However, pairwise coalescence times are extremely in-
formative statistics about many population-level processes and
pairwise relationships between individuals, and they are also
indirectly informative about tree topologies. Other research has
compared the accuracy of tree topology inference (Rasmussen
et al. 2014; Kelleher et al. 2019) and recombination rates (Deng
et al. 2021) among ARG inference methods. We opted to focus on
coalescence times not only because they are a very informative
statistic about evolutionary processes, but also because they can
be fairly compared across all methods. As described in the In-
troduction, comparisons of tree topologies could be confounded
by the presence of polytomies in ARGweaver and tsinfer+tsdate
and the absence of polytomies in Relate.

We found a strong speed-accuracy trade-off in ARG inference.
ARGweaver performs best in our three tests: point estimates,
the overall distribution of coalescence times, and the quality
of sampling from the posterior. Importantly, it is also the only

method we compared that resamples both topologies and node
times (Table 1). This likely leads to a better exploration of ARG
space and is one reason why it provides better samples from the
posterior. On the other hand, it also contributes to making ARG-
weaver much slower than the other methods and not scalable
for genome-wide inference of 50 or more genomes.

Relate largely undersamples tree topologies (Deng et al. 2021),
and thus every marginal tree estimate is only as good as an
average over a series of true trees (Figure 1D). This will nat-
urally lead to a more centered, under-dispersed distribution,
as shown by the larger deviations from the uniform distribu-
tion in simulation-based calibration (Figures 5 and 8, where
ARGweaver KLD values range from 0.008 to 0.350, and Relate
range from 0.429 to 0.938). Despite not performing as well as
ARGweaver in our evaluation criteria, Relate seems sufficient
for comparisons of average trees across different regions in the
genome.

Additionally, we showed that Relate’s inferences generally
improve with sample size (Figures 6, 7, 8). This is expected
from inference using the Li and Stephens (2003) copy algorithm,
which tends to better approximate the genealogical process with
larger samples sizes (Hubisz et al. 2020). Because Relate is fast
enough, even for thousands of samples, it is preferred for large
numbers of genomes - not only because ARGweaver is not scal-
able for such large sample sizes but also because Relate inference
tends to improve with larger sample sizes (Hubisz and Siepel
2020).

The framework of tsinfer and tsdate is also based on the Li
and Stephens (2003) model, and it additionally takes advantage
of the succinct tree sequence data structure that makes it scalable
to even larger sample sizes than Relate, and at least an order of
magnitude larger than tested here (Wohns et al. 2022). Although
we did not find an improvement of tsinfer+tsdate estimates
with increasing sample sizes in the range we tested (4 to 200
haplotypes), our analyses cannot rule out the possibility of better
tsinfer+tsdate inference at larger sample sizes.

Increasing the mutation to recombination ratio in simulations
improved point estimates from ARGweaver but did not improve
posterior calibration (Figure 5). This lack of improvement of the
posterior sampling can be explained by lack of convergence
and could potentially be improved by increasing the number
of MCMC iterations. Although the statistics recorded by ARG-
weaver at each iteration (likelihood, number of recombinations,
etc.) show convergence (Figure S9, Table S1), we observed that
certain pairwise coalescence times did not converge in the simu-
lations with increased mutation to recombination ratio (Table S2
see more discussion in ARGweaver in Supplementary Materi-
als).

Limitations of our analyses and future directions
The focus of this study is the inference of coalescence times
under the standard neutral coalescent, assuming all parameter
values of this model are known and correctly provided to the
programs performing inference. In other words, our goal was to
investigate the performance of the ARG inference methods when
the underlying assumptions are met. We have not explored how
the methods perform under more complex demographic models
and in the presence of natural selection, when the underlying
assumptions are not met, but this is clearly an important future
direction.

We also restrict our analyses to small sample sizes relative
to what is possible for Relate and tsinfer+tsdate. However, in-
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creasing sample sizes up to 200 samples does not consistently
improve performances of these methods. We also note that in-
teresting discoveries have been made by applying ARG-based
methods with similarly small sample sizes, e.g. Hubisz et al.
(2020) analysed gene flow between archaic and modern humans
using five genomes: two Neanderthals, one Denisovan and two
modern humans.

Other factors not explored here could also be relevant for
applications to real data. For example, sequencing or phasing
errors could reduce the performance of all methods. Each of the
methods compared here deal with these problems in a different
way. Both Relate and tsinfer require phased data. While Speidel
et al. (2019) argue that Relate is robust to errors in computational
phasing, Kelleher et al. (2019) acknowledge that phasing errors
could reduce the performance of tsinfer. ARGweaver is the only
method of the three that supports unphased data, by integrat-
ing over all possible phases. However, the performance of the
program on unphased data has not been evaluated in this study.

Relate takes sequencing errors into account by allowing some
mutations that are incompatible with the tree topology in its
tree building algorithm. Some robustness to error is shown in
Speidel et al. (2019, Figure S3). Tsdate also uses heuristics in the
ancestral haplotype reconstruction stage to increase its robust-
ness to genotyping errors (Kelleher et al. 2019), and its newest
version also accounts for recurrent mutation. ARGweaver can
deal with genotyping errors statistically, using genotype likeli-
hoods and integrating over all possible genotypes (Hubisz and
Siepel 2020). In addition, it can take into account local variation
in coverage and mapping quality, all of which are features not
tested here. ARGweaver can also incorporate a map of variable
mutation rates. ARGweaver, Relate and tsinfer can all incorpo-
rate maps of variable recombination rates across the genome, a
feature which was not used in our constant rate simulations.

In our standard simulations, we use mutation rate equal to
recombination rate, which is believed to be approximately true
for humans. In reality, even if average recombination and mu-
tation rates are similar, the average recombination rate is not
distributed equally along the genome in humans and other mam-
mals but is concentrated in recombination hotspots. Therefore, it
is possible that ARG inference could be more accurate with real
data, since local trees could span longer sequences separated by
recombination hotspots.

Recommendations for usage
Given that ARGweaver provides the most accurate coalescence
times estimates and the most well-calibrated samples from the
posterior distribution of coalescence times, we recommend us-
ing it whenever computationally feasible. However, it is highly
computationally demanding and its usage can become unfea-
sible with sample sizes close to 100. Running ARGweaver on
small segments of sequence (5Mb or 250kb Fig. S8, S7) gave
similar results to applications on 100Mb segments, making the
program highly parallelizable, at least for the purpose of esti-
mating pairwise coalescence times.

When ARGweaver is computationally prohibitive, Relate and
tsinfer+tsdate are viable alternative options. However, we em-
phasize that we have only examined coalescence time estimates,
and for other downstream uses of ARG inference that do not
rely mostly on coalescence times, the tradeoffs between these
methods could be different. See Deng et al. (2021) for a compari-
son of these methods in the context of estimating recombination
rates.

Data availability

The data underlying this article are available in GitHub https:
//github.com/deboraycb/ARGsims.
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Abstract in Portuguese - Resumo em português
The Portuguese translation of the abstract was done using Google Translate and corrected by Débora Y. C. Brandt, who is a native
Portuguese speaker.

A tradução do resumo deste artigo para o português foi feita usando o Google Tradutor, seguida de correção manual por Débora Y.
C. Brandt, que tem o português como língua materna.

O grafo de recombinação ancestral (GRA, ou ARG na sigla em inglês) é uma estrutura que descreve o conjunto de genealogias locais
ao longo do genoma, para um conjunto de sequências de DNA amostradas. Métodos computacionais desenvolvidos recentemente
geraram um progresso impressionante na possibilidade de estimar genealogias de todo o genoma para um grande número de amostras.
Além de inferir um único ARG, alguns desses métodos também podem fornecer diversos ARG amostrados de uma distribuição a
posteriori. Obter uma boa amostra de ARGs é crucial para quantificar a incerteza estatística e para estimar parâmetros populacionais,
como tamanho efetivo da população, taxa de mutação e idade de alelos. Neste trabalho, usamos simulações sob o modelo coalescente
neutro padrão para comparar as estimativas de tempos de coalescência par-a-par de três programas amplamente utilizados para
a inferência de ARGs: ARGweaver, Relate e tsinfer+tsdate. Comparamos 1) os tempos de coalescência simulados com os tempos
inferidos em cada locus; 2) a distribuição dos tempos de coalescência par-a-par para todos os loci com a distribuição exponencial que
seria esperada; 3) se os tempos de coalescência amostrados possuem as propriedades esperadas de uma distribuição a posteriori bem
calibrada. Descobrimos que os tempos de coalescência inferidos locus-a-locus pelo programa ARGweaver são os mais precisos, e
que geralmente os tempos de coalescência inferidos pelo programa Relate são mais precisos do que os inferidos por tsinfer+tsdate.
No entanto, os três métodos tendem a superestimar tempos de coalescência baixos e subestimar os altos. Por fim, as amostras da
distribuição a posteriori geradas pelo programa ARGweaver refletem uma distribuição mais próxima da distribuição a posteriori
esperada do que as amostras geradas pelo programa Relate, mas essa precisão mais alta é acompanhada de custo computacional muito
mais elevado. Portanto, a escolha do melhor método a ser usado depende do número e comprimento das sequências amostradas,
e do objetivo das análises em que se deseja usar o ARG. Por fim, oferecemos algumas recomendações de uso desses métodos para
diferentes fins.

Palavras-chave: Grafo de recombinação ancestral; ARGweaver; Relate; tsinfer; tsdate; simulação; calibração; distribuição a posteriori
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Figures

Figure S1 True pairwise coalescence time from msprime simulations compared to inferred coalescence time from (A) ARGweaver
(B) Relate (C) tsdate. Note that axes are in linear scale. See Figure 3A, D, G for this data plotted on a logarithmic scale. These results
are for simulations with n=8 samples (haplotypes), mutation and recombination rates of 2× 10−8. Diagonal line shows x=y, points
show the mean inferred coalescence time within a true coalescence time bin.
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Figure S2 Mean (A,B) and mean squared error (C,D) of point estimates of pairwise coalescence times by ARGweaver, Relate and
tsdate in each bin of size 0.1 of simulated coalescence times. Diagonal gray line in plots A and B show 1:1 line. These results are
for simulations with n=8 samples, mutation and recombination rates of 2× 10−8. Plots B and D are in log scale to highlight small
values of coalescence times, which are the most abundant. Note that estimates are best (i.e. means in plots a and b are closer to
the simulated value) at values near the expected mean coalescence time under the coalescent (i.e. 1 in the coalescent units of 2Ne
generations).
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Figure S3 Histogram of the distribution of coalescence times in msprime simulations. Red line show expected exponential distribu-
tion with rate 1.

Figure S4 Distributions of pairwise coalescence times in Relate and tsdate without ARGweaver time discretization. These results
are for simulations with n=8 samples, mutation and recombination rates of 2× 10−8. (a) Relate, (b) tsdate, both with 20 equal size bins
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Figure S5 Point estimates (A-C), distribution of coalescence times (D-F) and counts of ranks from simulation-based calibration
(G,H) from ARGweaver (A,D,C), Relate (B,E,H) and tsinfer+tsdate (C,F). Simulations with reduced mutation rate (µ = 2× 10−9 and
ρ = 2× 10−8). Compared to simulations with mutation rate equal to recombination rate, mean square error (MSE) values are all
larger (Figure 3), distributions of coalescence times deviate more from the theoretical expectation (Figure 4), and KLD is lower in
ARGweaver but higher in Relate (Figure 5).
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Figure S6 Point estimates (A-C), distribution of coalescence times (D-F) and counts of ranks from simulation-based calibration
(G,H) from ARGweaver (A,D,C), Relate (B,E,H) and tsinfer+tsdate (C,F). Simulations with increased recombination rate (µ =
2× 10−8 and ρ = 2× 10−7). Compared to simulations with mutation rate equal to recombination rate, Mean square error (MSE)
values are all larger (Figure 3), distributions of coalescence times deviate more from the theoretical expectation (Figure 4), and KLD
is lower in ARGweaver, but higher in Relate (Figure 5).
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Figure S7 Point estimates (A-C), distribution of coalescence times (D-F) and counts of ranks from simulation-based calibration
(G,H) from ARGweaver (A,D,C), Relate (B,E,H) and tsinfer+tsdate (C,F). Simulations with sample size of 8 haplotypes, µ = ρ =
2× 10−8, and input sequence length of 5Mb.
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Figure S8 Point estimates (A-C), distribution of coalescence times (D-F) and counts of ranks from simulation-based calibration
(G,H) from ARGweaver (A,D,C), Relate (B,E,H) and tsinfer+tsdate (C,F). Simulations with sample size of 8 haplotypes, µ = ρ =
2× 10−8, and input sequence length of 250kb. In H, KLD is not defined because counts for one of the ranks is zero.
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(a) (b) (c)

(d) Ne f f = 82 (e) Ne f f = 242 (f) Ne f f = 101

Figure S9 ARGweaver likelihood traces (top) and autocorrelation between consecutive MCMC iterations (bottom, also showing
effective sample sizes (Ne f f )) for the number of iterations used in the main text. Left column: simulations with 8 haplotypes, muta-
tion rate equal to the recombination rate( 2× 10−8). Potential scale reduction factor (PSRF) is 1.02, upper confidence interval (CI) is
1.05. Middle column: simulations with recombination rate decreased to 2× 10−9. PSRF is 1.04, upper CI is 1.11. For both of these
simulated datasets we used a burn in of 200 iterations (indicated by vertical line) and ran them for 1200 iterations in total, sampling
every 10th iteration. Right column: simulations with mutation rate increased to 2× 10−7. PSRF is 1.01, upper CI is 1.02. For this
dataset we used a burn in of 1200 iterations (indicated by vertical line) and ran them for 2200 iterations in total, sampling every 10th
iteration.
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(a) (b) (c)

(d) Ne f f = 53 (e) Ne f f = 215 (f) Ne f f = 137

Figure S10 Similar to Figure S9, but running ARGweaver for 10 thousand iterations, with a burn in of 9 thousand applied before
calculating effective sample sizes, to keep the same number of samples (1000). ARGweaver likelihood traces (A,B,C) and autocor-
relation between consecutive MCMC iterations (D,E,F). Left column: simulations with 8 haplotypes, mutation rate equal to the
recombination rate (2× 10−8). Middle column: simulations with recombination rate decreased to 2× 10−9. Right column: simulations
with mutation rate increased to 2× 10−7.
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(a) (b) (c)

(d) Ne f f = 168 (e) Ne f f = 58 (f) Ne f f = 38

Figure S11 ARGweaver likelihood traces (top) and autocorrelation between consecutive MCMC iterations (bottom). A,D: simula-
tions with 4 haplotypes, mutation rate equal to recombination rate ( 2× 10−8). For this simulated dataset we used a burn in of 200
iterations (indicated by vertical line) and ran them for 1200 iterations in total, sampling every 10th iteration. B,E: simulations with
16 haplotypes. C,F: simulations with 32 haplotypes. For both of these datasets we used a burn in of 1200 iterations (indicated by
vertical line) and ran them for 2200 iterations in total, sampling every 10th iteration.
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Figure S12 Coalescence times for one pair of samples inferred by 5 independent runs of ARGweaver at 10 sites equally spaced sites
along the 5Mb sequence. Simulations with 8 samples and mutation rate equal to recombination rate.
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Figure S13 Coalescence times for one pair of samples inferred by 5 independent runs of Relate at 10 sites equally spaced sites along
the 5Mb sequence. Simulations with 8 samples and mutation rate equal to recombination rate.

Figure S14 Tsdate results with a prior grid constructed with timepoints=100. (A) Comparisons of estimated and simulated point
estimates of pairwise coalescence times. (B) Comparisons of the distribution of coalescence times to the expected exponential distri-
bution, using ARGweaver time discretization bins. (C) Same as B, but without imposing ARGweaver time discretization.
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Figure S15 Tsdate results with a prior grid constructed with a maximum value of 12. (A) Comparisons of estimated and simulated
point estimates of pairwise coalescence times. (B) Comparisons of the distribution of coalescence times to the expected exponential
distribution, using ARGweaver time discretization bins. (C) Same as B, but without imposing ARGweaver time discretization.

(a) n=8; µ = ρ = 2× 10−8 (b) n=8; reduced recombination rate (ρ =
2× 10−9)

(c) n=8; increased mutation rate (µ = 2×
10−7)

(d) n=4; µ = ρ = 2× 10−8 (e) n=16; µ = ρ = 2× 10−8 (f) n=32; µ = ρ = 2× 10−8

Figure S16 Acceptance rate from ARGweaver subtree sampling steps in one 5Mb region of each simulation.
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Figure S17 Distribution of coalescence times in msprime simulations using the SMC (A) or SMC’ model (B). ARGweaver inference
is done using the same model used in the simulations.

Figure S18 Simulation-based calibration results in msprime simulations using the SMC (A) or SMC’ model (B). ARGweaver infer-
ence is done using the same model used in the simulations.
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Figure S19 Evaluation of ARGweaver point estimates (A,D), distribution of coalescence times (B,E) and posterior calibration (C,F)
for simulations with mutation rate to recombination rate ratio of 2 (A-C, µ = 4× 10−8, ρ = 2× 10−8) and mutation rate to recombina-
tion rate ratio of 4 (D-F, µ = 8× 10−8, ρ = 2× 10−8)
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Figure S20 Evaluation of ARGweaver point estimates (A,D), distribution of coalescence times (B,E) and posterior calibration (C,F)
with simulations under the Jukes and Cantor (1969) mutational model. A-C: simulations with 8 haplotypes and µ = ρ = 2× 10−8.
D-F: simulations with 8 haplotypes and µ = 2× 10−8 and ρ = 2× 10−9
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Figure S21 Evaluation of ARGweaver point estimates (A,D,G), distribution of coalescence times (B,E,H) and posterior calibration
(C,F,I) with simulations under the Jukes and Cantor (1969) mutational model. In all cases we simulated 8 haplotypes and used
ρ = 2× 10−8. A-C: µ = 4× 10−8. D-F: µ = 8× 10−8. G-I: µ = 2× 10−7
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Table S1 Potential scale reduction factor point estimates (PSRF), their upper confidence intervals (C.I.) and effective sample sizes
(Ne f f ) for ARGweaver stats. µ: mutation rate, ρ: recombination rate.

µ = ρ = 2× 10−8 ρ = 2× 10−9 µ = 2× 10−7

PSRF C.I. Ne f f PSRF C.I. Ne f f PSRF C.I. Ne f f

prior 1.06 1.15 224 1.01 1.03 494 1.00 1.01 216

likelihood 1.02 1.05 294 1.04 1.11 964 1.01 1.02 499

joint 1.06 1.16 216 1.01 1.02 486 1.01 1.02 219

recombs 1.04 1.1 254 1.01 1.03 559 1.00 1.01 229

noncompats 1.02 1.04 406 1.01 1.03 1290 1.01 1.04 518

arglen 1.06 1.16 348 1.08 1.21 459 1.05 1.12 319

Multivariate 1.15 1.1 1.05
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Table S2 Potential scale reduction factor (PSRF) mean, variance and range for each of 200 coalescence times in ARGweaver, the
multivariate PSRF (Plummer et al. 2006) and the number of coalescence times for each the effective sample size (Ne f f ) is smaller
than 100. Unless otherwise noted, mutation rate (µ) and recombination rate (ρ) are 2× 10−8 and sample sizes (n) are 8 haplotypes.

PSRF µ = ρ ρ = 2× 10−9 µ = 2× 10−7 n=4 n=16 n=32

Mean 1.055 1.069 1.211 1.028 1.242 244.152

Variance 0.005 0.010 1.053 0.001 0.233 11613699

Range
0.994 -

1.415

0.994 -

1.709

0.994 -

13.740

0.991 -

1.199

1.001 -

4.847

0.994 -

4.783× 104

Multivariate 4.92 4.29 21.2 2.78 24.9 110560

Number of

Ne f f < 100

(out of 200)

4 16 14 0 32 45
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Table S3 Potential scale reduction factor (PSRF) mean, variance and range for each of 200 coalescence times in Relate, the multivari-
ate PSRF (Plummer et al. 2006) and the number of coalescence times for each the effective sample size (Ne f f ) is smaller than 100.
Unless otherwise noted, mutation rate (µ) and recombination rate (ρ) are 2× 10−8 and sample sizes (n) are 8 haplotypes.

PSRF µ = ρ ρ = 2× 10−9 µ = 2× 10−7 n=4 n=16 n=32

Mean 1.007 1.007 1.008 1.008 1.009 1.008

Variance 10−4 8.7× 10−5 10−4 10−4 10−4 10−4

Range
0.991 -

1.076

0.993 -

1.051

0.992 -

1.051

0.991 -

1.102

0.992 -

1.061

0.993 -

1.049

Multivariate 2.24 2.12 2.57 2.24 3.31 2.49

Number of

Ne f f < 100

(out of 200)

0 0 0 0 0 0
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Table S4 Minimum and maximum acceptance rates of ARGweaver subtree sampling steps for each simulation.

Acceptance rates

Simulation Min Max

n=8; µ = ρ = 2× 10−8 0.283 0.532

n=8; µ = 2× 10−8; ρ = 2× 10−9 0.838 0.965

n=8; µ = 2× 10−7; ρ = 2× 10−8 0.345 0.582

n=4; µ = ρ = 2× 10−8 0.262 0.511

n=16; µ = ρ = 2× 10−8 0.299 0.567

n=32; µ = ρ = 2× 10−8 0.307 0.568
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Table S5 Comparison of ARGweaver results with simulations under infinite sites mutational model and Jukes-Cantor finite sites
mutational model, including simulations with values of mutation to recombination rate ratio in between the ones shown in the
main text. * indicate results shown in the main text and presented here again for comparison.

Point estimates (MSE) Ranks (KLD)

µ/ρ Infinite sites Finite sites (JC) Infinite sites Finite sites (JC)
2×10−8

2×10−8 = 1 0.397* 0.396 0.027* 0.026
4×10−8

2×10−8 = 2 0.285 0.285 0.049 0.053
8×10−8

2×10−8 = 4 0.195 0.197 0.113 0.112
2×10−7

2×10−8 = 10 0.117* 0.120 0.350* 0.353
2×10−8

2×10−9 = 10 0.120* 0.119 0.286* 0.291
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Evaluating MCMC Convergence

To evaluate MCMC convergence in ARGweaver and Relate, we run these programs five independent times for the same simulated
sequence of 5Mb. We do this for each simulation scenario and evaluate convergence by analysing various statistics extracted at each
iteration. For ARGweaver, we analyse statistics from in the .stats file, described below. Relate does not generate a similar output, so we
extract a subset of the pairwise coalescence times at each MCMC iteration to evaluate convergence. We also evaluate convergence
based on selected pairwise coalescence times in ARGweaver, for comparison. Using these statistics extracted at each iteration, we
evaluate MCMC convergence by analysing 1) trace plots, 2) autocorrelation plots, 3) effective sample sizes (Taboga 2017; Roy 2020),
and 4) potential scale reduction factor (PSRF) (Gelman and Rubin 1992). Analyses and plots were done in R using the function acf
for autocorrelation, and R package coda (Plummer et al. 2006) for effective sample sizes and potential scale reduction factor. These
results were used to inform our decisions on burn-in and thinning for MCMC, as well as interpreting results of our evaluations of the
methods under different simulated conditions.

ARGweaver
Convergence of likelihoods ARGweaver’s arg-sample program outputs a .stats file containing several statistics for each MCMC
iteration: log probability of the sampled ARG given the model ("prior", in Table S1), log probability of the data given the sampled ARG
("likelihood"), total log probability of the ARG and the data ("joint"), number of recombination events in the sampled ARG ("recombs"),
the number of variant sites that cannot be explained by a single mutation under the sampled ARG ("noncompats"), total length of all
branches summed across sites ("arglen") (Hubisz and Siepel 2020). We generated trace plots and calculated autocorrelation between
consecutive samples using the likelihood per iteration (Figures S9 and S11). Following visual inspection of these plots, we chose a
burn-in consisting of the first 200 samples in most simulations, except in simulations with 10 times higher mutation rate (Figure S9C,F)
or sample sizes larger than 8 haplotypes (Figure S11B,C,E,F), where we chose a burn-in of 1200 samples since those chains took longer
to converge. In both cases, we ran MCMC for 1000 iterations after burn-in. Based on autocorrelation plots (Figure S9, S11) and on
effective sample sizes (Table S1), we thinned ARGweaver samples by recording every 10th MCMC iteration, thus retaining a total of
100 MCMC samples.

Results of the potential scale reduction factor suggested convergence of ARGweaver in simulations with mutation rate equal to
recombination rate, with decreased recombination rate and with increased mutation rate (Table S1) - see section below on convergence
of individual coalescence times.

Convergence of coalescence times For comparison with Relate, which does not output statistics for each iteration, we also analyse
convergence of pairwise coalescence times in ARGweaver. To this end, we extract from each MCMC iteration the values of coalescence
times between two pairs of samples at 100 sites equally spaced by 50 kb along the 5Mb simulated sequences. We use those 200 values
for convergence diagnostics. Figure S12 shows trace plots of 10 of those sites, for one pair of samples. To evaluate convergence, we
calculate potential scale reduction factor (PSRF) for each of the 200 coalescence times, and compare their mean, variance and range
(Table S2) among different simulations. In Table S2 we also compare the number of coalescence times that have effective sample
sizes lower than 100 (which is our MCMC sample size). These results also lead us to conclude that ARGweaver runs with mutation
rate equal to recombination rate have converged. However, in contrast to the results on convergence for statistics recorded in the
ARGweaver stats files (Table S1), the evaluation of convergence based on coalescence times does not support a conclusion of full
convergence for the other simulated data sets. In particular, simulations with mutation to recombination rate ratio of 10 had a large
number of coalescence times with effective sample size smaller than 100. The same was true for simulations with 16 and 32 haplotypes.
The maximum values of PSRF in those simulations are also further from one, thus indicating a lack of convergence for some coalescence
times.

Relate
Relate estimates branch lengths using an MCMC algorithm with built in burn-in (Speidel et al. (2019) Supplementary Note on Method
details 4.2, p. 13). To obtain samples from the posterior distribution, the tree sequence estimated in this first step was used as a starting
point. Therefore, we did not implement any extra burn-in to obtain samples from the posterior. Visual inspection of traces plots also
suggested that additional burn-in was not necessary (Figure S13).

We evaluated Relate’s MCMC convergence by running it 5 times for each sequence of 5Mb simulated under each set of parameters.
We then extracted a subset of pairwise coalescence times to calculate the potential scale reduction factor and effective sample sizes
as described above for ARGweaver. We extracted coalescence times for two pairs of samples at 100 equally spaced sites along the
sequence (i.e. separated by 50kb). Table S3 shows these results, which indicate convergence of all Relate runs in all simulated datasets.

Tsdate prior grid

We ran tsdate with different prior grids, using the function tsdate.build_prior_grid(). The observation that dates inferred by tsdate
seem to be bounded to a low maximum value still holds when changing prior grids to have more points (timepoints=100, Figure S14)
or when manually specifying time slices with a maximum value of 12 (timepoints=np.geomspace(1e-5, 12, 50), Figure S15).

ARGweaver subtree sampling acceptance rates

As suggested by ARGweaver authors (Melissa Hubisz and Adam Siepel, personal communication), we have verified that acceptance
rates of subtree sampling steps of ARGweaver are within a range that indicates good mixing of the chain, between 10% and 90% (Table
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S4). All simulations except for the one with reduced recombination rate were within that range. For a visualization of the spread of the
values of acceptance rate, Figure S16 shows the acceptance rates for subtree sampling steps of ARGweaver in one 5Mb region of each
simulation.

Additional simulations results for ARGweaver
SMC and SMC’ modes in ARGweaver
In all results shown in the main text, we simulated under the standard Hudson (1983) coalescent with recombination, and did inference
in ARGweaver under SMC’. Here, we asked whether deviations observed in the posterior distribution of ARGweaver can be explained
by differences between the models used for simulation and inference. For this, we simulate sequences in msprime under the SMC and
SMC’ models, and run ARGweaver inference using the same model used in the simulation. We simulated 8 haplotypes with mutation
rate and recombination rate 2× 10−8. Results improve when simulating under SMC’ and inferring under SMC’ (Figures S17B, S18B).
Surprisingly, simulating and inferring under SMC (Figures S17A, S18A) is not better than simulating under the full coalescent with
recombination model and inferring under SMC (Figures 4, 5).

Intermediate values of mutation to recombination rate ratio
Rasmussen et al. (2014) mention in their Figure S5 that the quality of ARGweaver estimates generally improved in their simulations
with increased mutation to recombination rates ratio (µ/ρ), but only up to µ/ρ = 4. Motivated by this observation, we additionally ran
simulations with values of µ/ρ in between the ones shown in the main text (µ/ρ=1 or µ/ρ=10), including µ/ρ=2 and 4. We summarize
our results under these conditions in Table S5. We observed a similar pattern for these intermediate values of µ/ρ = 2, 4 as we had
observed from 1 to 10, i.e. point estimates improve with increased ratio (shown by lower MSE in Table S5), and calibration of the
posterior distribution worsens with an increased ratio (show by higher KLD in Table S5).

Jukes-Cantor mutational model
In all results shown in the main text, we simulated mutations using an infinite sites model. ARGweaver, on the other hand, uses a
Jukes and Cantor (1969) mutational model. Therefore, we hypothesize that differences in the mutational model between simulations
and inference could explain deviations in the posterior distribution of ARGweaver, especially in simulations with increased mutation
to recombination ratio (µ/ρ). We found that ARGweaver results with simulations under the Jukes and Cantor (1969) model are very
similar to the results under the infinite sites model and follow the same pattern under increased µ/ρ (Table S5, Figures S20, S21).
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