
TUNING THE GROWTH AND MECHANICAL
PROPERTIES OF CALCITE USING IMPURITIES:

INSIGHT FROM MOLECULAR SIMULATION

Alexander Broad1,2

1 Department of Physics and Astronomy, University College London
2 London Centre For Nanotechnology

Supervised by Prof Ian J. Ford1,2

and Prof. Dorothy M. Duffy1,2

A dissertation submitted for the degree of
Doctor of Philosophy of

University College London





DECLARATION

I, Alexander Broad confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this
has been indicated in the thesis.

Alexander Broad
September 2022





ABSTRACT

Over many millions of years, evolution has provided living organisms with
the tools to control the growth and properties of materials from the molec-
ular scale upward. One of the many ways this is achieved is through the
introduction of impurities into the solution in which these materials grow.
A long-term goal of materials scientists is to harness nature’s control mech-
anisms and apply them in the world of engineering. However, these mecha-
nisms of growth control are highly complex, and understanding them requires
insight into physical processes at the molecular scale. While experiments are
so-far unable to offer such a high resolution, computer simulations can be
used to directly model these physical process with no limit on the resolution.
Throughout this thesis, an array of computational methodologies is applied
to calcite in an attempt to understand how impurities are able to drive the
growth process, and ultimately alter the mechanical properties of the crystal.

A series of metadynamics simulations are applied to calcite kink sites,
revealing a more complex growth mechanism in which kink-terminating ions
do not initially occupy their crystal lattice sites, and only do so upon the
adsorption of an additional solute.

A combination of metadynamics and Kinetic Monte Carlo simulations are
used to examine the adsorption free energies and growth inhibiting properties
of amino acids and polyamines, the results of which are compared directly to
experiment. This offers a robust insight into the molecular mechanisms that
underpin how organic molecules are able to tune the growth of calcite.

Simulations are also applied to two case studies of impure calcite. By
examining lattice spacings, determining stress distributions and simulating
a series of crack propagation events, insight into mechanisms through which
biogenic crystals exhibit superior mechanical properties is found.

Finally, the nature of non-Markovianity when using reaction coordinates -
such as those used in rare event methodologies applied throughout this thesis-
are investigated. By introducing non-Markovianity into the system, barrier
crossing rates in a coarse-grained system more closely resemble those in the
original two-dimensional system. Furthermore, we study the breakdown in
rare-events sampling when a poor reaction coordinate is used, and identify
which rare-events sampling techniques are more appropriate for detecting
poor reaction coordinate choices.
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IMPACT STATEMENT

Crystallisation is a highly complex phenomenon which has a profound impact
on the development of biological systems, and frequently appears in sectors
ranging from the chemical industry to the environment, oil and gas, water and
advanced materials. In the biological world, evolution has provided nature
with the means to exhibit remarkable control over the mineralisation process,
right down to the nanoscale. This provides them with hard structures, such as
bones and teeth, tailored to their respective purposes. In the industrial world,
it is a long-term goal of materials scientists to exploit this biomineralisation
process to design nanomaterials with properties similar to those found in
nature. Additionally, more detrimental forms of crystallisation are frequently
observed in everyday life: an example of which is the build-up of limescale.
In the oil industry, a build-up of scale occurs within the pipelines, ultimately
hindering flow through the pipelines. The prevention of such crystallisation
events is a major challenge to the industry. Identifying means through which
the crystallisation process can be controlled therefore has a vast scope of
academic and industrial applications.

One way in which the crystallisation process can be controlled is through
the introduction of impurities which impose additional constraints on the
growth process, leading to control over morphology and size. They are also
able to incorporate into the crystal, resulting in altered mechanical prop-
erties. In this thesis, we use classical molecular dynamics simulations to
offer insight into the molecular processes that underpin calcite growth, and
demonstrate several means through which impurities can impact the growth
and mechanical properties of calcite. We demonstrate that the calcite kink
growth process is more complex than previously thought, consisting of a mul-
tistep mechanism in which adsorbates transition to an intermediate state, and
only adsorb into the lattice site on the arrival of another adsorbate. We also
demonstrate that amino acids, and several other impurities, adsorb to calcite
through a combination of interactions involving amine and carboxyl groups.
Their adsorption also typically results in a minimal disruption to the local
water structure, and inhibits the crystal growth rate through mechanisms
dependent on the kink type.

Having identified several mechanisms through which impurities can tune
the crystal growth process, we use molecular simulation to examine the me-
chanical properties for two case studies of impure crystals. We identify several
mechanisms through which impurities can tune the size and fracture tough-
ness of the material. Our findings have provided significant insight on how
impurities can tune the mineralisation process, from the growth of crystals
to their final properties. We have provided a template for studying the in-
teraction of impurities with calcite kink sites, and made progress towards
developing a kinetic Monte Carlo models for modelling the effects of additive
on crystal growth rates and morphologies. We have also demonstrated that
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molecular simulation can be used to demonstrate the superior mechanical
properties of biologically optimised crystalline materials.
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1INTRODUCTION

1.1 Materials science: an outlook

Over millions of years, evolution has provided living organisms with minerals
with bespoke properties which are crucial for their survival. Such materials
include shells, [4] skeletons, [5] and teeth [6]. Growing these materials re-
quires an enormous level of control over their structure and chemical compo-
sition from the nanoscale up.

Similarly, the fashioning of bespoke materials has been pivotal in the de-
velopment of human civilisation. From the beginnings of the copper, bronze
and iron ages to the modern day, our understanding of material production
has determined humanity’s development. Our material production has typi-
cally involved high temperatures and the mining of necessary minerals. On
the other hand, biological systems are limited to the chemical composition
and ambient conditions of their environment when forming biominerals. Nev-
ertheless, evolution has provided living organisms with the means to produce
a range of highly sophisticated materials with properties tailored to their re-
spective purposes.

The key difference between materials found in the industrial world and
those found in the biological world is the profound control of the crystalli-
sation process, right down to the nanoscale, which living organisms possess.
A long-term ambition of materials scientists is to exploit the mechanisms
such as those found in nature in order to design nanomaterials (i.e. materi-
als with structural and mechanical features tuned to a level of precision on
the order of nanometers) with tailored structures and mechanical properties.
This perhaps seems ambitious, but nature has already proved to us that it
is certainly achievable.

1.2 Biomineralisation

Biomineralisation is the name given to the processes through which biological
systems tune the crystallisation process to produce materials with bespoke
structural and mechanical properties. As mentioned previously, bones and
teeth are a real-world example of materials formed through biomineralisation.

There are several means through which the crystallisation process can be
directed to produce biominerals. Examples of this include growing the crys-
tal within a confined region, such as some kind of mould, or changing the
chemical composition of the solution i.e. strategically adjusting the super-
saturation of the solution or introducing impurities which either modify the

1
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Figure 1.1: Depiction of the coccolithophore Rhabdosphaera clavigera. The
plates coating the coccolithophore, as well as the protruding spines, entirely consist
of calcium carbonate This provides an elegant, yet relatively simple, example of
biomineralisation. Original image can be found in [1].

morphology of the crystal or change the chemical composition of the material
itself. Impurities, and their effects on the crystallisation process, will be a
major focus of this thesis.

There are many materials which can constitute biominerals. These in-
clude, but are not limited to, sulfides, sulfates, oxides, hydroxides, phosphates
and carbonates [7]. The most abundant biomineral on Earth is calcium car-
bonate (CaCO3). The most stable CaCO3 polymorph is calcite, which is
present in living organisms such as coccoliths [1] and sea urchins [8, 9]. One
particularly elegant example is Rhabdosphaera clavigera, which is a species
of coccolithophore coated in protective plates and protruding spines made of
calcium carbonate. Calcium carbonate, particularly calcite, is the subject of
the majority of this thesis, and will be discussed in detail in the following
chapter.

While Rhabdosphaera clavigera provides an example of the extraordinary
control biological systems exhibit on the crystallisation process, it is still a
relatively straightforward example of biomineralisation. Elsewhere in the bi-
ological world, materials such as shells [10, 11] and bones [12] are specifically
designed for their toughness and resilience to fracture. This is often achieved
by introducing a series of complex, hierarchical layers of hard and soft ma-
terials [13]. It is no surprise that such materials have a far more complex
chemical composition than those of Rhabdosphaera clavigera.

Impurities have a huge scope for altering crystal growth, morphologies,
chemical composition and mechanical properties, and we are a long way off
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from truly understanding their microscopic and macroscopic impacts. In
the present day, we are typically limited to studying single crystals, grown
in the presence of impurities. While single crystal biominerals containing
impurities incorporated into their lattice are less commonly found in nature,
there are certainly examples which can be studied, as we will discover in this
thesis. Nevertheless, much remains to be understood even for these relatively
simplistic settings.

As mentioned above, the vast majority of this thesis is dedicated to study-
ing calcite. Recent advances in experimental techniques have allowed the
documentation of certain impurities’ effects on the growth process and mor-
phological and mechanical properties of calcite. For example, impurities are
already shown to produce impressive morphological impacts on calcite [14].
Experimental proceedings alone lack the resolution to examine the molecular
processes behind these effects. However, this issue can be resolved using com-
puter simulations to model these molecular processes. Significant advances
in both experimental and computational techniques have been made in the
last few decades, although there still exists a large gap in what is possible to
measure in the realms of theory and experiment.

The objective of this thesis is to develop our understanding of the impacts
of impurities on calcite growth from a theoretical perspective. Ultimately,
we wish to develop a model which can predict observables such as morphol-
ogy and mechanical properties, so that experimentation and computational
modelling can be better applied in tandem in our pursuit of understand-
ing biomineralisation. In order to achieve this, we must begin by finding
greater consistency between computational predictions and experimental re-
sults. This is currently difficult to achieve, due to the large gap between
accessible time and length scales of experimental procedures and compu-
tational modelling. However, recent advances in force field parametrisation,
rare event sampling techniques and coarse-graining methods provides us with
an opportunity to make thermodynamically consistent measurements at the
atomic scale and expand upon them to make predictions of macroscopic ob-
servables which are directly comparable with experiment.

The objectives of this thesis can be split into several components. First of
all, we wish to use molecular simulation to model the interactions of adsor-
bates, such as Ca and CO3 units and certain impurities, with the surfaces of
calcite most relevant to growth. Doing so will provide details on the molecu-
lar mechanisms behind calcite growth, as well the mechanisms through which
certain functional groups (e.g. carboxyl and amino groups) bind to calcite to
alter its growth. We also wish to use these results to build a coarse grained
model of impurity-directed calcite growth which can be used to validate the
values calculated at the molecular level, and can be directly compared against
experimental results. Finally, we wish to use molecular simulation to model
examples of impure calcite which have been shown to exhibit superior me-
chanical properties to pure calcite. In doing so, we wish to advance our
understanding of biomineralisation by elucidating the molecular mechanisms
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responsible for the superior properties of certain examples of biogenic calcite.

1.3 Thesis outline

To summarise this chapter, we currently have little understanding of how
impurities are able to tune the crystallisation process of calcite, from their
interaction with kink sites and effect on growth, to their resulting macroscopic
effects on the mechanical properties on the host crystal. The study of the
latter is hindered by a lack of understanding of how calcite growth itself
occurs at the molecular scale.

Chapter 3 provides an overview of the theoretical tools applied throughout
this thesis. Starting with the fundamental statistical mechanics of thermody-
namic systems, this chapter introduces the theoretical premise of Molecular
Dynamics, as well as the dynamics of coarse grained systems including the
Langevin Process and the Kinetic Monte Carlo method.

Chapter 4 discusses the implementation of the analytical and compu-
tational techniques used throughout this thesis. As well as discussing the
parameters used when implementing the methods discussed in Chapter 3,
this chapter discusses the simulation cell set-ups and introduces several tech-
niques such as calculating adsorption free energies, stress distributions and
average lattice spacing.

Chapter 5 lays the groundwork for studying the interaction of impurities
with calcite kink sites by examining the binding configurations and adsorp-
tion free energies of Ca and CO3 units to kink sites. In doing so, we provide
new insight into the stable configurations of propagating kinks, and address
the question of whether cation dehydration is a rate-limiting process for cal-
cite kink propagation.

Chapter 6 concerns the interaction of impurities with kink sites. We
begin by studying the binding of amino groups to calcite CO3-terminated
kink sites. This work is carried out in order to complement experimental
findings, which find that amine-terminated molecules are able to occlude
in calcite at a high efficiency. We then proceed to investigate the binding
of aspartate to calcite kink sites, something which has frequently been the
subject of experimental study. By calculating the adsorption free energy
to every kink site, we provide insight into the mechanisms through which
amino acids bind to calcite and inhibit its growth. We also use our results to
parametrise a Kinetic Monte Carlo model, which is used to directly replicate
experimental measurements of growth inhibition.

Having examined the nature of impurities binding to a growing crystal,
we proceed to examine the mechanical properties of impure calcite crystals in
Chapter 7. We begin by examining the effect of weakly-interacting, hydroxyl-
rich nanoparticles on the stress distribution and lattice spacing of bulk calcite
crystals. We then proceed to examine the case study of Ophiocoma wendtii
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by calculating stress distributions and strains of Mg-rich calcite. We addi-
tionally simulate a crack propagation event for pure and Mg-rich calcite, and
compare the stress against strain of the crystal as it fractures. We identify
three mechanisms in which Mg-rich calcite has an improved fracture tough-
ness compared to pure calcite.

Chapter 8 presents a study of how a poor choice of reaction coordinate
introduces non-Markovian kinetics into the system. We begin by examining
the crossing rate of a two-dimensional saddle point, and compare the crossing
rate of the coarse grained, one-dimensional barrier in both a Markovian and
non-Markovian setting. We then proceed to run various rare-event sampling
methods for the two-dimensional system, and discuss how to identify where
a reaction coordinate is poorly chosen from the results of a simulation. We
then apply this knowledge to the work carried out in previous chapters, and
discuss the successes and shortcomings of the rare event sampling techniques
and reaction cooredinates used throughout this thesis.

Finally, Chapter 9 provides a summary of the thesis and identifies future
areas of research.
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2BACKGROUND

Chapter 1 provided an overview of the motivations behind this thesis. In
this chapter, we provide a more in-depth discussion of the literature relevant
to this thesis. We begin with a discussion on calcite, including its molecular
structure and growth mechanisms. We proceed to discuss the various compu-
tational modelling techniques which have typically been applied to calcite, as
well as other inorganic single crystals. We continue with a discussion on our
current knowledge and understanding of the surfaces which facilitate growth,
as well as the growth processes themselves. Impurities are also introduced in
this chapter, with discussions on their growth-altering abilities, morphologi-
cal impact, incorporation, and final mechanical impact. The computational
modelling of impurities is also discussed here. This chapter concludes with
a summary, detailing the current limitations of materials modelling and the
current open questions which will be addressed throughout this thesis.

2.1 Calcite

As mentioned previously, materials which can constitute biominerals include
sulfides, sulfates, oxides, hydroxides, phosphates and carbonates [7], the most
abundant of which is Calcium Carbonate (CaCO3). The most stable CaCO3

polymorph is calcite, which is present in living organisms such as coccoliths
[1] and sea urchins [8, 9]. The other polymorphs of CaCO3 are aragonite and
vaterite. Aragonite is a metastable polymorph of CaCO3, which is stable at
high pressures [15] and otherwise decays to calcite over geological timescales
[16]. Vaterite is another metastable polymorph, which rapidly decays to
calcite when exposed to water [17]. Calcite is the subject of the vast majority
of this thesis, and will be introduced throughout this section.

2.1.1 Morphology and molecular structure

The equilibrium morphology of calcite in pure solution and under ambient
conditions is the rhombohedron. The rhombohedral crystal structure of cal-
cite can be described with hexagonal axes. This hexagonal unit cell has
lattice parameters a = b = 4.990 Å, c = 17.061 Å, α = β = 90◦ and γ = 120◦

[18]. Figure 2.1 shows the hexagonal unit cell of calcite. Using the nomen-
clature of hexagonal axes, the lowest energy surface of calcite is the {10.4}
surface.

7
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Figure 2.1: Hexagonal unit cell of calcite with lattice parameters a and c shown
(left). Rhombohedral crystal structure of calcite showing the c-axis and the {10.4}
plane (right). Here, Ca is shown in green, C in grey and O in red.

2.1.2 Growth mechanisms

The growth of calcite occurs through the adsorption of solutes, namely Ca
and CO3 ions, to the calcite surface. The sign and magnitude of the growth
rate is determined by the supersaturation of the solution. Denoted by S, the
supersaturation is given by:

S =

√
aCaaCO3

Ksp

(2.1)

where aCa and aCO3 are the activities of Ca and CO3, and Ksp is the solubility
product, defined as the product of aCa and aCO3 when the physical adsorption
and dissolution reactions are at equilibrium, and equal to 10−8.48 for calcite
[19]. If S is above one, the crystal will grow; if S is below one, the crystal
will dissolve.

The mechanism of calcite growth is known to be described by the terrace-
step-kink model [20], in which elevated islands of ions propagate along the
surface [21]. This flat surface is known as the terrace. The propagation of the
island along the (10.4) directions produces a step where the island terminates.
The propagation of steps occurs through the nucleation of a row of ions to
form a new step. The lattice sites where the row of ions terminate are known
as kinks. An important parameter in kink nucleation is the critical length of
the step, defined as the step length which maximises the free energy increase
relative to the absence of the new step segment. Below the critical length,
the step favours dissolution; beyond it, the step favours growth. The critical
length is a function of the supersaturation of the solution: the greater the
supersaturation, the smaller the critical length becomes.

Figure 2.2 shows a schematic detailing the mechanisms behind calcite
growth. The dominant mechanism of growth actually depends on the super-
saturation of the solution. At low supersaturation, growth primarily occurs
through pre-existing steps. These steps are sourced through the existence of
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Figure 2.2: Schematic detailing the growth of calcite at low supersaturation.
Here, the steps are continually sourced by the existence of screw dislocations.
Steps propagate through kink nucleation, where ions adsorb to the step. The row
of ions expands in a process known as kink propagation.

screw dislocations, [22] which are atomic-scale defects on the terrace which
provide a local offset of the crystal lattice [23]. At high supersaturation,
the two-dimensional nucleation of growth islands becomes sufficiently rapid
such that propagation of growth islands becomes the dominant mechanism
of calcite growth.

2.1.3 Terraces, steps and kinks

Due to the rhombohedral morphology of calcite, there are two unique ge-
ometries of step which can exist on the surface. These two steps are labelled
acute and obtuse. A further consequence of this is that a total of 8 kink
geometries exist. However, due to the glide plane symmetry of calcite, only
four unique kink geometries exist. Since a kink can be terminated by either
Ca or CO3, the total number of unique kink types doubles. Finally, consid-
ering the two distinct orientations of CO3 ions, the number of unique kink
types doubles again to a total of 16. Throughout this study, we refer to the
different kink geometries as a, b, c and d. The two CO3 orientations we
denote by (i) and (ii). If the kink is Ca-terminated, the adjacent terminating
CO3 ion determines whether the kink is labelled (i) or (ii). Figure 2.3 details
the four unique kink geometries that arise from the morphology of calcite, as
well as the four unique ion orientations which determine the kink type.

2.2 Modelling techniques

Computational materials modelling exists in many forms, each with their
own resolution and accessible time- and length-scales. This section provides a
brief description of the computational methods used to model crystallisation
processes, and discusses its use and applicability in the field of crystallisation.
For a more extensive discussion of the various models discussed here, Chapter
3 provides an overview of the theory behind the modelling technique used in
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Figure 2.3: (a) Schematic of a calcite crystal with a magnified growth island,
detailing all kink geometries and their labels. (b) Image detailing the geometry of
acute and obtuse steps. (c) Schematic detailing the four subsets of kink type as
described in the main text.

this thesis.

Ab initio methods, such as Density Functional Theory (DFT) are means
of approximating the solution to the Schrödinger equation for many-body
systems. Such methods have been applied in this field in the past. However,
such methods based on quantum mechanics are computationally demanding,
and simulations are typically limited to very small time-scales (up to a few 10s
of ps). Simulating the aqueous surfaces which facilitate growth also becomes
especially difficult with quantum mechanical models, which can typically only
accommodate surfaces in vacuo. For this reason, computational studies of
calcium carbonate applying quantum mechanics have been limited to isolated
bulk materials and surfaces [24, 25].

Instead, molecular simulation, which approximates atoms as point charges
obeying Newtonian mechanics, is far less computationally demanding and
is a popular choice for modelling materials such as calcite. The principles
of molecular simulation will be discussed in detail in Chapter 3. Classical
molecular simulations are typically able to simulate the aqueous conditions
in which calcite grows for time-scales of up to a few µs. Since crystal growth
typically only involves the adsorption and dissolution of ions to growth sites
(i.e. no chemical reactions), it is feasible that quantum mechanics may be ne-
glected when modelling it. However, one disadvantage of neglecting chemical
reactions is that the effects of the solution pH, for example the prevalence of
bicarbonates, are not accounted for. Ab initio molecular dynamics are able
to overcome such issues, [26] although this method is again very computa-
tionally demanding. Classical molecular simulations therefore constitute the
majority of computational studies of calcium carbonate.

In practice, crystal growth consists of a vast number of physical reactions,
and experimental observables such as morphology, impurity content etc. are
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Figure 2.4: Computational methods typically applied to modelling crystallisation
processes, as well as the time- and length-scales over which each method applies.

measured at length-scales beyond the reach of molecular simulation, as well as
requiring time-scales far beyond the reach of molecular simulation to observe
these growth processes. In these instances, modellers are forced to abandon
atomistic techniques, and use either an analytical model or a coarse-grained
computational model. Of the latter, a popular model in the field is the
Kinetic Monte Carlo (KMC) model. KMC simulations are used to model
the growth and dissolution of the crystal as a series of individual adsorption
and dissolution processes, each with their own specified reaction rates (see
Chapter 3). KMC simulations are an extremely useful technique, as they can
produce results which can be directly compared with experimental reality.
However, the results are highly dependent on the individual reaction rates
used, which can be difficult to parametrise. Often, simplistic models are used
to derive reaction rates. This will be elaborated on later in this chapter.

2.3 Growth and surfaces

A significant limitation of experimental studies of materials is the resolution
that experiments are able to provide. The entire crystallisation process, from
the nucleation and growth of crystals to their mechanical and morphologi-
cal properties, are determined entirely by molecular-scale interactions and
processes, which are either difficult or impossible to examine experimen-
tally. However, computational modelling offers an invaluable insight into
such molecular details. Unlike experimentation, computational modelling
has no limit on its resolution.
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2.3.1 Morphologies

As discussed in Section 2.1.1, the natural morphology in calcite is the rhom-
bohedron. While this is well established for pure calcite from observation,
morphology remains an important area of study in the field of crystal growth.
This is for two reasons: first, crystal structures can be complex, and the pre-
diction of morphologies using a computational model is often a good gauge
of the success and applicability of the model; second, morphologies can be
highly dependent on solution conditions, particularly when impurities are
present in solution. The latter will be discussed in Section 2.4.

Assuming no significant kinetic effects are taking place, the morphology of
a crystal is that which minimises the total Gibbs free energy of the surfaces,
∆Gsurf, as follows,

∆Gsurf =
∑
i

γjAj (2.2)

where γj is the free energy per unit area of crystal face j, and Aj is its surface
area. In 1901, Wulff stated that the length of the vector drawn between the
centre of a crystal to the crystal face, hj, is proportional to γj [27]. This was
originally stated without proof, although proof was later supplied by Herring
[28]. With this condition, we arrive at the Wulff theorem:

γ1

h1

=
γ2

h2

=
γ3

h3

= ... (2.3)

The Wulff theorem can therefore be used to predict the crystal mor-
phology by calculating γj for each surface. This process is known as Wulff
construction, and is often used to predict crystal morphologies. In the case of
calcite, the {10.4} faces are expressed almost exclusively. One should there-
fore expect hj to be the the smallest for {10.4} faces, and thus γj is the lowest
for the {10.4} faces. In fact, early molecular simulations of ionic crystals often
focussed on calculating energy differences or using energy minimisation tech-
niques to predict surface morphologies [29, 30, 31]. Such techniques were first
applied to calcite by de Leeuw and Parker, who calculated hydration energies
for different calcite, aragonite and vaterite surface [32]. Their results showed
the {10.4} surface of calcite to have the lowest energy, in agreement with the
natural morphology of calcite. A similar study calculated and compared the
equilibrium morphologies of calcite and dolomite using Wulff construction
[33].

In a later study, Piana et al. [34] used a combination of direct calculation
of reaction rates using molecular simulation, and KMC to predict the equi-
librium morphology of urea. The calculations agreed well with the observed
morphology, heralding a success of molecular simulation being directly used
to predict a macroscopic observable. However, this study was possible for
urea because of its rapid growth rate. For calcite, the growth is far slower,
and cannot be calculated directly using molecular simulation. A more gen-
eralised method for determining morphologies was later introduced by Li
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and Doherty [35] to calculate steady-state morphologies of paracetamol in
different solvents, using a mechanistic Spiral Growth model to parametrise
individual attachment rates. They found general agreement with experi-
mental observations, and noted the applicability of their method to other
organic molecules. More recently, Anderson et al. [36] proposed a gener-
alised method for predicting crystal morphologies based on a unified kinetic
three-dimensional partition model. This method has been successfully used
to predict morphologies of calcite, urea, L-cystine, zeolites and metal or-
ganic frameworks, and has recently been developed into the CrystalGrower
software [37].

2.3.2 Crystal-water interfaces

The structure of water coordinated with calcite surface sites has been an area
of interest over the past few decades, and it is widely believed that the water
structure near surfaces plays an important role in crystal growth. A 2004
study by Kerisit and Parker computed free energies of water adsorption to the
calcite {10.4} surface by calculating water density profiles [38]. Free energies
offer a better insight into the stability of a configuration than energies, as
they also include an entropic term (see Chapter 3). Indeed, it was found
that the free energy of adsorption was greater (smaller in magnitude) than
the energy of adsorption, indicating a loss of entropy upon adsorption onto
the surface. In this study, the residence times of water molecules interacting
directly with the surface were also calculated to be about 300 ps. A similar
study also noted a strong hierarchical layering of water above the surface
from the water density peaks near the {10.4} surface [39]. A first water layer
exists, in which oxygen atoms in water directly bind to Ca atoms on the
surface. The second layer exists through forming hydrogen bonds with the
first water layer.

A similar study by Spagnoli et al. [40] extended this procedure to calcite
steps and vacancies and observed disruptions in the two-dimensional water
density profile which were highly dependent on the type of vacancy or step. A
later study by Wolthers et al. [41] additionally considered the water structure
near growth islands and etch pits. They noted subtle differences in hydrogen
bonding between acute and obtuse edges. Another study by Wolthers et al.
[42] calculated residence times for water molecules coordinated with terrace
sites, step sites and corner sites. The residence times were found to be highly
dependent on the site type, varying by up to two orders of magnitude. Water
coordinated with the terrace was found to have residence times of 40 ps.

In a more recent study by De La Pierre et al. [43] the water structure and
residence times were calculated for calcite terraces and steps. Calcite step Ca
ions were able to host three bound water molecules, the residence times of
some of which are significantly larger than those found on flat {10.4} surfaces
(2 ns). It should be noted that the three calculated residence times for water
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molecules at flat {10.4} terraces discussed in references [38], [42] and [43]
vary by two orders of magnitude. This is due to the different interatomic
potentials used in each study. The largest residence time is likely to be
the most accurate, due to the superiority of the interatomic potentials used
[44, 45].

The existence of strong water layers interacting with calcite surfaces has
lead to the general opinion that surface cation dehydration is a rate-limiting
process of calcite growth [46, 47, 48, 49]. In fact, this assumption has pre-
viously been applied to analytical models for calcite step propagation [50].
However, this claim has very little direct evidence, and recent calculations of
water residence times have shown typically small water residence times for
lone Ca ions [51, 52]. It should be reiterated, though, that water residence
times do increase drastically for terrace and step Ca ions [53]. The extent of
the rate-limiting effects of dehydration remains a somewhat open question.

2.3.3 Growth and dissolution

The adsorption of ions to terraces, steps and kinks is an important set of
processes for understanding crystal growth. The growth and dissolution pro-
cesses themselves are determined by the thermodynamics and kinetics of
the adsorption and dissolution of individual solutes to calcite. Such pro-
cesses have therefore received a great deal of attention in both experimen-
tal and computational studies. Experimentally, the formation and advance
of both growth islands and etch pits have predominantly been studied us-
ing Atomic Force Microscopy (AFM) [54, 55, 56]. Computational studies
have consisted of both molecular simulations of individual atomistic pro-
cesses [57, 38, 40, 43], and KMC simulations [58, 59, 60, 61, 41, 56, 62, 37].
KMC methods are typically based on straightforward models describing indi-
vidual adsorption and dissolution rates. One such model is the solid-on-solid
dissolution model [63], which assumes the dissolution free energy linearly de-
pends on the number of ionic bonds formed with neighbouring ions. A lone
ion adsorbed to the terrace interacts with one neighbouring ion, a step ion
interacts with two, and a kink-forming ion with three. An atom adsorbed
into the step has four ionic bonds with nearest neighbours. Figure 2.5 shows
a schematic of the solid-on-solid model.

The dissolution process of calcite at the nanoscale was first observed using
AFM, in which it was found that it occurs through the formation of etch pits
(inverted growth islands) which advance along the terrace [54, 55]. The
results of this study, as well as the solid-on-solid dissolution model, were
also used to parametrise a KMC model for calcite growth. While this study
was successful, an AFM study alone offers little insight into the molecular
mechanisms behind the complex dissolution process. Molecular simulation
again provides a valuable insight into these mechanisms. While molecular
simulation is currently unable to access the time- and length-scales needed
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Figure 2.5: Schematic detailing the solid-on-solid model for a crystal. Here, the
free energy cost of breaking a single ionic bond is given by φ. The free energy
cost of removing an ion (shown in blue) is therefore given by φ multiplied by the
number of ionic bonds broken. Schematic shows an ion adsorbed on the terrace,
an ion adsorbed onto the step, a kink-forming ion and an ion adsorbed into the
step.

to model the advancements of steps and etch pits, it is able to model the
adsorption and dissolution of individual Ca and CO3 ions to and from calcite
surfaces. An early study by de Leeuw et al. [57] calculated dissolution
energies for ions at calcite step sites, both in vacuo and in water. It was
found that obtuse step dissolution in vacuo came at a smaller energy cost
than acute step dissolution. The introduction of water was found to stabilise
both steps, and the energy costs of step dissolutions were found to be similar
between acute and obtuse steps. A similar study by Kristensen et al. [39]
used energy minimisation techniques to calculate the kink pair defect energy,
both for kink pairs along an infinitely long step, and when kinks were placed
inside etch pits in a cleavage surface. It was found that kink pair formation
energies were similar for different kink types. It should be noted, however,
that these simulations were only carried out in vacuo, and therefore do not
represent the aqueous conditions in which calcite grows.

As mentioned previously, thermodynamic averages and reaction rates are
not determined solely by energy differences. Free energy differences, which
contain an entropic term, determine the thermodynamics and kinetics of the
system. In a study by Kerisit and Parker [38], free energy surfaces for ad-
sorption of Ca, Mg and Sr ions to the calcite {10.4} surfaces were calculated,
and it was noted that the water layers provided a large barrier for adsorption.
A further study [40] determined the free energies for the adsorption of Ca
and CO3 ions to the calcite {10.4} surface, as well as acute and obtuse steps.
It was found that the free energy of adsorption does not scale linearly with
the number of ionic bonds formed with nearest neighbours. This threw into
question the validity of the solid-on-solid model.

A later study by De Yoreo et al. [56] combined AFM and KMC to
determine the step-edge structure and dynamics. Critically, it was found that
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thermal fluctuations of steps and the kink density on growth islands were not
sufficiently large such that they produce an abundance of kink sites. This
led to the conclusion that the growth of calcite is limited by the nucleation
of kinks, rather than their growth. This conclusion, however, is limited by
the validity of the AFM method used. Several discrepancies have been noted
between the results of AFM studies and theoretical models [64, 65, 19] A
recent study by Darkins et al. [62] demonstrated that the application of
AFM can hinder mass transport to the surface, thus producing incorrect
critical lengths.

Since there exists a total of 16 unique calcite kink sites, as well as four
unique step sites, it is likely that calcite step propagation is a complex pro-
cess, determined by a large array of reaction rates. As discussed above, the
solid-on-solid model is a simple model assuming that the dissolution rate is
entirely given by the number of ionic bonds formed with nearest neighbours.
This relies on the assumption that the dissolution rate is equal across all
four step types and all sixteen kink sites. This model is known as the Kossel
model [66].

Over the last several years, many AFM studies of calcite step velocities
[58, 59, 60, 61] have found that varying the solution stoichiometry (ratio
of Ca and CO3 concentrations) at constant supersaturation produces step
velocity functions which do not peak at [Ca]=[CO3]. The acute step velocity
peaks for [Ca]<[CO3] and the obtuse step velocity peaks for [Ca]>[CO3].
This implies that acute kinks are more likely to be terminated by Ca ions,
and obtuse steps are more likely to be terminated by CO3 ions. A study by
Andersson et al. [50] used these step velocity functions to parametrise an
analytical model of calcite step growth. It was found that the stoichiometry
curves could only be accurately replicated when the adsorption of ion pairs
and ion chains onto steps was considered. It should be noted, however, that
this study relied on the assumption that the step velocity is determined solely
by the kink nucleation rate, a consequence of the results of the AFM studies
by De Yoreo et al. mentioned above. Since the mass transport effects noted
by Darkins et al. exist for calcite in AFM studies, it is likely that these
assumptions are not valid. Furthermore, more recent KMC models have
been able to replicate the stoichiometry curves by considering only single-ion
attachment.

Crucial to understanding the molecular mechanisms behind calcite growth
is the study of calcite growth sites: chiefly, the study of the step and kink
sites which facilitate growth. Experimental techniques are currently unable
to provide a level of precision beyond measuring step velocities. Studies of
stoichiometry have demonstrated that calcite growth is a non-Kossel set of
processes, although little has been known until recently about the thermo-
dynamics and kinetics of individual steps or kinks. Some previous studies
mentioned above have examined the dissolution of ions from steps and kinks,
although these have often been limited to calculating energy (rather than
free energy) differences, or are based on simulations in vacuo.
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More recently, the development of rare-events sampling techniques (see
Chapter 3), access to larger computing powers, and the development of ther-
modynamically consistent force fields has led to major advancements in the
field. In 2010, Raiteri et al. [44] derived force fields able to reproduce the
solubility of calcite. This was used to study the adsorption of Ca and CO3

ions to the calcite {10.4} surface. It was found, contrary to previous studies
using less thermodynamically consistent force fields, that Ca ions did not
form bonds with the surface, and that CO3 ions only interacted weakly with
the surface. This was found to be due to the existence of water molecules
strongly bound to the surface Ca ions, something also observed previously.
In 2015, these force fields were extended to other alkaline Earth metals, in-
cluding Mg [45].

In a subsequent study by De La Pierre et al. [43], the adsorption of Ca
and CO3 ions to calcite steps was examined using metadynamics. It was
found that only CO3 ions were able to form metastable bonds with the step.
This was again a contrast with previous simulations, which found both ions
to adsorb at steps. It was also found that the most stable binding site for
a CO3 ion was one in which it only formed bonds with the upper terrace.
By tethering the CO3 ion to its (meta)stable states, the free energy of kink
pair formation was examined. The free energy of kink pair formation was
found to be highly dependent on the kink type, again contradicting previous
molecular simulations. It was also found that the largest kink pair formation
free energy corresponds to a configuration in which the Ca ion does not
reside in the lattice site. It is worth noting that a similar observation has
been observed for barite, in which barium ions do not adsorb directly to step
lattice sites, but instead prefer to reside above the kink site, forming two
bonds with the upper terrace [67].

Over the last decade, the force fields of Raiteri et al have revealed the cal-
cite growth process to be significantly more complex than previously thought:
most notably, the weaker propensities for adsorption of Ca and CO3 ions to
all sites found compared with those of previous studies, and the more com-
plex mechanism of kink nucleation. While this work has been extended to
ion pair formation, kink nucleation and kink pair formation, very little work
has been carried out on adsorption to and dissolution from calcite kink sites.
Molecular studies of calcite kink sites do exist, although they have been lim-
ited to either one unique Ca-terminated kink site [52] or two CO3-terminated
kink sites [68]. These studies suggest that the dissolution rate for different
kink sites is dependent on the kink type. This follows an ongoing trend
of simulations demonstrating that simple models of calcite growth may not
apply: from early simulations demonstrating the solid-on-solid model to be
insufficient, to recent models finding kink nucleation mechanisms highly de-
pendent on the kink pairs formed, and finding a complex set of molecular
processes behind kink nucleation in which adsorbates do not reside in their
lattice sites. Nevertheless, a great deal is missing from this picture, most
notably the lack of molecular studies on calcite kink sites.
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Figure 2.6: Schematics of the characteristic functions of step velocities (vs) as a
function of the difference between ion activities (a) and the equilibrium ion activity
(ae) for three separate impurity concentrations (C1, C2, C3).

2.4 Impurities

Although single-crystal calcite is occasionally present in the biological world,
impurities offer a far larger scope for the formation of materials with bespoke
morphological and mechanical properties. The role of impurities in tuning the
growth of calcite is the subject of extensive experimental and computational
study and research on impurities and their influence on crystal growth has
been carried out alongside research on pure calcite. There are two reasons
for this: first, crystals seldom grow in pure solution, and will always contain
impurities to some degree; secondly, and more importantly, impurities are
one of the means through which biological systems are able to tune the
growth and morphological and mechanical properties of biogenic crystals
with exquisite control. This section provides a review of the mechanisms
through which impurities can tune crystal growth and properties, as well as
discussing the progress made in understanding them using experimental and
computational techniques.

2.4.1 Effects on growth

Fundamentally, impurities can tune crystal growth at the molecular scale in
several ways, each with their own characteristic effects on step morphologies
and dependence of step velocity on supersaturation [20] as depicted in Figure
2.6. The strongest interaction between impurities and the crystal surface will
typically occur at the kink sites, due to their potential to form ionic bonds
with multiple ions. If the binding to kink sites is sufficiently small such that
detachment occurs more rapidly than Ca or CO3 units, the impurity hin-
ders growth via a mechanism known as kink blocking [69]. A kink-blocking
impurity inhibits the adsorption of either Ca or CO3 units to the kink site.
The result of this is a fractional inhibition of the step velocities independent
of the solution conditions except for the concentration of the kink-blocking
impurity. This relative reduction of the crystal growth rate is equal to the
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fractional coverage of the kink sites, θ. The dependence of θ on the concen-
tration of the impurity in the aqueous phase, C can be described analytically
using several models, [70] the simplest of which is the Langmuir equation:

θ =
KC

1 +KC
(2.4)

where K is the affinity constant, related to the adsorption free energy, ∆Gads

as follows:

∆Gads = −kBT log(KC0) (2.5)

where kBT is the Boltzmann factor and C0 is the base concentration unit
(which we set as the molar concentration throughout this thesis).

Adsorption free energies are experimentally calculable for calcite (al-
though the same method can be applied to other crystals) by injecting Ca
and CO3 into the solution in order to maintain a constant supersaturation
as a calcite crystal grows. The rate of injection is related to the growth
rate of the crystal. This can be repeated for different kink-blocking impu-
rity concentrations and fit to equation 2.4. This process has been applied to
aspartate (asp), glycine (gly) [71] and poly-aspartate chains [72]. Asp, for
example, is found to obey the Langmuir equation, indicating a straightfor-
ward, kink-blocking interaction between asp and growth sites. For glycine
and poly-aspartate chains, the growth effects are more complex. The ad-
sorption free energy is, in practice, a complex quantity which depends on an
array of interactions between molecules and the calcite surface. Adsorption
free energies will be elaborated on in Chapter 4, and will frequently feature
in Chapters 5 and 6.

In some instances, the binding between an impurity and the crystal sur-
face is sufficiently strong that its rate of dissolution from the surface is far
lower than that of an adsorbed crystal unit (Ca or CO3 ion in the case of
calcite). Under this limit, the step is not able to grow or dissolve while the
impurity is adsorbed, and the only way in which the step can advance is by
growing around the impurity. This process is known as step pinning [73].
If concentration of the impurity is sufficiently small and the supersaturation
sufficiently high, the step can continue its advance unimpeded. However, if
the supersaturation is lowered, there is a strong non-linear effect on the step
velocities, which ultimately drop to zero even though the supersaturation
is high enough for growth. Another mechanism of impurity-driven growth
inhibition is incorporation, in which the impurities are able to become part
of the growing crystal. Impurities which are able to incorporate are believed
to cause small distortions to the crystal lattice, thus increasing the internal
energy of the crystal. This in turn makes the crystal more soluble, leading
to an increase in dissolution and therefore a lower effective supersaturation
[74]. This explains the step velocity function seen in Figure 2.6. An example
of such an impurity is Mg [75].
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As well as the well-characterised mechanisms of calcite growth inhibi-
tion, some interesting novel effects have been documented from AFM studies.
Most notable is the anomalous growth-enhancing effects of certain impuri-
ties. This was first observed for strontium (Sr) by Wasylenki et al. [76],
who used AFM to measure calcite step velocities for different Sr activities.
It was found that the step velocities started to increase for smaller Sr con-
centrations, before reaching a peak and rapidly dropping off after a certain
activity. Although the mechanisms behind these results were unclear, the in-
crease in step velocity was initially attributed to the incorporation of the Sr
ions increasing the entropy of the crystal [77] without reducing the enthalpy
as in the case of Mg. However, an identical effect was later observed for
poly-aspartate chains and various other peptides for obtuse steps [78]. These
molecules are far less likely to be able to occlude in calcite without reducing
the enthalpy of the crystal, as they are larger than both Ca and CO3 ions
and less likely to be accommodated in the lattice. However, a correlation
was found between the peptide net charge and the increase in step velocity.
A correlation was also found between the peptide hydrophilicity and the step
velocity increase. It was proposed that these peptides were promoting growth
by dehydrating the surface when they bind. This potential disruption to the
water layer was theorised to improve mass transport to the surface, as other
adsorbates are no longer required to cross a large free energy barrier. This
mechanism differs from that proposed for the step velocity increase from Sr.
It is also worth mentioning that, while the obtuse step velocities may in-
crease, this doesn’t necessarily mean the rate of crystal growth will increase.
A notable example is asp5 (a aspartic acid polymer with 5 chains), which
is found to increase the obtuse step velocity [78] but not the crystal growth
rate [71].

2.4.2 Morphological impacts

When crystals grow in the presence of impurities, the propagation of differ-
ent kink sites is inhibited (or possibly enhanced) by the impurities. In the
case of a purely kink-blocking impurity, the inhibition of the propagation of
each kink type is determined by the strength and nature of the interaction
between the impurity and each kink type. When the growth inhibitions are
dependent on the kink type, the varying growth rates have a morphological
impact on the growth island, and ultimately the entire crystal. The mor-
phological changes that impurities enact on calcite are dependent on a vast
array of thermodynamic and kinetic effects of the impurities (with multiple
functional groups in the case of amino acids or peptides) and 16 unique kink
sites, or 32 if the impurities have a chirality. Furthermore, the morpholog-
ical changes to growing crystals occur over time- and length-scales far out
of reach of molecular simulations. Studies of impurity-determined calcite
morphologies therefore remain almost exclusively experimental, consisting of
direct micro-scale observations of laboratory-grown crystals, Scanning Elec-
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tron Microscopy (SEM) images of crystal morphologies, or AFM studies of
step morphologies.

An early study by Davis et al. [75] used AFM to calculate step veloci-
ties for, and examine the morphologies of, growth islands of calcite crystals
grown in the presence of Mg ions. As Mg is often present in most naturally
found solutions in which calcite grows, understanding its effect on calcite
growth is important. Davis et al. noted a rounding of the acute steps, and
an increase in spacing between steps for the crystal growth islands. They
also determined that Mg was lowering the effective supersaturation of the
solution by increasing the solubility of the host crystal, something typical
of an impurity that incorporates into the crystal. A similar study by Mel-
drum et al. [79] used SEM images of entire crystals grown on the presence
of Mg in a combination with citric acid or malic acid. The morphologies
produced were highly sensitive to the combinations and concentrations of
each molecule, with morphologies varying between having dumbbell shapes,
spherical shapes and clusters of inter-grown crystals. This study highlighted
the extreme sensitivity that crystal morphologies have on impurities.

Perhaps one of the most well-known and widely studied impurities is
aspartic acid (asp). Amino acids such as asp, being the building block of
proteins, have received a great deal of attention over the past few decades
regarding their effects on calcite growth. One study by Orme et al. [80] used
AFM to determine the morphology of calcite growth islands grown in the
presence of both chiralities of asp. It was found that asp caused a rounding
of the acute steps, while having little to no effect on the morphology of the
obtuse steps. By switching between chiralities of asp, it was possible to
produce a mirror image of the morphology, where the rounding of the steps
was greater on one side of the glide plane than the other. SEM images of the
resulting crystals were also taken, revealing crystals with an elongation along
the c-axis, and the formation of pseudo-faces (higher-energy faces which only
exist because of the impurities) related to the morphology of the growth
islands. The rounding of the acute steps on growth islands (in this case,
when both chiralities of asp are introduced to the solution) is depicted in
Figure 2.7. One additional note here is that the rounding of the step does
not correspond to a set of distinct changes to the expressed surfaces, but
rather a continuous change in the expressed pseudo-faces. The use of Wulff
construction fails in this instance, as the morphology cannot be broken down
into a series of expressed surfaces.

Intriguingly, the lack of effect on obtuse step morphology is observed
regardless of the concentration of asp. This has typically been attributed to
a lack of interaction between asp molecules and obtuse kinks: the consensus
is that asp doesn’t bind to obtuse steps and kinks. This theory, however, is
rather flawed. First of all, there exists no evidence for this, other than the lack
of morphological effects. Furthermore, AFM studies demonstrate that obtuse
step morphologies are inhibited by asp [78], indicating that an interaction
must take place between asp and obtuse kinks. Additionally, AFM has also
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Figure 2.7: Schematic of calcite growth island grown with and without asp
included in the solution. When asp is included, a rounding of the acute steps is
observed. However, the obtuse step remains unaffected by asp. For this reason,
asp is often assumed to not bind to obtuse steps.

revealed growth island morphologies for larger polyaspartate change, and
found a complete reversal i.e. the obtuse morphologies are affected and the
acute morphologies are affected less so [81].

It is clear that, while the morphological impacts of impurities are typically
well documented through experiment, our understanding of the mechanisms
behind them is typically lacking. Although replicating or predicting exper-
imental morphologies with molecular simulation is far too expensive to be
feasible, there is a potential scope for predicting adsorption free energies for
impurities adsorbing to individual kink sites, and applying them in a KMC
scheme. Previous theoretical and computational attempts to model morphol-
ogy changes will be discussed in Section 2.4.5.

2.4.3 Incorporation

As discussed above, some impurities are able to become part of a growing
crystal, in a process defined as incorporation or occlusion. Impure crys-
tals are rarely more thermodynamically stable that pure crystals. Moreover,
impurities typically incorporate by becoming kinetically trapped within the
crystal. This occurs when the crystal grows around the impurity before
it is able to escape from the surface. Although this fundamental princi-
ple is straightforward, incorporation in practice can be a complex and often
counter-intuitive set of processes. Similar to morphology changes, occlu-
sion is a process which is too computationally demanding to model using
molecular simulation, although KMC and analytical models offer a means
of modelling incorporation. Experimentally, incorporation is typically stud-
ied using methods such as Transmission Electron Microscopy (TEM), flu-
orescence spectroscopy, high-resolution synchrotron powder diffraction and
direct observation of dyed crystals.

The motivation for studying incorporation comes from the fact that many
biogenic crystals containing impurities exist. This has been known for many
decades. Five decades ago, Towe and Thompson [82] used TEM to demon-
strate that impurities exist within aragonite tablets of the nacre of the Mytilus
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Figure 2.8: Schematic depicting the chaperoning of BBR to the surface (in this
instance, the step) by asp disrupting the otherwise strongly-bound water layer.

bivalve shell. Later, Berman et al. [83] showed that proteins extracted from
biogenic single crystals were able to incorporate into growing calcite crys-
tals. Until recently, little thought was given to the mechanisms behind the
incorporation process. However, 10 years ago, Borukhin et al. [84] used
high-resolution synchrotron powder diffraction to calculate the incorpora-
tion efficiencies of numerous amino acids into calcite, as well as measure
lattice distortions on the impure crystals. The efficiency of incorporation for
each amino acid was found to vary with charge, size and pKa numbers of
carboxyl and amino groups. One notable amino acid studied was asp, which
was found to occlude with a greater efficiency than any other amino acid
under most conditions.

Based on intuition, incorporation efficiencies are assumed to depend par-
tially (though not entirely) on the strength of interaction between functional
groups and the crystal surface. One caveat to this, however, is that the
strength of interaction must not be so great that it inhibits the growth of the
crystal by too large an amount [85]. Since asp contains two carboxyl groups,
it has been assumed that asp has a strong interaction with calcite due to
its carboxyl groups. This makes sense intuitively, as the deprotonated car-
boxyl group has a similar structure to a CO3 ion, the only difference being the
higher net charge (-1 compared to -2 for CO3) and the one fewer oxygen atom.
Negatively charged functional groups have often been assumed to be the pri-
mary driver of adsorption of proteins to calcite. However, recent studies have
shown that occlusion mechanisms can often be rather counter-intuitive. One
recent study by Kim et al. [86] showed that protein-functionalised nanopar-
ticles are able to occlude in calcite at very high levels, despite the protein
functional groups having a neutral charge and a weak interaction with the
calcite surface. Another recent study by Nahi et al. [87] found that positively-
charged polyamine groups are able to incorporate in calcite at high levels,
throwing doubt on the consensus that negatively-charged functional groups
are the primary drivers of occlusion in calcite. The study by Nahi et al. will
feature extensively in Chapter 6 and the study by Kim et al. in Chapter 7.
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As well as the incorporation of single impurities, combinations of impu-
rities can produce unexpected results when introduced to the solution. In
one study by Marzek et al. [88], it was observed that the dye molecule Bril-
liant Blue (BBR) does not occlude in calcite on its own. However, when
asp was also introduced into the solution, BBR was able to occlude into the
calcite to the extent of being visible under an optical microscope. Several
other amino acids were also examined, and it was found that the impurities
with the highest incorporation efficiencies tended to produce the largest ef-
fect. Furthermore, it was found that the amount of BBR incorporated was
strongly correlated with the amount of asp incorporated. Several potential
mechanisms were identified for this novel effect, the simplest being that asp
and BBR complex in solution and incorporate together. This mechanism
was ultimately discounted due to molecular dynamics simulations finding no
association between the asp and BBR. Instead, the favoured mechanism is
one where the adsorption of asp to the surface disrupts the strong water lay-
ers and effectively dehydrates the surface. This supposedly allows the BBR
molecule to bypass the water layer and adsorb to the surface. This mecha-
nism is the same mechanism discussed in Section 2.4.1, which was used to
explain the increased growth rate of calcite when peptides are included in
solution. It is worth noting, however, that asp was not one of the molecules
studied to have this growth-enhancing effect. Recently, Nahi et al. [89] car-
ried out a similar study, except ethanol was used as a solvent instead of
including aspartate in solution. By creating a solution of 10% ethanol and
90% water, the occlusion of BBR was increased significantly compared with
a pure water solution. The increased occlusion was again ascribed to a dis-
ruption of the water layers and an effective dehydration of the surface. This
dehydrating mechanism has no direct experimental evidence, and remains
untested by molecular simulation, largely because the processes involved are
likely to exceed the time-scales accessible to molecular simulation.

2.4.4 Mechanical impacts

The means through which impurities can influence material properties is
of great interest to materials scientists. Being able to tune the mechanical
properties of materials commonly found in nature is a long-term ambition.
Rarely in the biological world are hard structures found to contain single
crystal materials. In reality, materials such bones and teeth have a far more
complex chemical composition [90]. For understanding the mechanisms be-
hind the mechanical optimisation of materials, we are often forced to turn to
simple examples of single crystals containing impurities. One example is Mg,
which has been found to improve hardness in calcite [91]. Amino acids have
also been studied for their effect on calcite material properties. One such
study by Kim et al. [92] examined the hardness of calcite grown in solutions
containing either asp or glycine (gly). It was found that hardness increased
when either asp or gly was introduced to the solution. The hardness of the
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impure calcite increased with the amount occluded in the crystal for both
impurities. This study provided insight into the mechanisms through which
impurities can alter the mechanical properties of the host crystal. However,
single crystals containing impurities are rarely found in the biological world,
making the study of mechanisms behind mechanical optimisation difficult
from both an experimental and computational perspective. However, excep-
tions to this do exist, and we will examine such a case study extensively in
Chapter 7.

2.4.5 Computational modelling

As far as molecular simulation is concerned, impure crystals have been the
subject of study as long as pure crystals have. However, due to the vast
scope of interactions between impurities and the calcite surface, as well as
the large time- and length-scales over which impurities adsorb, hinder growth
and incorporate, simulations are often restricted to determining binding con-
figurations and free energies for impurities on calcite surfaces. Computational
studies of impurities have so-far largely been a removed area of study from
experimental studies of macroscopic effects, and tenuous links are often made
between the results of molecular simulation and experimental results.

Simulations of impurities and their effect on calcite date back to the early
1990’s. An early computational study by Titiloye et al. [93] calculated sur-
face energies and segregation energies (the energy difference from swapping
an impurity in the bulk with a Ca or CO3 ion on the surface) for calcite
containing impurities such as Mg2+, Li+ and HPO2−

4 . They found general
qualitative agreement with experimental findings, although the calculated
energies were not found to be accurate on a quantitative level. This was
attributed to the limitations of fitting force fields: the force fields for calcite
were originally fitted to elastic and vibrational data by Pavese et al. [94], and
the force fields for the impurities were fitted using Gilbert’s approximation
method [95]. While these were validated by calculating elasticity tensors to
generally good agreement, they are not designed to produce accurate surface
energies. This highlights a general caveat to using force fields, especially for
impurities: we cannot expect calculations to produce quantitative agreement
with experiment.

In some instances, computational studies have been used to complement
experiment. One such example is the studies of Elhadj et al. [81] who used
AFM to determine the morphology of calcite growth islands in the presence
of different polyaspartate chains. They additionally included semiempirical
quantum mechanics optimisations of various binding configurations for the
polyaspartate chains studied. It was found that acute steps were preferred
by smaller polyaspartate chains, and obtuse steps were preferred by larger
chains. This was attributed to acute steps requiring more energy to be de-
hydrated compared to the obtuse steps. The results were in agreement with
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experimental findings, although only steps were considered in simulations,
rather than kinks. Furthermore, in this study, only interaction energies were
calculated, which neglected thermodynamic ensemble averaging and entropy.
These results, therefore, are not considered to be quantitatively reliable.

More recently, Aschauer et al. [96] used molecular simulation to compare
the binding energy of polyaspartic acid (p-asp) with polyacrylic acid (PAA)
to an acute calcite step. In accordance with experimentally-observed growth
inhibitions [96], it was found that p-asp had a greater strength of interaction
with the surface. Intriguingly, this was found to be due to the amino group
binding with the terrace. Note that this is contrary to the conventional
view that carboxyl groups drive the incorporation of amino acids discussed
in Section 2.4.3. In a similar study by Nada [97], the stable configurations
of asp interacting with the acute and obtuse steps, and some kinks, were
explored using molecular simulation. They found that asp was able to bind
directly to the acute step. For the obtuse steps, as well as the terrace, asp
preferred to sit above the water layer without interaction directly with the
crystal. The differences between the binding configurations were attributed
to the water structure itself. It was also found that asp bound directly to both
acute and obtuse kinks. In all cases, the binding was dominated by carboxyl
groups interacting with Ca ions. Note the difference between these findings
and the results of Aschauer et al. who found that binding is dominated by
the amino group for polyaspartic acid. The difference between the results
of these two studies is due to the different force fields used in each study.
This highlights the extreme sensitivity of the results from simulations on the
choice of force field used, as the results of these two studies are contradicting,
not only quantitatively, but qualitatively.

In the last few years, modellers have made progress from simply calcu-
lating binding energies and determining binding configurations, to actually
calculating adsorption free energies for certain impurities. A recent study
by Stepic et al. [72] made an attempt to directly compare experimental
adsorption free energies for aspartate derivatives with the results of molec-
ular dynamics simulations. However, although they found relatively good
agreement between experiment and simulation, the calculations neglected
the interactions with the kink sites to which kink-blocking impurities such as
asp typically bind. Furthermore, they do not consider the entropic freedom
of the impurity in solution when determining adsorption free energies (the
adsorption free energy is a complex quantity which will be elaborated on in
Chapter 4).

Recent advances in force field parametrisation has lead to an improved
consistency between experimentally and computationally derived thermody-
namic quantities. Most notable is the fitting of force fields to solvation free
energies by Raiteri et al. discussed earlier in this chapter. More recently
still, this process has been applied to some organic molecules. A very recent
study by Aufort et al. [98] used a similar method to that of Raiteri et al. to
derive both polarisable and rigid-ion force fields (see Figure 2.9) for methy-
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Figure 2.9: Example of rigid-ion and polarisable force fields for CaCO3. An
additional weightless, negatively-charged ion is included for many (or all) atom
types. The weightless ion is attached to its host atom, usually with a harmonic
spring. After every time step, their energies are minimised by updating their
positions. This allows the existence of a spontaneous dipole.

lammonium, acetate, and zwitterionic glycine. The free energies of binding
for these molecules to calcite steps was then calculated. It was typically
found that the polarisable force fields produced a stronger binding, in some
instances completely changing the configuration corresponding with the ther-
modynamic minimum. Intriguingly, both sets of force fields produced a weak
binding to step sites, with binding free energies not exceeding 13 kJ/mol in
magnitude.

Regarding the mechanical properties of impure crystals, computational
studies of the molecular mechanisms behind impurity-directed optimisation
of single crystals is relatively easy, assuming the mechanisms do not take
place over length-scales significantly above the nanoscale. For example, in
the study of impurity-driven hardness in calcite by Kim et al. [92], molecular
dynamics simulations of asp embedded in calcite were also carried out. It
was found both molecules created minor distortions on the lattice, explaining
the increased hardness observed. Another study by Cote et al. [99] employed
molecular dynamics simulations to examine the stress on calcite containing
either asp or Mg, as a function of the strain imposed on the crystal. It was
found that both impurities increased the slope of the stress-strain plot. In this
area, at least, computational studies are able to provide significant insight
into the molecular mechanisms that underpin the experimentally-observed
effects.

Overall, computational studies and experimental studies involving impu-
rities have largely been removed from one another, with a few notable excep-
tions. Of all experimental parameters, only the adsorption free energies have
been directly compared between experimental and computational studies. A
long term ambition in this field would be to use the results of molecular
dynamics simulations to parametrise a KMC model. Such a model could
be used to determine growth inhibition, morphology changes and occlusion
efficiencies, which can be validated with experimental findings. However,
making such progress requires a great deal of study regarding the kink sites
which facilitate growth, something which has so-far been lacking in this field.
Such a model must also rely on thermodynamically consistent force fields de-
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scribing the interactions of impurities with calcite and water, something not
available until recently.

2.5 Summary

Computational techniques for materials modelling have vastly improved in
recent years. Where early molecular dynamics studies of crystalline materials
such as calcite often relied on simple energy calculations or simulating mate-
rials such as calcite in vacuo, modern techniques allow molecular dynamics to
be used to simulate complex aqueous surfaces and calculate free energy differ-
ences. Due to recent advances in rare-events sampling, molecular dynamics
simulations are no-longer limited by the time-scales over which molecular
processes occur, but rather how many collective variables are required to
represent such molecular processes. Advances in force field parametrisation
have allowed reliable studies of the calcite-water interface, as well as the ad-
sorption and dissolution of ions. For processes that are too large-scale for
molecular simulation, Kinetic Monte Carlo simulations allow the modelling
of growth processes for time-scales of up to seconds. On the other hand, ex-
perimental proceedings have also advanced to such an extent that they can
examine processes almost down to the nanoscale. For example, Atomic Force
Microscopy allows measurements to be made on the propagation of growth
islands on the surface, something which overlaps with Kinetic Monte Carlo
Simulations in length- and time-scale.

Impurities and their effect on the growth and properties of calcite is a
major area of interest within the field of crystallisation. Not only are impu-
rities always present in the typical growth conditions for calcite, but their
effect on the growth and assembly have been harnessed by nature to an ex-
traordinary degree of precision. The effects of many impurities on the growth
and morphology, as well as their occlusion and mechanical impact, are well
documented in experiments. However, a large gap remains between what
is observable in experiments and what is calculable in simulations. This
is largely due to the significantly larger time- and length-scales over which
experimentally observable properties, such as morphology changes etc, are
visible. With the current available computational power and resources, the
most feasible way around this would be to employ some Kinetic Monte Carlo
scheme with reaction rates derived from molecular dynamics calculations.
However, this has so-far been beyond the capabilities of molecular simulation.
This comes down to a number of reasons. First of all, deriving thermodynam-
ically consistent force fields comes at a large cost in time and computational
power. Repeating this process for any impurity of interest is an exhausting
process. Furthermore, virtually no attempts have been made to study the
interactions between impurities and the kink sites which primarily facilitate
growth. Indeed, studies of calcite kink sites themselves are extremely lack-
ing, save for a single study which neglected water, as well as the entropy
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difference in binding. This is further hindered by the large residence times
of water interacting with step and kink sites, as well as the numerous poten-
tial binding configurations that can exist between impurities with multiple
functional groups and multiple binding sites on the surface.

Additionally, much work is still required in determining the molecular
mechanisms behind the advantageous mechanical properties of biomaterials.
Real-world examples such as bones and teeth are far too complex to model
with current capabilities. Much progress has been made in recent years
regarding both the experimental and theoretical study of impure calcite,
although we are still restricted to simple cases of single crystals containing
impurities, and we are yet to model any systems corresponding with actual
case studies of biogenic crystals with optimised mechanical properties.

Throughout this chapter, we have reviewed the structural and morpho-
logical properties of calcite, and discussed our current understanding of its
growth. We have also discussed the significance of impurities and how we
know they are able to tune the growth phase of crystallisation and alter
final shape and mechanical properties. Having reviewed our current knowl-
edge relevant to this thesis, we turn our attention in the next chapter to the
theory applied throughout this thesis.
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3THEORY

This chapter provides an overview of the theory required to understand com-
putational techniques for deriving thermodynamic properties of physical sys-
tems and modelling physical processes. The theory outlined in this section
provides a basis for the study carried out throughout this thesis.

Section 3.1 provides an introduction to statistical mechanics, starting
from the Boltzmann equation for entropy. Concepts such as free energy, the
equipartition theorem and the potential of mean force are introduced.

Following on from the introduction to statistical mechanics, Section 3.2
provides an overview of modern techniques used in molecular dynamics. Be-
ginning with a discussion on how the many-body electron system is reduced
to a set of force fields for atomic interactions, this section introduces methods
for dealing with long range electrostatics, integrating the classical equations
of motion, and regulating the system temperature and pressure.

Section 3.4 discusses various stochastic processes such as Langevin mo-
tion, in which a particle’s motion is dictated by a stochastic force. This
section also covers the Kinetic Monte Carlo method, a technique used to
replicate large-scale physical processes through the introduction of random
events selection.

3.1 Statistical mechanics

The principles of statistical mechanics are that a connection can be made be-
tween the collective motion of particles that form a system, and the thermo-
dynamic properties of the system. A system containing one mole of particles
contains a total of ∼ 6×1023 particles. Solving for the microscopic dynamics
of such a system is futile, either analytically or computationally. Instead,
we must consider the ensemble averages of the system by making a connec-
tion between the microscopic dynamics of the system and the corresponding
macroscopic thermodynamics of the system.

Before proceeding, it is crucial to introduce the concept of a microstate.
In a classical setting, a microstate is a single collection of particle positions
and momenta. For a quantum system the microstate is a set of wave func-
tions which solve the Schrödinger equation. However, we proceed with our
discussion assuming a classical limit. Consider a system of moving particles.
Recording the individual positions and momenta of each position and mo-
mentum and a given point in time will return a single microstate. Through-
out this chapter, microstates are denoted by Γ. Γ represents the spatial
coordinates and momentum of every particle in the system. For a three-

31
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dimensional system, Γ is a set of 6N unique coordinates. Throughout this
chapter, we also make reference to integrals over phase space. The collection
of particle positions and momenta can be recorded as a single point in a 6N -
dimensional space. The evolution of the system may then be represented by
the propagation of this point through the 6N -dimensional space, which we
call phase space. An infinitesimal volume of the phase space is represented
by dΓ, which is given by:

dΓ =
3N∏
i=1

dPidRi (3.1)

where Ri and Pi are position and momentum components respectively. It is
of further necessity to define the Hamiltonian of the system. Denoted by Ĥ,
the system’s Hamiltonian is defined as the total energy of a single microstate
as follows,

Ĥ(Γ) = V(Γ) +
3N∑
i=1

Ki (3.2)

where V(Γ) the potential energy of the system, and Ki is a component of
the kinetic energy. For a classical, non-relativistic system, Ki is related to
the momentum, Pi by Ki = P 2

i /2m, where m is the mass of the particle.
Throughout this thesis, only classical, non-relativistic systems are considered,
so the above definition of Ki is assumed throughout.

3.1.1 Entropy and the microcanonical ensemble

To begin, consider an isolated box containing N moving, non-interacting
particles with a total energy of E. A barrier exists which bisects the box and
constrains every particle to one half of the box, as depicted by configuration
A in Figure 3.1. Each particle is therefore free to occupy any point within
the constrained region. Now, consider removing the barrier. Every particle
is now free to occupy any point within the entire box, as is depicted by
configuration B in Figure 3.1.

Now, supposing we wish to return from configuration B back to configura-
tion A. The re-insertion of the barrier will not allow this unless every particle
is residing on the left-hand-side. The probability of this occurring is easily
calculated: since every particle has a 1/2 probability of residing on the left-
hand side of the middle of the box, the probability of every particle doing so
becomes (1/2)N . For a single mole of particles, the probability thus becomes
∼ (1/2)1023 . Clearly, this astronomically small number demonstrates that the
re-insertion of the barrier will not allow a return from configuration B back
to configuration A. Such a process may therefore be considered irreversible.
It is possible to return to state A from state B by reinserting the barrier on
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Figure 3.1: Schematic depicting a system of non-interacting particles. On the
left-hand side, the particles are constrained within a region of half the total box
size by a barrier. When the barrier is removed, the particles will occupy the entire
box. Although there has been no change in the system potential energy, it will
require an external input of energy to return the system to its original state. This
process is therefore irreversible.

the right-hand-side of the box, and dragging it to the centre of the box, thus
compressing the gas. However, this requires an external force, and therefore
an external input of energy in the form of work done on the system.

The only physical difference between states A and B is the additional
freedom of movement that the removal of the barrier allows. It is convenient
to define Ω as the number of available microstates of a system. Ω is more
easily understood in terms of quantum mechanics, since the degeneracy of
a quantum system is always finite. For a classical system, the number of
available states becomes infinite. Nevertheless, this caveat may be ignored
through the underlying assumption that any classical system has an underly-
ing quantum nature, which allows the number of available states to be finite.
It is clear that an increase in Ω is associated with a change to the system
which is only reversible via an external input of work being forced onto the
system. This is reminiscent of a change in system entropy. It turn out that
the system entropy, S, is given by a natural logarithm of Ω as follows:

S = kB log Ω (3.3)

where kB is the Boltzmann constant. The natural logarithm is taken because
is allows the entropy to become extensive. For example, consider two systems
with Ω1 and Ω2 available states, respectively. Combining the two systems
therefore produces a total of Ω1Ω2 available states. The total entropy, Stot,
therefore becomes

Stot = kB log(Ω1Ω2)

= kB log Ω1 + kB log Ω2

= S1 + S2

(3.4)
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Furthermore, as discussed above, an system may only increase its number
of available states in the absence of external work. Since the logarithm
is monotonically increasing, S may only increase unless external work is
applied. The above entropy definition is therefore both extensive, and may
only increase unless external work is applied. These properties are consistent
with the thermodynamic definition of entropy. Equation 3.4 therefore relates
the properties of individual configurations with the macroscopic property
entropy.

3.1.2 Ergodicity and equal a priori probabilities

The above discussion provides a relation between microscopic dynamics to
macroscopic properties. However, multiple caveats exist for this line of rea-
soning. First, the definition of Ω is dependent on whether the system is able
to visit all available microstates. Consider a simple case of a single parti-
cle moving horizontally in a square, two-dimensional box. The particle will
simply move back and forth, retracing its path. The region of accessible
phase space is therefore not given by the volume of the box. Consider now
a one-dimensional harmonic oscillator. Its trajectory will encompass every
region of phase space as allowed by its total energy. The latter example is
said to be ergodic. Ergodicity is defined as a system’s ability to occupy every
accessible region in phase space. Although a direct proof does not exist, it is
widely assumed that all systems of physical interest are ergodic. Ergodicity
also implies that averages over time will equal averages over microstates. A
property, f , averaged over a trajectory x(t), will obey the following relation-
ship:

lim
t→∞

1

t

∫ t

0

f(t)dt =

∫
f(x(t))p(x)dx (3.5)

Ergodicity is an important principle when considering molecular simulation,
which will feature in Section 3.2. Another important principle in statistical
mechanics is the postulate of equal a priori probabilities. This postulate
states that an isolated system in equilibrium will have an equal probability
of existing in any microstate. In other words, the probability of a system
existing in microstate Γ is given by:

P (Γ) ≡ 1

Ω
(3.6)

The postulate of equal a priori probabilities is important in using equation
3.4 to define the entropy of an isolated system. Without it, weighting must
be given to the relative probabilities of different microstates when considering
the total entropy of a system. This will be further discussed in Section 3.1.4.
Ergodicity and equal a priori probabilities also allow us to express the total
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Figure 3.2: Schematic of two separate systems which are able to exchange en-
ergy with one another. The direction of the flow of energy is determined by the
temperature of each system.

number of available microstates as a mathematical function of the system
energy E as follows,

Ω =

(
1

λ

)3N ∫
dΓδ

(
Ĥ(Γ)− E

)
=

(
1

λ

)3N ∫ 3N∏
i=1

dPidRiδ

(
V(Γ) +

3N∑
i=1

Ki − E

) (3.7)

where δ is the Dirac delta function, and 1/λ is a fundamental phase space
density. The definition of Ω becomes ambiguous in the limit of classical
dynamics, where phase space is considered to be continuous. Under this limit,
the number of available microstates becomes infinite. This creates a major
issue for statistical mechanics, which assumes that the number of available
microstates must be finite. Fortunately, quantum mechanics allows us to
bypass this issue, as the degeneracy for any quantum system is always finite.
For simple systems, it can be shown that λ = h (Planck’s constant). However,
the value of λ is irrelevant for calculating most macroscopic properties, so
we make little mention of it throughout this thesis.

Due to the constraint on the Hamiltonian, equation 3.7 is typically very
difficult to solve, and analytical solutions only exist for very straightforward
systems.

3.1.3 Temperature

Consider two systems of particles with total energies E1 and E2, as depicted
in Figure 3.2. The two systems are able to exchange energy with each other,
and they are otherwise isolated. As the second law of thermodynamics states,
the total entropy of the two systems, ∆Stot, can only increase over time. This
can be written as:
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∆Stot =

(
∂Stot

∂E1

− ∂Stot

∂E2

)
∆E1 ≥ 0 (3.8)

where the partial differentials have been simplified using the conservation
of energy ∆E1 = −∆E2. It therefore follows that:

if
∂Stot

∂E1

>
∂Stot

∂E2

⇒ ∆E1 > 0

if
∂Stot

∂E1

<
∂Stot

∂E2

⇒ ∆E1 < 0

(3.9)

In other words, energy will be transferred from a system with a higher ∂S/∂E
to a system with a lower ∂S/∂E. It is clear, therefore, that the temperature
of the system is connected with this quantity. The thermodynamic relation,

1

T
=

(
∂S

∂E

)
V,N

(3.10)

also demonstrates that our definition of entropy is able to reproduce proper-
ties which are consistent with the thermodynamic representation of temper-
ature.

3.1.4 Canonical ensemble

Consider now an example of a box of particles able to exchange energy with
a much larger box of particles as depicted in Figure 3.3. The two boxes
are in thermal equilibrium with one another. The smaller box is labelled
as the system, and the larger box is labelled as the heat reservoir. The
energies of the boxes are labelled as E1 and E2 for the system and heat
reservoir respectively. The postulate of equal a priori probabilities gives the
probability of the system existing in microstate Γ1 as being equal to the
number of microstates of the joint system where the heat bath has energy
E2, Ω2(E2), divided by the unconstrained number of microstates, Ω(E):

P (Γ1) =
Ω2(E2)

Ω(E)
(3.11)

Combining the above two equations, taking the logarithms of both sides and
using equation 3.4 gives:

kB log(P (Γ1)) = S2(E2)− S(E) (3.12)

In the limit of E1 � E, S2(E2) can be Taylor expanded to give:



37 3. THEORY

Figure 3.3: Schematic of a system able to exchange energy with a much larger
system. As this other system is much larger, it can be treated as a heat bath with
temperature T .

S2(E2) = S2(E) + (E2 − E)

[
∂S2

∂E2

]
E2=E

(3.13)

Noting that E2 − E = −E1 and using the thermodynamic relation T−1 =
∂S/∂E, equation 3.12 becomes:

kB log(P (Γ1)) = S(E)− S2(E)− E1

T
(3.14)

Finally, rearranging this gives:

P (Γ1) =
Ω(E)

Ω2(E)
exp

(
− E1

kBT

)
∝ exp

(
− E1

kBT

)
(3.15)

The prefactor in the above equation is dependent only on the heat reservoir,
and can be replaced with an integral over phase space as follows.

P (Γ) =
1

Z
exp

(
−Ĥ(Γ)

kBT

)
Z =

∫
exp

(
−Ĥ(Γ)

kBT

)
dΓ (3.16)

Here, the 1 notation is dropped for convenience. The system energy E1 has
also been replaced by the Hamiltonian of the system, Ĥ(Γ). This is because
Ĥ(Γ) will always be equal to E1, and is calculable for a physical system. It is
important to note that the integral no-longer contains the delta function as
per the microcanonical ensemble. This is because the system energy is not
conserved in an open system.
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3.1.5 Ensemble averages

Ensemble averages refer to averages over configurations. As discussed in
Section 3.1.2, ergodicity implies that ensemble averages will equal averages
over time in the limit of t→∞. Since averages over time are the observable
quantities in practice, ensemble averages are of importance in equating real-
world observations with theory. The value of an ensemble average, denoted
by 〈A〉, is given by:

〈A〉 =

∫
A(Γ)P (Γ)dΓ (3.17)

For a canonical system, the ensemble average becomes:

〈A〉 =

∫
A(Γ) exp

(
−Ĥ(Γ)

kBT

)
dΓ

∫
exp

(
−Ĥ(Γ)

kBT

)
dΓ

(3.18)

3.1.6 Gibbs entropy

Unlike a microcanonical system, a canonical system does not have a defined
entropy, since energy may be transferred into and out of the system. Fur-
thermore, entropy is an observable of the system, rather than a microstate-
dependent observable. Ensemble averaging therefore cannot be used to de-
termine the system entropy. Instead, it is possible to consider the entropy of
the ensemble. The reservoir depicted in Figure 3.2 may be instead depicted
as a series of M copies of the system. Each copy is allowed to exchange
energy with its neighbours. The average entropy of the system may then be
given as the entropy of the entire ensemble divided by the number of copies.
In other words:

〈S〉 =
SM
M

(3.19)

where SM is the entropy of the entire ensemble. As with the microcanonical
ensemble, the following discussions are paradoxical if phase space is not dis-
cretised. It is therefore considerably more straightforward to proceed under
the assumption that that phase space is discrete. It is also assumed that
M � 1 such that there are a total of Mi boxes that exist in microstate Γi.
The probability of a copy existing in microstate Γi is given by Pi = Mi/M .
The total degeneracy of the ensemble, ΩM , is given by the total number of
ways in which the total system can be arranged by microstate. This is given
by:
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ΩM =
M !∏
iMi

(3.20)

Taking the logarithm and using Stirling’s approximation, log(X!) = X log(X)−
X, ΩM can be simplified to:

log(ΩM) = M logM −M −
∑
i

(Mi logMi −Mi)

= M logM −
∑
i

(Mi logMi)

=
∑
i

Mi (logM − logMi)

= −
∑
i

Mi log

(
Mi

M

)
= −M

∑
i

Pi logPi

(3.21)

Therefore, 〈S〉 may be given by:

〈S〉 = −kB
∑
i

Pi logPi (3.22)

This is the definition of Gibbs entropy in discrete phase space. In the limit
of M →∞, this may be rewritten as an integral over phase space:

〈S〉 = −kB
∫
P (Γ) log[P (Γ)]dΓ (3.23)

where P (Γ) is now a probability density. It must not be forgotten, however,
that the underlying dynamics must correspond to a discrete phase space. It
is worth noting that, in the microcanonical limit, P (Γ) = 1/Ω, and the Gibbs
entropy reduces to 〈S〉 = kB log Ω, which is the microcanonical definition of
entropy.

3.1.7 Helmholtz free energy

The thermodynamic definition of Helmholtz free energy, F , is as follows:

F = E − TS (3.24)

The concept of the Free energy is that it represents a system’s capability
of performing mechanical work. As discussed throughout this chapter, a
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system’s entropy as well as its internal energy, determines the system’s ca-
pability of releasing heat energy. From the definition of F , the following
thermodynamic relations hold:

S = −
(
∂F

∂T

)
V

P = −
(
∂F

∂V

)
T

(3.25)

In sections 3.1.5 and 3.1.6, a framework is given for calculating both a
system’s energy and entropy. For a canonical system, the energy is given
by an ensemble average, and the entropy is given by Gibbs entropy. F is
therefore given by:

F = 〈E〉 − T 〈S〉 =
1

Z

∫
Ĥ(Γ) exp

(
−Ĥ(Γ)

kBT

)
dΓ

+ kBT
1

Z

∫
exp

(
−Ĥ(Γ)

kBT

)
log

[
1

Z
exp

(
−Ĥ(Γ)

kBT

)]
dΓ

= −kBT logZ
1

Z

∫
exp

(
−Ĥ(Γ)

kBT

)
dΓ

(3.26)

The above integral is equal to Z by definition, and therefore cancels out.
The Helmholtz free energy is therefore given by:

F = −kBT logZ (3.27)

This tells us, much like energy in a microcanonical system, the free energy of
a canonical system is minimised in equilibrium. It also provides a framework
through which the thermodynamic properties of a canonical system may be
deduced from its microscopic dynamics.

3.1.8 Equipartition of kinetic energy

The equipartition theorem states that a system’s energy in equilibrium is
equally partitioned between all degrees of freedom. While general proofs
exist for the equipartition theorem, this thesis covers only a derivation for
the equipartition of kinetic energy. Consider a single component of the kinetic
energy of a single classical, non-relativistic particle, Kj = P 2

j /2m. Its average
value is given by its ensemble average:
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〈Kj〉 =

∫
P 2
j

2m
exp

(
−Ĥ(Γ)

kBT

)
dΓ

∫
exp

(
−Ĥ(Γ)

kBT

)
dΓ

=

∫ 3N∏
i=0

dPidRi

P 2
j

2m
exp

(
−Ĥ(Γ)

kBT

)
∫ 3N∏

i=0

dPidRi exp

(
−Ĥ(Γ)

kBT

)

=

∫ 3N∏
i=0

dPidRi

P 2
j

2m
exp

(
− 1

kBT

[
3N∑
i=0

P 2
i

2m
+ V(r0, r1, r2, ...)

])
∫ 3N∏

i=0

dPidRi exp

(
− 1

kBT

[
3N∑
i=0

P 2
i

2m
+ V(r0, r1, r2, ...)

])

(3.28)

where V(r0, r1, r2, ...) is the potential energy of the system. Here, we have
made the assumption that position and momentum components are perpen-
dicular to one another. This is a reasonable assumption for a classical system,
and is applicable to the work carried out throughout this thesis. Under the
assumption that the Hamiltonian is separable, the velocity integrals cancel
each other out, and we are left with:

〈Kj〉 =

∫ 3N∏
i=0

dPi
P 2
j

2m
exp

(
− 1

kBT

[
3N∑
i=0

P 2
i

2m

])
∫ 3N∏

i=0

dPi exp

(
− 1

kBT

[
3N∑
i=0

P 2
i

2m

])

=

∫
dPj

P 2
j

2m
exp

(
− 1

kBT

[
P 2
j

2m

])
∫

dPj exp

(
− 1

kBT

[
P 2
j

2m

])
(3.29)

both the numerator and denominator are Gaussian integrals which simplifies
the average to:

〈Kj〉 =
1

2
kBT (3.30)

Equation 3.30 demonstrates that, no-matter which kinetic energy compo-
nent is taken, its average will always be equal to kBT/2. This is an important
result which will be elaborated on in Section 3.2.9.
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3.1.9 Isobaric-isothermal ensemble

In the canonical ensemble, the system is able to exchange energy with a heat
reservoir at temperature T . In the isobaric-isothermal ensemble, also known
as the NPT ensemble, the volume of the system is also allowed to fluctuate.
At thermal equilibrium between the system and reservoir, the pressure of
the system is determined by the pressure of the reservoir, P . Repeating the
derivation of the canonical ensemble in Section 3.1.4, the probability, P (Γ1),
of the system existing in microstate Γ1 is given by:

P (Γ1) =
Ω2(E2, V2)

Ω(E, V )
(3.31)

therefore:

kB log(P(Γ1)) = S2(E2, V2)− S(E, V ) (3.32)

same as with the canonical ensemble, S2(E2, V2) can be Taylor expanded
under the assumption that E1, V1 � E2, V2:

S2(E2, V2) ≈ S2(E, V ) + (E2 − E)

[
∂S2(E2, V2)

∂E2

]
E2=E

+ (V2 − V )

[
∂S2(E2, V2)

∂V2

]
V2=V

(3.33)

Similar to the canonical ensemble derivation, we note that V2−V = −V1 and
E2−E = −E1. We also note the thermodynamic relations T−1 = [∂S2/∂E2]
and P = T [∂S2/∂V2]. We finally arrive at:

P (Γ) ∝ exp

(
−Ĥ(Γ) + PV (Γ)

kBT

)
(3.34)

where the system energy E1 is again replaced with the Hamiltonian Ĥ(Γ).
Equation 3.34 is analogous to equation 3.34, where the probabilities are
weighted by an exponential.

3.1.10 Potential of mean force

As discussed earlier, a three-dimensional system containing N particles has
a total of 3N position coordinates and 3N momentum coordinates. In most
systems of interest, and throughout this thesis, the momentum coordinates
can be integrated out, since the potential energy of the system often doesn’t
depend on individual momenta. Nevertheless, the evolution of a microstate
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over a 3N -dimensional phase space is incredibly complex and difficult to in-
terpret. For this reason, the concept of the reaction coordinate is introduced.
A reaction coordinate, which is denoted by s(Γ), is a function which maps the
3N positional coordinates onto a single value. Intuitively, s(Γ) can be any
function of the 3N positional coordinates. Examples include the position of
a single particle, the centre-of-mass of several particles, or the dihedral angle
between four particles.

For convenience, we begin by considering only one reaction coordinate.
Consider a single reaction coordinate, s(Γ), and its value, s. The mean force
along the reaction coordinate is given by:

〈f(s)〉 =
1

Z

∫
Ω

δ(s(Γ)− s)

(
−dĤ(Γ)

ds(Γ)

)
exp

[
−Ĥ(Γ)

kBT

]
dΓ (3.35)

This is simply a canonical average of the the force, f(s) = dĤ(Γ)/ds over all
coordinates perpendicular to the reaction coordinate, hence the Dirac delta
function, δ(s(Γ)− s). It is convenient to define the configurational integral,
Q(s), as:

Q(s) =

∫
Ω

δ(s(Γ)− s)

(
−dĤ(Γ)

ds(Γ)

)
exp

[
−Ĥ(Γ)

kBT

]
dΓ (3.36)

such that:

〈f(s)〉 =
1

Q

(
kBT

d

ds

)∫
δ(s(Γ)−s) exp

[
−Ĥ(Γ)

kBT

]
dΓ = kBT

d logQ

ds(Γ)
(3.37)

The Potential of Mean Force (PMF), which is labelled Φ(r), can therefore
be defined as:

Φ(s) = −kBT logQ(s) such that 〈f(s)〉 = −dΦ(s)

ds(Γ)
(3.38)

Now, consider a canonical probability density as a function of s such that
its integral over s is one. This probability density function (PDF), labelled
ρ(s(Γ) = s) can be given by:

ρ(s) =
1

Z

∫
δ (s (Γ)− s) exp{−Ĥ(Γ)/kBT}dΓ ∝ Q(s) (3.39)

Equation 3.39 tells us two things. First, ρ(s) is proportional to exp(−Φ(s)/kBT )
providing a link between the PMF and the PDF. Second, equation 3.39 can



3.2. MOLECULAR DYNAMICS 44

be simplified using equation 3.27, to a function which we label as F (s). F (s)
describes the free energy of the system with the reaction coordinate con-
strained at s(Γ) = s. Using equation 3.27, we have:

F (s) = Φ(s) + C = kBT log(ρ(s)) + C ′ (3.40)

where C and C ′ are constants. Their values are fairly arbitrary in practice,
since they only have physical meaning when normalising probability densities,
which may be done by integrating over s.

ρ(s) =
exp

(
−F (s)
kBT

)
∫
s′

exp
(
−F (s′)

kBT

)
ds′

=
exp

(
−Φ(s)
kBT

)
∫
s′

exp
(
−Φ(s′)

kBT

)
ds′

(3.41)

F (s) is often referred to as the Free Energy Surface, or Free Energy Function.
Its dependence on s can sometimes differ subtly from the PMF in practice.
This will be discussed later in this chapter. Equation 3.40 provides a pow-
erful framework for rare event sampling techniques, which will be discussed
later in this chapter. Although it has only been derived for one-dimensional
reaction coordinates, equation 3.40 may be arbitrarily extended to define
multidimensional free energy surfaces which are functions of multiple reac-
tion coordinates.

3.2 Molecular dynamics

It comes as little surprise to learn that the canonical partition function is
highly non-trivial to solve analytically. Analytical solutions to equation 3.27
are limited to simple examples of little physical interest. It makes sense,
therefore, to focus on computational approximations for calculating ensemble
averages. There are two ways in which ensemble averages can be calculated
approximately: Molecular Dynamics simulations, and Monte Carlo simula-
tions. The former, in which ensemble averages are calculated through the
approximation of physical trajectories, is the more popular choice of com-
putational method, and will be discussed throughout this section. Here, we
discuss atomistic molecular dynamics, in which atoms are approximated as
point masses.

3.2.1 From quantum to classical potentials

In reality, the interaction between a configuration consists of a large number
of inter- and intra-atomic interactions between negatively charged electrons
and positively charged nuclei. The quantum states and their trajectories will
obey the time-dependent Schrödinger equation:
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ih̄
d

dt
ψ(ri, Ri, t) = Ĥψ(ri, Ri, t) (3.42)

where h̄ is the reduced Planck constant, ψ is the wave function, and ri and Ri

are the electronic and nuclear coordinates. Ĥ is the non-relativistic Hamil-
tonian:

Ĥ =−
∑
i

h̄2

2Mi

∇2
Ri
−
∑
i

h̄2

2me

∇2
ri

+
e2

4πε0

∑
i<j

1

|ri − rj|
+

e2

4πε0

∑
i<j

ZiZj
|Ri −Rj|

− e2

4πε0

∑
i,j

Zi
|Ri − rj|

(3.43)

where Mi are the nuclear masses, me is the electron mass, e is the electron
charge and ε0 is the permittivity of free space. The first two terms represent
the kinetic energy of the nuclei and electrons, and the remaining terms deal
with the electrostatic interactions. Solving this equation for a many-body
wave function is extremely computational expensive, and therefore unsuit-
able for any system of interest. Approximations exist which simplify equation
3.43 and reduce the computational expense of solving equation 3.42. Such
approximations form the basis of Density Functional Theory (DFT), a widely
used method for solving the many-body Schrödinger equation. However, this
method is still far too computationally expensive to simulate the physical
processes discussed throughout this thesis. Instead, we make the reason-
able assumption that the physical processes observed do not constitute any
chemical reactions. This allows the neglect of quantum mechanics and the
coarse-graining of a many-body atom to a single point charge. Instead of the
many-body Schrödinger equation, Newton’s equations of motion are solved
for a collection of atoms approximated as point charges.

dPi
dt

= −∆RiU({Ri}) (3.44)

where Ri are the atomic positions and Pi are their momenta. U is the po-
tential energy component of the Hamiltonian, dependent of the total set of
atomic positions, {Ri}. ∆Ri is the derivative with respect to Ri. By neglect-
ing quantum mechanics, far larger timescales are accessible in a simulation.
DFT is able to simulate quantum processes over timescales reaching 10s of
picoseconds, whereas Molecular Dynamics simulations (i.e. solving equation
3.44) may typically simulate classical processes over timescales roughly span-
ning picoseconds to microseconds.
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3.2.2 Force fields and partial charges

Approximating atoms as point masses comes with a major caveat. Where
methods such as DFT solve equations based on first principals, classical
methods such as Molecular Dynamics must coarse-grain the complex set of
interactions between between nuclei and electrons, to a single set of classical
interactions between atoms. One way this can be achieved is through the
introduction of partial charges. Covalently bound molecules exist through
the overlap of electron densities between two or more atoms. Approximating
this classically becomes difficult in this instance: it is clear that the atoms
over which electrons are shared do not have average charges equal to that of
an integer multiple of the electron charge. In order to accommodate this, the
concept of partial charges is introduced. Partial charges are an average charge
of a covalently bonded atom, which arise through the overlap of electron
densities. Returning to equation 3.44, U({Ri}) may be given by:

U({Ri}) = V({Ri}) +
1

4πε0

∑
i<j

qiqj
|Ri −Rj|

(3.45)

where qi are the atomic partial charges, and V(Ri) is a potential which en-
compasses Van der Waals Attraction, Pauli Repulsion and intramolecular
bonds. V({Ri}) may be given as a set of potentials:

V({Ri}) =
∑
i,j

V ij2 (Ri, Rj)

+
∑
i,j,k

V ijk3 (Ri, Rj, Rk)

+
∑
i,j,k,l

V ijkl4 (Ri, Rj, Rk, Rl)

(3.46)

where V ij
2 , V ijk

3 and V iklj
4 represent two-, three- and four-body interactions

respectively. Such potentials may be optimised through first principles calcu-
lations such as DFT, or they may be parametrised to replicate experimental
data.

3.2.3 Van der Waals attraction

Van der Waals attractions arise from the electronic structure of two inter-
acting atoms. When two atoms interact with one another, the electronic
structure of both atoms shifts in order to minimise the total electric poten-
tial. This creates an effect, where the electronic structure of both atoms
both form a dipole. Since electrons move at a much faster rate than nuclei,
the process of dipole arrangement can be considered spontaneous compared
to Molecular Dynamics time-scales. Van der Waals attraction consists of
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Figure 3.4: diagram of the dipole arrangement used to derive the van der Waals
attraction force.

two subsets: London dispersion forces, in which two non-dipole atoms both
spontaneously induce a dipole in one-another, and Debye forces, in which a
pre-existing dipole induces a dipole in a non-dipole atom. Both dependences
on atomic distance are similar, and both forces can be derived through the
same method.

The dependence of van der Waals forces on atomic separation may be
derived using a simple model consisting of a pair of dipoles, each separated
by a distance of r1 and r2, and with charges c and −c. The dipoles are
separated from each other by a distance of R. Figure 3.4 depicts the dipole
arrangement that arises through the interaction of two nearby atoms. The
positive and negative charges interact with one another through a harmonic
potential with spring constant k. The total potential energy of the system is
therefore given by:

V =
c2

4πε0R

[
1 +

1

1 + r2−r1
R

− 1

1− r1
R

− 1

1 + r2
R

]
+

1

2
k(r2

1 + r2
2) (3.47)

By taking the limit r � R, the above can be Taylor expanded to give:

V =
c2

4πε0R

[
1 +

(
1− r2 − r1

R
+

(r2
2 + 2r1r2 + r2

1)

R2

)
−
(

1− r1

R
+
r2

R2

)
−
(

1 +
r2

R
+
r2

R2

)]
+

1

2
k(r2

1 + r2
2)

=
1

2
k(r2

1 + r2
2)− c2

2πε0R3
(r1r2)

=
1

2
k(r2

1 + r2
2)− C

R3
(r1r2)

(3.48)

where the constant C is defined for convenience. The Schrödinger equation
with this potential is difficult to solve, due to the potential energy containing
both r1 and r2. However, the potential energy may be recast by defining two
new constants, ks and ka, as:
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ks = k − C

R3

ka = k +
C

R3

(3.49)

The total potential is therefore given by:

V =
1

2
ksr

2
s +

1

2
kar

2
a (3.50)

where rs = r1 +r2 and ra = r1−r2. The Schrödinger equation for the system
may therefore given by two coupled equations:

− h̄2

2m

∂2

∂r2
s

ψ +
1

2
ksr

2
sψ = Esψ

− h̄2

2m

∂2

∂r2
a

ψ +
1

2
kar

2
aψ = Eaψ

(3.51)

The above equation is the Schrödinger equation for two quantum harmonic
oscillators. The ground state energies, Es,0 and Ea,0, are given through the
well known Ladder Operators by:

Es,0 =
h̄√
2

√
k +

C

R3

Ea,0 =
h̄√
2

√
k − C

R3

(3.52)

The energy dependence on R, U(R) can be calculated by calculating the
difference between the sum of Es and Ea, and the ground state energy of two
independent harmonic oscillators, both with an energy given by h̄/2

√
k/m.

U(R) =
h̄k√

2

[√
1 +

C

kR3
+

√
1− C

kR3
− 2

]
(3.53)

by assuming that C/kR3 � 1, equation 3.53 can be further Taylor expanded
to give:

U(R) =
h̄k√

2

[(
1 +

1

2

C

kR3
− 1

8

(
C

kR3

)2
)

+(
1− 1

2

C

kR3
− 1

8

(
C

kR3

)2
)
− 2

]
= − h̄k√

2

(
1

4

C2

k2

)
1

R6
= −C

′

R6

(3.54)
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The van der Waals attraction therefore decays with 1/R6. Equation 3.54
reduces the complex interaction between many-body quantum systems to a
simple decaying function, which can be easily implemented in molecular dy-
namics. In practise, the charge arrangements are typically far more complex
than a pair of dipoles. The pre-factor C ′ is therefore typically not derived
from theory. Instead, it is often either parametrised from first principles cal-
culations (DFT) or from experimental data. Van der Waals forces are weak
compared with electrostatic interactions, and their significance in driving
properties such as crystal structures tends to vary between materials.

3.2.4 Pauli repulsion

Pauli repulsion is a force which arises from the Pauli exclusion principle.
Consider two identical atoms, the electrons of which occupy their ground
state. When separated by a large distance, there will be no significant overlap
between electron wave functions between the two atoms, and therefore each
electron can occupy the same quantum states. However, as the two atoms
approach one another, the overlap between electron wave functions increases,
and the electrons are no longer able to occupy identical quantum states as
stated by the Pauli exclusion principle. This forces electrons into higher
energy states, thus generating a repulsive force.

Pauli repulsion does not have a dependence on atomic distance which can
be analytically derived as van der Waals attraction does. Instead, it is com-
mon practice to introduce an additional interaction with a radial dependence
that wins out over van der Waals attraction at short distances. A popular
choice of potential that encompasses both Pauli repulsion and van der Waals
attraction is the Lennard Jones potential,

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(3.55)

where ε and σ are parametrisable constants. The 1/r12 term represents Pauli
repulsion in this instance. Another popular choice is the Buckingham poten-
tial,

VBuck(r) = A exp(−Br)− C

r6
(3.56)

where A, B, and C are parametrisable constants. Here, the Pauli repulsion
is represented through an exponential.

3.2.5 Bonds, angles and dihedrals

Molecules that exist through strong covalent bonds can be assumed to suf-
fer minimal displacement from their equilibrium configurations. Under this
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Figure 3.5: Schematic depicting a molecule consisting of atoms i, j, k and l,
detailing an atomic distance rkl, an angle θijk and a dihedral angle θijkl.

assumption harmonic potentials may be used to model their intra-molecular
bonds. The complex electronic structure of a molecule, and its effect on the
molecular geometry, may therefore be coarse-grained to a series of harmonic
radial, angular and dihedral angular bonds. Figure 3.5 shows a schematic
describing each component. The values of each are calculated as follows.

~rij = ~ri − ~rj

~θijk = arccos

(
~rij.~rkj
|~rij||~rkj|

)
~θijkl = arccos

(
(~rij × ~rjk).(~rjk × ~rkl)
|~rij × ~rjk||~rjk × ~rkl|

) (3.57)

The entire molecular interaction may therefore be represented by a series of
harmonic forces acting on rij, θijk and θijkl. The spring constants of each
must be carefully parametrised to reproduce the configurational freedom of
the molecule.

3.2.6 Cut-off radii and periodic boundaries

The number of particles in a simulation cell determines the timescales ac-
cessible in a simulation. Consider a system of N particles. Each particle
interacts with N − 1 other particles. Molecular Dynamics therefore requires
a total of N(N − 1) ∼ N2 force calculations. A simulation time that scales
with N2 rapidly becomes a problem when attempting to simulate macro-
scopic systems. Fortunately, approximations may be made which reduce
the computational expense of integrating the equations of motion. The first
approximation is to introduce a cut-off atomic distance, beyond which the
forces are not calculated. This method works well for van der Waals forces,
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Figure 3.6: Schematic detailing a two-dimensional simulation box with periodic
boundary conditions. The simulation cell is repeated infinitely in all dimensions.
The particles within the cell interact with all other particles within the cell, as
well as all periodic images. If a particle displaces out of the simulation cell, it
reappears at the other side.

which scale as 1/r6 and therefore decay quickly. With this approximation,
the number of forces calculated scales with N , rather than N2.

The second approximation is to assume that macroscopic systems such
as bulk crystalline materials and surfaces can be approximated as an infinite
repetition of a single cell. This can be introduced to molecular simulation
through the introduction of periodic boundaries. As detailed in Figure 3.6,
a particle exiting the simulation cell under periodic boundary conditions will
reappear at the opposite side of the cell. Analogous to equations 3.46 and
3.45, the total potential energy of the simulation therefore becomes:

V (Ri) =
∑
C1

∑
i,j

V ij
2 (Ri, Rj + C1)

+
∑
C1,C2

∑
i,j,k

V ijk
3 (Ri, Rj + C1, Rk + C2)

+
∑

C1,C2,C3

∑
i,j,k,l

V ijkl
4 (Ri, Rj + C1, Rk + C2, Rl + C3)

+
1

4πε0

∑
i<j

qiqj
|Ri −Rj − C1|

+
1

4πε0

∑
C1!=0

∑
i,j

qiqj
|Ri −Rj − C1|

(3.58)
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3.2.7 Long-range electrostatics

The first three terms of equation 3.58 may be easily calculated across periodic
boundaries due to the cut-off distance. The cut-off may be implemented
because the interaction with the shortest range are the van der Waals forces,
which decay with 1/r6. However, the electrostatic energy term decays as 1/r,
and thus requires a far larger cut-off distance. Instead, the standard method
for handling these long-range electrostatics over periodic boundaries is the
Ewald Summation Method [100]. Consider the charge density as a function
of distance from atom i, ρi(r). Under periodic boundary conditions, this is
given by:

ρi(r) =
∑
n

∑
j

′qiqjδ(r −Ri − n) (3.59)

where δ is the Dirac delta function and the prime denotes a sum over j for
n 6= 0 and a sum over j 6= i when n = 0. The potential field generated
by this charge distribution about atom i, φi(r), is given by the solution to
Poisson’s equation,

∇2(φi(r)) = −ρi(r)
ε0

(3.60)

which becomes:

φi(r) =
1

4πε0

∫
ρ(r′)

|r − r′|
d3r′ (3.61)

When equation 3.59 is applied to equation 3.61 and summed over i, the final
two terms of equation 3.58 are reproduced. However, the Ewald Summation
Method involves splitting ρi into two functions as follows:

ρi = ρSi + ρLi (3.62)

where:

ρSi (r) =
∑
n

∑
j

′qiqjδ(r −Ri − n)−
∑
n

∑
j

′qiqjG(r −Ri − n)

ρLi (r) =
∑
n

∑
j

′qiqjG(r −Ri − n)
(3.63)

where G is a normalised Gaussian function given by:

G(r) =
(α
π

) 3
2

exp
(
−αr2

)
(3.64)
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Here, α is a parametrisable standard deviation. It should be noted that
limα→0Gα(r) = δ(r). Using equation 3.61 φi(r) becomes:

φi(r) =
1

4πε0

∫ ∑
n

∑
j
′qiqjδ(r

′ −Ri − n)−
∑

n

∑
j
′qiqjG(r′ −Ri − n)

|r − r′|
d3r′

+
1

4πε0

∫ ∑
n

∑
j
′qiqjG(r′ −Ri − n)

|r − r′|
d3r′

(3.65)

It is worth noting here that the first of these two terms will become screened
at large distances, and can be solved through application of Poisson’s equa-
tion. The second term is long range. However, this issue can be resolved by
applying Poisson’s equation in Fourier space. Doing so removes the require-
ment to sum over periodic images. Equation 3.65 therefore reduces to:

φi(r) =
1

4πε0

∑
n

∑
j

′ qiqj
|r −Rj − n|

erfc(|r −Rj − n|
√
α)

+
1

V ε0

∑
k 6=0

∑
j

qiqj
k2

exp(ik.(r −Rj)) exp

(
− k

2

4α

)
− 1

4πε0

√
α

π
q2
i

(3.66)

where V is the volume of the simulation cell, and erfc(x) is an extension of
the error function,

erfc(x) = 1− 2

π

∫ x

0

e−y
2

dy (3.67)

which decays to zero as x → ∞. The first term in equation 3.66 is short-
range, due to the erfc convergence. A cut-off distance term may therefore
be imposed on this term. The second term is also short-range in k-space
due to the exponent, and may therefore be assigned a cut-off distance in
k-space. Throughout this thesis, a method known as the Particle-Particle-
Particle Mesh (PPPM) method [101] is applied to calculate the second term of
equation 3.66. The PPPM method divides the simulation cell into a discrete
grid in which the charge density is calculated via discrete Fourier transforms.
The fast Fourier Transform (FFT) method allows calculations in k-space
which scales with N . It is worth noting, at this point, that the PPPM
method, in addition to introducing cut-off distances on short-range forces,
allows the simulation time to scale with N , rather than N2, allowing for a
vastly improved computational efficiency.

3.2.8 Integrating the equations of motion

The previous sections deal with calculating the system potential energy. Once
both the particle velocities and potential energies are known, they may be
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used to find an approximate solution to the equations of motion. As pre-
viously stated, the purpose of molecular dynamics is to calculate ensemble
averages by integrating the equations of motion. The most straightforward
means of doing so is Euler’s approach, which is derived through a straight-
forward Taylor expansion,

Ri(t+ ∆t) = Ri(t) +
dRi

dt
∆t+

Fi
m

∆t2 +O∆t3 (3.68)

where ∆t is the simulation timestep and Fi is the force acting on atom i
given by the gradient of the potential energy:

Fi = ∇− V(Ri(t)) (3.69)

However, Euler’s approach becomes unsuitable for molecular dynamics. Not
only is the error of the calculation high, but it lacks the time-reversal sym-
metry of Newton’s equation. Instead, a more appropriate approach is to use
the Verlet integration scheme, which can be derived as follows:

Ri(t+ ∆t) = Ri(t) +
dRi

dt
∆t+

Fi
2m

∆t2 +
1

3!

d3Ri

dt3
∆t3 +O(∆t4)

Ri(t−∆t) = Ri(t)−
dRi

dt
∆t+

Fi
2m

∆t2 − 1

3!

d3Ri

dt3
∆t3 +O(∆t4)

Ri(t+ ∆t) = Ri(t+ ∆t) +Ri(t−∆t)−Ri(t−∆t)

= 2Ri(t)−Ri(t−∆t) +
Fi
m

∆t2 +O(∆t4)

(3.70)

Note that Ri(t−∆t) can be stored with minimal computational expense. The
Verlet algorithm is advantageous over the Euler method due to its O(∆t4)
error and its time-reversal symmetry. The latter advantage also renders the
Verlet algorithm advantageous over more sophisticated integration schemes
such as the 4th-order Runge Kutta method. However, one disadvantage of the
Verlet scheme is that it cannot be initialised with a starting configuration,
as a previous configuration is also required. Another issue with the Verlet
scheme is that the instantaneous definition of the velocity,

Vi(t) =
Ri(t+ ∆t)−Ri(t−∆t)

2∆t
+O(∆t2) (3.71)

requires Ri(t+∆t) to be calculated. This presents a difficulty when modifying
the system velocities, something which will be further discussed in Section
3.2.9. An alternative is the Verlet algorithm is the Velocity Verlet algorithm,
which is implemented in three stages.

1. Integrate the velocities by half a timestep:
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Vi

(
t+

∆t

2

)
= Vi(t) +

Fi(t)

2m
∆t (3.72)

2. Update positions by one timestep:

Ri(t+ ∆t) = Ri(t) + Vi

(
t+

∆t

2

)
∆t (3.73)

3. update velocities by one timestep:

Vi(t+ ∆t) = Vi

(
t+

∆t

2

)
+
Fi(t)

2m
∆t2 (3.74)

The Velocity Verlet algorithm can be shown to reproduce a trajectory
identical to that produced by the Verlet algorithm. This can be demonstrated
as follows. Equations 3.72 and 3.73 give:

Ri(t+ ∆t) = Ri(t) + Vi(t)∆t+
Fi(t)

2m
∆t2

Ri(t−∆t) = Ri(t)− Vi(t)∆t+
Fi(t)

2m
∆t2

(3.75)

Adding the two above equations reproduces equation 3.70. This alone does
not prove the trajectories are identical between Verlet and Velocity Verlet
algorithms. To show this, Ri(t + 2∆t) must be calculated. Using equations
3.72, 3.73 and 3.74, this can be done as follows:

Ri(t+ 2∆t) = Ri(t+ ∆t) + Vi

(
t+

3∆t

2

)
= Ri(t+ ∆t) + Vi(t+ ∆t)∆t+

Fi(t+ ∆t)

2m
∆t2

= Ri(t+ ∆t) + Vi

(
t+

∆t

2

)
∆t+

Fi(t+ ∆t)

m
∆t2

= Ri(t+ ∆t) + Vi(t)∆t+
Fi(t)

2m
∆t2 +

Fi(t+ ∆t)

m
∆t2

(3.76)

Equation 3.75, can be used to substitute for Ri(t) to give:

Ri(t+ 2∆t) = 2Ri(t+ ∆t)−Ri(t) +
Fi(t+ ∆t)

m
∆t2 (3.77)

This demonstrates that the Velocity Verlet algorithm reproduces the exact
trajectory of the standard Verlet algorithm. The Velocity Verlet algorithm
is advantageous over the Verlet algorithm as it allows the initialisation of a
simulation without reference to a past configuration. It also allows for the
external modification of the velocities. Throughout this thesis, the Velocity
Verlet algorithm is used to integrate the equations of motion.
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3.2.9 Thermostatting and barostatting

Solving the equations of motion for a simulation cell will fundamentally find
a solution for a microcanonical system, as the total system energy is not
modified by any external input. Microcanonical systems are of very little
interest, as few physical systems of interest are isolated. Instead, we wish to
simulate a canonical system. In order to do so, the system energy must be
allowed to fluctuate about an average value such that it has a defined system
temperature.

In Section 3.1.8, it was shown that each kinetic energy mode has an
average value equal to kBT/2. The average total kinetic energy of the system,
〈K〉 is therefore given by:

〈K〉 ≡
3N∑
i=1

〈
P 2
i

2mi

〉
=

3

2
NkBT (3.78)

this provides an instantaneous definition of system temperature from the
easily calculated kinetic energies of the system. The kinetic energies of the
system should therefore fluctuate around a total value given by equation
3.78. The most straightforward means of implementing this is to period-
ically rescale the system velocities so that the instantaneous system tem-
perature becomes equal to the input temperature. However, this approach
fails to replicate the natural temperature fluctuations of the system. It also
produces a curious effect known as the Flying Ice Cube Effect, in which the
equipartition theorem is violated and the system energy is transferred from
high-frequency modes to low-frequency modes [102].

A more suitable means of thermostatting is the Nosé-Hoover thermostat,
[103] in which an additional degree of freedom is added to the system. This
additional degree of freedom manifests as a frictional force:

mi
d2ri
dt2

= Fi − ζ(t)mivi (3.79)

where the friction coefficient ζ(t) has a time dependence given by:

dζ(t)

dt
=

1

Q

[
N∑
i=1

1

2
miv

2
i −

1

2
(3N + 1)kBT

]
(3.80)

where Q is the effective mass associated with the additional degree of free-
dom, which determines the speed at which the system temperature relaxes
back to the equilibrium temperature. It is worth noting that 3N becomes
3N + 1 in equation 3.81 due to the additional degree of freedom that the
frictional component brings. The Nosé-Hoover thermostat is deterministic,
and is found to allow the system to sample a canonical distribution.
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In order to understand the physical representation of Q, equation 3.81
can be recast as follows:

dζ(t)

dt
=

1

τdamp

[ ∑N
i=1

1
2
miv

2
i

(3N + 1)kBT
− 1

]
(3.81)

where:

τdamp =
2Q

(3N + 1)kBT
(3.82)

τdamp is interpreted as a relaxation time-scale over which the Nosé-Hoover
thermostat acts. If τdamp is assigned a value too high, a large simulation time
will be required to calculate ensemble averages. If, on the other hand, τdamp

is assigned a value too low, the temperature of the simulation will fluctuate
wildly.

As demonstrated in Section 3.1.9, constant pressure conditions produce a
canonical-like distribution of microstates. In order to replicate this, a mod-
ification of the Nosé-Hoover algorithm is implemented to include a barostat
along with a thermostat [104]. The barostat behaves similarly to the ther-
mostat, by including an additional degree of freedom and acts as a frictional
force to the system volume. Similar to the Nosé-Hoover thermostat, the
barostat has an associated τdamp which must be assigned a value with care.

3.3 Rare event sampling

As discussed throughout Section 3.2, Molecular Dynamics is a powerful tool
for calculating ensemble averages by exploiting ergodicity. Free Energy Sur-
faces are an example of such ensemble averages. Free energy Surfaces are
useful for determining reaction pathways and have a large scope for calculat-
ing binding free energies and reaction rates. However, simulations are limited
by computational expense, and ergodicity is often hindered by the timescales
accessible for a molecular dynamics simulation. Rare event sampling is a
tool designed to overcome such hindrances through exerting external, non-
physical dynamics on the system.

3.3.1 Bias potentials

By running classical molecular dynamics simulations, free energy surfaces
can be determined for any reaction coordinate, s(Γ), by constructing a his-
togram for the collective variable and using equation 3.40. However, when
two or more regions are separated by a region of high free energy, F (s(Γ))
(low ρ(s(Γ))), then ergodicity is hindered by the low crossing rate of such a
region. Running extremely long simulations to account for this is undesirable.
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Instead, an artificial bias potential as a function of the reaction coordinate,
V (s) can be introduced to sample regions of space which are rarely occupied
otherwise. V (s) is not to be confused with the system potential energy V .
Such a bias potential shifts the total system Hamiltonian to Ĥtot(Γ), which is
given by Ĥtot(Γ) = Ĥ0(Γ)+V (s(Γ)), where Ĥ0(Γ) is the system energy with-
out the bias potential. Defining Ztot and Z0 as the corresponding canonical
partition functions, the following relations hold:

Ztot =

∫
exp

(
−Ĥ(Γ) + V (s(Γ))

kBT

)
dΓ Z0 =

∫
exp

(
−Ĥ(Γ)

kBT

)
dΓ

(3.83)

from which it follows that:

Ztot = Z0
Ztot
Z0

= Z0

∫ 
exp

(
−Ĥ(Γ)

kBT

)
∫

exp

(
−Ĥ(Γ′)

kBT

)
dΓ′

exp

(
−V (s(Γ))

kBT

) dΓ

= Z0

〈
exp

(
−V (s(Γ))

kBT

)〉
(3.84)

Now, two separate probability densities can be defined; ρb(s) represents the
PDF for the biased system with s(Γ) = s, where ρ0(s) gives the correspond-
ing PDF in the absence of the bias potential. Repeating the derivation of
equation 3.41 but with a bias potential, the probability density is now given
by:

ρb(s) =
1

Ztot

∫
δ(s− s(Γ)) exp

(
−Ĥ0(Γ)

kBT

)
exp

(
−V (s(Γ))

kBT

)
dΓ (3.85)

Substitution of equation 3.84 into this expression results in equation 3.86.

ρb(s) =
1

Z0〈exp
(
−V (s(Γ))

kBT

)
〉

∫
δ(s− s(Γ)) exp

(
−Ĥ0(Γ)

kBT

)
exp

(
−V (s(Γ))

kBT

)
dΓ

=

〈
exp

(
−V (s(Γ))

kBT

)〉−1

exp

(
−V (s)

kBT

)
ρ0(s)

(3.86)
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Note that ρ0(s) is related to the free energy of the system through equation
3.41. Therefore, taking the logarithm of both sides of equation 3.86 and
multiplying by kBT yields equation 3.87:

F (s) =− kBT log{ρb(s)} − V (s)

− kBT log

〈
exp

(
−V (s(Γ))

kBT

)〉
− kBT log(Z0)

(3.87)

The final two terms in equation 3.87 are merely constants of the system, and
can be considered unimportant. Therefore, the free energy profile is given in
equation 3.88:

F (s) = −kBT log{ρb(s)} − V (s) + C (3.88)

This result demonstrates that the inclusion of a non-physical bias potential
still allows a calculation of the free energy surface. Equation 3.88 provides
a useful tool for recovering free energy surfaces using an external potential.
A bias potential may be used to force the reaction coordinate into otherwise
under-sampled regions, thus allowing ergodicity within accessible simulation
timescales.

3.3.2 Multiple reaction coordinates

Before proceeding, it is important to provide a generalisation for a multidi-
mensional bias that depends on multiple reactions coordinates. Consider a
set of d collective variables. Equation 3.88 in this case becomes:

F (s1, ..., sd) = −kBT log ρ(s1, s2, ..., sd)− V (s1, s2, ..., sd) + C (3.89)

Given a probability density of multiple variables, ρ(s1, s2, ..., sd), the reduced
probability density for only one variable, s1, is given by:

ρ(s1) =

∫
ρ(s1, s2..., sd)

d∏
i=2

dsi (3.90)

Assuming the d-dimensional free energy surface is already known, equation
3.41 can be used to simplify equation 3.90 to equation 3.91.

F (s1) = −kBT log

(
exp

(
−F (s1, s2, ..., sd)

kBT

) d∏
i=2

dsi

)
+ C (3.91)

Therefore, assuming the free energy surface for multiple collective variables is
known, it is straightforward to derive the free energy surface for one collective
variable.
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3.3.3 Thermodynamic integration

Thermodynamic integration is arguably the most straightforward rare event
sampling technique. Equation 3.40 tells us that the integral of the mean force
will recover the Free Energy Surface. By constraining a reaction coordinate
to a given value, a series of positions along the reaction coordinate si can be
constructed. By calculating the mean force along s at each si, 〈f(si)〉, the
Free Energy Surface can be estimated.

F (si+1)− F (si) ≈ 〈f(si)〉(si+1 − si) (3.92)

3.3.4 Umbrella sampling

Umbrella sampling is a similar technique to thermodynamic integration, in
which a harmonic bias potential, V (s, i), is used to constrain a reaction
coordinate to construct a series of windows.

V (s, i) =
1

2
k(s− si)2 (3.93)

With this potential, a probability histogram, ρi(s), can be constructed. The
local free energy surface can be recovered from the histogram:

F (s ≈ si) = −kBT ln{ρi(s)} − k(s− si)2 + C (3.94)

Using equation 3.94, a series of local free energy surfaces are constructed
for each window. Assuming sufficient overlap these local free energy func-
tions can be pieced together to create a free energy surface. This process
of combining local free energy functions is complex. A popular method for
doing so is the Weighted Histogram Analysis Method (WHAM) [105]. Where
umbrella sampling is used throughout this thesis, the WHAM method im-
plemented by Grossfield [106] is used.

As well as being more efficient than Thermodynamic Integration, Um-
brella sampling has the advantage of requiring few parameters: namely, the
spring constant, k, and the distance between windows, si+1 − si. These pa-
rameters must be adjusted to give sufficient overlap between histograms such
that the WHAM method is implemented with accuracy. A disadvantage with
umbrella sampling is its reduced ability to determine reaction pathways, due
to the constraints at each window.

One additional use of umbrella sampling is its ability to calculate a sam-
pling error, using a method known as Monte Carlo bootstrapping. For a data
set of N points along the reaction coordinate, Monte Carlo bootstrapping
selects N data points randomly from the data set, allowing for repetitions.
Subsequently, WHAM is used to calculate a free energy surface from the data
subset. This process is repeated a number of times with a different random
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Figure 3.7: Depiction of local histograms (umbrellas) obtained by constraining at
different regions along the reaction coordinate. Provided sufficient overlap between
histograms, the free energy surface can be obtained using the Weighted Histogram
Analysis Method.

number seed, and the free energy surfaces are used to obtain a sampling
error.

3.3.5 Metadynamics

As well as having a spatial dependence, a bias potential may also be time-
dependent, V (s, t). In metadynamics, a time dependent bias potential is
implemented through the periodic creation of Gaussian functions. Gaussian
potentials of standard deviation σ and height W are deposited in increments
of time τ .

V (s, t) =
∑
kτ<t

W exp

(
−(s− skτ )2

2σ2

)
(3.95)

where k is an integer and skτ is the value of s at time kτ . Over time, the
Gaussian functions accumulate, leaving a bias potential dependent on the
history of the system. Should the system become kinetically trapped in a
free energy well, the bias will accumulate until the system is forced out of the
well. This allows for improved ergodicity of the system, which is otherwise
hindered by the free energy landscape.

In theory, the bias will continue to accumulate until the total forces along
the reaction coordinate are zero, and the Probability Density Function be-
comes constant. Under this limit, equation 3.40 tells us that:

F (s) = − lim
t→∞

V (s, t) (3.96)
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Figure 3.8: Schematic of the derivation of a free energy landscape using meta-
dynamics. The true (unknown) free energy map is denoted by the black line. The
Gaussians accumulate around the left free energy well, forcing the collective vari-
able into the right well. The second well is subsequently filled with Gaussians until
both wells are accounted for, after which the sum of the Gaussians fluctuate about
the true free energy surface modulo a constant.

This process is illustrated in Figure 3.8. Metadynamics has the advantage
of being straightforward to implement compared to umbrella sampling, espe-
cially when multiple reaction coordinates are used. It also allows the system
to follow a semi-physical trajectory, allowing reaction pathways to be exam-
ined, unlike with umbrella sampling. However, parametrising W and σ for
maximum efficiency requires some prior knowledge on the free energy surface.
Metadynamics also tends to converge slower than umbrella sampling.

3.3.6 Well-tempered metadynamics

In practice, classical metadynamics fares poorly when determining the fi-
nal Free Energy Surface. The Gaussian functions accumulate indefinitely,
meaning that the final output always has a resolution equal to W . The
resolution may be improved by reducing W , but this comes at the expense
of larger convergence times. Well-Tempered Metadynamics is a technique
used to overcome this issue through adding a spatial dependence and time-
dependence to the Gaussian height, W (s, kτ). The value of W (s, kτ) is
determined by equation 3.97, where ∆T is a parametrisable variable with
units of temperature.

W (s, kτ) = W0 exp

(
−V (sk, kτ)

kB∆T

)
(3.97)
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The height of the Gaussian is inversely proportional to the exponential of the
height of the bias at time kτ . In reality, V (s, kτ) changes in a succession of
discrete processes, but in the limit of k � 1 the change in V can be considered
a continuous process and a simulation time t = κτ can be defined. The rate
of change in height of the barrier, V̇ (s, t) = dV/dt, is given by W (s, t), and
the frequency at which Gaussians are deposited is given by ρb(s, t). The
change in potential is therefore given by:

V̇ ∝ W0 exp

(
−V (s, t)

kB∆T

)
ρb(s) (3.98)

After large simulation times, it can be assumed that the Gaussian heights
are small enough such that the potential evolves very slowly in time. At
this point, it can be assumed that the potential has converged to a point
such that will vary at the same rate regardless of s. Therefore, substituting
equation 3.88 for ρb(s) into equation 3.98, the following equation holds:

exp

(
−V (s, t→∞)

kB∆T

)
exp

(
−(F (s) + V (s, t→∞))

kBT

)
= C (3.99)

from this, it follows that −V (s,t→∞)
kB∆T

−(F (s)+V (s,t→∞))
kBT

= C ′. This simplifies to
equation 3.100.

F (s) = −T + ∆T

∆T
V (s, t→∞) + C ′′ (3.100)

Consider the limits of ∆T . As ∆T → 0, the bias potential vanishes, and the
probability density reduces to the PDF in the absence of a bias potential. As
∆T → ∞, equation 3.100 becomes F (s) = V (s, t → ∞) + C ′′′; namely, the
classical metadynamics algorithm is reproduced. It is conventional to define
the bias factor, γ, as:

γ =
T + ∆T

T
(3.101)

Equation 3.100 can now be rearranged to give F (s) +V (s, t→∞) = 1
γ
F (s).

Finally, dividing both sides of this expression by kBT , taking the logarithm
and subbing equation 3.88 results in equation 3.102.

ρ(s, t→∞) ∝ exp

(
−F (s)

kBT

1

γ

)
(3.102)

Note that the limits of the bias factor are 1 and ∞.

It is clear, therefore, that the choice of bias factor is important: too low
and it will not allow sufficient exploration of collective variable space; too
high and the Gaussian height will decrease too slowly and convergence of the
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bias potential will require longer simulations. The bias factor must therefore
be parametrised to allow both an effective bias potential and a reasonable
final resolution of the calculated F (s). An ideal choice of bias factor is
obtained by dividing the largest barrier height, ∆Fmax by kBT . Consider the
relative maximum and minimum values of the PDF, ρmax and ρmin. Equation
3.102 can be used to give ρmin/ρmax = exp(−(Fmax−Fmin)/γkBT ). If the bias
factor is set to γ = (Fmax−Fmin)/kBT , then the ratio of probabilities becomes
ρmin/ρmax = exp(−1). The minimum and maximum values of the PDF are
of the same order of magnitude, implying that the barrier crossing rate will
be sufficiently frequent, while minimising the simulation time required to
generate a sufficiently high-resolution Free Energy Surface. This process can
be used to significantly reduce the convergence time, although its validity
again requires some prior knowledge of the free energy landscape.

3.3.7 Mean force integration

Mean Force Integration (MFI) is a more recently proposed technique [107]
MFI is an extension of metadynamics which uses the frequent output of
the collective variables to calculate the mean force, dFt(s)/ds, from the time
dependent bias potential and probability density Pt(s) using the relationship:

〈
dFt(s)

ds

〉
t

=

∑t
t′=0 Pt′(s)

dFt′ (s)
ds∑t

t′=0 Pt′(s)
(3.103)

Combining equation 3.103 with equation 3.88 gives:

〈
dF (s)

ds

〉
t

=
1∑

k Pkτ (s)

[
−kBT

∑
k

dPkτ (s)

ds
−
∑
k

Pkτ (s)
dVkτ (s)

ds

]
(3.104)

where k is an integer and τ is a specified time period. Equation 3.104 can
therefore be used to calculate F (s) by integrating. Pt(s) can be calculated
from the output of the value of the collective variables during simulations.
However, in order for Pt(s) to be differentiable, a simple histogram will not
suffice. Instead, Pt(s) is calculated using a kernel approach, which gives a
continuous, differentiable function.

Pt(s) =
1

nτh
√

2π

t+τ∑
t′=t

exp

[
−(s− st′)2

2h2

]
(3.105)

where h is a tunable kernel width and nτ is the number of kernels deposited
per time tau. The main advantage of MFI is that it allows for faster conver-
gence than well-tempered metadynamics. An additional advantage of MFI
is that its standard errors can be calculated by block averaging dFt(s)/ds
and propagating the errors when calculating F (s). It is also worth noting



65 3. THEORY

that MFI does not need to be implemented on the fly, and only requires
post-processing the output of metadynamics simulations as long as the value
of the collective variables is also outputted.

3.3.8 The Jarzynski approach

The Jarzynski equality [108, 109] relates an equilibrium free energy difference
between two states, ∆F , to the output of non-equilibrium simulations as
follows

exp

(
−∆F

kBT

)
=

〈
exp

(
−∆W

kBT

)〉
(3.106)

Where ∆W is the work required in transitioning between the two states. This
can be extended to calculating the free energy difference along a reaction
coordinate as follows:

exp

(
−∆F (x1 → x2)

kBT

)
=

〈
exp

(
−∆W (x1 → x2)

kBT

)〉
(3.107)

where ∆W (x1 → x2) is the work done in moving along the reaction coordi-
nate from x1 to x2. This equation holds regardless of the time taken for the
transition from x1 to x2. The Jarzynski approach is unique in the sense that
it uses nonequilibrium simulations to recover equilibrium free energy differ-
ences. In practice, this method can be implemented by tethering a collective
variable to a certain value using a moving harmonic potential. An advantage
of the Jarzynski approach is that it can be applied to processes which are
not easily reversible in simulations, for example the disassembly of molecular
clusters [110]. Another advantage is that, since the free energy function is
just an average of many repetitions of the same simulation, errors are easily
calculated.

3.3.9 Minimum Free Energy Pathways

In practice, physical processes will often require multiple reaction coordinates
in order to correctly sample the phase space of the system with rare event
sampling. In this case, reactant and product states are separated by a multi-
dimensional free energy barrier. Transitions from reactant to product states
therefore involves the translation along many possible pathways over the
multi-dimensional free energy surface. However, it has been shown [111]
that the reaction pathways are dominated by a single trajectory, one which
minimises the free energy along its path. The Pathway is therefore known
as the Minimum Free Energy Pathway (MFEP). Here, we denote ξ as the
reaction coordinate that produces the MFEP. The MFEP is therefore given
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by F (ξ), i.e. a function of ξ. An important property of the MFEP is that
mean force normal to the pathway, 〈f⊥(ξ)〉 is always zero,

〈f⊥(ξ)〉 = −∇ξF (ξ) + (∇ξF (ξ).t(ξ))t(ξ) = 0 (3.108)

where t(ξ) is the normalised tangent vector to the MFEP.

3.3.10 String method

Calculating the MFEP can be achieved through the use of equation 3.108.
With the knowledge that normal forces are always zero along the MFEP,
the mean forces can be used to parametrise the MFEP. The String Method
[112] involves a linear series of equidistant points, λi, along a set of reaction
coordinates, known as images. This collection of images forms a string, hence
the name String Method. Starting with an initial guess of the MFEP, the
mean forces can be calculated and used to reposition each image using the
steepest descent algorithm:

λi → λi − h∇λF (λi) (3.109)

where h is a small step which controls the sensitivity of the iteration with
respect to the forces. It should be noted that h should be sufficiently small to
allow convergence, similar to how a simulation time step must be small. After
each point has been repositioned, the points are re-parametrised such that
they are equidistant along the MFEP estimation. After many iterations of
this process, the string will converge on the MFEP. Figure 3.9 demonstrates
the process of an initial guess converging to the MFEP after a finite number of
iterations. It is worth noting that the string method can be applied either in
a simulation, where mean forces are calculated on the fly, or to a pre-existing
multidimensional free energy surface.

3.3.11 Nudged elastic band method

The Nudged Elastic Band Method, [113] is an extension of the string method
in which the images are connected by a series of harmonic springs with spring
constants ki. Uniformity between spacings is maintained by neglecting the
system mean forces tangent to the springs, and neglecting the spring forces
normal to the springs. The total force on image i, f(λi) therefore becomes:

f(λi) =
〈
f‖(λi)

〉
+ f⊥,i =−∇λF (λi) + ((∇λF (λi)).ti)ti

+ ([ki+1(λi+1 − λi)− ki(λi − λi−1)].ti)ti
(3.110)

where ti is the tangent vector at λi. The string method is therefore the non-
extensible limit of the Nudged elastic band method. In this thesis, we use
the Nudged elastic Band method, due to its relative ease of implementation.
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Figure 3.9: Demonstration of the String Method or Nudged Elastic Band method
applied to the Müller-Brown potential [2]. In initial guess at the MFEP (dashed
line in left-hand image) is made and, after a certain number of iterations, the string
converges on the MFEP (right-hand image).

3.3.12 Selecting reaction coordinates

One crucial caveat of rare event sampling techniques is that the set of reaction
coordinates must be chosen such that the bias potential allows the rapid
exploration of all relevant regions of phase space. In other words, there must
be no further rare events hindering ergodicity other than those which can be
accurately represented by the reaction coordinates. Any free energy barriers
hindering ergodicity that are perpendicular to all reaction coordinates will
cause any free energy sampling method to reproduce an inaccurate free energy
surface.

To date, there are no rigorous methods available for selecting reaction
coordinates. Instead, we are typically required to use intuition in selecting
reaction coordinates. An initial guess involving multiple reaction coordinates
is often required. However, convergence times approximately scale exponen-
tially with the number of reaction coordinates used, and any rare event sam-
pling method involving more than three reaction coordinates will typically
converge far too slowly to be of use. It is therefore highly beneficial to limit
the dimensionality of the reaction coordinate space as much as possible. A
reaction coordinate can be removed if, for example, no significant free energy
barriers exist along it, and diffusion along this reaction coordinate is rapid.
Alternatively, the Committor Function [114, 115] can be used to test the
suitability of the reaction coordinate.
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3.4 Dynamics of stochastic systems

It is often beneficial to neglect certain physical characteristics of a system for
the purpose of computational efficiency. Coarse-graining is a method in which
the degrees of freedom in a simulation are reduced for greater versatility of
the simulation. Molecular Dynamics is itself a method of coarse-graining, in
which the electronic structure of each atom is replaced by a set of force fields.
Here, we explore a form of coarse-graining which represents the diffusion
along a reaction coordinate as a particle moving under the influence of a
frictional coefficient and a stochastic noise. We also explore a method of
coarse-graining in which a system is represented by a series of discrete random
processes, each with their own reaction rates.

3.4.1 Markovianity

A Markovian system is one in which the system dynamics are only deter-
mined by the instantaneous conditions of the system. In other words, the
system is memoryless and does not require knowledge of previous conditions.
Markovianity is an important concept when coarse-graining. Fundamentally,
Newton’s equations are Markovian, as they only require a set of instan-
taneous positions, velocities and forces that depend on their coordinates.
Markovianity is only broken for physical systems when coarse-graining ne-
glects an important feature of the system. Consider the set-up in Figure
3.10. Both particles connected by a spring move under Newton’s equations,
and their individual motions are Markovian if the positions and momenta of
both particles are tracked. However, if the position and momentum of one
of the particles is ignored, and only the other particle is tracked, its motion
will become non-Newtonian. Its velocity may change suddenly or speed up
regardless of its position or velocity. For example, if the particle is found
to suddenly change direction, it is likely that it has displaced some distance
from the other particle. Therefore, if the particle has suddenly rapidly decel-
erated, it is likely to keep doing so and change direction. In other words, the
velocity may respond to an instantaneous but neglected coordinate which
is correlated with a previous velocity of the visible particle. Hence, non-
Markovianity is observed in the apparent dynamics.

It is clear that non-Markovianity can arise through coarse-graining if the
details neglected are of significance to the system. This is important, not just
for the physical coarse-graining observed in Figure 3.10, but for rare event
sampling and determining barrier crossing rates. Rare event sampling is a
form of coarse-graining, as it reduces the dynamics of the entire system onto
the evolution of a collection of reaction coordinates. If an unsuitable reaction
coordinate is chosen, the motion along the reaction coordinate becomes non-
Markovian. This detail is explored extensively in Chapter 8.
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Figure 3.10: Schematic of two moving particles connected by a harmonic spring.
The motion of each springs obey Newton’s equations, and are therefore Markovian
(labelled ”M” in the figure). However, when the position and motion of one particle
is neglected, represented by the greying of the second particle, the motion of the
other particle becomes non-Markovian (labelled ”NM” in the figure).

3.4.2 Langevin motion

In its simplest form, Langevin dynamics describe the stochastic motion of
a single particle under a frictional force. Designed to describe Brownian
motion, the Langevin Equation is a stochastic differential equation for the
particle position x(t), defined as follows:

d2x

dt2
= −γdx

dt
+ ξ(t) (3.111)

where γ represents a damping force and ξ(t) is a stochastic force acting on
the the particle. In its simplest form, the force is assumed to be completely
uncorrelated with time. This can be represented by considering the autocor-
relation function of the force:

〈ξ(t)ξ(t′)〉 =

∫ ∫
ξ(t)ξ(t′)ρ[ξ(t)]ρ[ξ(t′)]dξ(t)dξ(t′) (3.112)

where ρ[ξ(t)] is the probability density function of ξ(t). The force can be
considered completely uncorrelated if 〈ξ(t)ξ(t′)〉 is zero when t 6= t′. In other
words, the stochastic force is completely Markovian. This condition can be
satisfied if:

〈ξ(t)ξ(t′)〉 = b2δ(t− t′) (3.113)

ξ(t) is therefore a force which is infinite in variance, but changes after an
infinitesimal amount of time. While such a force is unintuitive, the particle
motion it produces is approximately representative of physical systems. The
fluctuation-dissipation relation provides a link between the average velocity
of the particle and the equipartition theorem, by assuming that the aver-
age squared velocity of the particle in equilibrium, 〈v2(t→∞)〉 is equal to
kBT/m. In this limit, b becomes:
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b =

(
2kBTγ

m

) 1
2

(3.114)

The Langevin equation can therefore be recast as:

d2x

dt2
= −γdx

dt
+

(
2kBTγ

m

) 1
2

η(t) (3.115)

where η(t) is a stochastic force satisfying:

〈η(t)η(t′)〉 = δ(t− t′) (3.116)

3.4.3 The Itô process

The Langevin process is a special case of a more general stochastic differential
equation, which takes the form:

dx

dt
= a(x, t) + b(x, t)Ξ(t) (3.117)

where Ξ(t) is a stochastic variable that satisfies 〈Ξ(t)〉 = 0 and 〈Ξ(t)Ξ(t′)〉 =
δ(t− t′). The infinite variance at t = t′ is problematic, but can be simplified
by integrating over a small but finite time interval δt as follows:

x(t+δt)−x(t) = δx =

∫ t+δt

t

a(x(t′), t′)dt′+

∫ t+δt

t

b(x(t′), t′)Ξ(t′)dt′ (3.118)

It is further assumed that δt is small enough such that a(x(t′), t′) = a(x(t), t)
and b(x(t′), t′) = b(x(t), t). This allows δx to be given by

δx = a(x, t)δt+ b(x, t)δW (t) (3.119)

where we have defined

δW (t) =

∫ t+δt

t

Ξ(t′)dt′ (3.120)

Firstly, the condition that 〈Ξ(t)〉 = 0 implies that 〈δW (t)〉 = 0. Furthermore,
〈(δW )2〉 is calculated to be:
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〈
(δW (t))2

〉
=

∫ t+δt

t

∫ t+δt

t

〈Ξ(t′)Ξ(t′′)〉 dt′′dt′

=

∫ t+δt

t

∫ t+δt

t

δ(t′ − t′′)dt′′dt′

=

∫ t+δt

t

dt′

= δt

(3.121)

δW (t) is therefore a stochastic variable acting in the time interval t→ t+ δt
with a zero mean and a variance equal to δt. An Itô process can therefore
be implemented in practice for a specified δt, by drawing a random number
w(t) from a probability distribution with zero mean and unit variance, and
multiplying by

√
δt. The stochastic differential equation can therefore be

given by:

δx = a(x, t)δt+ b(x, t)w(t)
√
δt (3.122)

A Langevin process can therefore be simulated by evolving the particle ve-
locity v(t) as follows:

δv = −γvδt+

(
2kBTγ

m

) 1
2

w(t)
√
δt (3.123)

The particle position can be integrated using the velocity and the time-step
δt. This method is applied in Chapter 8.

3.4.4 The Fokker Planck equation

The Fokker Planck equation determines the time-dependent probability den-
sity function, p(x, t), for an evolving Markovian system. p(x, t) may be writ-
ten in terms of a Markovian transition probability density T (∆x|x, t) such
that T (∆x|x, t)d∆x is the probability that a transition is made from x to a
region at x+ ∆x with size d∆x in an interval τ starting from time t.

p(x, t+ τ) =

∫ ∞
−∞

p(x−∆x, t)T (∆x|x−∆x, t)d∆x (3.124)

By performing a Taylor expansion of p(x−∆x, t)T (∆x|x−∆x, t) in powers
of −∆x, we arrive at:

1

τ
(p(x, t+ τ)− p(x, t)) =

∞∑
n=1

(−1)n

n!

∂n(Mn(x, t)p(x, t))

∂xn
(3.125)
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where:

Mn(x, t) =
1

τ

∫ ∞
−∞

d∆x(∆x)nT (∆x|x, t) (3.126)

Equation 3.125 is known as the Kramers-Moyal equation. The Fokker-Planck
equation is a special case of the Kramers-Moyal equation, where the system
undergoes an asymmetrical random walk. Under this limit, the terms Mn

become zero for n > 2 and the Kramers-Moyal equation reduces to the
Fokker-Planck equation:

∂p(x, t)

∂t
=
∂(M1p(x, t))

∂x
+

1

2

∂2(M2p(x, t))

∂x2
(3.127)

The Fokker Planck equation can be shown to be equivalent to a stochastic
differential equation such as the Ito process. It can be shown that M1 and
M2 are related to the coefficients in the stochastic differential equation such
that:

δx =M1(x, t)δt+
√
M2(x, t)δW (3.128)

3.4.5 Langevin motion along a potential force

Consider a modified Langevin motion, where an additional potential force
U(x) is introduced. The stochastic differential equation becomes:

d2x

dt2
= −γ 1

m

dx

dt
− 1

m

dU(x)

dx
+

(
2kBTγ

m

) 1
2

η(t) (3.129)

Converting this into an Itô process therefore produces the following:

δv = − γ
m
vδt− 1

m

dU(x)

dx
+

(
2kBTγ

m

) 1
2

δW (t) (3.130)

In this instance, we consider the overdamped limit, where γ → ∞. Under
this limit, both the frictional force and the stochastic element become very
large. Assuming the potential force is also sufficiently large, we may set δv
to zero, and the above simplifies to:

δx = − 1

γm

dU(x)

dx
+

(
2kBT

γm

) 1
2

δW (t) (3.131)

where we have replaced vδt with δx. Now, using equation 3.128, the corre-
sponding Fokker-Planck equation becomes:
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∂p(x, t)

∂t
=

1

γm

∂(∂U(x)
∂x

p(x, t))

∂x
+

1

2

2kBT

γm

∂2(p(x, t))

∂x2
(3.132)

The above equation cannot be solved analytically for a time-dependent p(x, t).
However, by considering the t → ∞ limit, the left-hand side of the above
equation can be dropped, and p(x, t) can be replaced by p(x). The differential
equation therefore becomes:

∂U(x)

∂x
p(x) = −kBT

∂p(x)

∂x
(3.133)

This differential equation is solved by the following normalised p(x):

p(s) =
1

Z
exp

(
U(x)

kBT

)
(3.134)

where Z is akin to the canonical partition function and is given by:

Z =

∫ ∞
−∞

exp

(
U(x)

kBT

)
dx (3.135)

It is therefore clear that an Itô process in a potential will asymptotically
produce a canonical probability density, and that the potential U(x) is similar
to a free energy function F (x). The above derivation may be repeated for a
non-overdamped example. However, the derivation is more convoluted, and
the above derivation is sufficient for demonstrating that the Langevin process
is equivalent to a particle moving according to a canonical ensemble.

3.4.6 Kinetic Monte Carlo

The Kinetic Monte Carlo (KMC) approach makes the assumption that the
macroscopic dynamics of a system may be represented by a series of discrete
random transitions, each with their own reaction rates. Consider such a
system with reaction rates {λi(t)}. The probability that the next reaction is
reaction i, denoted by Pi(t) is given by:

Pi(t) =
λi(t)

Λ
(3.136)

where Λ is the sum of all reaction rates:

Λ(t) =
∑
i

λi(t) (3.137)

The probability of reaction i occurring after time t + τ , Pi(t, τ) is given
by the product of the reaction rate λi and the probability that a reaction has
not occurred P0(t, τ).
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Pi(t, τ) = λiP0(t, τ) (3.138)

For a small time increment, dt, P0 can be given by,

P0(t, dt) = (1− Λdt) (3.139)

By defining τ = ndt, where n is a large number, P0(t, τ) can be given by:

P0(t, τ) = (1− Λ(t)dt)n

=
(

1− Λ(t)
τ

n

)n
= exp (Λ(t)τ) for n→∞

(3.140)

Pi(τ) can therefore be given by:

Pi(t, τ) = λi(t) exp

(∑
j

λj(t)τ

)
(3.141)

This is the basis of the KMC algorithm, [116] in which events are picked
at random, and the time is updated by an exponentially weighted value, δt,
given by:

δt =
1∑

j

λj(t)
log

(
1

µ

)
(3.142)

where µ is a uniformly distributed random number in the range (0,1]. The
complete KMC is implemented as follows:

1. Determine all possible reactions and evaluate λi(t) for each reaction.
Generate two uniformly distributed random numbers, µ1, µ2 in the
range (0,1].

2. Determine the next reaction by choosing the lowest i that satisfies:

j∑
j′=1

pj′ > µ1 (3.143)

where pj′ is the probability of reaction j′ occurring, and update the
configuration of the system

3. Update the simulation time as follows:

t← t+
1∑

j

λj(t)
log

(
1

µ2

)
(3.144)
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Chapter 3 provides an overview of the theoretical background and compu-
tational techniques required for the work carried out throughout this thesis.
This chapter concerns the implementation of such techniques. Throughout
this chapter, the techniques used in chapters 5 6 7 and 8 are detailed, as well
as the parameters used in the algorithms discussed in Chapter 3.

This chapter begins with the standard parameters of the molecular dy-
namics simulations used in chapters 5, 6 and 7. The force fields for calcite
and water are also discussed. In Section 4.2, the structure of the calcite data
files are discussed, as are the means through which calcite terraces, steps
and kinks are exposed. This chapter also details computational techniques
used in molecular simulation to calculate stress distributions in Section 4.3,
and determine average lattice spacings in Section 4.4. Section 4.5 details the
types of reaction coordinates used in rare event sampling simulations. This
is accompanied by a discussion in Section 4.6 on how to calculate physically
meaningful adsorption free energies from the results of such rare event sam-
pling methods. Finally, Section 4.8 details the Kinetic Monte Carlo method
used to simulate step growth events in the presence of impurities.

4.1 Simulation details

Throughout this thesis, molecular dynamics simulations are run using the
molecular dynamics package Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) [117]. The positions and velocities are updated
using the Velocity Verlet algorithm with a time-step of 1 fs. For all simula-
tions, a canonical ensemble is maintained at a temperature of 300 K using
the Nosé-Hoover thermostat with a relaxation time of τdamp = 100 fs. Where
explicitly stated, an isobaric, isothermal ensemble is maintained at zero pres-
sure using a Nosé-Hoover barostat with a damping parameter of τdamp = 1
ps. The long range electrostatics are handled using the PPPM method with
an accuracy of 10−4.

Unless explicitly stated, the inter- and intra-molecular interactions of cal-
cium carbonate, as well as their interactions with water, are described using
the force fields of Raiteri et al. [45], which are parametrised in order to repli-
cate the experimental solubility of calcite. These force fields are widely re-
garded as optimal for reproducing thermodynamic quantities for calcite. The
inter- and intra-molecular interactions of water are modelled with SPC/Fw,
[118] in line with the work of Raiteri et al. Where impurities are modelled,
their force fields are discussed individually.
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4.2 Simulation cell structures

In chapters 5 and 6, simulations concern exposed terrace, step and kink
sites. In order to expose such sites, systems consist of a slab of calcite,
periodic in the x- and y-directions, and a ∼4 nm water-filled gap dividing
the slab from its periodic images in the z-direction. The calcite consisted
of six repetitions of the rhombohedral calcite unit in the z-direction. The
z-length of the water-filled gap is not given by exactly 4 nm, as the correct
zero-pressure volume of the cell as a function of water molecules cannot
be calculated without simulation. Instead, the cell is filled with roughly
the correct number of water molecules to produce a gap with a length of
approximately 4 nm. The simulation cell is then equilibrated and relaxed
under zero pressure (NPT). The average z-length of the cell is used for future
simulations. This process is repeated for every calcite structure (terrace,
step and every unique exposed kink), as well as for any impurity which is
introduced into the simulation cell. Every simulation including these NPT
simulations consisted of an equilibration process, during which the calcite was
frozen and the water was equilibrated for 1 ns. The calcite is then unfrozen
and the entire simulation cell is equilibrated for a further 100 ps. In every
simulation, the position of the calcite slab is kept in place with a series of
harmonic tethers acting on a randomly selected group of Ca-ions roughly in
the centre of the slab.

For simulations involving terrace and step sites, the x-length of the simu-
lation cell is equal to 12 repetitions of the calcite unit cell. A monoclinic skew
is introduced in the y-direction such that the sum of the y-length and mono-
clinic skew is equal to 12 repetitions of the unit cell. For simulations involving
steps, the step added a seventh layer of calcite to the simulation, and was
periodic in the x-direction i.e. had a length of 12 units in the x-direction.
In the y-direction, the step spanned six calcite units. The simulation cell
therefore consisted of both an acute and obtuse step.

For simulations involving expressed calcite kink sites, the calcite is ro-
tated, and the lengths and monoclinic skew of the simulation box adjusted
such that an offset of one Ca unit existed at the boundaries of the simulation
box. This is done such that one kink site is exposed at each step. This set-up
is detailed in Figure 4.1. The elevated step again spans the entire length of
the simulation box along the x-direction, and again spans 6 repetitions of
the unit cell in the y-direction. To preserve the continuity of the crystal at
the boundaries, the number of repetitions of the calcite unit cell must be
adjusted. To expose a- or d-kinks, the box size corresponds to 9 and 13 rep-
etitions of the unit cell in the x- and y-direction respectively, To expose b-
and c-kinks, the box size corresponds to 11 and 13 repetitions of the unit cell
in the x- and y-direction respectively. Unless explicitly stated, both kink-
terminating ions are tethered to their lattice site throughout simulations,
using a harmonic tether with a spring constant of 100 kJ/mol/Å2.
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Figure 4.1: (top) Schematic of simulation cells used to expose terrace, step and
kink sites. The crystal slab in periodic in the x- and y-directions, and is separated
from its periodic image in the z-direction by a ∼4 nm gap filled with water. (bot-
tom) depictions of how Ca, CO3 and water are typically represented throughout
this thesis. The Step Ca ions are coloured in pink for easier visualisation of the
step.

4.3 Calculating stress distributions

In Chapter 7, we wish to calculate stress distributions for bulk crystals con-
taining nanoparticles. However, the definition of stress is only applicable in
the continuum limit, and is far more ambiguous in the atomistic limit where
the space largely consists of the vacuum between atoms. However, since the
stress tensor of a supercell is just the volume-average of the atomic virials
(stress tensors for individual atoms), it is common to average the atomic viri-
als over an appropriate local volume to produce a local stress field. Branicio
and Srolovitz [119] presented a general method for this, later applied to tita-
nia nanoparticles [120] and calcite defects, [99] that involves calculating the
time averaged atomic virial tensors 〈Wαβ〉i, and multiplying their value by a
normalised smearing function P (~x− ~xi) where xi is the position of the atom.
A continuous stress field is obtained by summing the product of the averaged
virial and smearing function over all N atoms.

Παβ(r) =
∑
i∈N

P (r − 〈ri〉)〈Wαβ〉i (4.1)

Here, P (r − 〈ri〉) is chosen to be a radial Gaussian, namely:

P (r) =
27

R3(2π)3/2
exp

(
− 9r2

2R2

)
(4.2)
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whereR is equal to three standard deviations of the Gaussian, and parametrises
the distance beyond which any contributions to the stress field can be con-
sidered negligible. In this thesis, R is set to 9 Å. α and β label the Cartesian
components of the virial stress tensor. The hydrostatic stress field, which
is equivalent to the negative of the pressure field, is therefore calculated by
taking the average of the diagonal elements, sumα (Παα(~x)) /3. Using the
calculated atomic virials from simulations, a grid of points with spacing 1 Å
is constructed, and Eq. 4.1 is evaluated at each point.

While the integral of Eq. 4.1 over all space ~x recovers the correct stress
tensor of the system, interpreting it at a local level is a little delicate. If
the local stress tensor is uniform across a volume that exceeds the smearing
volume then it is a physically meaningful measure of stress. Otherwise, its
value is sensitive to the means of smearing and so it is, at best, an order-
of-magnitude estimate. Crucially though, the sign is a faithful indicator of
whether the local stress is compressive (negative) or tensile (positive), and it
is this feature of the stress field that we are primarily interested in.

4.4 Radial Distribution Function and lattice

spacings

In Chapter 7, we wish to calculate the average x-, y- and z-spacings between
atoms, as well as distances between planes. For a perfect crystal, this cal-
culation is trivial, as the average lattice spacings are homogeneous. In this
instance, one can simply divide the simulation cell lengths by the number of
crystal units in the cell. However, for imperfect crystals, such as those with
defects or incorporated impurities, the lattice spacings are not homogeneous,
and we may wish to neglect the effect of the defect on the size of the simu-
lation cell. If, for example, a vacancy or defect exists within the lattice, the
average lattice spacing may not correspond with the dimensions of a simula-
tion cell. In this limit, the average lattice spacing can be calculated using a
modification of the Radial Distribution Function (RDF). The RDF is given
as a sum over the entirety of the simulation cell, or over a specific subset of
particles as follows:

g(r) =
1

2πrN0ρ0

N0∑
i=1

N0∑
j>i

δ(r − rij) (4.3)

where N0 is the number of particles in the subset included in the RDF and
ρ0 is their average number density. Consider now the Cartesian components
of the RDF. Each component does not need to be normalised by dividing by
the area of a shell of radius r. Therefore, a vector equivalent of equation 4.3
is given by:
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~g(~r) =
2

N ~ρ0

N0∑
i=1

N0∑
j>i

δ(~r − ~rij) (4.4)

where ~ρ0 is a vector of each Cartesian component of the density, i.e. (ρx, ρy, ρz).
This RDF can be used to calculate distance between planes by defining a
(normalised) vector ~V normal to the plane over which we wish to calculate a
distribution of atomic distances. By taking its dot product with each Carte-
sian component, the distribution of distances between planes, denoted here
by gV (r), is given by:

gV (r) ∝
N0∑
i=1

N0∑
j>i

δ((~r − ~rij).~V ) (4.5)

where the RDF is no longer normalised, as its magnitude does not affect the
calculation of the average lattice spacing. Finally, this can be used to calcu-
late the distribution of distances between neighbouring atoms by introducing
a cut-off distance which acts in the direction perpendicular to ~V . Denoted
by dV (r), the distribution of distances between neighbouring atoms is given
by:

dV (r) ∝
N0∑
i=1

N0∑
j>i

δ((~r − ~rij).~V )ε( ~rij, d0) (4.6)

where ε( ~rij, d0) is given by:

ε( ~rij, d0) =

{
1 if r2

ij − ( ~rij.~V )2 < d2
0

0 otherwise
(4.7)

where d0 is a cut-off distance perpendicular to ~V , beyond which we do not
calculate the distances between atoms. The purpose of ε( ~rij, d0) is to neglect
atoms which are far apart in distance, but whose distance between selected
planes is relatively small. Equation 4.6 can be used to calculate the dis-
tribution of distances between planes. For a crystalline material, equation
4.6 should produce a series of spikes separated by regions where the values
are zero or very low in magnitude. The average lattice spacing, 〈dV 〉, can
therefore be computed using the following integral:

〈dV 〉 =

∫ b
a
rdV (r)dr∫ b

a
dV (r)dr

(4.8)

where a and b are values encompassing the first spike.
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4.5 Rare event sampling details

Where we have explicitly used molecular simulation throughout this thesis,
free energies are calculated using metadynamics. In Chapter 8 we apply other
rare event sampling techniques to a toy model. In this case, the parameters
used are all discussed within the chapter. Unless explicitly stated, metady-
namics was implemented using PLUMED 2.0 [121] Well-tempering was used
in every metadynamics simulation.

Longer time-scales were accessed through the use of the multiple walkers
algorithm [122], in which a set of metadynamics simulations are simultane-
ously run across different processors, and the cumulative Gaussians for each
separate simulation are periodically appended to all other simulations. In this
thesis, we applied well-tempering to 12 parallel simulations. Throughout this
thesis, metadynamics simulation times varied between approximately 300 ns
and 3 µs, depending on the volume of reaction coordinate space required.

In this thesis, we typically consider two sets of reaction coordinate: the
first consists of the spatial coordinates of a particle or centre-of-mass position
of several particles; the second is the degree of hydration of a Ca ion. For lone
Ca ions, we adopt the standard procedure of using the coordination number
between Ca and water oxygen (Ow). The coordination number (CN) is given
by the continuous, differentiable function:

CN =
∑
i,j

1−
(
rij−d0
r0

)n
1−

(
rij−d0
r0

)m (4.9)

where rij is the distance between atoms i and j, and d0, r0, n and m are
parametrisable constants. Throughout this thesis, we use the following val-
ues: d0 = 2.1 Å; r0 = 1 Å; n = 4; m = 8. Equation 4.9 has already been
successfully applied to lone Ca ions [45] and step Ca ions [43]. However, equa-
tion 4.9 is not applicable for dehydrating Ca-terminated kink sites. This will
be discussed in detail in Chapter 5.

When using metadynamics in this thesis, we typically deposit a Gaussian
function every 1 ps, or 1000 timesteps. The only exception to this rule is
when the position of aspartate (asp) is biased in Chapter 6. In this instance,
the rate of deposition is equal to 2 ps, as asp has a greater mass than Ca or
CO3, and diffuses slower, thus requiring a less frequent deposition of Gaussian
functions. The Gaussian height is always equal to 2.5 kJ/mol, (≈ kBT ). We
set the Gaussian width, σ, to 0.2 Å for every reaction coordinate with the
only exception being for when equation 4.9 is applied to dehydrate lone Ca
ions. In this instance, σ is set to 0.1 because the free energy landscape
consists of much sharper features, and therefore requires a smaller Gaussian
width.
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4.6 Adsorption free energies

Section 3.3 details how free energy functions may be obtained from simu-
lations using rare event sampling. For a free energy function separating an
adsorbed state and a dissolved states, the simulation free energy difference,
denoted by ∆Gsim, can be defined as the free energy difference between the
free energy minimum (adsorbed), and the region where the free energy be-
comes flat (dissolved). Figure 4.2 shows a toy example of such a free energy
surface. The adsorbed state can be represented by the region between points
a and b. The dissolved state can be represented by the region between points
c and d.

Adsorption free energies are distinctly different from simulation free en-
ergy differences. Where simulation free energy differences are dependent on
the simulation conditions, the adsorption free energy, denoted by ∆Gads, is
a standard reference free energy given by

∆Gads = −kBT log

(
Pads

Pdiss

)
(4.10)

where Pads and Pdiss are the equilibrium probabilities of finding a solute in
an adsorbed and dissolved state respectively when the solute is present in
solution at a concentration of 1 M. As the adsorption free energy has a well-
defined meaning, and does not depend on any experimental or simulation
conditions, it makes an ideal quantity to calculate. ∆Gads can be computed
with an entropic correction to ∆Gsim as we now proceed to discuss.

Here we consider a rare event sampling simulation with the following set-
up: metadynamics is used to derive a free energy surface as a function of
the position of the adsorbate normal to the {10.4} plane. In this thesis, this
position is given by the z-position of the adsorbate (see Figure 4.1). The
(x,y)-coordinates of the empty lattice site which facilitates adsorption are
set to (0,0). The x- and y-coordinates of the adsorbate are both constrained
to a region spanning between -2 Å and 2 Å, using harmonic walls with a
spring constant, k, of 100 kJ/mol/Å. An additional offset, o, is added to the
harmonic walls such that the harmonic potential is given by k(x − a + o)2

when x > a. This is done in order to make the boundaries more rigid in
order to minimise the contribution of the regions beyond the walls to the
configurational freedom of the dissolved solute. Here, we set o to 0.5 Å. The
simulation set-up is depicted in Figure 4.3.

In order to derive ∆Gads, from simulations, first consider the probability
of adsorption in the context of the simulation. Consider the example free
energy surface in Figure 4.2. The solute can be considered adsorbed between
the regions a and b. Between b and c, the solute is not fully adsorbed, but
is still somewhat associated with the surface. When the free energy surface
becomes flat, i.e. beyond c, the solute is fully dissolved. From Chapter
3 we know the probability of finding the adsorbate between points a and b
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Figure 4.2: Example of a free energy surface in which ∆Gsim, Gmin, a, b, c and
d are defined. Note that this example does not represent the exact shape of every
free energy surface we study in this thesis, but the theory equally applies in all
settings, as long as the free energy surface is flat between c and d. It should also be
noted that the exact positions of a and b are not too important, as the integral over
the probability density will be dominated by the regions near the thermodynamic
minimum.

Figure 4.3: Schematic depicting the simulation set-up used to derive adsorption
free energies. Here, the adsorbate (blue) is constrained within a pillar using a
series of harmonic walls.

(adsorbed), Pa−b, divided by the probability of finding the adsorbate between
points c and d (dissolved), Pc−d, is given by

Pa−b
Pc−d

=

∫ b
a

exp
(
−G(z)
kBT

)
dz∫ d

c
exp

(
−G(z)
kBT

)
dz

(4.11)

Since G(z) should be flat between regions c and d, we can define G(z) between
c and d to be G(z) = Gmin−∆Gsim, where Gmin is the minimum value of G(z)
and ∆Gsim is the simulation free energy difference (see Figure 4.2). Note that
∆Gsim is negative, hence the minus sign. The ratio of probabilities therefore
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simplifies to

Pa−b
Pc−d

=
exp

(
−∆Gsim

kBT

)
(d− c)

∫ b

a

exp

(
−G(z)−Gmin

kBT

)
dz (4.12)

We now consider the true probabilities of finding the adsorbate in an ad-
sorbed or dissolved state. The probability of the impurity being adsorbed is
entirely determined by the probability of finding the impurity between a and
b. Assuming the dissolved impurity behaves as an ideal gas, the probability
of finding the impurity in a dissolved state is proportional to the average vol-
ume it occupies in solution at a concentration of 1 M, V1M. This probability
can be related to Pc−d by multiplying by the ratio of accessible volumes i.e.
V1M/lxly(d− c). We therefore have:

Pads ∝ Pa−b

Pdiss ∝ Pc−d
V1M

lxly(d− c)
(4.13)

which simplifies to
Pads

Pdiss

=
Pa−b
Pc−d

lxly(d− c)
V1M

(4.14)

It should be noted that the accessible volume in the simulation is not exactly
equal to lxly(d − c), as the solute is still able to explore regions beyond the
harmonic walls used to constrain the x- and y-positions of the particle within
the column. However, given the simulation set-up we apply, the high spring
constant used, as well as the use of offsets, minimises this contribution to
the accessible volume. We calculate that, ultimately, the regions beyond the
harmonic walls reduce the adsorption free energy by 0.05 kJ/mol in every
relevant simulation in this thesis. Since this value is much smaller than the
likely errors of the simulations in this thesis, we neglect this correction in
this thesis.

Equation 4.14 can finally be combined with equations 4.10 and 4.12 to
give

∆Gads = −kBT log

(
Pads

Pdiss

)

= ∆Gsim + kBT log

 V1M

lxly
∫ b
a

exp
(
−G(z)−Gmin

kBT

)
dz

− 0.05 kJ/mol

(4.15)

Note that the result is no longer dependent on c and d. This can ultimately
be represented as an entropy correction as follows:

∆Gads = ∆Gsim + T∆Sref (4.16)

where the correction ∆Sref is given by
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T∆Sref = kBT log

 V1M

lxly
∫ b
a

exp
(
−G(z)−Gmin

kBT

)
dz

− 0.05 kJ/mol (4.17)

where the correction of -0.05 kJ/mol is discussed above. It should be noted
that the exact values of a and b are not especially important, as long as they
fully encompass the free energy well associated with adsorption. V1M is equal
to 1660.5 Å3.

4.7 Minimum Free Energy Pathways

In chapters 5 and 6, we use the nudged elastic band method (see Section
3.3.11) to calculate the Minimum Free Energy Pathway (MFEP). In this
thesis, we only calculate the MFEP for two-dimensional free energy surfaces.
The elastic band consists of a series of beads separated by a distance of 0.1
(regardless of units) and connected with a series of springs with a spring con-
stant of 200 kJ/mol/νi, where νi is the unit corresponding to the i-direction
(e.g. Å for directions with units of distance). Initial estimates of the MFEP
are made by connecting the relevant free energy minima with straight lines.
The elastic band is updated using the steepest descent algorithm, where i-
components of the kth bead position, x

(k)
i are updated as follows:

x
(k)
i ← x

(k)
i + l

∂F

∂x
(k)
i

(4.18)

where F is the free energy surface (note that its derivative with respect to

x
(k)
i is the i-component of the mean force) and l is a parameter determining

the magnitude of the displacement with respect to the mean forces. In this
thesis, we typically set l to a low value of 0.001 in order to ensure convergence.
The number of iterations was typically set to 1000, although this number was
increased if more time was required for convergence.

4.8 Kinetic Monte Carlo model

The Kinetic Monte Carlo (KMC) method (see Section 3.4.6) is useful for
simulating processes which occur over time- and length-scales inaccessible
to molecular simulation. The propagation of kinks and advance of a step is
an example of this. In this thesis, we use a KMC scheme to simulate the
advancement of a single step along a terrace. The configuration is represented
on a two dimensional grid of size 210 by 210. A value of zero on the grid
represents lower terrace and a value of one represents an elavated terrace. The
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Figure 4.4: Diagram of the KMC model used to describe the growth of a step
or island. The attachment and dissolution rates are determined by the number of
nearby units, depicted in blue, as discussed in the text.

system is integrated over time using the standard KMC approach discussed
in Section 3.4.6.

4.8.1 Attachment and detachment rates

The model used in this thesis is a semi-Kossel model, in which all attachment
and detachment rates are assigned a base attachment rate of ν. Figure 4.4
shows a schematic detailing the parameters that define the reaction rates
used in simulations. The attachment rates for units to kink sites is given by
Sν, where S is the supersaturation given by equation 2.1.

The parameter ν also determines the detachment rate for all units. For
a completely Kossel model, the kink dissolution rate for all units would be
given by ν. However, we include an additional factor, f , which determines
the relative abundance of Ca and CO3 ions terminating the kink. The kink
dissolution rates are given given by ν/

√
f for Ca and ν

√
f for CO3. The

values of f were individually parametrised, for both acute and obtuse steps,
to data on step velocities as a function of solution stoichiometry. [123] Since
these functions do not peak at unity, the relative attachment/detachment
rates for Ca and CO3 cannot be equal. Instead, the step velocity must peak
when the populations of Ca and CO3 terminated kink sites are equal. Since f
determines the ratio of the populations of Ca- and CO3-terminated kinks, the
position of the peak of the step velocity is therefore given by 1/f . Using the
results in [123], we calculate f = 1.5 for acute kinks and f = 0.2 for obtuse
kinks. Furthermore, since we are only interested in determining velocity
inhibition, we are able to use units where ν is set to 1.

For step sites, we further assume that attachment and dissolution rates
are identical for all units. We make the assumption that the addition of
one neighbouring unit universally lowers the free energy of attachment by
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2φkBT . We therefore use φ to determine the attachment rate, lowering it
with respect to kink sites by a factor of e2φ. The dissolution rate for all step
sites is kept at ν. For step dissolution, we set the attachment rate to ν and
the dissolution rate to νe−2φ. The (dimensionless) value of φ is set to 3 in
line with the model used in ref [62]. We make the further approximation that
attachment at terrace sites and dissolution from within the terrace are both
too rare to model. If a unit is left with no neighbour sites on the elevated
terrace, it is set to dissolve immediately.

4.8.2 Impurities

As well as Ca and CO3 units, impurities may also be included in simulations
for studies of effects such as kink-blocking. In this model, we represent
impurities on the grid with a value of 2. Similar to Ca and CO3 units, the
attachment rates for impurities at kink sites are assumed to be independent
of the kink type to which they attach. In this model, the rates for attachment,
λ+

imp, and dissolution, λ−imp, are given by:

λ+
imp =

ν√
Ksp

aimp

λ−imp, k =
ν√
Ksp

exp

(
∆Gads,k

kBT

) (4.19)

where aimp is the activity of the impurity in the solution and ∆Gads,k is
the free energy for the impurity adsorbing to kink site k. The adsorption
free energies used in this model are calculated through simulations using
the methods detailed in sections 4.5 and 4.6. With this set-up the rate of
attachment per impurity concentration is equal to that of all other units.

4.8.3 Step velocities

The seemingly most straightforward approach to calculating the growth rate
of a crystal would be to simulate a growth island and calculate its growth
rate as a function of the impurity concentration. However, we do not opt for
this approach, as it makes the calculation of acute and obtuse step velocities
difficult. In addition to this, the simulation would have to be terminated
before the boundaries of the cell are reached, resulting in poor statistical
sampling. Instead, we run individual simulations of an acute and obtuse step
by simulating the growth of a single step. From this, we obtain individual
step velocities. The boundary conditions are set up such that the units on the
boundary will have no interactions beyond the boundaries, akin to growing
the step along a confined region. Initially, the entirety of the first five columns
are populated with an elevated terrace, and the first column is frozen in place
to prevent dissolution. An initial equilibration run is carried out, followed
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by a production run, in which the step velocities are calculated. The step is
allowed to grow indefinitely by shifting the entire crystal backwards by 600
rows every time the crystal reaches the boundaries of the simulation. The
first 600 rows are immediately discounted whenever this occurs.
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5KINK GROWTH OF PURE CALCITE

To recap from Chapter 2, growth of calcite occurs through the propagation of
steps. These steps propagate through the adsorption of ions onto the step to
form a new step. After this new step sufficiently surpasses a critical length,
the new step continues to grow outward via the adsorption of ions into the
corner (kink) sites they form at the edges of the step. It is easy for one to
visualise this kink growth as a series of single-step processes in which solutes
overcome a free energy barrier and adsorb directly into the lattice site. This
free energy barrier is often thought to be due to the dehydration of negatively-
charged Ca ions, as simulations have previously calculated large residence
times for water molecules interacting with calcite Ca ions. Throughout this
chapter, we test the validity of this view of calcite growth from the molecular
scale using rare-events sampling to calculate the free energy surfaces relevant
to the adsorption of ions to calcite kinks.

5.1 Simulation details

The simulation parameters and force fields used for molecular dynamics sim-
ulations are given in Chapter 4. In this chapter, we run simulations involving
calcite kink sites. The simulation cell dimensions are described in Section
4.2 and can be visualised in Figure A1 in the appendix. In this chapter, we
define the location of the empty kink lattice sites (the location roughly at
which a solute would adsorb) as having (x,y)-coordinates of (0,0). The x-
and y-coordinates of the solute (either Ca or C) are both constrained to a
region spanning between -2 Å and 2 Å, using harmonic walls with a spring
constant of 100 kJ/mol/Å. An offset was also introduced to the harmonic
potential to increase its rigidity (see Section 4.6). In this chapter, we are
only interested in calculating adsorption free energies, rather than reaction
pathways. Therefore, for the sake of computational efficiency, we only apply
a bias potential to the spatial coordinate of the adsorbing ion normal to the
{104} terrace. In this chapter, as well as all other chapters, this corresponds
to the z-position (see Section 4.2, notably Figure 4.1). For all metadynamics
parameters used, see Section 4.5.

5.2 Reaction coordinates for dehydration

As discussed in Chapter 4, lone Ca ions are dehydrated using the coordination
number collective variable, given by equation 4.9. However, equation 4.9 is
not easily applied to Ca-terminated kink sites. This is because equation 4.9
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must be parametrised to the radial distribution function between Ca and
Ow, such that its value is one for most of the first peak (which represents a
coordinated atom) and decays to zero near the beginning of the second peak
(which represents free water). The water structures near acute kink sites are
not compatible with these conditions. This can be observed in the radial
distribution functions for water near the kink sites studies, shown in Figure
5.1, where the peaks representing bound and free water are not separated by
a region of zero density. Instead, we opt for a different approach, where we
consider the distance between a kink Ca ion and the nearest water molecule
to it. This distance can be approximated as:

ND =
β

log
∑

j exp
(
β
rj

) (5.1)

where rj is the distance to atom j and β is a parametrisable constant with
units of distance, which we set to 10 nm. Equation 5.1 is used to approxi-
mate the distance between the Ca atom and the nearest water oxygen atom,
while still allowing the function to be differentiable. A similar approach has
already been applied effectively to NaCl, [124] where exponential functions
are used to weight coordination states by distance. Here, we opt for the near-
est distance approximation for its more intuitive output. In all simulations
where the binding of CO3 ions is measured, equation 5.1 is used to dehydrate
kink Ca ions. Although the issue with coordination numbers only exists for
acute sites, equation 5.1 is also applied to CO3-terminated obtuse sites for
consistency. When equation 5.1 is applied to metadynamics simulations, a
Gaussian width of 0.2 Å is used.

It is worth reiterating that equation 5.1 is applied on the condition that
we are only attempting to calculate adsorption free energies, rather than
reaction pathways. Its applicability for determining reaction pathways is
most likely limited; it is unlikely that the adsorption of a solute will involve
the displacement of the nearest water molecule from the kink before other
water molecules are displaced.

5.3 Water residence times at CO3-terminated

kink sites

As discussed in Chapter 2, water residence times have been calculated for wa-
ter coordinated with lone Ca ions, as well as Ca ions forming calcite terraces
and steps. Little attention has been given to water coordinated with CO3

ions, as these residence times are relatively small for step sites. It is there-
fore expected that residence times of water coordinated with CO3-terminated
kink sites should also be small. Nevertheless, it is necessary that we deter-
mine whether water molecules coordinated with CO3-terminated kink sites
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Figure 5.1: Radial Distribution Functions (RDFs) for distance between kink Ca
ion (shown in gold and depicted in schematic above) and water oxygen molecules.
Snapshots from simulations show the kink Ca (shown in gold) and the local water
molecules for each kink type.

presents a barrier to adsorption.

To calculate the residence time of water at the kink site, a series of simu-
lations with a total simulation time summing to about 200 ns were run. From
these simulations, the atomic positions within a region of about 5 Å from the
kink site were outputted every picosecond. The data from the simulation was
then post-processed to build a density map of water oxygen atoms. Every
region of high density was identified, and their positions were analysed to
identify the water molecule coordinated with the kink site.

Once the water at the kink site (depicted in Figure 5.2) was identified, the
identity of the nearest water molecule to the local density peak was identified
at every output. The time each water molecule spent at this site was tracked,
and a transition was recorded if the identity of the nearest water molecule
changed for more than 2 ps as per standard practice [125]. The time the
previous atom spent in residence was then added to the list of residence
times. The method used to deduce residence times was one initially used by
Impey et al. [125] on ionic crystals, and later applied by others to calcite
[53, 51]. In this method, the list of residence times is used to calculate a
survival function, P (t). Defined as the probability that an atom remains in
residence after time t, P (t) is known to obey a multi-exponential dependence
on time [125] given by:

P (t) =
n∑
i=1

aie
− t
τi (5.2)
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Figure 5.2: Results for simulations of water molecules at a carbonate-terminated
kink site. The upper-left and lower-left panels show snapshots of sites 1 and 2.
Here, all other water molecules in the simulation are omitted from the image. The
top-right panel shows a logarithmic plot of the survival function for the water oxy-
gen atoms at sites. The survival function is fitted with two exponential functions
to correspond with sites 1 and 2. The bottom-right panel shows a scatter plot of
the average height of the water molecule against its residence time. Two distinct
water positions can be deduced from this plot. These states correspond to states
1 and 2.

where n represents the number of unique configurations that correspond to a
bound state. τi is the mean residence time describing configuration i, and ai
is a normalisation coefficient. In this study, we fit the results by increasing
the number of exponentials, starting at one, until a sufficiently accurate fit
is observed.

Since these simulations are fairly time consuming, we proceeded to calcu-
late the residence time for only a single kink site. In this instance, we choose
the a(i) CO3 kink site. The data from the simulation was post-processed,
and a single water density peak was observed near the kink site. The survival
function P (t) was calculated for the nearest water molecule to this density
peak. The survival function is shown in Figure 5.2. Fitting the survival func-
tion to equation 5.2 revealed that a minimum of two exponential terms are
required to fit the data. Analysis of the average water position revealed two
distinct configurations, which are also shown in Figure 5.2. In both configura-
tions, hydrogen atoms in water interacts with an oxygen atoms in carbonate.
In configuration 1, the hydrogens interact only with the upper terrace. In
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configuration 2, the hydrogens also interact with the lower terrace.

Fitting to equation 5.2 produced the following:

P (t) = a1 exp

(
− t

τ1

)
+ a2 exp

(
− t

τ2

)
(5.3)

where:

a1 = 0.541 τ2 = 0.058 ns

a2 = 0.459 τ1 = 0.757 ns
(5.4)

The values τ1 and τ2 correspond to the mean residence times of the water
molecules in each configuration. The larger of the two residence times is be-
low 1 ns. Compared to typical simulation times ∼ 100ns, the water residence
time is relatively small, and it can be assumed that water exchanges will hap-
pen sufficiently rapidly such that a reaction coordinate used to bias the hy-
dration of the CO3-terminated kink site will not be necessary. Seeing as the
residence times calculated are relatively small, we further reasonably assume
the same applies to water molecules coordinated with all CO3-terminated
kink sites.

5.4 Ca kink free energy surfaces with dehy-

dration

Dehydrating Ca ions is important for modelling certain reactions, such as the
adsorption of a lone Ca or CO3 ion onto a step site [43]. In order to determine
whether dehydration is necessary here, we adopt the method discussed in
Section 4.5 to dehydrate the lone Ca ions, and calculate the free energy as a
function of the Ca-kink z-distance and the water coordination number of the
lone Ca ion, CN (equation 4.9). Including this second reaction coordinate
comes at computational expense, so we wish to avoid repeating this process
for every kink site. Instead, we select two CO3-terminated kink sites, the a(ii)
and c(i) kinks, and calculate the free energy of the binding of a Ca ion to
the kink. Using metadynamics, we calculate the two-dimensional free energy
surface, and use the nudged elastic band method to calculate the Minimum
Free Energy Path (MFEP). The results are shown in Figure 5.3.

Perhaps the most noteworthy feature of the free energy surfaces is the
existence of two distinct states, separated by their z-distance to the kink site
(i.e. z-distance from the upper terrace). Figure 5.3 shows a snapshot of the
two configurations for both kinks. In one configuration, the Ca ion resides
in the kink lattice site; in the other, it resides above the kink site, forming
two interactions with the upper terrace. The two configurations are therefore
labelled as ’lattice’ (denoted in green) and ’bidentate’ (denoted in yellow).
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Figure 5.3: Ca-kink interaction free energy as a function of the Ca-kink z-distance
and Ca-Ow coordination number for the a(ii) kink (left) and the c(i) kink (right).
A value of zero on the x-axis corresponds to the adsorbate residing on the same
z-plane as the upper terrace. The dotted beads show the MFEP for Ca attachment
to the kink site. The inset graph shows the value of the MFEP as a function of
the dimensionless parameter that maps it. The figure also contains side views of
cross-sections of calcite along the step, demonstrating an example of lattice and
bidentate configurations for both kink types. The outline of the steps on which
kinks propagate are traced with dashed lines. Ca ions are shown in green, C in
grey and O in red. Water molecules are shown in blue and the inserting Ca ion is
shown in gold.

The regions on the free energy surfaces corresponding to each configuration
are also highlighted.

Considering the free energy barrier separating the two states, it appears
that the largest free energy barrier separating the two states is one presented
by the translation of the adsorbate, rather that its hydration. The barriers
arising from dehydration are typically small, indicating that including CN
as a reaction coordinate may not be required for producing an accurate free
energy surface. In order to test this, we repeated the above simulations
without the explicit dehydration of the Ca adsorbate, and compared the
one-dimensional free energy surface with the two-dimensional free energy
surfaces (Figure 5.3) with the hydration component integrated out using
equation 3.90. The results are shown in the appendix in Figure A2. It is
found that both sets of simulations produce very similar free energy surfaces
subject to minor differences which can be attributed to sampling errors.
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Figure 5.4: Plots of the free energy of all inserting Ca ions as a function of their
distance from the kink site. The two plots for each kink type correspond to the
two orientations of surface CO3 ions. The highlighted green and yellow regions in
the plots correspond to the lattice and bidentate configurations as per Figure 5.3.

5.5 Ca adsorption

We have demonstrated above that dehydration does not provide a significant
barrier for the adsorption of Ca ions to two CO3-terminated kink sites. Since
the removal of a reaction coordinate allows convergence for minimal compu-
tational expense, we proceed to calculate the free energy as a function of the
Ca-kink z-distance for all corresponding kink sites. These free energies are
shown in Figure 5.4. The free energy profiles show that the position of the
thermodynamic minimum depends on the kink type; some kinks prefer the
lattice configuration while others prefer the bidentate configuration (Figure
5.3). Ca ions prefer to adsorb to the lattice configuration in 6 of the 8 cases.
For a and d kink types, all Ca ions have a thermodynamic minimum at the
lattice site. For b and c kink types, we find a greater variation in the free
energy landscapes, where some prefer the bidentate configuration. For more
information on the thermodynamic minima, Figure A3 in the appendix shows
the binding configurations corresponding to the thermodynamic minimum for
each Ca kink.
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Figure 5.5: Free energy of all inserting CO3 ions studied as a function of distance
from the upper terrace. The two plots for each kink type correspond to the two
orientations of surface CO3 ions. The highlighted regions in the plots correspond
to the lattice and bidentate configurations as also shown in figure 5.4.

5.6 CO3 adsorption

As discussed in Section 5.2, calculating CO3 adsorption free energies incurs
the additional difficulty of dehydrating the kink site. Therefore, two reaction
coordinates were used for a CO3 ion adsorbing to a Ca-terminated kink: the
z-coordinate of the CO3 ion, and, to drive dehydration of the kink, the dis-
tance between the kink-terminating Ca ion and its nearest water molecule
given by equation 5.1. The free energy surfaces for a CO3 ion adsorbing to
four different Ca-terminated kinks are shown in Figure 5.5, where equation
5.1 is integrated out using equation 3.90. The complete free energy land-
scapes are shown in Figure A4. Unlike Ca kinks, of which all 8 were studied,
we have only shown the results for 4 kinks. This is because any attempts to
study b or c CO3 kinks resulted in a water molecule becoming trapped under
the kink-terminating Ca ion during the simulation. In this situation, the Ca
ion would otherwise transition to its bidentate configuration. However, due
to the harmonic tethering of the Ca ion, it was unable to do so. The result
was that the simulation configurations became unstable, and metadynamics
simulations ran into convergence issues. This could be solved by applying a
dual adsorption method such as the one discussed in Section 5.8. However,
these simulations require a far longer convergence time (∼3 µs, see Section
5.8), and running multiple simulations of similar lengths is beyond the scope
of this chapter.

Local free energy minima in Figure 5.5 correspond to both lattice and
bidentate configurations. The lattice configuration requires the full dehydra-
tion of the Ca-terminated kink site to which the CO3 ion binds, while the
bidentate configuration does not. Significantly, half of the CO3-terminated
kink ions prefer to adopt the bidentate configuration. Only the CO3-terminated
a-kinks have a preference for the lattice configuration. By contrast, Ca ions
mostly preferred the lattice configuration. This difference is likely explained
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by the water molecules at Ca-terminated kinks, the residence times of which
are likely to be far larger than those of lone Ca ions [53]. The removal of
water at kink sites therefore comes at a larger free energy cost than the re-
moval of water at lone ions. The most stable bound configurations of CO3

ions are shown in Figure A5, along with the water molecules found near the
kink site.

5.7 Adsorption free energies

The results shown in figures 5.4 and 5.5 are used to calculate adsorption free
energies using the method outlined in Section 4.6. The Boltzmann exponent
of the lattice and bidentate values of the free energy (green and yellow)
are integrated over, and the simulation free energy difference is calculated
by averaging the free energy over the red regions to account for statistical
noise. It can be seen that the free energy surfaces are flat in the red regions,
indicating that the solute is fully dissolved. The calculated simulation and
adsorption free energies are shown in table 5.1. For the Ca ions adsorbed to
CO3-terminated kinks, we have also included the average number of water
molecules coordinated with the Ca ion in its most stable bound configuration,
〈Nc〉. We again assume that dehydration of the Ca ion is sufficiently rapid
in order for us to collect a sufficient sample of Nc, which we define as:

Nc =
∑
j

χj χj =

{
1, rj ≤ r0

0, rj > r0

(5.5)

where rj is the distance to water oxygen j and r0 = 3 Å is a cut-off distance.
The value of 3 Å is chosen from Radial Distribution Functions calculated by
Raiteri et al. [45]. Nc was calculated by post-processing the trajectories.

The ∆Gads values shown in table 5.1 vary between -14.7 and -30.8 kJ/mol.
The variation of these numbers is unsurprising, since similar calculations for
step sites show significant variation in binding free energies [43]. Neverthe-
less, it is clear that different Ca-terminated kink sites have different stabil-
ities. One notable point here is that models such as the Kossel model and
solid-on-solid models discussed in Chapter 2 do not seem to apply to calcite,
as they assume that the adsorption free energy is independent of kink type.

The values of 〈Nc〉 are typically dependent on the preferred adopted con-
figuration of the kink site. Where the lattice configuration is preferred, 〈Nc〉
corresponds to roughly 3, implying that a total of three coordinated water
molecules is the most stable configuration (see table 1). Where the biden-
tate configuration is preferred, 〈Nc〉 is typically about 4.5, implying that the
number of coordinated water molecules fluctuates between 4 and 5. This can
be viewed in Figure A3.

This presents an issue when considering the relative abundance of Ca and
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Ion Kink ∆Gsim (kJ/mol) ∆Gads (kJ/mol) 〈Nc〉

Ca

a(i) -30 -20 3.3
a(ii) -36 -26 3.2
b(i)† -35 -25 4.6
b(ii) -31 -20 3.2
c(i)† -39 -29 4.5
c(ii) -24 -15 3.1
d(i) -42 -31 2.8
d(ii) -36 -26 2.7

CO3

a(i)† -46 -32 -
a(ii) -49 -36 -
d(i)† -52 -38 -
d(ii)† -46 -33 -

Table 5.1: Simulation free energy differences (∆Gsim) and adsorption free energies
(∆Gads) for Ca and CO3 ions adsorbing to various kink types. 〈Nc〉 is the average
water coordination number of the Ca adsorbate in its most stable configuration. †
The ion adsorbs preferentially to the bidentate configuration.

CO3-terminated kink sites. Previous studies have determined relationships
between the solution stoichiometry ([Ca]/[CO3]) and step velocities for both
acute and obtuse steps [58, 60, 41, 123]. Although studies typically find small
offsets, step velocities tend to peak at [Ca]/[CO3] ≈ 1. This implies that Ca
and CO3 ions have an approximately equal probability of terminating a kink
site, a least to an order of magnitude. However, the variation in adsorption
free energies we find between Ca and CO3 indicate that CO3 has a signifi-
cantly higher probability of terminating a kink site than Ca, and therefore
the step velocities should peak at [Ca]/[CO3] � 1. It is clear, therefore,
that the adsorption free energies we find are inconsistent with experiment.
There are several possible explanations for this. For example, we neglect the
existence of bicarbonate ions, something which could limit the number of
available ions or kink sites. We do not examine b or c type kinks in as much
detail. Neither do we consider the attachment of ion pairs and complexes,
the presence of which has been proposed to induce an effect on crystal growth
[50]. However, we do not expect any of the above explanations to produce
a significant effect on the step velocity/stoichiometry relationship. A more
likely explanation is that CO3 ions primarily facilitate kink nucleation as well
as kink propagation, something already concluded from simulations [43]. A
lower [Ca]/[CO3] will therefore increase the kink density, thus producing an
increase in step velocity. This effect therefore shifts the peak of the step ve-
locity toward [Ca]/[CO3] ≈ 1. This explanation does require some degree of
fine tuning, although it is worth reiterating that step velocities do not peak
exactly at [Ca]/[CO3] = 1 for either acute or obtuse steps.
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5.8 Example of a multi-step kink growth mech-

anism

It is apparent from figures 5.4 and 5.5 that calcite kink propagation cannot
be always assumed to involve a step-by-step adsorption of ions to the surface.
Moreover, it appears that the the adsorption of ions into kink lattice sites
must involve a more complex process where ions are stabilised in their lattice
configuration via the adsorption of additional solutes. An example of this
is the d(i) CO3 kink, the lattice configuration of which is unstable. In this
instance, the adsorption of another Ca ion (at the very least) is required to
stabilise the CO3 ion at the d(i) lattice site. There remains a possibility
that such a process may require the adsorption of multiple ions, and that
a chain of bidentate-like ions may exist along the step. To resolve this, we
calculate the free energy surface for the position of two ions. We choose the
d(i) CO3 kink for its preference for the bidentate configuration (Figure 5.5),
as well as the Ca ion that forms the subsequent d(i) Ca kink. The CO3 ion
is constrained at a maximum of 4 Å above the elevated step. This ensures
the ion only transitions between its bidentate and lattice configuration, as
well as reducing the computational expense of the simulation. The Ca ion is
constrained at a maximum of 15 Å above the terrace. Including the hydration
of the adjacent Ca-terminated kink site (d(ii)), there are a total of three
reaction coordinates used in this simulation. The simulation required ∼3 µs
to converge. Figure 5.6 shows the free energy landscape as a function of the
Ca and CO3 positions. The hydration of the d(ii) Ca kink site is integrated
out using equation 3.90.

There are four distinct steps to the growth process, labelled A-D in Fig-
ure 5.6. First, the CO3 ion adsorbs to the kink in the bidentate configuration
(A). The Ca ion then adsorbs to the bidentate CO3 ion by sitting approxi-
mately 5 Å above the step (B). The CO3 ion transitions to the lattice site,
pulling the Ca ion into a bidentate configuration (C). This comes at a free
energy cost. Finally, the Ca ion transitions into its lattice configuration (D).
This completes the process of adsorption, and it is found that D is the most
stable configuration. This result is significant as it demonstrates that even
the CO3 ion with the least stable lattice configuration is stabilised at the lat-
tice configuration through the insertion of one additional ion. We also note
that two of the four kink types studied have a preference for the bidentate
configuration, while all a and d Ca kinks prefer to adopt their lattice config-
uration. We therefore expect a similar multistep process to occur for other
a and d CO3 kink types. It is worth stressing, however, that the mechanism
demonstrated here is only an example of a multistep kink growth mechanism,
and that we are not assuming that this result will carry over to other kink
types which reside in a bidentate configuration. Nevertheless, the results
shown in figures 5.4 and 5.5 demonstrate that several terminating ions (4 of
the 12 studied) must require one (or more) additional ions to adsorb before a
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Figure 5.6: a) Four snapshots (A-D) illustrate the multistep growth mechanism.
Here, Ca atoms in the upper terrace are shown in pink. The two terminating ions
are shown in gold. The perspective of the snapshots is one which directly faces
the step, which runs horizontally. The kinks grow from the left side. b) Schematic
depicting the perspective of the snapshots and the direction of growth of the kink.
c) Free energy as a function of the position of the CO3 and Ca ions adsorbing to
the d(i) kink. A third reaction coordinate that accounts for dehydration has been
integrated out. The minimum free energy pathway is traced with a dashed black
line.

full transition to the lattice site can take place. Ideally, all kink types which
prefer to sit in their bidentate configuration should be studied. However, the
free energy plot shown in Figure 5.6 took a total of ∼3 µs to convergence.
Repeating this process for 5 kink types would require multiple simulations
over very large time-scales, and is therefore beyond the scope of this chapter.

5.9 Role of cation dehydration in inhibiting

calcite kink growth

Cation dehydration is generally believed to limit the rate of ionic crystal
growth [47, 126, 50, 48], although recent evidence suggests this may not be
true for the growth of calcium minerals [51]. For adsorption into the bidentate
configuration, our simulation results broadly support this new perspective:
we find that, for all of the kinks that we have sampled, the ions must over-
come only a ∼1 kBT barrier to transition from solution to the the bidentate
configuration. The solutes will therefore initially adsorb to kinks at a rate
determined by diffusion rather than by a reaction barrier, rather than at a
rate determined by the dehydration of any cations. For some kinks, there
exists a substantial barrier separating bidentate and lattice configurations.
However, since the barrier from bidentate to solution is generally larger than
the barrier from bidentate to lattice, the adsorbate is effectively captured by
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the kink site as soon as it reaches the bidentate configuration.

5.10 Conclusions

Many of the ions that terminate calcite kinks have a tendency to reside in
a bidentate configuration, rather than fit directly into the lattice. They
sit above the kink, binding to two ions and causing minimal displacement of
water molecules. The integration of these particular ions into the kink lattice
site requires the adsorption of an additional ion, and so calcite kinks do not
generally grow via a sequence of independent adsorption events as assumed
in classical models. This multistep kink propagation process is analogous to
what is observed for kink nucleation, in which solutes initially adsorb to the
upper terrace before the adsorption of another ion.

The results presented in this chapter provide a framework for the study of
the binding of impurities to calcite kinks using molecular simulation, some-
thing which has been largely unexplored. Future molecular simulation studies
of impurities adsorbing to kinks must therefore take into account whether the
kink to which an impurity binds resides in its lattice or bidentate configu-
ration. We will encounter this effect again in the following chapter, which
concerns the interaction between amino acids and polyamines with calcite
kinks.
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6INTERACTION AND GROWTH-INHIBITING
EFFECTS OF IMPURITIES

In the previous chapter, we examined the stable binding configurations and
adsorption free energies of Ca and CO3 units forming kink sites. This allows
us to proceed with examining the adsorption of impurities to calcite kink
sites. To recap from Chapter 1, computational studies of impurities such
as amino acids interacting with calcite lattice sites are infrequently found,
especially for kink sites. As a result, little is known about the molecular
mechanisms through which amino acids interact with calcite. The relative
roles of carboxyl and amine groups are an example of this, as previous com-
putational studies have provided conflicting evidence for which is the primary
driver of adsorption. Such simulations have been limited by their poor rep-
resentation of the kink sites to which the adsorption of impurities is most
relevant. The study of impurities interacting with kink sites has been ap-
proached with hesitation, due to the large number of kink sites, and a lack
of understanding of their equilibrium configurations. Since these issues were
discussed in Chapter 5, we now have the tools to address the issue of how
amino acids adsorb to calcite. In this chapter, we aim to do so through the
calculation of adsorption free energies of amino acids on calcite, as well as
determining their binding configurations.

This chapter begins by examining the free energies of binding of amino
groups to terrace, step and kink sites. The work presented throughout the
first half of this chapter is designed to complement experimental work which
found that polyamines had a surprisingly high propensity to occlude in cal-
cite. The second part of this chapter concerns the adsorption free energies
and binding configurations for aspartate (asp) interacting with calcite kink
sites. The purpose of this half of the chapter is to determine the nature of car-
boxyl groups’ interaction with calcite, and to directly replicate experimental
procedures used to calculate the adsorption free energy of asp. [71, 72]

6.1 Binding of amines to calcite lattice sites

This section concerns a case study in which amine-rich molecules were found
to have a large propensity to occlude in calcite [87]. It was initially found
that polyamines such as putrescine, cadaverine, spermine and spermidine
were able to occlude in calcite with a surprisingly high occlusion efficiency.
This alone was a surprising result, as it was previously believed that posi-
tively charged impurities have a minimal interaction with calcite. An exam-
ple of this is amino acids, which are generally believed to adsorb to calcite
through interactions between negatively charged functional groups and Ca

103



6.1. BINDING OF AMINES TO CALCITE LATTICE SITES 104

Figure 6.1: Amine-rich molecules studies experimentally and modelled in this
section by isolating the primary and secondary amine groups. All molecules studied
are observed to occlude in calcite, indicating a significant interaction between
amine groups and calcite.

cations. The discovery of positively charged polyamines occluding in calcite
prompted the further study of two amino acids: lysine (lys) and arginine
(arg). Lys was found to occlude with an efficiency roughly five times that
of arg. Additionally, lys was found to produce an elongation of the c-axis of
calcite, indicating a preferential binding to the acute steps over the obtuse
[80, 127]. Conversely, arg was found to induce no morphology change. The
purpose of this section is to investigate the binding of polyamines, as well as
lys and arg to calcite terrace, step and kink sites in order to gain insight into
how amine groups contribute to the adsorption of amino acids to calcite.

Rather than model all amino acids and polyamines studied in their en-
tirety, we opt for the more tractable approach of isolating the relevant side
chains, thus requiring fewer reaction coordinates. In this chapter, we study
the interaction of three molecules with calcite terrace, step and kink sites:
primary amines, secondary amines and the arginine side chain. All molecules
are modelled in accordance with the protonation state of lysine (lys) and argi-
nine (arg) at experimental conditions (pKa side chain of Lys = 10.6 and Arg
= 12). The primary amine we model is ethylammonium, C2H8N+, as it may
represent the side chain of ethylammonium or the primary amines in pu-
trescine, cadaverine, spermine and spermidine. Ethylammonium is modelled
in its protonated state throughout under the assumption that even molecules
with a lower pKa number will still favour binding through protonated func-
tional groups over binding through more prevalent, but non-charged non-
protonated groups. The secondary amine modelled is diethylammonium,
C4H12N+, which can represent the secondary amines in spermine and sper-
midine. The secondary amine is modelled in its protonated state for the
same reason as for the primary amine. Finally, the side chain of arg is repre-
sented as C2H10N+

3 , again protonated to correspond with experimental pH.
In this section, the force fields describing all impurities are obtained from the
General Amber Force Fields. [128] The partial charges for each atom were
obtained using Antechamber. [129]

In this section, binding free energies are calculated via a two-step process.
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Figure 6.2: View from above simulation cell for the step (left) and kink (right).
The shaded regions depict where constraints have been imposed on x- and y-
positions of the impurity.

The first step involves calculating a three-dimensional free energy surface for
all position coordinates of the amine groups. Constraints are added to this
simulation, as per Figure 6.2, in order to reduce the volume of space sampled
in the simulation. The constraints exist in the form of a set of harmonic walls
with a spring constant of 100 kJ/mol/Å. The three-dimensional free energy
function is merely approximated in this process, as deriving the binding free
energy would require long simulation times. Instead, the position of the
thermodynamic minimum is identified from the simulation, and an additional
metadynamics simulation is run. In this simulation, the x- and y-components
of the reaction coordinate are constrained at the thermodynamic minimum
using a harmonic spring with a spring constant of 100 kJ/mol/Å. In this
simulation, the free energy was derived as a function of z-component of the
position. From this simulation, the binding free energy is obtained. For
ethylammonium and diethylammonium, the position of the nitrogen atom is
used as the reaction coordinate, for the arginine side chain, the centre-of-mass
of the three nitrogen atoms are used.

It is worth noting that we do not calculate adsorption free energies in
this section. This is partly because we are only interested in comparing
binding free energies of amine groups with one another, as no experimental
derivation of adsorption free energies with which we can compare our results
exist. Furthermore, the AMBER force fields have not been explicitly fitted to
thermodynamic data, and may produce unrealistic adsorption free energies.
Nevertheless, since we are only comparing the interactions of different amine
groups with respect to one another, we believe the binding free energies we
calculate will be sufficiently realistic at least to a qualitative degree.

6.1.1 Binding energy calculations

In this section, we present every amine binding free energy calculated in this
chapter. In Chapter 5 we found that, of all the kink sites studied, the a(ii)
CO3 kink was the only CO3-terminated kink where the CO3 has a significant
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Figure 6.3: Three-dimensional free energy surfaces for the binding of ethylam-
monium (left) and diethylammonium (right) to the acute step. The free energy
surfaces are projected onto two dimensions using equation 3.90. While ethylam-
monium adsorbs to the step with a stronger interaction than with the terrace, the
reverse is true for diethylammonium.

preference to reside in its lattice site. For this reason, this site was chosen for
all simulations involving acute kink sites to avoid complication. Similarly,
when considering the obtuse kink, we choose the d(ii) CO3 kink for its relative
stability in the lattice site configuration compared with the d(i) CO3 kink. It
is also worth reiterating that, in Chapter 5, we calculated a small residence
time for water interacting with the a(ii) CO3 kink, and concluded that forced
dehydration of CO3-terminated kink sites is not necessary.

The simulation free energy differences calculated are shown in Table 6.1.
For ethylammonium, the simulation free energy differences are calculated for
the terrace, as well as both acute and obtuse steps and kinks. For the arg
side chain, only the acute step and kinks are considered for reasons discussed
in Section 6.1.2.

The three-dimensional metadynamics simulations revealed that the sec-
ondary amine has only a weak binding to all steps and kinks. Figure 6.3 com-
pares the three-dimensional free energy surface projected onto two-dimensions
using equation 3.90. The free energy for diethylammonium shows that bind-
ing to terrace sites is stronger than binding to step sites. Any further calcula-
tions of free energy surfaces for different step or kink sites revealed the same
picture. For this reason, we do not calculate the corresponding binding free
energies of the arg side chain to step and kink to the higher level of precision
that we do for the terrace, and binding free energies are not reported. Since
binding is not observed for the arg side chains to any step or kink sites, it ap-
pears that the most likely role of secondary amines is to stabilise the binding
of polyamines such as spermine and spermidine, which will bind primarily to
kink sites.



107 6. INTERACTION AND GROWTH-INHIBITING EFFECTS OF IMPURITIES

Amine ∆Gsim (kJ/mol)
terrace step (a) kink (a) step (o) kink (o)

ethylammonium -23.0 -41.2 -75.4 -43.4 -89.1
arginine -15.2 -21.7 -26.3 - -

diethylammonium -32.1 - - - -

Table 6.1: Binding free energies for ethylammonium, diethylammonium and the
arg side chain to calcite terrace, step and kink sites.

6.1.2 Lysine and arginine

The primary (-NH3) amine in the lys side chain interacts strongly with the
carbonate anions in all adsorption sites; the adsorption free energy increases
roughly in proportion to the number of carbonate anions available—one for
a terrace, two for a step and three for a kink (Figure 2b). This can be
understood using Figure 6.4, which shows lys forming a single bond with
a CO3 ion on the terrace, two on the step and three in the kink. These
results are more reminiscent of the solid-on-solid dissolution model described
in Chapter 2. In contrast to the lys side chain, the binding free energy of the
arg side chain was found to be far weaker at all adsorption sites, especially
the step and kink sites. The stereochemistry and charge density of the single
amine in the lys side chain therefore likely facilitates stronger binding to
calcite than the three amines in the arg side chain.

As discussed above, it was observed experimentally that lys had an oc-
clusion efficiency roughly five times that of arg. Our results show a striking
difference in binding free energy. While the binding of the lys side chain is
stronger as expected, the difference in binding energy is far too large to pro-
duce a factor of five in relative occlusion efficiencies. Instead, it is more likely
that arg does not bind through its side chain. Moreover, arg most likely binds
through its alpha carboxyl and amino groups. Lys, on the other hand, most
likely binds through its side chain amino group. The side chain most likely
produces a slightly stronger binding to the surface than the amino groups.
This explains why lys has a greater occlusion efficiency than arg. The fact
that the mechanisms of adsorption are different may also allude as to why
lys produces a morphology change, whereas Arg doesn’t. However, no clear
mechanism for why this occurs exists.

6.1.3 Acute and obtuse

Since the side chain is found to not be the primary driver of adsorption of
arg, we exclude it from calculations of ∆Gsim to obtuse sites. We also did
not observe any significant binding of diethylammonium to the obtuse steps
or kinks. We therefore only present ∆Gsim for the obtuse steps for ethylam-
monium. The binding free energies for ethylammonium show a significantly
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Figure 6.4: Snapshots from trajectories showing binding of the lys (ethylam-
monium) and arg side chains to a calcite terrace, step, and kink site. The white
dashed lines indicate hydrogen bonds. Water is excluded from all images for clar-
ity. Lys forms one bond with the terrace, two with the step and three with the
kink. Args adopt a more complex set of configurations in which several hydrogen
atoms interact with oxygen in carbonate ions.

stronger binding to the obtuse step and kink. This is not in agreement with
experimental findings, which observe a lengthening along the c-axis, indica-
tive of a stronger binding to acute sites. One explanation for this may be that
obtuse kink CO3 ions to not reside in their lattice sites, as found in Chapter
5. The binding of ethylammonium to the kink sites will therefore incur a free
energy cost of driving the CO3 ion into its lattice site. However, this free
energy cost of about 5 kJ/mol (d(ii) CO3, see Figure 5.5) is not sufficient
to account for the difference, and ethylammonium will still have a stronger
total binding free energy to the obtuse kink. The difference in binding free
energy between molecules attaching to acute and obtuse steps is a limitation
of the work carried out throughout this chapter. The elongation along the
c-axis has often been thought to be due to a low binding to obtuse sites,
although no evidence for this has been provided throughout this section or,
indeed, anywhere else so far. This will be revisited in the following section.

6.2 Aspartate adsorption free energies and

binding configurations

To recap from Chapter 2, asp and its effect on calcite growth has been the
focus of extensive experimental study, although the molecular details behind
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such effects remains in contention due to a lack of understanding of the kink
sites to which asp primarily adsorbs. The objective of this section is to repro-
duce these adsorption free energies using computational methods, and use
them to examine the configurations of asp adsorbing to calcite. Particularly,
we are interested in interactions with calcite kink sites. Interactions with
steps or the terrace are likely to be much weaker, and therefore have a neg-
ligible effect on calcite growth. We therefore only consider interactions with
kink sites in this section. This is a complex task which must be split into
several sections. We begin by exploring potential binding configurations by
forcing different configurations and equilibrating to determine which config-
urations are stable. We subsequently proceed to calculate the binding free
energy of aspartate for a single kink site using metadynamics. The result
from this section allows us to simplify the calculation such that binding free
energies can be calculated for all necessary kink sites. These binding free
energies are used to calculate the corresponding adsorption free energies.
Finally, the calculated adsorption free energies are used to parametrise a Ki-
netic Monte Carlo (KMC) scheme, with which the inhibition of step velocities
are calculated. This is used to derive a macroscopic adsorption free energy
for both step velocities and for the entire crystal, which are compared with
experimental values.

In the previous section, we modelled the intermolecular and intra-molecular
interaction of amine groups using the AMBER force fields. However, we do
not opt for these force fields in this section. This is because preliminary
simulations with asp described using the AMBER force fields found that
carboxyl groups had an extremely weak interaction with Ca atoms includ-
ing kink sites. We suspect this to be an inaccurate representation of reality,
since the carboxyl-rich asp has a higher occlusion rate into calcite than other
amino acids, including the amine-rich Lys and Arg. Instead, the asp force
fields of Raiteri et al. [130] are explicitly fitted to solvation free energies,
similar to their calcite force fields [45], thus making them an ideal candidate
for calculating thermodynamic quantities such as adsorption free energies.
We therefore use the force fields of Raiteri et al. throughout this section.
The simulation cell set-ups are identical to those used in Chapter 5 with a
terminating CO3 ion swapped for an asp molecule. The set-up is described
in Section 4.2 and depicted in Figure A1.

6.2.1 Exploring stable configurations

Asp consists of two carboxyl groups and one amino group. The existence of
these three functional groups creates a large array of potential combinations
of interactions between functional groups and calcite lattice sites. Since
water residence times for water molecules coordinated with calcium ions near
the step are typically large, [53] it is possible that other calcium ions may
require dehydration in order to calculate binding free energies. It is therefore
important that all possible configurations are tested for their stability before
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Figure 6.5: Diagram of the method used to force the aspartate into different
initial configurations. The two carboxyl carbon atoms are forced into cubic boxes
with a volume of 1 Å3 (depicted in blue). The positions of the blue regions are
given by the positions an imaginary Ca or CO3 ion would occupy in a bulk crystal.
This exact example of aspartate bound to a step site is not considered in this study,
it is shown purely because it makes for an easier visualisation than a kink site.

proceeding to calculate binding free energies.

Here, we consider every possible binding configuration in which asp inter-
acts with a kink site, i.e. every permutation of functional group and lattice
site local to the kink. We determine whether configurations are stable us-
ing a process outlined as follows. Each relevant functional group was forced
into either the kink site or a nearby lattice site to the kink sites. This was
done by starting a simulation with the calcite frozen in its lowest-energy bulk
configuration and placed in a vacuum. The additive was dragged into the
chosen configurations via its functional groups (carbon for carboxyl groups
and nitrogen for amine groups) using a constant force with magnitude 50
kJ/mol acting on chosen functional groups. The negatively charged carboxyl
groups will bind to Ca sites. Therefore, the starting positions of the carbon-
ate ions were chosen to be the exact position of the lattice sites in which
a CO3 ion would occupy in a bulk crystal. Since the positions of the car-
boxyl groups will not correspond exactly to these lattice sites, a window of
one cubic Å was allowed for the functional groups to move freely. Likewise,
the positively charged amine group will interact with CO3 ions, so the same
method was applied in this instance. Figure 6.5 shows an example of the
method used to drag the aspartate functional groups into various configura-
tions. It is worth noting that Figure 6.5 shows a configuration (i.e. aspartate
bound to a step and terrace site) not explored in this study. This configura-
tion is shown purely because it makes for an easier visualisation than a kink
site.

Once the initial configuration was set up, water was added to the simu-
lation and equilibrated for 100 ps with the calcite still frozen. The calcite
was unfrozen and a further equilibration of 50 ps was carried out. Finally,
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the dragging forces holding the functional groups in place were removed, and
a simulation lasting 10 ns was carried out. If a functional group drifted
away from its initial configuration within a few 100s of ps and did not re-
turn to its initial configuration throughout the simulation, the configuration
was considered unstable. Should the functional group remain in its initial
configuration throughout the entire simulation, or for a suitably long time,
it was considered stable (or metastable) and the use of additional reaction
coordinates may be required.

We began by considering binding to the a(ii) CO3 kink site, the same as
in Section 6.1. However, before even exploring configurations, it was found
that the interaction between the amino group and the CO3-terminated kink
site was so weak that the amino group diffused out of the kink site within
a few ps of removing the tethers. This result alone is a striking contrast to
what was observed in Section 6.1. Rather than exhibiting a strong binding
to the kink site, there is no binding at all. This will be discussed further in
Section 6.2.9. For the time being, we proceed under the assumption that the
binding of amino groups is negligible for asp.

Assuming that binding of the amino group can be discounted, only con-
figurations involving the binding of carboxyl groups to Ca ions required test-
ing. We assume that interactions with CO3-terminated sites will be relatively
small, and therefore only consider Ca-terminated kink sites from here on. In
Chapter 5, the a(ii) CO3 kink was found to be the most stable in its lattice
configuration. We assume that a carboxyl group will behave similarly to a
CO3 ion, and begin by considering interactions involving the a(i) Ca kink (to
which a CO3 ion will adsorb to form an a(ii) CO3 kink). For the a(ii) kink, a
total of six unique configurations were explored. Each configuration included
a single carboxyl group occupying the kink lattice site. The other carboxyl
group occupied either a site above the step, a lattice site along the step or a
site on the terrace adjacent to the kink. The positions of the carboxyl groups
were additionally switched, thus doubling the total number of configurations
explored to six. Figure 6.6 shows snapshots of every configuration tested for
its stability.

It was found that the only configurations to remain stable were those
where either carboxyl group resided in the kink site. These bonds were
found to remain throughout the course of the simulations. Other bonds
between carboxyl groups and lattice sites were broken between 100 ps and 2
ns, and were not re-formed throughout the simulation. It appears, therefore,
that only interactions between both carboxyl groups and the kink site are
stable (or at least metastable). We are therefore able to proceed to calculate
binding free energies under the assumption that multi-site adsorption is not
an issue.
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Figure 6.6: Configurations explicitly tested for their stability. Every configura-
tion includes one carboxyl group occupying the kink site, an the other occupying
a different lattice site.

6.2.2 Binding free energy of asp to the a(i) Ca kink

With the knowledge that only bonds between carboxyl groups and Ca-terminated
kink sites are stable for the a(i) Ca kink, binding energies can be calculated
using metadynamics involving the dehydration of the kink site using equation
5.1. We proceeded by calculating the binding free energy of asp interacting
with the a(i) Ca kink site. Here, we assumed the kink must be dehydrated
as is done in Chapter 5. We again adopted the method presented in Chapter
5 to dehydrate the kink. Here, we did not opt for the method outlined in
Section 6.1, in which the thermodynamic minimum is located and a separate
metadynamics simulation is run. Instead, we opted for the method akin to
the one described in used in Chapter 5, in which the x- and y-positions of the
centre of mass of the asp molecule were constrained to within 3 Å of the kink
site. We do this because using this method makes it far easier to calculate
adsorption free energies. The average z-position of the two carboxyl group C
atoms were used as the reaction coordinate, and a metadynamics simulation
was run with Gaussians deposited every 2 ps. All other parameters are de-
tailed in Section 4.5. The resulting free energy function is a two-dimensional
surface with a dependence on the average z-position of the two carboxyl
groups (x-axis), as well as equation 5.1 (y-axis). This free energy surface
is shown in Figure 6.7, as well as a series of snapshots depicting the asp
configuration corresponding with the thermodynamic minimum.

The results of Figure 6.7 are rather striking. It can be observed that
the thermodynamic minimum corresponds to a configuration in which the
kink site remains hydrated, and the asp molecule adopts a bidentate con-
figuration akin to those observed for CO3 in Chapter 5, in which there is
no interaction with the lower terrace. It appears that asp does not displace
water when binding to this kink site. This finding is significant, as the oppo-
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Figure 6.7: a) Two-dimensional free energy as a function of the average position
of the two carboxyl group carbons with respect to the kink site (x-axis), and the
nearest water molecule to the kink site (y-axis). b) One-dimensional free energy
surface obtained by projecting the free energy surface in (a) onto one dimension.
c) Snapshots from three perspectives show a bound state of asp with an a(ii) Ca
kink site. The amino acid sits above a hydrated kink site and interacts directly
with the terminating Ca. Here, a low value along the y-axis (y ≈ 2.3) corresponds
to a fully hydrated kink site. The well seen at the top-left of the graph corresponds
to a fully dehydrated kink site occupied by a functional group.

site has previously been assumed true. Our findings are in some contention
with previous hypotheses that impurities such as asp are able to improve
mass transport onto the surface through dehydrating positively-charged lat-
tice sites. It is likely that this may be extended to other molecules that bind
to calcite through carboxyl groups.

It can be seen in the snapshots of Figure 6.7 that binding primarily occurs
through the side-chain carboxyl group, although trajectories did also reveal
equivalent binding configurations for the alpha carboxyl group. This offers an
explanation as to why aspartate has a high occlusion efficiency with respect
to other primary amino acids. The alpha-carboxyl group, which all amino
acids share, has a similar but slightly lower propensity to adsorb onto the
surface compared with the asp side-chain.
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6.2.3 Generalisation and adsorption free energies

The results of Section 6.2.2 have demonstrated that asp does not prefer to
adsorb directly onto the kink lattice site to which CO3 has the greatest
propensity to adsorb, of all a- and d-kinks. This is important, as it indicates
that the thermodynamic minimum can most likely be obtained without fully
dehydrating the kink. Since we observe this for the kink to which CO3 has
the largest propensity to adsorb to the lattice site, we can proceed under the
assumption that asp will not adsorb directly onto any kink lattice site. This
allows us to calculate free energies for asp binding to every Ca-terminated
kink sites without the need for explicit dehydration of the kink sites, thus
saving a great deal of computational expense. It should be noted that, while
this approximation is very likely to be valid for all a- and d-kinks, there
does exist some degree of ambiguity for the b- and c-kinks, for which CO3

adsorption free energies are not calculated.

To calculate adsorption energies, we ran metadynamics simulations using
the exact method discussed previously, except we remove equation 5.1 as a
reaction coordinate. This is done for every Ca-terminated kink. For most
kinks, we tether the position of the terminating Ca ion to its lattice site as
outlined in Section 4.2. The only exceptions to this were the b(i), c(i) and c(ii)
kinks, which also have a tendency to adopt their bidentate configurations.
For these ions, we remove the tether and include their z-position as a reaction
coordinate. The adjacent CO3 ion on the step was then constrained as per
Section 4.2.

The eight calculated free energy functions are shown in Figure 6.8. For
the b(i), c(i) and c(ii) kinks, the two-dimensional free energy surfaces are pro-
jected onto one dimension using equation 3.90. The original two-dimensional
free energy surfaces are shown in Figure A6. The binding free energies were
calculated from the free energy functions by averaging the free energy for
values of the asp-kink z-distance between 15 and 20 Å. The adsorption free
energies were subsequently calculated by applying the entropy corrections
outlined in Section 4.6. The region corresponding to the bound state is given
by the green-shaded region, which is integrated over to produce the adsorp-
tion free energies. The results are shown in Table 6.2.
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Figure 6.8: Free energy of asp as a function of its z-distance (average of two
carboxyl group C atoms) from the kink site for every Ca-terminated kink site.
The three highlighted regions represent bound (green), associated (yellow) and
dissolved (red) states, corresponding to Figure 4.2. The simulation free energies,
∆Gsim, are calculated by averaging over the dissolved region.

Kink type ∆Gsim (kJ/mol) ∆Gads (kJ/mol)

a (i) -31 -21
(ii) -34 -25

b (i) -18 -6
(ii) -26 -18

c (i) -26 -15
(ii) -24 -14

d (i) -30 -21
(ii) -28 -19

Table 6.2: Simulation and adsorption free energies for each kink type. ∆Gads

is calculated from ∆Gsim using the method discussed in Section 4.6. The free
energy values are expressed to the nearest kJ/mol, as we expect the error of the
free energy surface to be on the order of magnitude of 1 kJ/mol.

Most of the adsorption free energies are relatively similar, with the most
notable exception being for the b(i) kink, to which asp adsorbs with a free
energy of -6 kJ/mol. This outlier is a result of the b(i) kink naturally adopt-
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ing its bidentate configuration (Chapter 5). The plots shown in Figure A6
demonstrate that the most stable binding configuration corresponds to one
where the terminating Ca ion does not reside in its lattice site. This explains
the anomalously high adsorption free energy for asp at this kink.

Experimental measurements of adsorption free energies have produced
results of -17.1 kJ/mol [72] and -21.0 kJ/mol [71] by measuring the frac-
tional inhibition of the crystal growth rate. Although this growth inhibition
ultimately arises from a combination of several kink velocity inhibitions, the
values in Table 6.2 can be compared with these experimental values to some
degree. The lower values for each kink type in Table 6.2 appear in agree-
ment with these experimental findings, although it is so far unclear exactly
how the individual kink adsorption free energies will combine to produce a
macroscopic adsorption free energy for an entire growth island or crystal. It
is also worth noting that the adsorption free energies of asp are smaller in
magnitude compared with those calculated for Ca (which vary between -15
and -31 kJ/mol) and CO3 (which vary between -33 and -38 kJ/mol). This is
consistent with the experimental observation that asp produces only a kink
blocking effect, rather than a step pinning effect which would be seen for
impurities which have a stronger binding to growth sites than Ca or CO3

units.

6.2.4 Step velocity inhibition

It is important, at this point, to draw a distinction between adsorption free
energies for individual kinks and experimentally measured adsorption free
energies. Adsorption free energies are fundamentally related to the fractional
growth inhibition and, in this study, are given by the Langmuir Adsorption
Isotherm (equation 2.4). Our calculated kink adsorption free energies in
Table 6.2 will therefore determine the fractional inhibition of the growth
of that particular kink site. Experimentally found adsorption free energies
relate to the fractional inhibition of the growth of the entire crystal. It is so
far unclear as to how the multiple kink adsorption free energies will translate
to step adsorption free energies (i.e. the adsorption energy as determined by
the step velocity inhibition), and the crystal adsorption free energy observed
in experiments.

To resolve this issue, we employed a KMC scheme to directly measure
the fractional inhibition of step velocities. We ran individual calculations for
acute and obtuse steps. The KMC model used is that introduced Chapter
4. It is worth noting here that we employ Ca and CO3 dissolution rates
parametrised to experimental step velocity dependencies on solution stoi-
chiometry. In chapter 5, we derived adsorption free energies for most kinks,
which could potentially be used to parametrise dissolution rates as is done
for impurities (see section 4.8.2). However, we do not do this for several rea-
sons: first, the free energy profiles in chapter 5 are more complex than those
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Figure 6.9: Step velocity fractional inhibition (θ) plots for acute and obtuse steps
calculated using KMC. Both plots are fitted to equation 2.4, from which ∆Gads is
calculated. The schematic shows the build-up of kinks when higher concentrations
of asp is added to the simulation, due to the stronger binding in one kink direction
than the other. The inhibition of the step growth is therefore determined by the
stronger binding.

we calculate for asp, consisting of two bound states, and we cannot assume
a universal attachment rate as we do for asp; secondly, we have only run
these calculations for deprotonated CO3 where, in reality, the solution will
also consist of bicarbonates. We instead opt for fitting all dissolution rates
to experiment, and assume a semi-Kossel system, in which all Ca-terminated
kinks have the same dissolution rates as each other, as do all CO3 ions.

In order to determine the growth-inhibiting effects on acute and obtuse
steps, we ran a total of 11 calculations with increasing asp concentrations for
each step, ranging between 0 and 0.5 mM, and record the step velocity in
each instance. Figure 6.9 shows the fractional inhibition of the step velocity
for both acute and obtuse sites. Both plots were fitted to equation 2.4, which
is used to calculate ∆Gads for both step sites, denoted by ∆Gads,a and ∆Gads,o

for the acute and obtuse steps respectively. The result is:

∆Gads,a = −19 kJ/mol

∆Gads,o = −15 kJ/mol
(6.1)

Our results have demonstrated that the step velocity inhibition of the
acute step is significantly greater than that of the obtuse step, which trans-
lates to a lower adsorption free energy for the acute step. This result is in
some agreement with expectations, as it has been long assumed that bind-
ing to obtuse sites is far weaker than binding to acute sites. The evidence
for this claim is in the morphology of calcite growth in the presence of asp,
which has found minimal morphological effects on obtuse steps of growth
islands and on obtuse corners of crystals, as discussed in Chapter 2. Never-
theless, studies have demonstrated a significant decrease in step velocity for
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Figure 6.10: Morphologies of growth islands in the presence of asp at different
concentrations calculated using KMC simulations. The growth island is depicted
by the grey region, and the acute and obtuse directions are labelled.

the acute step when asp is included in solution [78]. Furthermore, studies of
asp polymers found a greater morphological effect on obtuse steps for larger
asp concentration [81]. Our results are therefore largely in agreement with
previous studies, which ultimately suggest that binding to obtuse steps is
weaker, but still significant. One limitation of the work carried out through
this chapter, however, is a lack of explanation as to why asp does not induce
morphology change for obtuse steps.

A further point of interest is that the step velocities obey the Langmuir
adsorption isotherm despite the complex set of adsorption free energies for
different kink sites. For example, propagation of the a-kink is inhibited more
than that of the b-kink which propagates in the opposite direction (see Table
6.2). This leads to some ambiguity as to how the growth of the step is overall
inhibited. However, KMC simulations revealed that the inclusion of asp
results in a build-up of a-kinks due to the greater inhibition of propagation of
a-kinks as illustrated in Figure 6.9. The density of a-kinks therefore becomes
significantly larger, and the density of b-kinks drops to nearly zero. The
growth inhibition of the step is therefore entirely determined by the inhibition
of the a-kink.

6.2.5 A brief note on morphology

The KMC model applied to Section 6.2.4 may be extended to observing the
morphology change that results from introducing asp to the solution. It
can be tested whether our calculated adsorption free energies may reproduce
the rounding of the acute steps without producing a rounding of the obtuse
steps. By starting KMC simulations with a small growth island with a length
and width of 100 units, and running until the simulation boundaries were
reached, we were able to examine the morphologies of the growth islands.
Figure 6.10 shows an example of the morphologies produced at different asp
concentrations. It can be seen that, while the introduction of asp at small
concentrations produces only a change in the acute morphology, the obtuse
steps also experience a rounding effect at higher concentrations.

It appears that either our free calculations are incorrect, or that the in-
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fluence of asp on obtuse step morphology is a more complex set of processes
than what our model is able to accommodate. It is quite possible, for ex-
ample, that the adsorption free energies at obtuse sites, notably the d-kinks
are overestimated, since it is likely that the morphologies are extremely sen-
sitive to the adsorption free energies, and a slight overestimate could have
a significant impact. Another possibility is that the lack of influence of asp
on obtuse morphologies is due to differences in the mechanisms of growth
and dissolution found between the acute and obtuse steps. For example the
morphology of etch pits formed in dissolving crystals indicates that the mech-
anisms of obtuse step dissolution significantly differ from those of acute step
dissolution [131]. This alone, however, is not enough to explain why we ob-
serve a morphology change in the obtuse step. The lack of consistency with
experimental morphologies is a significant limitation of our models used, and
is something which requires addressing in future studies. It is clear that asp
does have a significant interaction with obtuse growth sites, but the molec-
ular mechanisms underpinning the lack of obtuse step morphology change
remain unclear.

Although questions remain regarding the morphological impact, we do
not consider this a major hindrance to our calculations. As stated above,
the morphological impact is most likely highly sensitive to the calculated
adsorption free energies, and any major morphological discrepancy can be
explained by minor errors in the calculations of adsorption free energies.
Furthermore, a previous study by Elhadj et al. [78] using AFM indicated
that asp has a significant effect on the obtuse step velocities. By fitting
the step velocities of Elhadj et al. to the Langmuir equation, we derive
an asp adsorption free energy of -12.3 kJ/mol for the obtuse step, a value
similar to our calculated value of -15 kJ/mol. We therefore proceed under the
assumption that our results are reasonably accurate despite the issue with
morphology.

6.2.6 Normal growth inhibition

Having determined the step velocities as a function of asp concentration, we
wish to calculate the overall growth inhibition of the crystal. ∆Gads is calcu-
lated experimentally by measuring the total rate of attachment of ions to the
crystal. This value is proportional to the normal growth rate, i.e. the rate
of growth of an island normal to the [104̄] terrace. Therefore, the fractional
inhibition of the normal growth rate will determine the fractional inhibition
measured in experiments. Throughout this section, we consider growth cen-
tred around a screw dislocation to match the growth experimentally found
for low supersaturations. The normal growth rate can be written in terms of
the acute and obtuse step velocities as:

R(S) ∝ v±

λ±
(6.2)
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where R is the normal growth rate, S is the supersaturation, v± are the acute
(-) or obtuse (+) step velocities and λ± are the corresponding terrace widths.
The step velocities and terrace widths can be calculated using the method
of Darkins et al. [62]. This method involves re-weighting the step velocities
found in Section 6.2.4 such that they match experimentally observed step
velocities for [asp]=0, using the following relation: [62, 132, 19]

v+ = 64.910(S − 1) nm/s

v− = 16.488(S − 1) nm/s
(6.3)

Assuming that the average critical length 〈Lc〉 is independent of [asp], we
can calculate the average critical length [132, 65], and therefore the terrace
widths. We can therefore re-write equation 6.2 as:

R ∝ v± sinφ

1 + v±

v∓

(6.4)

where φ is the angle between adjacent spiral turns as described in [132].
Using equation 6.4, we calculated the fractional inhibition of R as a function
of [asp], and fitted the results to equation 2.4. The plot of fractional inhibition
is shown in Figure A7. We finally calculated ∆Gads to be:

∆Gads = −19 kJ/mol (6.5)

This value can be directly compared to experimental estimates of ∆Gads.
which vary between -21 kJ/mol and -17.1 kJ/mol. Our final adsorption free
energy is clearly within the range of experimental error. This is a major
success of the techniques used throughout this chapter, as well as the force
fields used to describe asp. There are limitations to the results presented in
this section, such as the weak binding of the amino groups and the inability
to reproduce experimental morphologies. Nevertheless, the reproduction of
quantitative experimental results related to growth rate is a success.

6.2.7 Binding configurations

As well as calculating adsorption free energies, the simulations carried out in
the previous section allow us to elucidate the stable binding configurations.
From the simulation trajectories, outputted every 105 time-steps, we observed
that multiple binding configurations exist which are dependent on the value of
the reaction coordinate. In order to determine the most frequently observed
binding configurations, we searched through the trajectory and discounted
any frames in which the reaction coordinate (the centre-of-mass of the two
carboxyl group C atoms) is not within 0.2 Å of the value corresponding
to the thermodynamic minimum, as determined by Figure 6.8. When the
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Figure 6.11: Stable binding configurations of asp adsorbing to all calcite Ca-
terminated kink sites. The colour has been modified for the following ions: kink
Ca ion (gold); terminating ion (pink); step ion next to the kink (cyan); nearby
terrace ion (purple). The water molecules coordinated with the listed Ca ions are
assigned the colour of the Ca ion to which they bind. Here, the step ions are shown
in green, rather than the typical pink depiction.

position of the terminating Ca was also biased, the constraint was imposed
on the second reaction coordinate (z-component of the terminating ion). The
resulting trajectories in all cases were dominated by a single configuration.
These configurations are shown in Figure 6.11. In Figure 6.11, the colours of
the Ca ions near the kink site have been modified, and the water molecules
coordinated with each Ca ion are also modified to be the same colour as the
Ca to which they bind. The binding configurations show a general theme: one
in which the carboxyl groups reside above the kink in a configuration akin to
the bidentate configuration observed for Ca and CO3 in Chapter 5. The one
notable exception is the binding to the b(i) kink, in which the Ca ion remains
in its bidentate configuration. For both c-kinks, the adsorption of asp results
in the terminating Ca ion transitioning into its lattice configuration.

6.2.8 Water displacement

In Section 6.2.2 it was determined that the water molecule nearest to the kink
site was not displaced upon the adsorption of asp to the kink site. Building
upon this surprising result, we proceeded to examine the local water structure
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Figure 6.12: Calculations of the average number of coordinated water molecules
〈Nc〉 for four different Ca ions, labelled 1, 2, 3 and 4 as shown in the schematic,
in the vicinity of several kink sites. The bars on the left-hand side represent 〈Nc〉
when the asp is fully dissolved, and the bars on the right-hand side represent 〈Nc〉
when the asp is residing in their most stable binding configurations. The results
for the remaining kink sites are not shown as the terminating Ca ion prefers to
adopt the bidentate configuration (Chapter 5), and their water structures are less
well defined.

near the kink site both in the absence, and the presence of asp. Here, we
examined the frames of the trajectory which correspond to a bound state, as
was done in the previous section. For these frames, we calculated the average
coordination number of water molecules with the four Ca ions highlighted in
Figure 6.11, defined as 〈Nc〉.

Nc =
∑
j

χj χj =

{
1, rj ≤ r0

0, rj > r0

(6.6)

where r0 is a cut-off distance which we set to 3.0 Å. Note that this is the
same quantity calculated previously in equation 5.5. The results are shown
in Figure 6.12.

The most striking result shown in Figure 6.12 is the lack in difference
of water coordination between when asp is adsorbed to the kink and when
it is dissolved in solution. It appears that the binding of asp causes no
displacement of water molecules in the majority of cases. It should be noted
that there are minor differences observed in most cases, but these can be
attributed to water molecules which briefly enter the coordination sphere,
but do not become fully adsorbed. The only significant differences seen are
for the a(ii) and b(ii) kinks, for which the terminating ion sheds a single
water molecule upon the adsorption of asp. It is particularly interesting that
asp causes such a minimal displacement of water molecules, as it disagrees
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with existing hypotheses that impurities such as asp are able to dehydrate
the surface.

Another important caveat to these results is that, while asp mostly does
not displace water molecules, there is some displacement observed which
is not explicitly facilitated by a bias potential, as we have only biased the
position of the asp. Although we established that dehydration is not an issue
for lone Ca ions, we cannot assume the same for surface ions. To test this
issue, we ran a calculation in which we tracked the identity of the water
molecules coordinated to the terminating Ca ion of the a(ii) kink. We do not
perform the same level of analysis as we did in section 5.3, as the residence
times calculated were generally too large to obtain sufficient statistics. We
typically observed residence times of about 10 ns. This is problematic for
our simulations, as they typically spanned about 300 ns, thus only allowing a
handful of dehydration events to take place. It is therefore possible that our
free energy profiles calculated for the a(ii) and b(ii) kink sites are inaccurate.
This casts some doubt onto the validity of our results, and should be taken
into consideration in future, despite the success of this study in reproducing
experimental adsorption free energies.

6.2.9 A note on force fields

It is important to note that the simulation free energies calculated in this
section are vastly different from those calculated in Section 6.1. Using the
force fields of Raiteri et al., we find that binding to calcite occurs exclusively
through the carboxyl group, and the amino group does not bind. In contrast,
the Amber force fields produce a strong interaction between amino groups
and CO3 ions, but a very weak interaction between carboxyl groups and Ca
ions. This stark contrast highlights the sensitivity of quantitative and qual-
itative observables on the choice of force fields, and the challenges presented
for fitting force fields.

The free energy for ethylammonium binding to the kink site calculated in
Section 6.1 is significantly larger than those calculated for asp in this section.
Since the results in this section produce an accurate adsorption free energy,
it must be the case that the Amber force fields drastically overestimate the
binding free energy. This does not necessarily invalidate the conclusions
of Section 6.1, as the binding configurations are unlikely to change if the
binding is weaker, and we are only interested in comparing the results of
Section 6.1. Conversely, it is likely that the binding through the amino group
is underestimated by Raiteri et al. The experimentally observed occlusion
of polyamines and lysine, and their morphological impact, are proof that
amino groups must be able to bind to calcite kinks. We do not expect the
underestimated binding of amino groups to have much impact on the results
of this section, as we believe that the interaction of asp with calcite is mostly
driven by the carboxyl groups, and that the amino groups will have little
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impact. However, the work carried out in this chapter indicates that future
challenges exist for the development of thermodynamically consistent force
fields.

6.3 Conclusions

This chapter began with a series of calculations of binding free energies of
amine groups to calcite terrace, step and kink sites. The primary amine,
ethylammonium, was found to bind strongly to all sites. The arginine side
chain was found to bind far more weakly to all sites compared with ethylam-
monium. This led to the conclusion that arginine does not bind through its
side chain, and instead through its primary amine and carboxyl groups. The
secondary amine, diethylammonium, was found to bind strongly to terraces,
but did not bind to steps or kinks, indicating that its main purpose is to sta-
bilise larger polyamines which bind to steps and kinks through its primary
amine groups. Our results, in conjunction with experimental results, have
demonstrated that positively-charged functional groups are, contrary to the
general consensus, able to bind strongly to calcite, and cannot be neglected
when considering the binding of e.g. amino acids to calcite.

The second part of this chapter concerned determining the free energy
of aspartate adsorbing to calcite, adopting more sophisticated force fields
than those used previously. Contrary to the results of the first part of this
chapter, it was found that aspartate adsorbs to calcite primarily through its
two carboxyl groups, with minimal contribution from the amine group, and
multi-site adsorption is not observed for asp in simulations. These results
agree with previous expectations that aspartate binds primarily through its
carboxyl group, and indicates why the carboxyl-rich aspartate has a strong
degree of occlusion, as observed in experiments. However, the discrepancy
between these findings and those above have highlighted an ever-present issue
in molecular simulation i.e. the inconsistency across different force fields. The
role of amine groups in driving the adsorption of amino acids remains largely
ambiguous.

The most stable binding configurations of asp were found to be where
the amino acid adopts a configuration akin to the bidentate configuration
observed in Chapter 5. The carboxyl groups either interact directly with
ions in the upper terrace, or reside above the upper terrace, and the water
molecule nearest to the kink site is not removed from the kink site. The
minimal displacement of water throws into question the validity of the pro-
posed mechanism in which mass transport to the surface is improved by the
dehydrating of the surface by impurities such as asp [78, 88].

Aspartate adsorption free energies to most kink sites were found to be
relatively similar, presumably due to aspartate binding through the same
mechanism. The only notable exceptions are for where the terminating Ca
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ion does not sit in its lattice site. The calculated adsorption free energies
were used to parametrise a Kinetic Monte Carlo scheme which measured the
fractional inhibition of step velocities as a function of aspartate concentration.
The step velocities obey a Langmuir adsorption isotherm for both steps due to
the reduction in the density of the kink sites to which asp binds less strongly
to. This causes the most expressed kink site to be the kink sites to which asp
binds the strongest. The growth of acute steps is inhibited more by asp, which
is consistent with experimental observations that obtuse step morphologies
are less affected by asp, although the directly observed morphologies from
simulations highlight that more work is required in understanding the nature
of the morphological impact of impurities such as asp on calcite. Finally, the
adsorption free energy of aspartate as observed in experiments was calculated
to be -19 kJ/mol, which is within the range of experimentally derived values.
This result is a major success for the force fields and techniques used in this
chapter.
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7MECHANICAL PROPERTIES OF IMPURE CALCITE

Chapter 6 concerned the adsorption of impurities to the calcite surface during
the growth process. Of the impurities that adsorb to calcite, some become
kinetically trapped into the lattice as the crystal grows around the impu-
rity. When this occurs, the impurity is permanently occluded into the host
crystal. This is how impure crystals typically form, although it should be
noted that there are many other mechanisms through which impurities may
be incorporated into the lattice during the nucleation and growth processes.
Calcite provides a good example of the property-enhancing effects of impuri-
ties. While pure calcite is a brittle material, i.e. fractures under a relatively
low stress, studies have found that the hardness of the crystal can be in-
creased by introducing impurities such as asp [92]. Where an understanding
of impurity directed crystal growth is vital for our understanding of biomin-
eralisation, it is also crucial to gain an understanding of how impurities may
alter the structural and mechanical properties of crystals at the molecular
scale.

This chapter concerns two case studies where impurities have produced
novel effects on the crystal lattice. The first section concerns a case study
where polymer-coated gold nanoparticles were found to be able to occlude in
calcite at high concentrations while preserving the single crystallinity of the
material. This came as a surprising result, particularly as the polymers in
question contained only weakly-charged functional groups, and are therefore
expected to have little interaction with calcite. Nevertheless, the nanoparti-
cles were able to occlude at concentrations of up to 37 wt% while preserving
the crystal structure of calcite. As well as occluding at high concentrations,
the nanoparticles produced a small change in the lattice spacing of the host
crystal. Most surprising was the result that the nanoparticles produced a
decrease in the lattice spacing along the a-direction, but an increase in lat-
tice spacing in the c-direction. The first section of this chapter concerns the
attempt to understand this using molecular simulation.

The second section of this chapter concerns a unique case study of bio-
genic calcite within the brittlestar Ophiocoma wendtii. Calcitic lenses within
the skeleton of the brittlestar contain arrays of Mg-rich regions which are be-
lieved to improve the fracture toughness of the material by inducing a com-
pressive stress on the host matrix. Throughout this section, we model such
a system: we calculate hydrostatic stress tensors, as well as directly simulate
a crack propagation event in order to identify the toughening mechanisms
only observable at the molecular scale.

127
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7.1 Hydroxyl-rich Au nanoparticles

The conventional view on biomineralisation is that highly charged, acidic
molecules are the key to controlling crystallisation of minerals such as cal-
cium carbonate [133] and, as a result, studies of bio-inspired crystallisation
methods have primarily focussed on acidic molecules, which have been noted
to exert control over morphology [134], orientations [135] and polymorphism
[136]. Recently, a study by Kim et al. [86] has challenged this view by
demonstrating that low-charge macromolecules can outperform their acidic
counterparts in terms occlusion in calcite. They found that polymer-coated
gold nanoparticles were able to occlude in calcite at concentrations of up to
37 wt%. Despite such high levels of occlusion, these functionalised nanopar-
ticles resulted in no signature change in morphology or crystallinity, which is
contrary to expectations, although unsurprising considering the low charge
of the functional groups (and therefore the expected weakness of their inter-
actions with calcite. Most noteworthy are the results found for the occlusion
of 4 nm poly (glycerol monomethacrylate)-functionalised gold (PGMA-Au)
nanoparticles, which were found to occlude at the highest concentrations.

Aside from the fact that such low-charge nanoparticles can counter-intuitively
occlude at such concentrations, a surprising result emerged from powder x-
ray diffraction (powder XRD) experiments. Naturally, the inclusion of the
nanoparticles induced a shift in lattice spacing in the crystal. However, the
sign of the change in lattice spacing was dependent on both the concentration
of the PGMA-Au nanoparticles, and the plane normal to which lattice spac-
ings were measured. Most notably, the nanoparticles induced a compressive
strain in the a-direction, and a tensile strain in the c-direction. However,
when the concentration of the nanoparticles was increased, a compressive
strain was universally observed. These results are surprising and unintuitive.
Assuming the nanoparticles induce a universal tension on the crystal, one
would expect either a universal expansion or contraction. However, molecu-
lar simulation may be able to uncover whether or not this is, in fact, due to
the properties of calcite rather than the properties of the nanoparticles and
any direct effects they induce.

Since the polymers that coat the gold are weakly interacting with the
calcite, it can be assumed that they should exert minimal forces on the
lattice in which they occlude. It can also be assumed that they have minimal
effects on the interface of the hole of the lattice that they leave behind after
occluding. For this reason, we assume that the nanoparticle itself can be
approximated as a vacuum occluded into the crystal. This greatly simplifies
the problem, as it only involves removing a hole from the lattice. The problem
remains, however, that we don’t know the shape the hole that is left behind
will be. For this reason, two approximations were chosen: either a spherical
hole or a {10.4} rhombohedral hole. The spherical hole represents a case
where the nanoparticle is less fluid, and the morphology of the hole is kept



129 7. MECHANICAL PROPERTIES OF IMPURE CALCITE

fixed in the form it takes as the nanoparticle occludes (which we assume to
be spherical). The {10.4} rhombohedral hole represents an approximation
where the spherical hole is fluid enough for the hole to relax to its lowest
energy morphology.

In order to approximate a high concentration of PGMA-Au nanoparti-
cles in calcite, a periodic calcite crystal was simulated. For simplicity, the
simulation box was set up such that the x and z directions of the simula-
tion box represented the a and c directions of calcite respectively. The box
lengths corresponded to 18, 18 and 6 repetitions of calcite’s a,b and c unit
cells respectively. A monoclinic simulation cell was used so as to accommo-
date the calcite’s unit cell. To create a spherical hole, ions within a defined
region were removed from the lattice. In order to ensure charge neutrality,
excess ions at the boundary of the hole were selected at random and removed
until the charge was neutral. The size of rhombohedral hole was calibrated
such that the number of atoms remaining in the simulation was as similar as
possible to the spherical case.

All simulations consisted of an equilibration process where the calcite was
relaxed under NVT for 100 ps, then under NPT for 200 ps. For the NPT
simulations, all simulation box lengths and triclinic parameters were allowed
to relax. Conditions were then kept under NPT for data harvesting, which
continued for a further 700 ps. After preliminary simulations were run, it was
noted that the same process could not be used to simulate low nanoparticle
occlusion, as a much larger box is needed, and simulations took too long in
this limit.

7.1.1 Local stress field

Figure 7.1 shows the results for the hydrostatic stress field (defined by
∑

α Παα(r),
where Παβ(r) is the stress tensor) obtained from simulations of calcite with
the two holes included in the lattice. Studying Figure 7.1, the results are
largely as expected. A tensile stress is present, on average, at the interface
of the hole in each case. The bulk crystal is under some competing pres-
sure, although it is worth noting that, in each case, the sign of the stress is
not constant throughout the bulk crystal. It appears that, due to the small
magnitude of the stresses at the interface, the compensating pressure decays
relatively quickly. This implies that most of the effects that result in lat-
tice distortion are likely to occur mostly near the interface of the hole. This
change in sign also implies that there is either very little or no interaction
with the hole and its periodic images. However, in the rhombohedral case,
the tensile stress does continue across the boundary along the a direction
where it bisects the hole. Therefore, some interaction with periodic images
may be present.

The magnitudes of the stresses are higher in the spherical case, although
this is to be expected, since the lowest energy surface is the {10.4} surface.
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Figure 7.1: Hydrostatic stress fields obtained from simulations of calcite with a
spherical (left) and rhombohedral (right) hole.

The stress is more uniform at the interface in the case of the rhombohedral
hole, but this is again to be expected since the rhombohedral hole presents
low energy surfaces of calcite.

7.1.2 Lattice spacing

For PGMA-Au nanoparticles in calcite, there are likely to be local tensile
stresses present at the interface of the hole in the crystal. Since the changes
in lattice parameters found experimentally are very small, and the PGMA-Au
nanoparticles occlude at such high density, it is likely that the stresses at the
interface will have an effect on the overall average lattice spacings. For this
reason, measuring the change in simulation box dimensions is insufficient in
deducing the average lattice spacing. For this reason, the method introduced
in Section 4.4 was used. This allows not only a more accurate measurement
of average lattice spacing, but an insight into how the distribution of lattice
spacing changes. This allows us to draw conclusions as to whether peak
broadening would be observed in an X-ray diffraction experiment.

In order to implement the method described in Section 4.4, LAMMPS
was customised in order to project the Radial Distribution Function onto
arbitrary planes. The x-component and z-components of the RDF were cal-
culated separately during a single simulation. Only the calcium and carbon
atoms were included in the calculation, as including the oxygen atoms in the
calculation would interfere with the calculation of the lattice spacings. The
perpendicular cut-off, dc, was set to 1.5 Å in order to account for thermal
fluctuations while preventing adjacent atoms from contributing to the RDF.
It is worth noting, though, that choosing a cut-off anywhere between 1 Å and
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Experimental Spherical hole Rhombohedral hole

a lattice strain (%) −0.0299 −0.0278 −0.0334
c lattice strain (%) 0.0137 −0.0145 0.0083

Table 7.1: Comparison of experimental data of strain in the a and c direction
obtained from powder-XRD experiments with simulations of a spherical and rhom-
bohedral hole obtained from the projected RDF.

2 Å had a negligible effect on the results.

Table 7.1 shows the results of the average lattice spacing found from the
projected RDF obtained from simulations. The experimental column shows
the novel combination of contraction in one dimension and expansion in the
other. It can be seen that spherical hole is unable to replicate this effect. A
rhombohedral hole, on the other hand, is seen to reproduce the effect. Not
only does it do this, but the strains are of the same order of magnitude as seen
in experiment in both dimensions. Considering the number of approxima-
tions made in this simulation (most notably, the replacing of the PGMA-Au
nanoparticle with a vacuum), this is a surprisingly accurate result.

It is quite intuitive that an interface under tension should result in a
universal contraction of the lattice, so it is unsurprising that the spherical hole
results in exactly that. It is less intuitive that the rhombohedral hole should
replicate the unusual result of contraction in one dimension and expansion
in the other. However, analysis of the average box dimension also found
contraction in the a-direction and expansion in the c-direction. Seeing as
the stress maps reveal little or no interaction with periodic images along the
c-direction, it is likely that the hole itself has undergone contraction in the
a-direction and expansion in the c-direction. Since the elastic coefficient for
calcite is higher in the a direction [137] than the c-direction, it is likely that
the tensile stress at the interface is higher in the x-direction. This causes
a stronger contraction in the a-direction, which forces the hole apart in the
c-direction. This causes the corresponding expansion/contraction in the bulk
crystal.

7.2 Mg-rich coherent nanoparticles

One unique case study of impurities producing crystals with enhanced me-
chanical properties concerns the brittlestar Ophiocoma wendtii. The arm
plates of these brittlestars are covered by roughly 10-micrometre sized lenses
composed of calcite [138]. The function of these lenses is to focus light
onto photoreceptor nerve bundles positioned beneath the lenses. Each lens
is aligned with its optical axis parallel to the c axis of calcite in order to
minimise the effects of birefringence. Calcite, being transparent and highly
abundant in nature, provides an ideal material for these lenses. However,
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as discussed, calcite is a famously brittle mineral with a low fracture tough-
ness. The brittlestar is able to overcome this issue through the introduction
of coherent, Mg-rich nanoparticles within the host crystal. As discussed in
Chapter 2, fracture toughness may be improved through formation of com-
plex hierarchical structures of hard and soft materials. However, this method
would be inappropriate, as it would be detrimental to the optical properties
of the material. However, in 2017, Polishchuk et al. [3] identified the mecha-
nism of coherent nanoparticles in the brittlestar when examining the nanos-
tructure of the lenses. It was discovered that each calcitic lens was found to
contain a dense array of magnesium calcite nanoprecipitates, about 4 nm in
diameter. The coherency of the nanoprecipitates allows the preservation of
the optical properties of calcite. These nanoprecipitates are believed to form
during crystallisation of calcite from amorphous calcium carbonate (ACC)
[139]. The solubility of Mg in ACC is much higher than in calcite, therefore
during crystallisation Mg rich regions would be expected to form. Coherent
nanoparticles, often referred to as Guinier-Preston (GP) zones [140, 141],
are already well known in metallurgy, and have been the subject of previous
molecular dynamics studies [142, 143]. Prior to the findings of Polishchuk
et al., no examples of such a phenomenon had been observed in any living
organism. Whereas the formation of GP zones in metallurgy involves ex-
tensive heating [144], the brittlestar is able to achieve this process in calcite
under ambient conditions. In metals, GP zones increase the tensile strength
of the host material [145], generally at the expense of increased brittleness.
However, Polishchuk et al. propose that the nanoprecipitates have a dif-
ferent effect on the mechanical properties of calcite: rather than increasing
the tensile strength by inhibiting dislocation motion, as in metal alloys, the
nanoprecipitates in calcite increase the fracture toughness by inducing a com-
pressive stress in the host matrix. Such a prestressing mechanism is employed
in other brittle materials, such as tempered glass and prestressed concrete. In
calcite, the compressive stress in the host matrix is induced by the coherent
Mg-rich nanoprecipitates. Due to the small size of the Mg ion compared to
the Ca ion, there is a local tensile stress within the nanoprecipitate, causing a
compression of the lattice spacing. The continuity of the lattice planes ensure
that, where the nanoprecipitates are under a tensile stress, the surrounding
matrix is under a compressive stress. It is proposed that this compressive
stress inhibits crack propagation and, therefore, increases fracture toughness.

While a proposed mechanism exists for the purpose for the Mg-rich nano-
precipitates in the skeleton of Ophiocoma wendtii, it has yet to be confirmed
unambiguously using molecular simulation. Generally speaking, impurities
and their mechanical effect on calcite at the molecular scale is a field which
has been examined with molecular simulation in only a select few studies
[92, 99] (see Chapter 2). The case study of the brittlestar, however, provides
an ideal context for the study of impure calcite crystals, as we have the tools
at our disposal to simulate a calcite crystal containing a Mg-rich coherent
nanoparticle.
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Figure 7.2: Comparison of lattice strain in the a direction and c direction be-
tween molecular dynamics simulations and the empirically derived relation found
by Polishchuk et al [3].

Throughout this section, we use molecular dynamics to investigate the
effects of magnesium incorporation in calcite. We examine the effects of
different concentrations of magnesium on calcite lattice parameters. We in-
vestigate the hydrostatic stress field and the magnitude of the compensating
stress field in the host matrix. Finally, we use crack propagation simulations
to examine the effect of magnesium nanoprecipitate incorporation on calcite
fracture toughness.

In this section, the calcite interactions were modelled with the rigid ion
version of the Pavese et al. [94, 146] force field. These force fields are preferred
over the standard force fields of Raiteri et al. as they were fitted explicitly
to the elasticity tensor of calcite. The Mg-ion interactions were obtained
from Raiteri et al, due to the lack of any equivalent force fields similar to
Pavese et al. for Mg. Periodic simulation cells with edge lengths roughly
equal to 8 nm in all dimensions were populated with calcite. Magnesium
ions were introduced into the calcite lattice by randomly substituting for
calcium ions. A probability of assignment for Ca and Mg was used to set the
percentage of magnesium ions. When modelling spherical nanoprecipitates,
the Mg-substitutions were confined to a spherical volume with a diameter of
4 nm, roughly the size of the observed nanoprecipitate. In all simulations,
the nanoprecipitates were populated with 40 mol% Mg in order to replicate
the empirically found concentration observed by Polishchuk et al. [3].

7.2.1 Force field validation: strain dependence on Mg
content

To test the suitability of the combination of force fields employed in this
section, we began with a uniform random distribution of Mg ions in a bulk
calcite lattice, and relaxed the cell vectors to eliminate the stress. The re-
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Figure 7.3: Hydrostatic stress tensor for a periodic (bulk) calcite crystal with
an incorporated 40 mol% Mg nanoprecipitate of diameter 4 nm. Atoms from a
cross-section of the cell are also shown. Ca is shown in green, C in grey, O in
red and Mg in yellow. Here, red represents regions under tensile stress and blue
represents regions under compressive stress. The cell dimensions are 86 Å in the
x-direction and 105 Å in the z-direction. The dashed circle indicates the Mg-rich
domain. The hydrostatic stress field is roughly homogeneous throughout the host
crystal.

sulting cell strain as a function of Mg concentration is shown in Figure 7.2.
The results are compared with the empirically derived relations for the lat-
tice parameters in the a and c-directions as a function of Mg concentration
as found by Polishchuck et al. It is clear from the results that the force fields
predict a reasonably accurate relationship between strain and concentration,
especially in the more elastic c-direction.

7.2.2 Stress distribution for calcite with 40 mol% Mg
nanoprecipitates

For simplicity, the simulation box was set up such that the x-direction cor-
responded to the a-axis and the z-direction corresponded to the c-axis of the
crystal. The box dimensions were chosen such that the lengths corresponded
to 18, 18 and 6 repetitions of the primitive hexagonal cell along the a, b and
c axes respectively. All cell dimensions were relaxed under NPT at atmo-
spheric pressure to allow for stress relaxation. The crystal was equilibrated
for 100 ps, and a 500 ps simulation was carried out for the calculation of the
local stress field.

The local hydrostatic stress field was computed for a cross-section of the
simulation cell that bisected the centre of the nanoprecipitate, shown in Fig-
ure 7.3. The radial and angular components of the stress tensor field are
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Figure 7.4: Radial (left) and tangential (right) components of the stress tensor
for the same system as Figure 7.3 in cylindrical coordinates. The smaller lattice
spacing within the nanoprecipitate causes a tensile radial stress (red). This causes
an angular compression (blue).

shown in Fig 7.4. Figure 7.3 shows a high tensile stress within the nano-
precipitate, caused by the smaller size of the Mg ions, as can be seen in the
red region encompassing the nanoprecipitate in Figure 7.3. The surround-
ing host matrix experiences a compressive stress in order to compensate for
the tensile stress, as can be seen in the blue regions outside the nanopre-
cipitate. The hydrostatic pressure appears roughly homogeneous throughout
the bulk crystal, although Figure 7.4 sheds more light on the complexity
of the stress distribution: the radial stress distribution (left) shows a host
matrix almost entirely under tensile stress. Furthermore, the radial stress is
larger in magnitude nearer the nanoprecipitate. The tangential component,
however, shows an entirely compressive stress. It is apparent, therefore, that
the stress encountered by a propagating crack will be dependent on where
it is relative to the nanoprecipitate. These results provide insight into how
crack propagation may be inhibited in some regions, and deflected in others,
as elaborated in the following section.

The calculation of the atomic virials also allows the average stress in-
duced in the host matrix to be calculated. By excluding all atoms within the
defined spherical region, and accounting for the resulting volume change, the
stress tensor components for regions outside the nanoprecipitate (σαβ) can
be calculated by averaging the remaining atomic virials over the remaining
volume. The results of this process for the xx and zz components, along with
the hydrostatic stress, σH , are given in table 7.2, where they are compared
with the empirical estimates of Polishchuck et al. [3] derived from a contin-
uum elasticity model. While the values are consistently lower, the agreement
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is generally quite impressive considering the various approximations in both
data sets.

Simulations Polishchuck et al.
σxx (MPa) −145 −180
σzz (MPa) −127 −140
σH (MPa) −139 −170

Table 7.2: Comparison of stress tensor components for the host matrix between
simulations and estimates of Polishchuck et al.[3]

7.2.3 Crack propagation

In order to model a calcite crystal with a pre-existing crack, a thin slab of
calcite was simulated. A monoclinic, periodic simulation cell was used to
allow periodicity along two of the rhombohedral crystal’s three axes. The
crystal was oriented such that the free (10.4) surface of the slab was normal
to the z-direction of the simulation cell. The length of the cell in the x and
y-directions was 75.22 Å. Along the z-direction, the crystal accounted for
81.46 Å. The simulation cell was also periodic in the z-direction, but with
a 40 Å vacuum region to emulate free surfaces. At the upper surface of the
crystal, an initial crack was introduced to the slab by defining two adjacent
regions of atoms. Each region was effectively infinite along the y-direction,
had a thickness of 15.7 Å along the x-direction, and penetrated 15.1 Å into
the crystal in the z-direction. All interactions between these two regions
were disabled so as to create an effective interface that would nucleate a
crack upon being strained. During simulations, the Ca ions at the lower face
of the slab were constrained to their initial z-coordinates using a harmonic
potential with a spring constant of 50 kJ/(mol)/Å2 in order to simulate the
effect of bulk crystal at the base of the slab.

Simulations consisted of an equilibration process of 0.2 nanoseconds,
where all cell vectors except the z-length were relaxed under NPT at at-
mospheric pressure. The barostat was then changed such that only the cell
length in the x-direction was able to fluctuate at atmospheric pressure. The
cell was deformed along the y-direction using a constant engineering strain
rate of 0.01 ps−1 over a period of 10 ps. During this 10 ps period, and fol-
lowing a 2 ps equilibration period, the yy-component of the stress tensor was
evaluated every 0.1 ps and averaged over the remaining 8 ps. Simulations
were repeated 10 times using different velocity seeds and nanoprecipitate con-
figurations (i.e. different seeds for determining the Mg distribution within
the nanoprecipitates).

Figure 7.5 shows visualisations of crack propagation in calcite under sev-
eral different conditions. In the control situation, where the calcite contains
no Mg (Figure 7.5(a)), the crack propagates cleanly down the low-energy
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(10.4) plane and, with the exception of the constrained region at the lower
surface, the two surfaces are completely separated. The inclusion of the nano-
precipitate, however, brings about a visibly significant change in the nature
of the crack propagation. When the crack bisects the nanoprecipitate (Fig-
ure 7.5(b)), propagation still occurs along the (10.4) plane, but the fracture
is far more disordered, with ions bridging the two resulting surfaces. The
Mg-rich domain itself is also observed to fail before the crack has reached the
precipitate, presumably because of the tensile stress in the nanoprecipitate.
When the crack reaches the nanoprecipitate slightly off-centre, as shown in
Figure 7.5(c), the crack changes direction when propagating through the Mg-
rich domain, producing a rough, high-energy interface. This again may be
attributed to the high tensile stress within the nanoprecipitate. Where, as
shown in Figure 7.5(d), the crack propagates around the nanoprecipitate,
the crack is deflected from the low-energy (10.4) plane towards the nanopre-
cipitate. In light of the stress distribution in Figure 7.4, it is unsurprising
that the crack would be deflected towards the nanoprecipitate, since the ra-
dial stresses are highest near the Mg-rich domain, and a crack propagating
through this region is able to relieve said radial stress. This reveals an inter-
esting consequence of the presence of a Mg-rich domain: the complex nature
of the stress distribution may result in a deflection of crack propagation away
from the lowest energy (10.4) surface, which will contribute to the increased
toughness.

The stress-strain curves calculated during crack propagation are shown in
Figure 7.6. Note that the stress values are averaged over 10 simulations for
each point. The points of maximum stress on these curves correspond to the
initiation of the crack propagation. The curves corresponding to Figure 7.5(a)
and (d) are indistinguishable before the point of fracture, suggesting that the
precipitates have little influence on cracks that do not approach closely. The
curves corresponding to Figure 7.5(b) and (c) display two important features.
Firstly a higher tensile stress (an additional 223 and 180 MPa respectively) is
reached before crack propagation, and secondly some stress is retained at the
end of the simulation. The increase in maximum tensile stress is the result of
the compressive stress in the matrix, as suggested by Polishchuk et al. The
residual stress is a result of the incomplete fracture, as the fracture surfaces
are bridged by a disordered region of ions at the end of the calculation.
Both of these effects would increase the fracture toughness. The crack that
propagates off centre (Figure 7.5(d)) does not display a significant increase
in the tensile stress at the initiation of crack propagation but it does show
significant residual stress, partially due to bridging of the surfaces.

As seen in Figure 7.5: rather than the crack propagating cleanly down a
(10.4) surface, the breaking of the crystal is more complex; this is clearly an
effect of the crack being deflected towards, and even through, the Mg-rich
domain. This result demonstrates a possible inhibitory mechanism for crack
propagation not previously reported to our knowledge, and may suggest a
novel mechanism for improving fracture toughness. Polishchuk et al. pro-



7.2. MG-RICH COHERENT NANOPARTICLES 138

Figure 7.5: Snapshots of a crack propagating under different conditions including:
crack propagating through pure calcite (a); crack bisecting the nanoprecipitate (b);
crack propagating slightly off-centre of the nanoprecipitate (c); crack propagating
around the nanoprecipitate (d). Here, the Mg ions have been magnified for easier
visualisation.

posed a toughening mechanism whereby cracks are deflected on a macroscale
due to variations in the material density [3]. Our observations suggest that
a nanoscale deflection may also be an important part of the story.

It is worth emphasising that the stress and strain at the point of crack
propagation is only increased when the plane of the crack directly bisects
the nanoprecipitate, as can be observed in Figure 7.6. This can be explained
by the results in Figure 7.4, which demonstrate that different regions of the
crystal will be under different stresses. As a crack propagates, the stress
opposing propagation will be the stress perpendicular to the direction of
propagation. If the crack propagates towards the precipitate, then it will
encounter the compressive tangential stress observed in Figure 7.4, whereas
if the crack propagates around the precipitate, the relevant component of
the stress tensor field becomes the radial component. This is why the stress
at the point of propagation of the crystal is only increased when the crack
bisects the nanoprecipitate. The difference of 223 MPa observed in Figure
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Figure 7.6: Stress-strain plots averaged over 10 simulations. An insignificant
difference with respect to pure calcite is seen when the crack is far from the nano-
precipitate (d), but the difference becomes more apparent when the plane of the
crack directly bisects the nanoprecipitate (b) and (c). In each case, the residual
stress is higher when a nanoprecipitate is present.

7.6 is of the same order of magnitude as the tangential stress observed in
the host matrix in Figure 7.4, indicating that the prestressing of the host
matrix does contribute to the increased fracture toughness. This relies on
the assumption that the crack approaches the nanoprecipitate, although it
can be assumed that, given the high precipitate density, a propagating crack
through a real crystal would, at some point, approach a nanoprecipitate.

7.3 Conclusions

The results of lattice distortion found from simulations have replicated the
qualitative effects seen experimentally, and even reproduced the correct order
of magnitude, despite the assumptions made in approximating the PGMA-Au
nanoparticle as a vacuum. This leads to three conclusions: firstly, the novel
combination of expansion and contraction observed experimentally in the
case of PGMA-Au nanoparticles can be understood in terms of the mechanics
of the interface of the hole left behind by the nanoparticles; secondly, the
nanoparticles are sufficiently weakly interacting and fluid that their presence
can be considered irrelevant and approximated as a vacuum; thirdly, the hole
left behind by the nanoparticle is likely to take a rhombohedral morphology.

In the second section, we used molecular dynamics to investigate the ef-
fects of magnesium-rich nanoprecipitates on the stress distribution and crack
propagation in calcite domains. Such nanoprecipitates have been identified in
calcitic microlenses within the skeleton of the brittlestar Ophiocoma wendtii,
and are observed to increase the fracture toughness in comparison to non-
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biogenic calcite. Our simulations provide unique insight into the atomistic
mechanisms responsible for the increased toughness. We have identified three
possible sources. Firstly, the small size of the magnesium ions compared to
calcium, together with the coherent nature of the nanoprecipitates, induces
a compressive stress in the surrounding matrix, which counteracts the ap-
plied tensile stress during crack propagation, similar to the toughening of
tempered glass and prestressed concrete. This mechanism was suggested
by Polishchuk et al. who also estimated the magnitude of this effect using
continuum mechanics. Here, we were able to calculate the components of
the stress tensor at atomic resolution and show that, although the hydro-
static stress is relatively homogeneous throughout the matrix, the radial and
tangential components show separated regions of tensile and compressive
stress. As well as providing an explanation for why crack propagation is
inhibited only when the crack approaches the nanoprecipitate, the inhomo-
geneous stress distribution is significant because it induces deflections of the
cracks away from the lowest energy surfaces. This second source contributes
to increased energy adsorption during fracture and, consequently, increased
fracture toughness. The third contribution to increased fracture toughness
identified by the simulations is the mechanism by which the cracks propagate
through the nanoprecipitates. The highly inhomogeneous stress distribution
within the precipitates results in strongly disordered fracture surfaces which
form bridges between the crack surfaces that support residual stress at the
termination of the simulation. Such crack bridges would absorb energy dur-
ing fracture and may be a significant contribution of the nanoprecipitates
to increased toughness. In summary, our atomistic simulations of stress and
fracture in calcite with embedded Mg-rich nanoprecipitates have identified
novel mechanisms by which such nanoprecipitates may increase the toughness
of calcite.



8NON-MARKOVIANITY: ORIGINS AND IMPACT ON
RARE EVENT SAMPLING

As discussed in Chapter 3, a Markovian system is one where the future
configurations of the system depend only on the conditions of the system at
the present time. A non-Markovian system will also be dependent on not
just the system’s current configuration, but the configurations at previous
times. It is well established that non-Markovianity can have a significant
effect on diffusion [147, 148]. However, it is unclear exactly how these non-
Markovian effects on kinetics may affect the crossing rates of free energy
barriers. Central to this is the concept of the reaction coordinate, which
reduces the 3N -dimensional kinetics of a system as a few-dimensional process
over a potential of mean force (PMF) as discussed in Chapter 3. A physical
reaction, for example the dissolution of an adsorbate from a calcite kink site
we encountered in chapters 5 and 6, can be reduced to the transition along
one or several reaction coordinates. In the context of rare event sampling
in simulations, the reaction coordinate, or coordinates, must be chosen such
that the ergodicity of the simulation is allowed under the influence of the
bias potential. In other words, there must be no rare events other than
those which can be described using the set of reaction coordinates. A classic
example of this is the rotation angles φ and ψ of alanine dipeptide [149,
150]. When one angle is neglected, rare event sampling techniques such as
metadynamics typically run into convergence issues.

As well as being an important consideration of rare event sampling, the
choice of the reaction coordinate may affect calculations of barrier crossing
rates. Analytical solutions to barrier crossing rates are typically dependent on
a free energy barrier height. For example, in Transition State Theory (TST)
[151], the free energy barrier crossing rate is only dependent on the height of
the free energy barrier separating reactant and product states, as well as a
diffusion constant. Another example is Classical Nucleation Theory (CNT),
which gives a nucleation rate proportional to exp(−∆F ∗/kBT ), where ∆F is
the free energy cost at the top of the barrier separating the vapour and con-
densed phases. CNT is based on the original Becker-Döring equations [152],
which assume a constant rate of passage along the N -coordinate determined
by a set reaction rates dependent on the cluster size. While subtle, a crucial
assumption is made in the Becker-Döring equations that the reaction rates are
only dependent on the immediate cluster size, and that the previous history
of the cluster size does not impact the reaction rates. In other words, the sys-
tem is Markovian. It is important to note non-Markovianity can only exist in
a coarse-grained system. While Newton’s equations of motion are dependent
only on the instantaneous positions, momenta and forces, the act of coarse
graining the 3N -dimensional Newtonian kinetics of the system onto a set of

141
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reaction coordinates can invoke non-Markovianity. An intuitive example of
non-Markovianity can arise from the nucleation example: a cluster growing
sufficiently quickly may deplete the local environment of solutes, leading to
a lower attachment rate to the cluster. Here, the reaction rates have become
dependent on the history of the system, and the nucleation rate calculated
from CNT will ultimately be incorrect. The crucial assumption here is that
the kinetics along the reaction coordinate, in this case the cluster size N , are
Markovian. This is also the case for TST, where the barrier crossing rate
is only dependent on the height of the free energy barrier and a diffusion
constant. The free energy landscape, including the barrier height, may be
dependent on the choice of reaction coordinates. The calculated nucleation
rate may therefore depend on the reaction coordinate choice, even though the
system kinetics are fundamentally identical. The only assumption made in
TST is that the kinetics along the reaction coordinate are Markovian. The
free energy barrier crossing rate must also therefore be dependent on any
non-Markovian kinetics which arise through coarse graining.

It is clear that coarse-graining yields non-Markovian kinetics to a degree
dependent on the reaction coordinate choice. So far, however, the funda-
mental origins of non-Markovianity in coarse-graining have not been charac-
terised. In this chapter, we aim to answer the following questions: first, can
introducing non-Markovian kinetics to a system correct free energy barrier
crossing rates; second, how can we identify a poor reaction coordinate choice
from rare event sampling simulations? We begin by calculating transition
rates for a series of discrete processes, and introduce corrections by deriv-
ing non-Markovian transition rates. We then proceed to apply rare event
sampling techniques to a two dimensional Langevin process and develop the
means to identify poor reaction coordinate choices from the output of simu-
lations.

8.1 Two-dimensional toy free energy surface

In this chapter, we are interested in working with a toy free energy surface in
which we can use a single parameter to tune the appropriateness of a single
reaction coordinate. For simplicity, we considered a two-dimensional toy free
energy surface, and took a single component of the free energy surface as the
reaction coordinate. An example two-dimensional toy free energy surface is
the Müller-Brown potential [2], which contains two saddle points and three
free energy wells. However, for the sake of simplicity, we would prefer a
free energy surface which is easily modified to change the suitability of the
reaction coordinate. Instead, we used the two-dimensional potential, U(x, y),
which is treated as a Potential of Mean Force (PMF) throughout this chapter,
and is given by:
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Figure 8.1: Demonstration of the effect of the parameters which control U(x, y).
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where h represents the saddle point height and d represents the depth of the
saddle point. The parameters m and n determine the sharpness of the free
energy peak. xlo and xhi determine the boundaries of the potential in the
x-direction. ylo and yhi determine the boundaries in the y-direction. Lx is
defined as Lx = xhi − xlo. The same applies for Ly. The parameter ∆U

determines the relative height of the potential at xxlo and xhi. For example,
a value of ∆U = 3 will set the potential to be 3 kBT higher at xhi than at xlo.
The functions σ(y) and ε(y) are given below, where σ0 and ε0 are adjustable
parameters.
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2

)
(8.2)

The function ε(y) makes the saddle point asymmetric along the y-direction.
The function σ(y) adds a skew to the barrier height, the extent of which is
controlled with the parameter σ0. Figure 8.1 shows a demonstration of how
all the parameters in equation 8.1 affect the shape of the potential.

Throughout this chapter, we use the x-coordinate as a reaction coordi-
nate. The reduced free energy as a function of the reaction coordinate x,
U(x), is defined by U(x) =

∫
y

exp[−U(x, y)/kBT ]dy (equation 3.90). Figure
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Figure 8.2: PMF as a function of x and y (top) and as a function of only x
(bottom) for σ0 = 0.0, 0.3, 0.6, 0.9 respectively (left to right). The dashed line on
the right-hand side indicates perfect agreement between the saddle point height
and the height of the coarse-grained barrier. The angle of the saddle point with
respect to the x-direction is observed to have a large effect on the height of the
coarse-grained free energy barrier.

8.2 shows a series of examples of U(x, y) for different σ0 parameters. The
free energy as a function of the reaction coordinate x is also calculated using
equation 3.90 and shown in f Figure 8.2. It can be seen that, as σ0 is in-
creased, the one-dimensional barrier height decreases, even though the true
barrier height remains the same. The parameter σ0 therefore tests the ap-
propriateness of using the x-coordinate as the reaction coordinate. It is also
clear from Figure 8.2 how methods such as transition state theory cease to
apply as σ0 is increased. A higher value of σ0 corresponds to a poor reaction
coordinate choice, whereas if σ0 ≈ 0, the use of the x-direction as a reaction
coordinate is suitable.

Throughout this chapter, we set kBT , m and the frictional force (γ in
Chapter 3) to 1 (see equation 3.123). For the PMF given by equation 8.1,
we used the following parameters: h = 15; d = 7; ε0 = 0.2; n = m = 4;
xlo = 0; xhi = 10. Where we examine non-Markovian kinetics, we set ∆U

to zero for simplicity. Where we examine rare event sampling, we set ∆U to
-5. This was done to ensure no details were overlooked by taking the specific
case where both wells are the same depth.
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Figure 8.3: visualisation of the discretisation of the system as a series of tran-
sitions to nearest neighbours over the two-dimensional PMF. An example of the
discrete x- and y-values is shown.

8.2 Emergence of non-Markovianity in dis-

crete transitions

We began by considering discrete transitions over the two-dimensional PMF
given by equation 8.1. Non-Markovianity is highly non-trivial to define in
a continuous setting, and attempts to do so typically involve solving the
generalised Langevin equation [153] for straightforward examples of memory
kernels. For coarse-graining a two-dimensional Markovian PMF into a one-
dimensional non-Markovian PMF, this approach becomes infeasible. How-
ever, constructing a series of discrete processes becomes far more palatable,
as the number of past configurations associated with an initial configuration
becomes a finite function of time. For example, for transitions only to nearest
neighbours allowed, the number of possible previous configurations is equal
to (2d)m, where d is the dimensionality of the system and m is the number
of transitions we consider.

8.2.1 Model for discrete transitions along the two-dimensional
PMF

In order to model discrete transitions over the PMF in equation 8.1, we define
a grid of 11 by 11 points and consider transitions between these points. The
x- and y-coordinates are therefore represented by

x = xi 0 ≤ i ≤ 10

y = yj 0 ≤ j ≤ 10
(8.3)
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where i and j are integers. Only transitions to nearest neighbours in the x-
or y-directions were allowed, e.g. xi → xi±1. Here, we apply rigid boundary
conditions (i.e. do not allow transitions beyond the simulation boundaries),
and only allow a single transition to take place at any given point. Since only
transitions to nearest neighbours were allowed, a maximum of four reactions
may occur at any given point (except at the boundaries where the number
of possible reactions is smaller due to the rigid boundary conditions). We
can therefore define a set of reaction rates, which we denote with Γxi→xi±1, yj

representing a transition along the x-direction, and Γxi, yj→yj±1
representing a

transition along the y-direction. In this chapter, we wish to treat U(x, y) as a
PMF. We therefore set the forward reaction rates (xi → xi+1 and yj → yj+1)
to 1t−1

0 , where t0 is the time unit of the system (and is set to 1 throughout
this chapter) and calculated the backward rates (xi → xi−1 and yj → yj−1)
using detailed balance. We can therefore define a set of master equations as
follows:

Γxi→xi+1,yj = 1, Γxi→xi−1,yj = exp

(
−U(xi−1, yj)− U(xi, yj)

kBT

)
Γxi,yj→,yj+1

= 1, Γxi,yj→,yj−1
= exp

(
−U(xi, yj−1)− U(xi, yj)

kBT

) (8.4)

where the backward rates are determined from the forward rates using de-
tailed balance. Since we are interested in integrating this model of a finite
number of discrete transitions over time, given a set of reactions, the algo-
rithm we use to update the i and j indices is the Gillespie algorithm, which
is the same algorithm as the one used to integrate KMC models over time
(see Section 3.4.6).

8.2.2 Coarse-graining and non-Markovian transitions

Our intention here is to uncover barrier crossing rates for a coarse-grained
PMF in both Marvkovian and non-Markovian settings. In other words, we
want to calculate the corresponding average reaction rates in the x-direction
and use them to run a one-dimensional simulation. Calculating the aver-
age reaction rate in a Markovian setting is straightforward. We can de-
fine Γxi→xi±1

as the average reaction rate representing a transition in the
x-direction only as a function of the x-coordinate, The values of Γxi→xi±1

in
a Markovian setting are obtained by integrating over the y-direction. In our
discrete setting, the integral is replaced by a sum over all possible j values:

Γxi→xi±1
= 〈Γxi→xi±1,yj〉 =

∑
j

Pyj |xiΓxi→xi±1,yj (8.5)

where Pyj |xi is the probability of finding a y-position of yj given that its
x-value is equal to xi. It should be noted here that

∑
j Pyj |xi ≡ 1. While



147 8. NON-MARKOVIANITY: ORIGINS AND IMPACT ON RARE EVENT SAMPLING

the values of Γxi→xi±1
are calculable analytically, we instead derive the value

numerically by running a two-dimensional simulation, and calculating all
Γxi→xi±1

values by averaging the time taken for all xi → xi±1 reactions to
occur:

Γxi→xi±1
=
〈
Txi→xi±1

〉−1
(8.6)

where Txi→xi±1
is the average time taken for the transition of xi → xi+±1 to

occur, which can be directly calculated during simulations. While equations
8.5 and 8.6 are both fairly intuitive, their equivalence is not immediately
obvious. A proof of their equivalence can be found in Section A.1.1.

While the above method is applicable for a Markovian setting, the prob-
lem becomes more difficult when we wish to derive a set of non-Markovian
master equations. If the system is completely Markovian, then Γxi→xi±1

will
only be dependent on the value of xi. However, we can see in figure 8.2 that
this cannot be true when σ0 is non-zero. Instead, we assume that Γxi→xi±1

is non-Markovian, and instead attempt to derive values for Γxi→xi±1
based

also on previous xi-values. Methods do exist which generalise the Gillespie
algorithm to allow for non-Markovian processes [154, 155]. However, these
algorithms are difficult to implement when directly deriving memory from
prior simulations. Instead, we define our own method in which which we cal-
culate a series of reaction rates dependent on previous conditions. Consider
Figure 8.4. When the transitions are limited to xi → xi±1, there are a num-
ber of possible pathways leading to point x3 at step n. The total number of
pathways leading to point n (ignoring boundary conditions) is given by 2m,
where m is the number of previous transitions that we wish to remember.
This number is the same for all xi-values if we ignore boundary conditions.

With this in mind, a set of non-Markovian reaction rates can be derived
by calculating separate transition rates given each possible set of previous
configurations. Instead of deriving two transition rates at each n, a total of
2m rates given previous pathways of length m can be derived. In a completely
Markovian setting, the reaction rates will be identical given every previous
pathway. In a non-Markovian setting, all 2m rates are independent. For
example, if we wish to take into account one previous configuration, we can
define Γxi→xi±1|xi−1→xi as the reaction rates for the xi → xi±1 reactions, given
that the previous reaction leading to xi was an xi−1 → xi. We can also
extend this to account for an arbitrary number of previous configurations
e.g. the green path in Figure 8.4 represents a transition from x3 at step n to
x4 at step n+ 1. The reaction rate is given by Γx3→x4|x3→x2→x3 . For the sake
of efficiency, we define a series of coefficients, M, representing each reaction
rate. For example, if we wish to store all reaction rates given knowledge of two
previous configurations, we can defineMα,β,i,±1 = Γxi→xi±1|xi−α−β→xi−α→xi for
α, β, γ = ±1. Taking the green path in Figure 8.4 as an example, we have
M−1,1,3,1 = Γx3→x4|x3→x2→x3 . The number of indices subtracted by 2 gives the
number of previous configurations remembered. For example, if we wished to
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Figure 8.4: Diagram of all possible pathways leading to point x3 at step n given
only one-dimensional transitions to neighbouring points. Two such pathways are
highlighted in red and green.

forget the configuration at step n− 2, we could writeM1,3,1 = Γx3→x4|x2→x3 .

For any number of coefficients remembered, the coefficients ofM can be
calculated numerically from a stationary simulation of diffusion over the two-
dimensional PMF by averaging the time taken for each transition to occur
given each possible pathway. In this section, we derive reaction rates with a
memory of up to four previous transitions as follows:

Mα,i,±1 =
〈
Txi→xi±1|xi−α→xi

〉−1

Mβ,α,i,±1 =
〈
Txi→xi±1|xi−α−β→xi−α→xi

〉−1

Mγ,β,α,i,±1 =
〈
Txi→xi±1|xi−α−β−γ→xi−α−β→xi−α→xi

〉−1

Mδ,γ,β,α,i,±1 =
〈
Txi→xi±1|xi−δ−α−β−γ→xi−α−β−γ→xi−α−β→xi−α→xi

〉−1

(8.7)

where α, β, γ, δ = ±1 and T are the transition times analogous to equation
8.6 but with separate transition times given a previous pathway. Note that
equation 8.7 is effectively a non-Markovian analogue of equation 8.6.

We examined the free energy barrier crossing rate in two settings: first, we
examined the crossing rate for a simulation over the two-dimensional PMF
with transitions allowed in both x- and y-directions; second, we examine the
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crossing rate in a one-dimensional coarse-grained space in which the transi-
tion rates are given by equation 8.6 in the Markovian case, and equation 8.7
in the non-Markovian case. If the calculated barrier crossing rates are simi-
lar, the coarse-graining can be considered accurate. If they are not similar,
however, the coarse graining has neglected crucial detail.

We began by carrying out two-dimensional simulations, where we calcu-
late the correct barrier crossing rate. The imaginary particle, which repre-
sents the current configuration, begins at (xlo, yhi + ylo/2) which corresponds
to one of the free energy minima. Every time the particle’s x-position reaches
xhi, it is returned to (xlo, yhi+ylo/2) and a crossing is recorded. We then ran
another simulation in two dimensions where we use equations 8.6 and 8.7 to
derive Markovian and non-Markovian transition rates along the x-direction.
These reaction rates are then used to simulate barrier crossings in one dimen-
sion. In this instance, we calculated crossing rates by returning the particle
to xlo as soon as it reaches xhi. The processes, along with the number of
iterations used in each case, is summarised below:

• Calculate the crossing rate from simulations in two dimensions by al-
lowing the particle to return to x0 when it reaches x10: 2×108 iterations.

• Run a simulation in two-dimensions without enabling crossings (i.e.
not returning the particle to x0 when it reaches x10). As the simulation
runs, store the previous four configurations, and use the reaction times
to calculate Γxi→xi±1

(Markovian) and allMα,i,±1,Mβ,α,i,±1,Mγ,β,α,i,±1

and Mδ,γ,β,α,i,±1 coefficients (non-Markovian): 6× 108 iterations.

• Run a simulation in one-dimension using the derived rates and coef-
ficients as reaction rates. Calculate the crossing rate by allowing the
particle to return to x0 when it reaches x10, and compare with the first,
two-dimensional simulation: 1× 108 iterations.

8.2.3 Results

The process detailed above was carried out for a series of random walks
over the potential given by equation 8.1, using variations of σ0 between 0
and 0.8 in increments of 0.1. The non-Markovianity of the system varied
between a memory of one one-dimensional transition to a memory of four
one-dimensional transitions in increments of one.

Figure 8.5 shows the results of the ratio between coarse-grained crossing
rates and true crossing rates. The dashed line at 1.0 indicates perfect agree-
ment. Turning our attention first to the Markovian limit, it is apparent that
an increase in σ0 causes the ratio of crossing rates to diverge, i.e. the one-
dimensional random walk produces a far larger barrier crossing rate than the
correct crossing rate obtained from a random walk over the two-dimensional
PMF. This can be easily understood with reference to Figure 8.2. The skew-
ing of the saddle point results in a random walk over a one-dimensional
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Figure 8.5: Ratio of coarse-grained crossing rates using reaction rate derived
using the method presented in Section 8.2.2. Here, the process is repeated for a
memory of zero, one, two, three or four previous transitions along the x-coordinate.
The dashed line indicated perfect agreement between the (correct) two-dimensional
simulations and the (coarse-grained) one-dimensional simulations.

PMF with a smaller peak. By deriving the average reaction rates over the
x-direction, we effectively coarse-grain the potential over which the particle
travels to produce a walk over a PMF with a smaller peak.

It is clear that coarse graining under certain conditions does not preserve
the kinetics in the Markovian limit. However, Figure 8.5 also shows the ratio
of crossing rates for non-Markovian walks with a memory ranging from one
previous transition to four previous transitions. Under these conditions, the
crossing rate ratio is less sensitive to σ0. The sensitivity to σ0 is reduced for
every increased number of transitions memorised. With a memory of three or
four transitions, the crossing rate becomes over an order of magnitude smaller
than the Markovian limit. It is clear that imposing non-Markovian kinetics
on the coarse-grained system produces barrier crossing rates more similar to
those of the original system. To understand why this is, consider Figure 8.6.
If the particle resides at x4, having been initiated at x0, it is most likely to
reside below the saddle point (i.e. have a lower y-coordinate value than the
saddle point). The most likely transition from x4 to x5 will therefore occur
below the saddle point. However, the most likely transition from x5 to x6

will occur above the saddle point. However, a large barrier in the y-direction
exists separating these two reactions. Without memory, the one-dimensional
transition rates do not take into account this separation, and the crossing
rate is significantly increased, due to the favouring of transitions occurring
on opposite sides of the saddle point. However, consider the case where
reaction rates are also dependent on the previous configuration. A transition
from x4 to x5 is again most likely to occur below the saddle point. However,
the transition from x5 to x6 given a previous transition from x4 to x5 has
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Figure 8.6: Schematic demonstrating why invoking memory gives rise to im-
proved kinetics. If the coarse-grained system is treated as Markovian, the main
contribution to the reaction rates for neighbouring sites may be over regions either
side of the saddle point. However, if memory is added, the reaction rates take into
account the increased likelihood that a transition from x4 to x5 will result in a
transition back to x4.

already indicated that the particle is most likely residing below the saddle
point. Based on the information supplied by the previous configuration, the
system now knows that it is far more likely that the particle will return to
x4, rather than progress to x6. This is reflected in the transition rates. If the
skew of the saddle point (σ0) is increased further, the transition from x5 to
x6 may eventually also be most likely to occur below the saddle point. At
this point, a memory of two or more transitions will recover the kinetics to
a more accurate degree.

Figure 8.5 has demonstrated how non-Markovian kinetics can arise, even
in straightforward cases such as our toy model, from the neglect of detail of
configuration along dimensions of phase space normal to the reaction coor-
dinate. A Markovian description of the kinetics is only valid when as little
detail as possible is neglected, such as when σ0 ≈ 0 in our example. In the
absence of non-Markovian corrections to the dynamics, barrier crossing rates
may be highly sensitive to our choice of reaction coordinates.

8.3 Characterising the failures of rare event

sampling methods owing to unsuitable re-

action coordinates

As discussed above, it is well established that rare event sampling techniques
require a careful selection of reaction coordinates in order to accurately cal-
culate free energy functions. What is not established is how exactly a poor
reaction coordinate manifests in the convergence of the free energy function,
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and how to use the data from rare event sampling to determine whether the
reaction coordinates used are appropriate. Fortunately, our two-dimensional
model offers a framework through which these details may be established.
By knowing when a reaction coordinate is a poor choice, the model can be
used to compare the output of simulations between high and low values of σ0.
Throughout this section, we use the parameters listed previously, and differ-
entiate between an appropriate and inappropriate reaction choice by setting
σ0 to either 0 or 0.5. We proceed to use various rare event sampling tech-
niques with the x-axis as the reaction coordinate in an attempt to replicate
the coarse-grained one-dimensional PMF.

8.3.1 Kinetics over the two-dimensional PMF in the
continuous limit

In order to run rare event sampling techniques on our two-dimensional PMF,
we must design a continuous analogue of the model described in Section
8.2.1. In order to do so, a two-dimensional Langevin process, with equation
8.1 supplying the potential, was used. In order to allow the process to be
evaluated numerically, we solved for an Itô process, by specifying a finite
time interval δt and using the techniques discussed in Section 3.4.3. The
noise on both dimensions is therefore given by a Gaussian-weighted random
number with a mean of zero and a variance of δt as required (see Chapter
3). The application of an Itô process under the potential U(x, y) produces
a canonical distribution as demonstrated in Section 3.4.5. The potential
U(x, y) can therefore be treated as a PMF as is done in the previous section.
We therefore refer to U(x) as ∆G(x) throughout this Section to clarify its
purpose as a PMF.

8.3.2 Rare event sampling techniques

In order to characterise the breakdown of numerical rare event sampling
techniques in the absence of suitable reaction coordinates, we use several
techniques in an attempt to reconstruct the coarse-grained one-dimensional
free energy surface for different values of σ0. We apply these techniques to
our two-dimensional Langevin process. In every instance, we choose the x-
coordinate as our reaction coordinate. When σ0 6= 0, the skew inhibits the
suitability of the x-coordinate as a reaction coordinate.

The first, rare event sampling technique we consider is metadynamics.
As metadynamics is used extensively in chapters 5 and 6, it makes a good
starting point for this section. With reference to equation 3.95, we set W0 =
1 kBT , σ to 0.2 and τ to 200 time-steps in this chapter. We also apply well-
tempering, with the bias-factor set to 12 (the height of the saddle point).
The simulation consisted of a brief equilibration of 5 × 104 timesteps and a
production run totalling 3× 107 timesteps was carried out.
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Our second choice of rare event sampling technique is umbrella sampling.
Here, we follow the method discussed in Section 3.3.4. We use a series of
harmonic springs, each with a spring constant of 50 kBT to tether the particle,
and the spacing between windows (see chapter 3) was set at 0.12. For every
new window, a random number in the y-direction was chosen, and a brief
equilibration run of 4× 103 timesteps was carried out, and a production run
totalling 3× 105 timesteps was then carried out.

Our third choice of technique is Mean Force Integration (MFI). Here,
we use the same simulation setup as for the well-tempered metadynamics
simulations, and post-process the results of the simulations using the MFI
algorithm (see Section 3.3.7). We also use a kernel width (h) of 0.2 (see
Section 3.3.8), and output the collective variable (x) every 20 timesteps (so
10 kernels are added for every Gaussian added to the bias).

Our final choice of rare event sampling method is the Jarzynski approach.
As discussed in Section 3.3.8, we tether the particle to a moving harmonic
spring with a spring constant of 50 kBT . The spring moved along the x-
direction (the reaction coordinate) between x = −2 and x = 12. The particle
started at either x = −2 or x = 12 and, after an equilibration process lasting
2 × 104 time-steps, travelled to the other x-coordinate over a timespan of
2× 105 time-steps. This process was repeated 100 times.

8.3.3 Breakdown of rare event sampling methods

Before looking into each method, it is useful to determine exactly what hap-
pens when rare event sampling methods are applied to simulations when the
reaction coordinate is inappropriate. To resolve this, we run 50 separate sim-
ulations using metadynamics, umbrella sampling and mean force integration
(we do not consider the Jarzynski method here for reasons discussed later).
We use the parameters discussed in Section 8.3.2 for each simulation. We
output the final derived free energy profiles in each case and average them
as shown in Figure 8.7. The standard deviations are also shown, as are the
results from each separate simulation. We do this only for the poor reaction
coordinate case (σ0 = 0.5). In the limit of σ0 ≈ 0, all free energy methods
are unsurprisingly able to reproduce the correct free energy surface. We do
not show the results of this though, as they are of no interest.

From Figure 8.7, it is clear that all methods fail to replicate the correct
one-dimensional free energy surface. The reasons for this are as follows: a
statistically accurate method will reproduce a probability density as given
by the correct one-dimensional free energy surface. However, when a poor
reaction coordinate is used, the height of the one-dimensional barrier is lower
than the true height of the saddle point (see Figure 8.2). This means that
a reproduction of the correct free energy surface will not yield a bias with
enough force to drive the particle through the saddle point. This results in
a final free energy surface which is inaccurate, and varies roughly around
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Figure 8.7: Results of 50 umbrella sampling, metadynamics, and mean force
integration simulations for our two-dimensional PMF with σ0 = 0.5, with the x-
coordinate used as the reaction coordinate. The grey shaded region represents the
correct PMF, obtained by integrating equation 8.1 over y using equation 3.90. The
narrow, blue lines show the individual PMFs derived from every separate simula-
tion, and the thicker blue line indicates the PMF averaged across all simulations.
These results of each simulation, along with the mean, are used to calculate a
standard deviation. This standard deviation is shown in the blue shaded region.
The standard deviation calculated here is not to be confused with the sampling
error of each separate simulation. Rather, it gives an indication of the degree of
convergence reached for each rare event sampling technique.

the correct free energy surface with a standard deviation dependent on the
rare event sampling method of choice. This is due to either an asymmetric
accumulation of Gaussians on one side of the well (metadynamics), or the
rapid transition from high-energy to low-energy states that does not appear
to affect the probability density (umbrella sampling). We further elaborate
on these details in the following sections.

It is important to note here that only the output of a single simulation will
be available in practice. Determining the validity of the reaction coordinate
choice is therefore a decision which must be made from the data of a single
simulation. We therefore proceeded to examine the output and errors of
single simulations in order to determine whether it is possible to assess the
validity of the reaction coordinate. We also wish to be able to quantify
the error that arises from using a poor reaction coordinate and determine
whether it represents the true error of the simulation arising from a poor
reaction coordinate choice.

A closer look at umbrella sampling

Of the three methods used, the standard deviations in Figure 8.7 show that
umbrella sampling is the least susceptible to the errors that arise from us-
ing poor reaction coordinates. This may appear to indicate that umbrella
sampling is a better choice than metadynamics or mean force integration.
However, there are several caveats to this. Figure 8.8 shows a single simula-
tion where the derived PMF produced differs significantly from the correct
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Figure 8.8: Result of a single umbrella sampling simulation with the sampling
error highlighted. The simulation has produced an inaccurate free energy surface,
which is not accounted for by the sampling error.

PMF. Here, the sampling error is calculated using Monte Carlo (MC) boot-
strapping, in which subsets of each histogram are sampled at random. For a
true estimate of the error, an agreement with the standard deviation shown
in Figure 8.7 should be observed. This is not what is observed here. The
error obtained from MC bootstrapping is far smaller than the true error, and
does not account for the difference between the derived and true PMF.

The reason for the inaccuracy observed in Figure 8.8 is fairly straight-
forward: as different regions of phase space are sampled in the x-direction,
the particle may be on either side of the saddle point, due to the skew in
the y-direction. The particle may spend the entire simulation time on one
side of the barrier in one window, only for its neighbour to spend the en-
tire simulation time on the other side of the barrier. The sampling error
obtained from MC bootstrapping only samples subsets within the final data,
and therefore does not take into account the errors the arise due to random
barrier crossings. This is an extension of an already established flaw of um-
brella sampling: it does not directly simulate barrier crossing events. This
reveals an important caveat to umbrella sampling in general: when a poor
reaction coordinate is used, there is no obvious way of knowing whether a
suitable reaction coordinate is in use. Despite the fact that the simulation
appears to converge and produce a PMF, the PMF it produces is incorrect.
Since there is no way of immediately knowing the suitability of the reaction
coordinate, a major flaw of umbrella sampling is that, when it goes wrong,
there is no way of knowing it has done so.

A further caveat to umbrella sampling is that the choice of sampling along
regions of phase space perpendicular to the reaction coordinate (in our case
the y-direction) may also affect the final result. In our instance, we sample
initial y-configurations by choosing a random point in the y-direction and
equilibrating, something we expect to be similar to a more practical simu-
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lation set-up. An alternative would be to not re-sample in the y-direction
for each window, and instead drag the particle along the x-coordinate, some-
thing we also attempt. The results of this are shown in Figure A8, in which
plots similar to Figure 8.7 are shown. Unsurprisingly, an asymmetry in the
derived PMFs arises based on the starting configuration. We elaborate on
this further in Section 8.3.3 in the context of the Jarzynski method.

A closer look at well-tempered metadynamics

Despite being the least susceptible to the effects of using poor reaction co-
ordinates, umbrella sampling has been shown to have a risk attributed to it,
due to the lack of knowledge of whether the reaction coordinate is suitable.
Well-tempered metadynamics has been shown to have a larger degree of error
associated with it. Nevertheless, there is one distinct advantage of metady-
namics. Figure 8.9 tracks the shape of the returned PMF from the bias as
a function of the number of Gaussian hills deposited. The PMF is again
normalised so that the height of the right well is correct, meaning the height
of the left well can be easily tracked, as is done in Figure 8.9. It is clear that
the height is fluctuating wildly as the simulation progresses. The reason for
this is as follows: the reaction coordinate is not able to directly force a bar-
rier crossing event to take place. Instead, the particle spends an additional
amount of time on one side of the barrier, resulting in an accumulation of
Gaussian hills on one side of the barrier. When a crossing does take place,
the Gaussian hills start to accumulate on the other side of the barrier. This
is what causes the changes in direction along the y-axis in Figure 8.9, each
change in direction corresponds to a crossing. The snapshots in Figure 8.9
demonstrate how convergence is not observed, due to the fluctuating shape
of the returned PMF.

An important advantage of metadynamics arises from Figure 8.9. It is
clear from the output of the hills that the simulation is not converging due
to a poor choice of reaction coordinates. Such information is not accessible
in umbrella sampling. This is an advantage of metadynamics that arises
from the ability to sample barrier crossings, even in certain examples of poor
reaction coordinates, such as our example. It is worth noting, that a reaction
coordinate can be considered inappropriate in more ways than the having a
skewed saddle point. Nevertheless, as long as the reaction coordinate does
allow a crossing event to take place, its suitability can be easily assessed from
a single metadynamics simulation.

A closer look at mean force integration

One important use of MFI is its ability to produce an error which accounts
for the evolving bias potential. By block averaging the numerator and de-
nominator components of equation 3.104, an estimate for the standard error
for each component can be calculated. These errors can be propagated when
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Figure 8.9: Result of a single metadynamics simulation detailing the height of
the left-hand well as a function of the number of hills accumulated. The output
of the collective variable x (Colvar) is also shown, as are the outputs of the bias
at two time intervals, labelled a and b.

Figure 8.10: Result of a single MFI simulation with the sampling error high-
lighted. The simulation has produced an inaccurate free energy surface, although
the error calculated by block averaging has accounted for this error.

the mean force is calculated and integrated to produce the PMF. Figure
8.10 shows an example of an MFI simulation with the estimated standard



8.3. CHARACTERISING THE FAILURES OF RARE EVENT SAMPLING METHODS OWING TO
UNSUITABLE REACTION COORDINATES 158

error. Although the correct PMF has not been produced, the standard error
calculated from MFI are large enough to account for the true error of the
simulation. MFI therefore offers a distinct advantage over umbrella sampling
and metadynamics in the sense that the error of the simulation can be quan-
tified and the level of convergence assessed to a degree not possible with the
sampling error obtained from bootstrapping.

A closer look at the Jarzynski approach

So far, the Jarzynski approach has not been discussed in terms of its failures
when using a poor reaction coordinate. The reasons for this become clear
upon the examination of Figure 8.11: instead of many simulations produc-
ing PMFs which fluctuate about the correct values, the Jarzynski approach
produces simulations which average about an incorrect shape. This incorrect
shape is dependent on the direction of travel of the particle. The reason for
this discrepancy in direction is fairly intuitive: as the particle is dragged in
the x-direction, it is free to move in the y-direction. Therefore, as the parti-
cle is forced towards the barrier, it travels in the y-direction away from the
saddle point towards a region of lower free energy (see Figure 8.2). Rather
than crossing the barrier at the saddle point, the particle instead crosses at
another region of the barrier where the free energy is higher. This is why the
free energy continues to increase beyond the saddle point. Furthermore, after
the barrier is crossed, the particle is able to traverse along the y-direction to
a region of lower free energy without moving in the x-direction. This is not
picked up by the work done in the x-direction, therefore a lot of information
is lost after the barrier is crossed.

Figure 8.11 shows that the standard errors produced by the simulation are
larger than those produced by umbrella sampling. However, these standard
errors are still very limited in accounting for the difference between estimated
and exact free energy surfaces. Therefore, much like umbrella sampling, the
Jarzynski approach must be used with caution. One approach for validating
the derived PMF could be to run the simulation in reverse i.e. start from
the other side of the barrier. However, the main advantage of the Jarzynski
approach is that it can be used for processes which cannot be easily reversed.

8.3.4 Revisiting Chapters 5 and 6: does dehydration
matter after all?

In Chapters 5 and 6, we derived free energy landscapes for solutes adsorbing
to calcite surfaces using a combination of reaction coordinates describing the
positions components of a solute and, in some cases, the hydration of the
lattice sites. The validity of the combination of reaction coordinates applied
is frequently discussed. For example, the need to dehydrate cations, either
in solution (Chapter 5) or as part of a lattice site (Chapters 5 and 6), forms
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Figure 8.11: Results of two simulations applying the Jarzynski approach from
two separate starting points and directions of travel. The standard errors for
each simulation are also shown. The two free energy surfaces are shifted in the
y-direction such that they correspond with the well that they start in. This is
not to be misinterpreted to assume that the combination of the two produces the
correct free energy surface.

a significant component of the discussion. By a stroke of luck, the rare event
sampling method of choice was metadynamics, the method determined in
this chapter to offer a far superior insight into the validity of the reaction
coordinates. This allows us to revisit the results of Chapters 5 and 6, and
determine more rigorously whether dehydration is important in each case.

Lone Ca ions

In Chapter 5, we concluded that dehydration of lone Ca ions was not nec-
essary. This came down to two reasons: first, the free energy barriers from
dehydration were found to be relatively small (Figure 5.3); second, the free
energy surfaces obtained with and without dehydration were found to con-
verge to very similar functions for two kink types (Figure A2). While this is
a reasonable amount of evidence that dehydration is not necessary here, it
would be of interest to determine whether this conclusion is supported by the
history of the bias potential. We observed in Section 8.3.3 that an inappro-
priate choice of reaction coordinates will become apparent in the fluctuation
of the bias potential over time. This can easily be examined by outputting
the calculated bias potential at different intervals over the simulation and
determining whether the bias potential fluctuates significantly over time.

Figure 8.12 shows the bias potential outputted at different time intervals
for the kink sites examined in Section 5.4 and also shown in Figure A2. Sur-
prisingly, each free energy surfaces shows a significant degree of fluctuation
over time, irrespective of whether dehydration has been applied. For the
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Figure 8.12: Free energy calculations for Ca ions as a function of their distance to
the a(ii) and c(i) kinks with and without dehydration. These free energy surfaces
are from the same simulations used to derive figure A2, except the calculated free
energies have been outputted multiple times over the course of each simulation.
The frequency at which the free energies were outputted was dependent on the
simulation, as the total simulation times were different in each case.

a(ii) kink, the bias appears to fluctuate by a slightly greater amount when
dehydration has not been applied, indicating that the lack of dehydration
has impacted the convergence of the simulation. This is much less apparent
for the c(i) kink, where the bias fluctuates by a very similar amount with and
without dehydration. What is most surprising, however, is that the bias does
fluctuate quite significantly even when dehydration is applied. The largest
degrees of fluctuation are for the dissolved states, where the outputs of the
bias fluctuate over more than 10 kJ/mol in each instance. It is worth noting
that, in Chapters 5, we only biased the position component of the adsorbate
normal to the {10.4} surface (the z-direction in simulations), while allowing
movement along the perpendicular (x, y)-components within a set of con-
straints (see Figure 4.3). It may be that this apparent lack of convergence
has arisen because we neglected the (x, y)-components of the position of
the adsorbate. It appears that, while including more reaction coordinates in
Chapter 5 may have been ideal, it may be more beneficial to examine other
spatial components, rather than dehydration.
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Asp binding to kink sites

In Chapter 6, we examined the binding of asp to the a(ii) Ca-terminated
kink site, and found that the most stable configuration corresponded to one
where the carboxyl groups only adsorbed to the upper terrace, similar to the
bidentate configuration observed in Chapter 5. This was later generalised to
all kink sites under the assumption that dehydration of the kink site isn’t
necessary. While this gave rise to results which ultimately were in agreement
with experimental calculations, we later examined the hydration of all nearby
Ca ions, and found the binding to some kink sites actually did cause the dis-
placement of some water molecules near the a(ii) kink site (see Figure 6.12).
While this wasn’t an issue for the remaining a- and d-kinks, this observation
does highlight that there could be potential inaccuracies in out results which
could arise from dehydration. Since we also used metadynamics in Chapter
6, we are again in a position to test whether the reaction coordinates chosen
were suitable. Unfortunately, in simulations carried out in Chapter 5, we did
not output the value of the reaction coordinates frequently enough to apply
Mean Force Integration, which is why we only examine the history of the bias
potential in the previous section. However, in Chapter 6, we outputted the
bias potential every 0.2 ps (corresponding to τ = 10, see Equation 3.104).
This allows us too apply Mean Force Integration and directly examine the
error of each simulation.

Applying Mean Force Integration to simulations with multiple walkers
becomes significantly more difficult for the following reason: as a single sim-
ulation runs, the bias is updated after a specified number of timesteps by
appending the Gaussian hills accumulated over all other walkers to the bias.
Keeping track of this is difficult, as not all simulations will run at the exact
same speed. If one simulation runs slower than another, it may accumulate
an additional set of hills from the other walker, whereas the other walker
will not accumulate any hills from the first. This becomes an issue, as Mean
Force Integration requires knowledge of the exact value of the bias potential
at all times. While calculating a near estimate of the bias potential as a
function of time is easily achieved by simply ordering the Gaussian hills by
time, applying Mean Force Integration to this estimate of the bias will pro-
duce an inaccurate estimate of the free energy surface which will not reduce
over time. For this reason, we do not calculate the free energy surface using
Mean Force Integration here. We can, however, use Mean Force Integration
to calculate an error as discussed in section 8.3.3. We reason that, while the
free energy surfaces produced will be inaccurate, the difference will be small
and will have very little effect on the magnitude of the standard error. It
should be noted that this approach will not represent the exact error of the
free energy derived from metadynamics, but will offer quantitative measures
of convergence which can be compared with one another.

Figure 8.13 shows the free energy surfaces as calculated in Chapter 6,
along with the errors calculated using Mean Force Integration, for the a(i),
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Figure 8.13: Free energy of asp as a function of its distance to the a(i), a(ii),
b(ii) and d(i) kinks (shown in orange) with the error calculated using mean force
integration (shown in blue). The errors for the a(ii) and b(ii) kinks are slightly
larger than the other two, most likely due to the displacement of strongly-bound
water at the kink site brought about by the binding of asp (see figure 6.12).

a(ii), b(ii) and d(i) kinks. We have omitted the result for the d(ii) kink for the
sake of easier viewing, as the error is very similar to that of the d(i) kink, and
therefore does not offer any additional value. It was found in Chapter 6 that
the binding of asp to the a(ii) and b(ii) kinks resulted in the displacement
of a single water molecule from the terminating Ca ion, whereas binding to
the a(i), o(i) and o(ii) kinks did not displace any water molecules from the
surface. This is somewhat reflected in the errors shown in figure 8.13: the
errors for the a(ii) and b(ii) kinks for the unbound state (4.0 kJ/mol and 3.8
kJ/mol respectively) are marginally higher than those for the a(i), d(i) and
d(ii) kinks (3.5 kJ/mol, 3.6 kJ/mol and 3.5 kJ/mol respectively). It should
be noted that these values are calculated by averaging the errors between 15
and 20 Å from the surface(as is done to calculate the simulation free energy,
see Figure 6.8). While it is apparent that the displacement of the water
molecule causes an increase in the error of the simulation, the difference is
surprisingly small. It appears that the dehydration of nearby ions has very
little impact on the convergence of the metadynamics simulation. It should
again be noted, however, that these errors are still relatively large, similar to
what is observed in the previous section. Again, it is quite likely that these
errors arise from the fact that we have only biased a single spatial component
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while constraining the other spatial components within a region.

Can we trust our results?

One reoccurring theme in this section is that we have consistently found a
fair degree of uncertainty of our results. We may expect to find a sampling
error on the order of magnitude of 1 kBT, but our errors are larger, indicating
that convergence may also be a source of uncertainty. It is important, at this
point, that we discuss the validity of our conclusions in previous chapters.

In Section 8.3.4, we found that dehydration is not completely insignifi-
cant at least for the a(ii) kink, although any uncertainty arising from this is
dwarfed by a more consistent uncertainty, which we attribute to other ne-
glected reaction coordinates (most likely other spatial components). While
it is difficult to make rigorous conclusions based on the results of Figure 8.12,
we consider it likely that the true errors of the simulation are greater than 1
kJ/mol. While this does mean that the adsorption energies calculated in Ta-
ble 5.1 should be considered with some degree of caution, we should also note
that the main conclusions of Chapter 5 are not affected by this uncertainty
due to convergence. For example, we observe in Figure 8.12 that the Ca ion
adsorbing to the c(i) kink always favours the bidentate configuration. When
we compare this to figure 8.9 (which shows a far more significant fluctuation
of the free energy landscape throughout the course of the simulation), it is
clear that the uncertainty is nowhere near large enough to cast any ambigu-
ity over whether the c(i) Ca kink favours the bidentate configuration. The
conclusions in Chapter 5 (that many ions do not adsorb directly into the
lattice site and that calcite growth is often multistep) therefore remain the
same regardless.

In section 8.3.4, we found that the displacement of water molecules near
the kink site due to the binding of asp had little impact on the conver-
gence of the simulations. This is greatly reassuring regarding the conclusions
of Chapter 6. However, we again found a significant degree of uncertainty
due to convergence. We should reiterate that the MFI uncertainty does not
necessarily equal the error of the simulation, however it is clear that there
is some degree of uncertainty which cannot be explained by the sampling
errors of the simulations. While this again means the exact calculations of
adsorption free energies should be approached with caution, we also note that
the experimental values for asp adsorption free energies discussed in Chap-
ter 6 varied between -17.1 kJ/mol and -21 kJ/mol. The difference between
these values alone is about the same as the errors calculated using Mean
Force Integration. Considering both the experimental and computational
uncertainties, the consistency between experimental and computational ad-
sorption free energies remains intact, and our conclusions do not change. We
should note, however, that some of the results in Chapter 5 may be highly
sensitive to these convergence errors. The most notable examples are the
morphologies calculated in Section 6.2.5. These morphologies are dependent
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on the adsorption and dissolution rates of asp in the KMC model used, which
are dependent on the exponents of the adsorption free energies. These re-
action rates, and therefore the predicted morphologies of the growth island,
are therefore highly sensitive to these convergence issues. This itself isn’t
an issue however, since the results of this section were largely inconclusive
anyway.

8.3.5 Towards a rare event sampling method for han-
dling poor reaction coordinates

The best way to avoid the issues described above is to identify and include
the necessary collective variables for isolating reactant and product states.
Knowing when to do this isn’t always obvious from simulations, although
we note that metadynamics-based techniques are far more able to identify
when an important collective variable is missing. However, a far superior
way around this would be to implement a technique which can correct for
the errors arising from poor reaction coordinates.

This could exist in two forms. One means could be to introduce some
kind of memory to a metadynamics-based approach. Figure 8.5 demonstrates
that adding memory to a simulation is able to improve the calculated crossing
rate. Applying a similar approach to a bias potential may be possible. This
could be used to overcome the difficulties discussed in this chapter without
the need for searching for additional reaction coordinates. Another approach
could be to post-process the output of e.g. a metadynamics simulation in an
attempt to estimate the true PMF. For example, one interesting observation
to be made about the results of these simulations is that the Jarzynski ap-
proach produces an accurate estimate on the side of the saddle point at which
it starts. The method starts to fail in the vicinity of the saddle point. A
similar point can be made about the output of metadynamics simulations at
different points in time. This isn’t to say that either approach could be used
to overcome the issues presented by poor reaction coordinate. For that to
work, the free energy difference between reactant and product states would
have to be known. This cannot be obtained through any of the methods
studied here, although the exact position of the saddle point could give an
estimate of where the ’forward’ and ’backward’ free energy plots meet. Cal-
culating the position of the saddle point may be possible from the output of
a metadynamics simulation such as the one in Figure 8.9, in which a visual
distinction can be made between reactant and product states from the output
of the collective variable as a function of time. It may be possible to use this
data to estimate the position of the saddle point. We do not offer a means to
do so, neither do we propose a method which involves a memory-dependent
bias. However, the work carried out throughout this chapter provides a basis
on which such a method could be proposed.
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8.4 Conclusions

This chapter began by modelling a discrete barrier-crossing process in two
dimensions, and examining the same process over a coarse-grained, one-
dimensional barrier. To do so, we developed a toy PMF, with a tunable
parameter determining the skew of the saddle point separating reactant and
product states. Taking the x-component of the PMF as a reaction coordinate,
we were able to see important detail neglected in the one dimensional PMF in
the form of a reduction of the free energy barrier height when the saddle point
was skewed. Deriving Markovian reaction rates along the x-direction resulted
in a overestimated crossing rate. However, introducing non-Markovianity by
deriving reaction rates based on previous configurations provided a correc-
tion to the barrier crossing rate. Our results have demonstrated that coarse
graining introduces non-Markovian kinetics into the coarse-grained system.
The extent of the effects on non-Markovianity are dependent on the extent
to which the free energy barrier height is underestimated.

We proceeded to turn to a scenario seen in practice: one in which rare
event sampling methods are used to attempt to recover the one-dimensional
surface where the reaction coordinate is unsuitable, i.e. the coarse-grained
kinetics are non-Markovian. The methods applied were metadynamics, um-
brella sampling, mean force integration and the Jarzynski method. Apart
from the Jarzynski method, all methods produced a PMF which varied signif-
icantly about the true PMF based on the initial velocity seed. In every case,
the method breaks down for the same reason we observe non-Markovianity:
the reaction coordinate choice neglects an important component of the multi-
dimensional saddle point, which results in a smaller free energy barrier on the
coarse-grained system. The rare event sampling method, which attempts to
recreate this smaller barrier, is insufficient to allow a crossing to take place.

We additionally demonstrated that the output of a single metadynamics
simulation was sufficient to assess the suitability of the reaction coordinate
choice. Applying mean force integration additionally allows for the quan-
tification of the error of the simulation. Umbrella sampling, as well as the
Jarzynski approach, is disadvantageous in this regard, as the sampling er-
rors do not account for the true error of the simulation, and are more likely
to produce incorrect results without giving any indication of their validity.
This result is of general interest to the molecular dynamics and rare event
sampling communities. Extreme caution should be taken when using certain
methods, particularly umbrella sampling, as the validity of the collective
variable choice is not apparent. Metadynamics-based approaches are signifi-
cantly less problematic in this regard.

We also put the results in the previous sections to practice by applying
them to the work carried out in Chapters 5 and 6. We used the output of
metadynamics simulations, as well as Mean Force Integration, to determine
whether ignoring dehydration of lone Ca ions and calcite kink sites a sensible
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choice. Intriguingly, we found that, while dehydration generally had little
impact on the convergence of simulations, there was still a degree of uncer-
tainty evident in the convergence of metadynamics simulations as well as the
error calculating using Mean Force Integration. While these results had little
impact on the conclusions of this thesis, we note that convergence is often a
generally under-appreciated feature of rare event sampling which should be
addressed when possible. Applying the techniques discussed in this chapter
may be very useful in determining whether the reaction coordinate choices
are appropriate.

We finally note that it may be possible to develop a rare event sampling
technique which does not require such a careful selection of reaction coor-
dinates in order to recover an accurate estimate of the PMF. This offers a
potential scope for future work in this field. Whatever form such a technique
will take, it is sure to be based on non-Markovianity.
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9.1 Summary

Chapter 1 outlined the long-term ambitions of materials science, and pro-
vided an introduction to the concept of biomineralisation and why materials
scientists aim to exploit it. Nature teaches us that an exquisite level of con-
trol over the crystallisation process is achievable, and that biological systems
can harness these processes to produce materials with bespoke morphological
and mechanical properties despite only having access to the chemical com-
position and ambient conditions of their natural environment. This Chapter
concluded with the three main objectives of this thesis: First, we wished to
use molecular simulation to model the interactions between adsorbates (in-
cluding Ca, CO3 and many impurities such as amino acids) with the kink sites
in which the majority of growth events take place; second, we wished to use
these results in tandem with coarse grained models to predict macroscopic
observables of calcite grown in the presence of impurities; finally, we wished
to use molecular simulation to model case studies of biogenic calcite in order
to elucidate the atomistic mechanisms behind their superior properties.

Chapter 2 provided a comprehensive discussion of calcite, the most preva-
lent carbonate on Earth, and a hugely abundant biomineral, present in bio-
logical systems such as many forms of marine life. In Chapter 2, the com-
putational methods typically used to study calcite mineralisation were out-
lined, and a review of the progress and challenges faced in understanding its
growth was carried out. Additionally, impurities were discussed in terms of
their effects on the growth and the morphological and mechanical properties
of calcite. A review of the experimental and computational techniques used
to study impurities and calcite was carried out. It was noted that many of
the impacts of impurities on the calcite growth process are well characterised
through experiment, although their computational counterparts are severely
lacking, due to a lack of thermodynamically consistent force fields and un-
derstanding of the kink sites which ultimately facilitate the growth of calcite.
Additionally, studies of the mechanical impact of impurities on calcite are
limited to straightforward synthetic examples, or biological case studies too
complex for current molecular simulation resources and techniques.

In Chapter 5, we addressed the issues faced in understanding the kink
growth process by using molecular dynamics and rare event sampling tech-
niques to determine adsorption free energies and binding configurations of
Ca and CO3 units adsorbing to calcite kink sites. Most crucially, we find
that not all kink sites follow the classical picture of units adsorbing into
their kink lattice sites via a single-step process. Instead, many ions reside in
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a bidentate configuration, named as such for their tendency to reside above
the step and form two interactions with units on the upper terrace. These
bidentate configurations were observed to a larger extent for CO3 units, de-
spite the greater adsorption free energies found for CO3. The configurations
in which atoms reside above the step are analogous to what is observed for
kink nucleation, in which CO3 units prefer to interact only with the step.
Having identified that the prevalence of the bidentate configuration implies
that the growth process must involve multiple adsorbates, we proceeded to
simulate a two-step kink growth process, and found that the terminating
CO3 ion was only able to transition from its bidentate configuration into its
lattice site upon the adsorption of an additional Ca ion. We have shown in
Chapter 5 that the growth of kink sites is significantly more complex than
expected, and that kink-terminating ions do not always reside in their lattice
site. This additionally has consequences for the study of impurities and their
interaction with calcite, since the natural configuration of the kink site must
be taken into account.

Having laid the groundwork for the study of solutes and their interaction
with kink sites, Chapter 6 concerned the interaction of various functional
groups with calcite kink sites, in addition to terrace and step sites. We began
with a case study which found that positively-charged polyamine groups and
amine-rich amino acids (lysine and arginine) were able to occlude in calcite at
high concentrations, contrary to the view that negatively-charged functional
groups were the primary driver of adsorption of peptides and amino acids
to calcite. By isolating the relevant primary and secondary amine groups,
we found a strong interaction to negatively-charged calcite terrace, step and
kink sites. In particular, the NH+

3 group had a very strong interaction with
CO3-terminated kinks. We also observed a significantly smaller interaction
between the arginine side chain and all surface sites, leading to the conclu-
sion that lysine binds primarily through its side-chain amine group, whereas
arginine doesn’t. Our simulations, in combination with experimental results
have changed our understanding of how the adsorption and occlusion of bio-
molecules is facilitated. These results also provoke additional questions into
whether amine groups or carboxyl groups facilitate the occlusion of other
amino acids into calcite.

In the second part of Chapter 6, we proceeded to study the interaction
of aspartate with calcite kink sites, with an ultimate aim to derive the ad-
sorption free energy of aspartate and compare with experimental findings.
After eliminating most complex configurations, we used rare event sampling
to determine the adsorption free energies and configurations of asp. We
initially found that asp does not displace water out of the kink site, and in-
stead adopts a configuration akin to the bidentate configuration observed in
Chapter 5 in which the amino acid only interacts through its carboxyl group
with Ca ions on the upper terrace. We subsequently proceeded to determine
adsorption free energies and configurations for all kink types, and found a
similar strength and mechanism of interaction for most kink sites, save for
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a single exception where the terminating Ca-ion prefers to adopt its biden-
tate configuration. The adsorption free energies were used to parametrise a
KMC model, which was used to calculate the step velocity inhibition as a
function of aspartate concentration. It was ultimately found that the acute
step velocities were hindered more significantly than obtuse step velocities,
in line with previous expectations. However, one caveat is that we were un-
able to reproduce experimental morphologies using our KMC simulations.
Finally, we used the step velocities to calculate the normal growth rate of
the crystal, and derived an adsorption free energy of -19 kJ/mol, a value
within the range of empirically derived values. This second part of Chap-
ter 6 is particularly significant, as it validates the atomic potentials used by
reproducing experimental values to a quantitative degree. We have deter-
mined the likely mechanisms through which aspartate interacts with calcite,
something which may be extended to other amino acids in future. The work
carried out in this chapter is also the first of its kind, in that it comprehen-
sively studies the interaction between an impurity and all kink sites. This
work has provided significant progress in how impurities and their tuning
of calcite growth can be studied with molecular simulation. However, many
open questions remain. For example, we do not know why aspartate (as well
as many other impurities) does not produce a morphology change on obtuse
steps, despite significantly inhibiting their growth. Additionally, questions
remain regarding the extent of the influence of amine groups on the binding
of amino acids.

Having studied the effects of impurities on the growth of calcite, Chapter
7 concerns the impact of impurities on the mechanical properties of calcite.
We began with a case study in which non-charged, polymer-coated nanopar-
ticles were able to incorporate into calcite at high concentrations without
altering the single-crystallinity of the host crystal. The lattice distortions
caused by the nanoparticles were unusual in that an elongation in the c-
axis was produced, while a compression along the a-axis was produced. We
used molecular dynamics to understand this phenomenon by approximating
the weakly-interacting nanoparticles as holes within the lattice. By calcu-
lating stress distributions and examining lattice spacings, we found that the
nanoparticles caused a compression in the crystal along the a-axis, while it-
self contracting along the c-axis without compressing the host crystal. The
average lattice spacing was used to calculate the average strain of the ma-
terial with respect to pure calcite, and the calculated signs and magnitudes
were in agreement with experimental values. Our results showed that the
anomalous, axis-dependent strain of the material is a result of the calcite
molecular structure, rather than any properties of the nanoparticle itself.

In the second section of Chapter 7, we turned our attention to a case
study of the brittlestar Ophiocoma wendtii, in which magnesium-rich coher-
ent nanoparticles were found to improve the fracture toughness of calcitic
lenses within the arm of the brittlestar. It was thought that the nanopre-
cipitates improve the structure by inducing a compressive stress on the host
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crystal due to the tensile stress within the nanoprecipitate. We used molecu-
lar dynamics to calculate stress distributions within the lattice, and directly
simulated a crack-propagation event to identify toughening mechanisms. We
identified three sources: first, the suggested mechanism of prestressing the
lattice is confirmed through simulation; second, the inhomogeneous stress
distribution within the lattice deflects any propagating cracks away from
the lowest energy surface towards the nanoprecipitate, resulting in an in-
crease yield stress; third, due the the highly inhomogeneous stress distribu-
tion within the nanoprecipitate, propagation directly through the nanopre-
cipiate produces a highly disordered crack which does not cleanly propagate
along the {10.4} cleavage plane.

In Chapter 8, we created a toy system consisting of a two-dimensional
free energy surface with an adjustable parameter controlling the skew of a
single saddle point. By taking a single component as a reaction coordinate,
we were able to tune the amount of detail neglected when coarse-graining
onto a single coordinate. When attempting to numerically recover the free
energy barrier crossing rate in one-dimension, we found a large discrepancy
between the correct result and the coarse-grained result as more detail was
neglected. However, the introduction of non-Markovian kinetics partially
corrected the coarse-grained reaction rate. The extent of the correction was
universally found to be greater when the memory introduced to the system
was increased. Our calculations have confirmed that the coarse-graining of
a system imposes non-Markovian kinetics on the system, which can have a
significant contribution to the free energy barrier crossing rate.

We proceeded in Chapter 8 to characterise the failure of rare event sam-
pling techniques when the reaction coordinate choice neglects important de-
tail of the system thermodynamics. We found that all techniques studied
ultimately produced inaccurate results when attempting to recover the free
energy landscape. Crucially, however, we found that metadynamics-based
approaches were far superior for determining whether the reaction coordinate
choice is suitable, due to the history-dependent bias potential producing dif-
ferent outputs at different times. Methods such as umbrella sampling do not
give any indication as to whether an appropriate set of reaction coordinates
have been used, and can produce an incorrect free energy landscape which
appears converged and accurate. In future, studies adopting umbrella sam-
pling techniques should also provide evidence that the reaction coordinate
choice is suitable, or risk recovering significantly inaccurate results. Alterna-
tively, using metadynamics-based approaches gives an indication of the error
either through the history of the bias potential or by calculating the error of
the simulation using methods such as mean force integration.
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9.2 Outlook

For the most part, we have fulfilled the objectives of this thesis. In Chapter
5, we successfully modelled the interactions of Ca and CO3 units with the
majority of calcite kink sites, thus identifying that calcite growth is not, as
previously thought, a series of single-step attachment events. We were also
able in Chapter 6 to determine the binding configurations and adsorption
free energies of an amino acid, plus several functional groups, to multiple
kink sites. We were also broadly successful in using our results for aspartate
to parametrise a coarse-grained (KMC) model. This model predicted the
adsorption free energy of aspartate so be within the range of experimental
results, thus validating our previous calculations of adsorption free energies to
kink sites. Finally, in Chapter 7, we successfully applied molecular simulation
to the case study of the brittlestar Ophiocoma wendtii. We were able to
identify several mechanisms through which the Mg-calcite is able to increase
the fracture toughness of calcite, something that would not be achievable
through experimentation.

Perhaps the largest open questions remaining upon completion of this
thesis have arisen from Chapter 6. While we have made significant progress
in understanding how impurities interact with calcite growth sites, the work
in Chapter 6 has highlighted the fact that many question remain. The mor-
phological impact of aspartate on obtuse steps is an example of this: despite
producing step velocity inhibitions consistent with reality, our simulations
consistently produced a rounding of the obtuse steps: something not ob-
served in reality. There are many possible explanations for this. One such
explanation is that we only parametrise our KMC model against free energy
calculations for kink sites, and approximate attachment to corner sites and
pseudofaces as attachments to kink sites. Since pseudofaces and corners are
observed both in reality and in simulations, ignoring both could have a signif-
icant impact on the morphologies produced from KMC simulations. Further
calculations of adsorption free energies to corner sites and pseudofaces could
provide further insight and be used to parametrise a superior KMC model.
Another notable issue is that many unanswered questions remain regarding
the growth of calcite itself. In Chapter 5, we were forced to ignore several
CO3-terminated kink sites due to the number of reaction coordinates required
and therefore the large simulation times required. Nevertheless, running such
calculations would still be possible given enough time. Furthermore, these
calculations could be extended to corner sites to obtain more information on
whether the terminating ions adopt a lattice or bidentate configuration.

One particular theme connecting chapters 5 and 6 is the favouring of con-
figurations in which adsorbates only interact with the upper terrace without
displacing water from the kink site. This is particularly noticeable for aspar-
tate, which is found to produce a minimal dehydration of the surface. This
leads to questions as to whether aspartate may occlude with water. This also
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runs counter to previous expectations that impurities such as asp are able
to improve mass transport to the surface via its dehydration. More work is
clearly required in this field. One area of further study would be to calcu-
late binding free energy to step and terrace sites and observe whether any
dehydration takes place for these surfaces.

Another concern arising from Chapter 6 is the large discrepancy observed
in the strengths of the interactions between functional groups and calcite sur-
face ions. In our study of amine groups, using the AMBER force fields, we
found a strong interaction with negatively-charged calcite surface sites. How-
ever, with a different set of intermolecular interactions for aspartate (Raiteri
et al. 2012), we find that binding is dominated by carboxyl groups, and that
amine groups exhibited next to no binding. We know from experimental oc-
clusion rates that amine groups must have a stronger interaction than those
we find in Section 6.2, but a weaker one than that observed in Section 6.1.
Clearly, more work is required in developing force fields which can accurately
model the interaction between amine groups and calcite. Some success has
already been found from the development of polarisable force fields for certain
functional groups. This is something which could be extended to modelling
amino acids in their entirety.
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übersättigten dämpfen,” Annalen der Physik, vol. 416, no. 8, pp. 719–
752, 1935.

[153] R. Henery, “The generalized Langevin equation and the fluctuation-
dissipation theorems,” Journal of Physics A: General Physics, vol. 4,
no. 5, p. 685, 1971.

[154] M. Boguná, L. F. Lafuerza, R. Toral, and M. Á. Serrano, “Simulating
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AAppendix

A.1 Derivations

A.1.1 Equivalence of equations 8.5 and 8.6

Equation 8.6 states that,

Γxi→xi+1
=
〈
Txi→xi+1

〉−1
(A1)

where Txi→xi+1
is the time taken for an xi → xi+1 reaction to take place. Now,

consider these transitions occurring over many different y-values, each with
its own average time taken for an xi → xi+1 reaction to take place. We can
denote this average time taken as

〈
Txi→xi+1,yj

〉
where yj is the y-coordinate.

Equation 8.6 is therefore the average of
〈
Txi→xi+1,yj

〉
over all j values. How-

ever, one further detail is that the number of times an xi → xi+1, yj reaction
rate is recorded in a simulation is proportional to the probability of finding
the y-coordinate at yj, given that the x-coordinate is at xi. This is denoted
by Pj|i in the main text. The number of times a reaction will occur in a
simulation is also proportional to the average xi → xi+1 reaction rate given
a y-coordinate of yj, Γxi→xi+1,yj . Equation 8.6 therefore simplifies to

Γxi→xi+1
=

(∑
j

〈
Txi→xi+1,yj

〉
Pj|iΓxi→xi+1,yj∑

j′ Pj′|iΓxi→xi+1,yj′

)−1

(A2)

Now, note that Γxi→xi+1,yj is simply the inverse of
〈
Txi→xi+1,yj

〉
by definition.

Also note that
∑

j′ Pj′|i = 1. Equation A2 therefore simplifies to

Γxi→xi+1
=

(
1∑

j′ Pj′|iΓxi→xi+1,yj′

)−1

(A3)

which is equation 8.5.

A.2 Figures

A1



A.2. FIGURES A2

Figure A1: Schematic of the simulation cell setup designed to isolate a particular
kink site in simulations. The cell dimensions are also labelled.

Figure A2: Free energy surfaces for Ca ions as a function of distance from their
respective kink sites for the a(ii) (left) and c(i) (right) kinks. A good agreement is
found between simulations where dehydration is included as a reaction coordinate,
and where it isn’t.
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Figure A3: Snapshots from simulations showing the strongest binding configu-
rations for every Ca terminated kink. The water molecules coordinated with the
Ca kink are also shown.



A.2. FIGURES A4

Figure A4: Free energy surfaces for CO3-terminated kinks as a function of CO3-
kink z-distance and ND (see equation 5.1) for a(i) (top-left), a(ii) (top-right), d(i)
(bottom-left), and d(ii) (bottom-right) kinks. The connected black dots trace the
MFEP, which is also shown in the insets.
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Figure A5: Snapshots from simulations showing the strongest binding configu-
rations for every CO3 terminated kink. The nearest five water molecules to the
kink site are also shown.

Figure A6: Two-dimensional free energy surfaces as a function of the asp-kink
z-distance (x-axis) and the terminating Ca-kink z-distance (y-axis). The y-axis is
integrated out using equation 3.90 to produce Figure 6.8.



A.2. FIGURES A6

Figure A7: Fractional inhibition of the normal growth rate. The Langmuir
equation is used to calculate ∆Gads as shown in equation 6.5.

Figure A8: Derived PMF from 50 umbrella sampling simulations. Unlike Figure
8.7, the initial configurations are chosen by dragging the particle along the x-
direction while allowing the particle to relax in the y-direction. This method
produces an offset of the average of the derived PMF dependent on the side of the
barrier at which the simulation is started.


