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Abstract

We develop a new model for automatic extraction of reported measurements from

the astrophysical literature, utilising modern Natural Language Processing tech-

niques. We begin with a rules-based model for keyword-search-based extraction,

and then proceed to develop artificial neural network models for full entity and

relation extraction from free text. This process also requires the creation of hand-

annotated datasets selected from the available astrophysical literature for training

and validation purposes. We use a set of cosmological parameters to examine the

model’s ability to identify information relating to a specific parameter and to il-

lustrate its capabilities, using the Hubble constant as a primary case study due to

the well-document history of that parameter. Our results correctly highlight the

current tension present in measurements of the Hubble constant and recover the

3.5σ discrepancy – demonstrating that the models are useful for meta-studies of

astrophysical measurements from a large number of publications. From the other

cosmological parameter results we can clearly observe the historical trends in the

reported values of these quantities over the past two decades, and see the impacts

of landmark publications on our understanding of cosmology. The outputs of these

models, when applied to the article abstracts present in the arXiv repository, con-

stitute a database of over 231,000 astrophysical numerical measurements, relating

to over 61,000 different symbolic parameter representations – here a measurement

refers to the combination of a numerical value and an identifier (i.e. a name or

symbol) to give it physical meaning. We present an online interface (Numerical

Atlas) to allow users to query and explore this database, based on parameter names

and symbolic representations, and download the resulting datasets for their own

research uses.
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surements of phenomena are crucial for understanding and contextualising research

in those fields. As such, the work of this thesis may be applied to the areas of public

health (and by extension public health policy), clinical situations, engineering for

private and public sectors, and other areas benefiting from a greater understanding

of the numerical values which underpin our understanding of the world.
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Chapter 1

Introduction

There is currently an unprecedented level of availability of scientific literature and

knowledge, made possible by the internet and the open-science spirit of many in the

community. In addition, we are seeing increasing numbers of new publications be-

ing added to these repositories at a remarkable rate (as shown in Figure 1.1). Whilst

this availability is highly beneficial to the wider community, the sheer number of

publications does cause issues for academics wishing to overview literature on par-

ticular topics. Due to the technical nature of the domain, keyword search queries

and other common content-retrieval algorithms, such as those used by NASA As-

tronomical Database Service (ADS) and the arXiv search interface, are often in-

sufficient for identifying useful collections of documents. More than this, if one

is searching not just for particular articles, but specific data contained within those

articles – such as numerical measurements, as concerns us here – the problem is

compounded. Not only do we have the task of identifying the relevant papers, but

also of reading and cataloguing the data we are interested in. For example, many

researchers are regularly interested in meta-studies on the values of specific pa-

rameters, where an understanding of the current consensus is required, such as for

use in simulations or experimental calculations. The results of such studies are not

only interesting as observations on the state of the community and its collective

knowledge, but are also very useful for determining consensus (or lack thereof) and

highlighting issues which merit further study. Structured analysis of the body of

existing measurements can be used to refine simulations and models, and also to

motivate directions in research if discrepancies or consensus can be found.
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Figure 1.1: Cumulative submissions to the arXiv repository (orange), highlighting (blue)
the number of articles submitted with the ‘astro-ph’ tag (note that this includes
all ’astro-ph’ tags, not limited to primary article tag).

However, conducting such meta-studies is time-consuming, and often labori-

ous – factors which themselves can lead to human and clerical errors in the collating

of information. But with this growth in publication output there is a growing cor-

pus of literature – especially in the physical sciences – which, along with recent

advances in machine learning and natural language processing, may be leveraged

to automate some of these tasks (e.g. Kerzendorf, 2017). Astrophysics is full of

examples of parameters which may be determined through multiple experimental

and observational techniques, and where discrepancies between the resulting values

is of particular interest in discussions of the underlying physics.

This, therefore, is a task which would benefit from the support of automated

approaches, both to free up research time from manual data collection and book-

keeping, and also to broaden the horizons of our search – what with machines not

becoming bored after reading the thousandth paper, and not having any unconscious

bias towards popular articles. Such a search algorithm could be pre-run over the en-

tire backlog of available literature, allowing for fast search-time queries by users,
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and then be automatically kept up-to-date as new publications are released. This

would make many avenues of research faster and easier, and open up new possibili-

ties for examining the dissemination of information in the astrophysics community.

To this end we have developed a tool to automatically find, collate, and analyse

measurements present in astrophysical literature. The resulting database of mea-

surements will allow for researchers to quickly find an overview of a given param-

eter, either to find a statistically derived consensus value, or gain an understanding

of the distribution of measured values for a given quantity. Such a collection of

datapoints – which, of course, contains origin publications and potentially other

contingent data – would also be an excellent starting point for more sophisticated

meta-studies and targeted investigations. Additionally, with many papers being sub-

mitted to online, open-source repositories, the database could be automatically kept

up to date with a minimal amount of manual intervention.

1.1 Example of Meta-Studies in Astrophysics

A meta-study, then, is a scientific endeavour which attempts to combine the outputs

of multiple separate research efforts and/or publications. This can be in an effort to

combine multiple smaller studies into a larger, synthesised dataset, as is sometimes

attempted in medicine when attempting to find more statistically significant results

by collecting the results of several smaller studies. Alternatively, it can be in an

effort to compare different experimental techniques against one another (as in some

of the publications discussed below).

Combining results together to determine underlying truths has a long history

in astronomy, dating back to some of the earliest observational endeavours by an-

cient astronomers. In more recent centuries, astronomers have used ancient texts

alongside contemporary measurements to determine celestial movements (Plackett,

1958). In recent years, very similar principles have been applied to combine mul-

tiple observations to determine some underlying physical parameter, such as the

famous work by Perlmutter and Schmidt (2003) using supernovae observations to

provide evidence for an accelerating Universe.
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Following this trend there have been a number of seminal meta-studies in the

astrophysics domain over the last few decades, which are greatly informative and

have, on occasion, been influential to the community. For example, Licquia and

Newman (2015) compiled measurements of Milky Way properties from the litera-

ture, and performed a sophisticated statistical analysis on the resulting data. Other

parameters of the Milky Way have been collated and examined in various publi-

cations, such as the mass of the Milky Way (e.g. Callingham et al., 2019; Shen

et al., 2021), the distance to the Galactic Centre (e.g. Bland-Hawthorn and Gerhard,

2016), and the combined mass of M31 and the Milky Way (e.g. Lemos et al., 2021).

John Huchra undertook to compile published measurements of the Hubble constant

between 1996 and 2010, and his results1 have been used as a basis for many meta-

studies, such as Gott et al. (2001), Chen et al. (2003), and Zhang (2018). Addition-

ally, a review of the measurements of the Hubble constant is given by Freedman and

Madore (2010). There are also examples of reviews of constraints on the mass of

ultra light dark matter, such as those conducted by Toguz et al. (2021), Rogers and

Peiris (2021), and Hayashi et al. (2021). Also, a review of the local dark matter den-

sity by Read (2014) compiled historical measurements of the dark matter density at

the location of the Sun in the Milky Way.

There have also been endeavours to use meta-studies as a way of examining

methodological issues within the astrophysics community. A series of papers from

de Grijs et al. (2014) and de Grijs and Bono (2014, 2015, 2016, 2017) discussed

publication bias in measurements of the distances to the Local Group Galaxies, and

Galactic rotation properties. Similarly, Croft and Dailey (2011) compiled measure-

ments of cosmological parameters, and noted a confirmation bias when comparing

the scatter between the resulting measurements, given reported uncertainties. This

issue of bias in published results has been raised many times in the community (e.g.

Liddle, 2004; Schaefer, 2008), and is a growing concern as large datasets become

increasingly available (and popular), and multiple groups of researchers spend in-

creasing amounts of time analysing the same data.

1https://www.cfa.harvard.edu/~dfabricant/huchra/hubble/index.htm

https://www.cfa.harvard.edu/~dfabricant/huchra/hubble/index.htm
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In this work we have made particular use of the work by Croft and Dailey

(2011) as a basis for further explorations. Croft and Dailey (2011) compiled a list

of publications reporting cosmological parameter measurements from 1990-2010,

cataloguing the published values and error bars for these measurements, along with

experimental technique for each publication. This data was used to conduct sta-

tistical analysis of the accuracy and precision of these measurement, and examine

trends in the scientific community – the prevalence of different methodologies, the

existence of confirmation bias in reported measurements, and also trends in reported

precision. The results of WMAP7 (Komatsu et al., 2011) were used as a baseline

for examining accuracy, and the reported standard deviation from this baseline was

used as a measure of confirmation bias in the result set. The publications identified

by Croft and Dailey (2011) have been used in this work as a starting point for fur-

ther explorations of the reporting of scientific measurements, and as hand-selected

data for the annotation effort described in Chapter 3.

1.2 Cosmology

While observations of local structure on the sky appear to show a great deal of vari-

ation, if we extend our observations to cosmological scales, we see a practically

isotropic universe. We also have no scientific reason to believe our point of refer-

ence is privileged, and hence it assumed that the Universe is homogeneous. This

is known as the Cosmological Principle, that the Universe if isotropic and homoge-

neous (Liddle, 2003).

We also know from observation that distant objects (i.e. distant galaxies) are

moving away from us. This recession is found to be proportional to their distance

from us (Perlmutter and Schmidt, 2003). At first this suggests an explosion-like

phenomenon – seemingly centred on Earth, given the isotropy we observe – but this

would violate the assumption of homogeneity. In order to abide by the Cosmolog-

ical Principle, all observers must see distant objects receding in the same way. In

order to explain this implication, we require that space itself is expanding – often

likened to a sheet of rubber being stretched (Liddle, 2003).



1.2. Cosmology 19

However, smaller-scale structure in the Universe (here meaning galaxies and

smaller objects) does not appear to be in the process of being pulled apart by this

expansion. From this we can infer that the forces which bind these objects together

(namely gravity) exert a stronger effect at small scales than the mechanism powering

the expansion.

In order to preserve homogeneity and isotropy in an expanding universe, we

require that the distance between any two points scale as a function of time but not

position, such that,

D(t) = a(t)D0, (1.1)

where D(t) denotes the distance at time t, D0 is the distance at some non-zero

reference time t0 (and hence is a constant factor), and a(t) is the scale factor as a

function of time. Generally, t0 is taken to be the current time, such that D0 is the

distance we would measure today (Liddle, 2003).

Taking the derivative of this equation gives us the following:

Ḋ(t) = ȧ(t) D0 =

(
ȧ(t)
a(t)

)
D(t) .

If we now consider the distance between an observer and a distant object, we

can see that the recession velocity, vr, at a given time due to the expansion is pro-

portional to the distance:

vr = H (t) D ≡
(

ȧ(t)
a(t)

)
D, (1.2)

where H(t) is the expansion rate, often referred to as the Hubble parameter.

At the current epoch, i.e. t = t0, this gives us the Hubble–Lemaître Law,

vr = H0 D, which was first discovered empirically from observations of nearby

galaxies (Hubble, 1929). Here, H0 is the Hubble constant – the value of the Hub-

ble parameter at the current epoch. It should also be noted that this result indicates

that there are distances for which vr > c (as this is a linear relationship), giving one

upper limit on the size of the observable universe.
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In practice, the Hubble constant is often parameterised as follows,

H0 = 100 h km s−1 Mpc−1.

This is largely a matter of convenience, as isolating the dimensionless factor h, re-

moving the common units of mixed length and time, makes it easier to compare

different measured values of H0 (Liddle, 2003). This parameter is also used in a

number of cases where it is difficult to separate the contributions of the expansion

from other physical mechanisms, and therefore certain physical quantities are of-

ten measured as parameterisations of h (e.g. the dark matter and baryonic density

parameters, Ωc and Ωb, as measured by Planck Collaboration et al. 2018).

We may also define the Hubble time, tH0 and the Hubble distance, DH0 (also

called the Hubble length). The Hubble time is the inverse of the Hubble constant,

tH0 ≡ H0
−1,

and may be seen as an approximation of the age of the Universe. Specifically, it is

the age of a universe with a linear expansion. As the expansion has been non-linear,

with the inflationary epoch being a period of increased expansion, the Hubble time

gives us an over-estimate of the age of the Universe. The Hubble distance is then

the distance travelled by light in the Hubble time,

DH0 = c tH0 ≡
c

H0
,

where c is the speed of light. DH0 is therefore equal to the distance at which objects

have a recession velocity equal to the speed of light, and so can be seen as an ap-

proximation of the radius of the observable universe. There is also a corresponding

Hubble volume (either a sphere or cube, depending on chosen definition), based

on the Hubble distance, which approximates the volume of the observable universe

(Liddle, 2003).
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However, if we wish to use the relationship in Equation 1.2 to probe the na-

ture of the expansion, we encounter the problem that we cannot measure recession

velocities directly, and instead must rely on other physical phenomena from which

they may be inferred. One such phenomena is the Doppler shift of the observed

light, due to the recession of the source. If successive light waves are emitted with

wavelength,

λe =
c
νe
,

where νe is the emitted frequency and c is the speed of light, then the successive

waves are therefore separated in time by (assuming a recession velocity vR ≪ c),

dt = νe
−1,

they must travel an additional distance,

vr dt =
vr

νe
. (vr ≪ c)

This means the observer will receive the light with wavelength,

λo =
c
νe

+
vr

νe
= λe

(
1+

vr

c

)
. (vr ≪ c)

This gives us an expression for the recession velocity, vr,

vr

c
=

λo −λe

λe
=

∆λ

λe
, (1.3)

provided that we have some information about the light source – in particular, the

wavelength at which the light was emitted (Liddle, 2003).

This quantity, ∆λ/λe, is a very useful one in observational cosmology, and is

generally referred to as redshift, z (as the Doppler shift resulting from a receding

object pushes light towards the red end of the spectrum),

z ≡ vr

c
≡ ∆λ

λe
. (vr ≪ c) (1.4)
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If we consider a nearby object at distance D = c∆t, we can combine Equations

1.2 and 1.3 to give us

vr

c
=

∆λ

λ
=

Dȧ
ca

= ∆t
ȧ
a
=

∆a
a
, (vr ≪ c)

which we may integrate over time

∫
λo

λe

dλ

λ
=
∫ 1

a

da
a
,

giving the result:
λo

λe
=

1
a
.

From this we may see that:

a = (1+ z)−1.

So, now that we have a basis for understanding the effect the scale factor, a(t),

has on our observations of distant objects, we may turn our attention to the matter

of the evolution of the expansion and the scale factor with time. A full derivation of

this cosmology requires the use of General Relativity, but a very informative result

(and a reasonable approximation of the full relativistic calculation) can be achieved

with only Newtonian principles (Liddle, 2003).

We begin with the corollary from Newtonian mechanics that the gravitational

forces inside a spherical shell of matter sum to zero at all points inside that shell.

Hence, if we consider the Universe to be an infinite sphere of homogeneous matter,

we can assume that the matter outside any given finite sphere of a given radius exerts

no overall force on any matter inside it (schematic diagram shown in Figure 1.2).

We also remember that the gravitational attraction of a spherically symmetric sphere

can be treated as a point mass at its centre. Finally, we assume that the homogeneous

matter of such a sphere is comprised of pressureless matter, such that movement

of matter within the sphere takes no work (P dV ) – with density ρ . Finally, the

homogeneity of the Universe from the Cosmological Principle suggests that the

kinetic and gravitational potential energy per unit mass must balance.
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Figure 1.2: Schematic diagram of cosmological scenario. A sphere of constant density, ρ ,
and radius, r, with total mass, M, equivalent to a point mass located at the cen-
tre. This sphere is embedded in an infinite sphere of equal density. A spherical
shell at the edge of this sphere therefore experiences a gravitational force, F ,
towards the centre.

Using this setup for a test mass at a distance r from some reference point, we

may write the following:
ṙ2

2
=

GM
r

,

where M is the mass inside radius r, and G is the gravitational constant. Substituting

the mass for a density, we have,

ṙ2

2
=

4πGρr3

3r
=

4πGρr2

3
.

Using Equation 1.1 we may see that the actual radius cancels out, and we are left

with an expression in terms of a(t):

ȧ2

2
=

4πGρa2

3
,
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from which we can find the Hubble parameter:

H2 =

(
ȧ
a

)2

=
8πGρ

3
. (1.5)

This has the same form as the Friedmann equation for a homogenous, isotropic, and

flat univserse derived from General Relativity (Liddle, 2003).

So far we have been assuming a flat universe – that is, one with no spatial

curvature. If we assume this flat universe, then the density term in Equation 1.5

corresponds to the critical density, ρ0 – the mean density of the universe which

leads to flat spatial geometry:

ρc =
3H2

8πG
.

This quantity is used to parameterise the density of the Universe using the nor-

malised density parameter,

Ω =
ρ

ρc
,

where Ω = 1 for a flat universe (Liddle, 2003). Current observations seem to sug-

gest a flat – or very nearly flat – Universe, and many cosmological models and

methodologies assume such a flat universe (Planck Collaboration et al., 2018).

From the matter-energy equivalence (E = Mc2) and relativistic mechanics we

know that it is energy density that in truth contributes to dynamics, and therefore

we must consider more than just matter density for the density parameter. For a flat

universe, there are three distinct contributors: 1) matter, ΩM (here both baryonic

and dark matter), 2) radiation, Ωr (primarily photons from the Cosmic Microwave

Background), and 3) dark energy, ΩΛ (the name given to the physical phenomenon

that propels the Expansion). Therefore we have,

Ω = ΩM +Ωr +ΩΛ.

Assuming mass conservation in the Universe, the matter density of the Uni-

verse will scale as,

ρm ∝ a−3,
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or, equivalently,

ρm (t1) = ρm (t2)
a(t2)

3

a(t1)
3 .

Radiation, on the other hand, scales as,

ρr ∝ a−4.

This is due to the fact that the relativistic mass of photons in an expanding universe

is affected by the expansion, as the space in which the photon’s lightwave exists is

expanding, thereby affecting the wavelength. The relativistic mass is given by,

E
c2 =

hν

c2 ,

and therefore we have a scaling of,

E ∝ λ
−1

∝ (1+ z)1
∝ a−1.

Coupled with the fact that the number density of photons follows ∝ a−3, we find

that overall the radiation density follows ∝ a−4.

Dark energy, on the other hand, behaves differently. In the ΛCDM model, dark

energy is assumed to behave as a cosmological constant, Λ – that is, a constant

term in the dynamical equations that determine the evolution of the expansion and

the Universe. This means that the magnitude of the effects of dark energy per unit

volume does not change with time. This assumption is derived from empirical ob-

servation, as currently the physical mechanisms underlying this phenomena are not

well understood (Liddle, 2003). However, in order for cosmological observations to

match theory, such a term is generally required when fitting cosmological models.

Being a cosmological constant, the contribution dark energy to the density therefore

scales as,

ρλ ∝ a0.
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Combining the above equations gives the following,

ρ

ρ0
=

H2

H0
2 =

Ω0,m

a3 +
Ω0,r

a4 +
Ω0,λ

a0 ,

allowing us to see the nature of the changes in ρ with time (here represented by

the scale factor). We can see that the density of the universe (and therefore some

important aspects of the physics of the expansion) will be dominated by different

components at different times. Importantly, the early Universe was dominated by

radiation, and the late Universe will be dominated by dark energy (Liddle, 2003).

In the current epoch, the contribution of radiation is measured to be very

low, with Ω0,r ≈ 8.6× 10−5 (Condon and Matthews, 2018). Observations from

the Planck Collaboration indicate values for the other components of Ω0,m =

0.3153±0.0073 and Ω0,Λ = 0.6847±0.0073 (both 1σ C.L., Planck Collaboration

et al., 2018). These values indicate that in addition to the early radiation-dominated

and late dark energy-dominated eras, there was an intermediary period during which

the density of the Universe was matter-dominated. This period would correspond

to approximately z ≈ 3500 to z ≈ 0.33 – ending about 4 Gyr ago (Condon and

Matthews, 2018).

It is worth noting that ΩM can be broken down further, into the components

of matter. A common example of this is the baryon density fraction, Ωb, often

parameterised as Ωbh2.

1.2.1 Parameters of Interest

A brief mention of some parameters of interest for this work follows.

1.2.1.1 Amplitude of Mass Fluctuations, σ8

The matter density, ρm, and corresponding matter density parameter, ΩM, discussed

above are measures of the universal average matter density – however, the distribu-

tion of that density at different distance scales is also of great interest to cosmology.

Smaller-scale (relatively speaking) inhomogeneities in the early universe propagate

into the current epoch, and parameterisation of this clumping of matter is useful

(Addison et al., 2013).



1.2. Cosmology 27

Customarily, this is parameterised by the amplitude of linear matter fluctua-

tions, σ8, which is defined as the RMS of density perturbations on scale lengths of

8h−1 Mpc at the current epoch. Such that,

σ8

(
M
M8

)−(3+n)/6

= σ(M) =
δM
M

, (1.6)

for a matter power spectrum characterised by,

P(k) ∝ kn,

and with,

M8 =
4π

3
(8h−1Mpc)

3
ρ̄,

as the average mass within a sphere of radius 8h−1 Mpc (Ryden, 2016).

1.2.1.2 Dark Energy Equation of State Parameter, w0

The contribution of dark energy to the density of the Universe is often parameterised

by the dark energy equation of state. Different models of dark energy have been

proposed, and correspond to different formulations of the equation of state. An

example formulation, from Planck Collaboration et al. (2018), would be:

w(a) = w0 +(1−a)wa,

where w0 is the equation of state parameter, and wa is the first derivative of w(a)

at the current epoch. In ΛCDM, w0 =−1 and wa = 0 (Planck Collaboration et al.,

2018; Tripathi et al., 2017).

In such formulations, dark energy is sometimes considered to be a generic

dynamical fluid, such that,

w =
p
ρ
,

where p and ρ are the spatially averaged pressure and density of this dark energy

“fluid” (Planck Collaboration et al., 2018).
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1.2.2 Inference

Bayes Theorem is a statement about conditional probabilities (Bayes and Price,

1763),

P(A|B) = P(B|A)P(A)
P(B)

,

and is a staple of probability theory. For scientific inference, it becomes a more

interesting (and historically controversial) proposition whenwe replace A and B with

θ , for parameters, and d, for data,

P(θ |d) = P(d|θ)P(θ)
P(d)

.

Now we have a statement about the relationship between a model which makes

predictions about some system (represented by the parameters of that model, θ )

and the data from observations of such a system (d).

P(θ |d) is referred to as the posterior probability distribution, and represents

our certainty (or, “belief”) about the model, given the observed data.

P(d|θ) is referred to as the likelihood, and represents the probability of the

data given our (assumed) model.

P(θ) is referred to as the prior probability distribution, and is a crucial element

of Bayesian inference. It represents the belief we have in our model before observ-

ing the data. The exact interpretation of this quantity depends ones chosen school

of Bayesian statistics. The “subjectivists” maintain that the prior distribution is a

reflection of the subject understanding of the researcher, whereas the “objectivists”

argue for the use of so-called “standard” priors to ensure consistency between re-

search endeavours. Regardless, this quantity is an important aspect of Bayesian

methodology.

P(d), then, is referred to as the evidence, and is a normalising constant in the

equation, ensuring that the posterior distribution is normalised to unity. It is given

by,

P(d) =
∫

P(d|θ) P(θ) dθ .
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This setup allows us to improve our knowledge about a given model as new

data becomes available. The posterior from a previous iteration becomes the prior

for future iterations (Trotta, 2017).

In recent years, Bayesian statistics have becomes dominant in the astrophysics

and cosmology communities, spurred on in part by the increase in availability of

computational power, enabling greater use of numerical implementations (such as

Markov-Chain-Monte-Carlo models). This also allows for less reliance on assumed

Gaussian processes in inference, which has historically been a great hindrance to

statistical scientific inferencing (as many physical processes are known to be non-

Gaussian, but have been assumed to be so to produce tractable mathematics).

Selection of the prior distribution is, however, a matter of some difficulty, as

it is not provided from theory, but is rather selected by the researcher. Whilst this

allows the researcher to express known information about the quantity (such that it

be strictly positive, for example, as many physical quantities must be), it also intro-

duces the potential for human bias. However, with a sufficiently broad prior, and

sufficient data, Bayesian approaches will converge to a unique solution (sufficient

data being a crucial element here).

The flexibility of Bayesian methods, and the reduced reliance on large datasets,

has made Bayesian inference popular in the astrophysics and cosmology communi-

ties. However, it is also worth noting that, with the advent of large-scale data ac-

quisition projects in recent years, such as the Planck Mission (Planck Collaboration

et al., 2018), SDSS (Alam et al., 2015) and Gaia (Gaia Collaboration et al., 2016),

and many others, we are moving into an age of precision cosmology, where we can

place much tighter constraints on quantities than was previously possible. With this

increased precision come other issues, exposing underlying physics previously be-

yond our ability to detect. Such an example is the discrepancy in local and distant

measurements of the Hubble Constant, as discussed later – a discrepancy that was

simply not evident in previous years due to lack of precision in experimental mea-

surements. Our move into this new age of big-data, precision cosmology presents
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many interesting challenges, and potential for investigations of new physics (Verde,

2014).

1.3 The Hubble Constant

Of particular interest to this work is the Hubble constant, a value related to the

expansion of the Universe:

It can be observed that distant objects in the Universe are moving away (re-

ceding) from Earth at a rate proportional to their distance. This observation is an

important piece of evidence for the expansion of the Universe and the Big Bang,

and was suggested theoretically in the early 20th century by Friedmann (1922), be-

fore famously being confirmed by Hubble (1929), using a comparison of redshift

against inferred distance to extra-galaxies to show a correlation between distance

and recession, and also independently by Lemaître (1927).

The Hubble–Lemaître Law (historically referred to as Hubble’s Law) is the

expression of this observation, given as,

v = H0 D, (1.7)

where v is the recession velocity, D is the proper distance, and H0 is the Hubble

constant. Note that the distance in question is a proper distance, i.e. the distance

measured in space between two points at a given cosmological time. This proper

distance between two objects changes over time due to the expansion of the Uni-

verse, and is distinct from the comoving distance, which is constant for any two

points in the Universe with respect to time – a distance which factors out the expan-

sion. The Hubble constant is generally expressed in units of km s−1 Mpc−1, and

has a value in the region of 70 km s−1 Mpc−1.

More specifically, the Hubble–Lemaître Law provides the recession velocity at

the current cosmological time. In truth, the Hubble constant varies with time, with

the value of H0 being the value at the current epoch. There exists a more general

“Hubble parameter”, of which the Hubble constant is a particular instance.
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The inverse of the Hubble constant, having the dimensions of time, is referred

to simply as the Hubble time, tH , and has been used as a rough measure of the age

of the Universe. However, given the time-varying nature of the Hubble parameter,

this estimate is off, as it represents the age of a Universe with linear expansion.

In modern times the Hubble constant is primarily measured using two differ-

ent techniques: objects on the distance ladder, and measurements of the Cosmic

Microwave Background (CMB).

The first strategy involves examination of intrinsically bright objects whose

absolute magnitude can be calibrated using geometric principles (i.e. parallax),

such that the distances to more distant objects of the same type can be determined.

For example, Cepheid variables (a kind of variable star whose absolute magnitude

is directly related to their period of variation) and Type Ia supernovae (explosive

celestial events caused by runaway nuclear reactions in white dwarf binary systems,

whose total luminosity is predicted to be constant) are bright enough to be seen in

distant galaxies – up to 40 Mpc for Cepheids (Riess, 2020). Type Ia supernovae are

even brighter than Cepheid variables, and so can be used to probe much more distant

objects, but these supernova events are far rarer, and are singular events rather than

continuing phenomena. As the absolute magnitude of these objects is known when

observing their light curves, their distance can be inferred by measurements of their

apparent magnitude. As such, these objects are called “standard candles”, and are

very useful for probing the distance to far-away galaxies, whose redshift can then

be measured by spectroscopy. An example of a measurement using this approach is

given by the SH0ES (Supernovae H0 for the Equation of State) project, who find a

value of 73.30±1.04 km s−1 Mpc−1 (1σ C.L., Riess et al., 2021).

The second strategy involves fitting the parameters of the Λ Cold Dark Matter

(ΛCDM) model of cosmology to observations of the CMB. Different cosmologies

produce different timelines for the evolution of the Universe, which in turn affect

how the CMB would appear to us today, as the expansion of the Universe leads to

different levels of cosmological redshift through time. By calibrating the ΛCDM

parameters against observation, we can determine a value of the Hubble constant,
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and the work of the Planck Collaboration has produced a well-regarded value using

this technique of 67.4± 0.5 km s−1 Mpc−1 (1σ C.L., Planck Collaboration et al.,

2018).

These two techniques have, in recent years, improved to the point where a ten-

sion is now evident between the values produced for the Hubble constant between

the late (standard candle) and early (CMB) approaches, with the best estimates dif-

fering by more than 3.5σ (Verde et al., 2019). To what extent this is a matter of

systematic error in experimental technique, or unknown physics, is currently un-

der debate in the community, and has caused a spike in publications discussing the

Hubble constant in recent years, as can be seen from our results in Chapter 3.

This long history of the Hubble constant, going back 90 or more years, and

the current tension in its observed values, make it an interesting candidate for meta-

analysis. A view of the development of the community’s knowledge of the parame-

ter would provide interesting insights into the progression of understanding and the

sociological movement of the community with the respect to knowledge acquisi-

tion. Additionally, the Hubble constant is a good candidate for simpler models of

data extraction, as it has a small number of well-defined names and symbols used

to represent it, which can be easily enumerated by hand. This makes it amenable to

keyword search, which allows for its use with simple (but, crucially, interpretable)

data extraction models.

1.4 Natural Language Processing

Natural Language Processing (NLP) is the field within artificial intelligence con-

cerned with human languages – how to process and manipulate them in a way

amenable to computation. There are many challenges associated with this area,

largely arising from the intrinsic ambiguity present in natural languages – those

languages evolving naturally through human usage, as opposed to constructed or

formal languages (such as might be used for computer programming or in the field

of logic). Whilst many problems in artificial intelligence can be compared against

human performance with relative simplicity, natural language is a far more chal-
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lenging domain, in that language acquisition and understanding is a complex task

for humans of all ages – taking many years for both child and adult learners to

master a given language. The process itself is poorly understood from a cognitive

standpoint, and, therefore, designing algorithms for understanding language is an

ongoing and very difficult undertaking (Goldberg and Hirst, 2017; Kornai, 2007).

Additionally, language ability is closely tied to reasoning, which would suggest

that a true solution to many of the problems in NLP is essentially “AI complete”

(requiring a human-level artificial intelligence).

Prior to the advent of NLP, the understanding of language came from the field

of linguistics, where the main focus is on understanding the structures and patterns

of natural language – grammar, semantics, and syntax (as discussed in Mitkov,

2005). Traditionally this is concerned with hand-written rules based on manual

observation of linguistic patterns. In the mid-twentieth century, the field of com-

putational linguistics arose, leading to the approach of Statistical Natural Language

Processing. This field is primarily concerned with analysing the statistical proper-

ties of language in order to create a machine which can process, reason, and com-

prehend text. This is distinct from the hand-written rules previously employed by

linguists – now, any rules are inferred from a large corpus of text in the language of

study, and may exist only as statistical bias in the resulting models. By examining

the frequency of words or n-grams (specific combinations of words with a given

sequence length), and other such countable properties of text, probabilistic models

may be constructed which can be used for a wide variety of tasks; for example,

machine translation (translating from one language to another), sentiment analysis

(determining the intent or state of the speaker), part-of-speech tagging (e.g. iden-

tifying word types in a text), and text prediction (predicting the next word given

previous words). Two common patterns arose to deal with the problem of variable

length sequences: constructing representations of language without word order, or

limiting context (i.e. sequence length). An example of the first would be bag-of-

words techniques, which represent documents or sentences by count matrices of

words – simply tallying the occurrences of each word in some vocabulary as a way
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to represent the document. This means that all words in the text are considered, but

information about word order is discarded. Alternatively, in the second case, we

may use an N-length Markov Chain to model the text. In this case, we consider the

order of the previous N words in the sequence – but only the last N. This limits the

scope of the information available to the model.

However, with the advent of Deep Learning, neural methods have become a

dominant factor in NLP research, and many great empirical improvements have

been made in this direction (Goldberg and Hirst, 2017). Here the power of neural

networks to construct their own feature spaces has proved invaluable, as this greatly

reduces the need for human-designed rules in the construction of models – a very

challenging task due to the aforementioned ambiguity of language. Neural network

architectures such as Recurrent Neural Networks (RNNs) have the capacity to “re-

member” earlier parts of the sequence when considering later words, resembling

(or, at the very least, inspired by) the ways in which a human would process the text

while reading (Hochreiter and Schmidhuber, 1997). More recently, Transformer ar-

chitectures – which utilise a self-attention mechanism (Vaswani et al., 2017) – have

overtaken RNNs as the state-of-the-art models in NLP, with models such as BERT

(Devlin et al., 2018) and GPT-3 (Brown et al., 2020) being leading examples.

1.5 Information Extraction

Information Extraction is the task of identifying and extracting structured data from

unstructured information. This unstructured information can take many forms, in-

cluding images and partially structured documents (for example, PDF-formatted

invoices or receipts, which may not be well-suited to simple automatic data extrac-

tion – especially if they arise from multiple sources), but is often concerned with

extracting data from free text, i.e. text with little inherent document structure or out-

lining. As a result, Information Extraction has lately been closely related to Natural

Language Processing, and various endeavours have been made towards leveraging

the growing amounts of digital text available in various disciplines – e.g. extract-

ing clinical data from electronic medical records (Cai et al., 2019; Zubke, 2017), or
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material properties from material science literature (Wang et al., 2022; Yan et al.,

2022).

The nature of the structured data we desire to extract depends very much on

the problem in question. The simplest case would be “template filling”, where we

have a specific set of desired values we wish to populate based on a given input

document (or set of documents). An example of this might be filling out a library

database with Author, Publisher, and Publication Date entries based on scans of the

inside cover of incoming books. In this case there are specified entities (individual

words or groups of words which signify a particular individual, object, concept,

etc.) which we wish to identify and extract in the text, which have some specific

meaning in the context of the document, but where we do not need to identify the

relationship between those entities – in this case, because the fact they all appear

inside the cover of the same book already gives us all the relational information we

need.

A more general and complex case, then, is where we are also interested in

the relationships between the entities in the text, as well as the entities themselves.

Knowledge Base Population is an example of this class of problem, where the enti-

ties and the relationships between them form assertion tuples in a database of such

assertions. For example, from the sentence, “Stephen Hawking studied physics

at Oxford”, we might wish to extract the information Studied(Stephen Hawking,

Physics) and StudiedAt(Stephen Hawking, Oxford). Wikidata2 is an example of

such a knowledge base.

1.5.1 Named Entity Recognition

In order to process natural language, there a few common steps which are generally

required. Notably, tokenization, the act of splitting a body of text into individual to-

kens (or components), and some kind of sequence tagging, assigning labels to these

tokens (futher discussion of the following may be found in Jurafsky and Martin,

2008).

2https://www.wikidata.org

https://www.wikidata.org
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Tokenization involves splitting text into its component pieces. These are gener-

ally words (collections of characters separated by whitespace), but may also include

punctuation, numbers, and formatting concepts such as newlines (or, alternatively,

the paragraph and section breaks that these newlines represent). Depending on use

case, words may also be broken down further, such as splitting the word “don’t”

into the tokens “don” and “’t”. There are many strategies for tokenization, but the

salient point is that it allows us to consider text as a sequence of atomic components

– the strategies differ by what they consider to be a token. WordPiece (the tok-

enization strategy used by BERT, Devlin et al., 2018), for example, breaks words

into subcomponents (collections of characters) based on the frequency with which

those subcomponents are observed in the training corpus (the available text used

to train the language model) – so, common prefixes and suffixes become tokens in

their own right, allowing the model to represent uncommon words as combinations

of more-common components.

Sequence tagging, then, is the act of assigning each of these components to

some class. In the Part-of-Speech tagging task, these classes are linguistic word

classes (noun, verb, adjective, preposition, etc.). This is a disambiguation task –

many words are ambiguous, they can have several different interpretations, and it

is only from context that we can distinguish which interpretation is intended. In

the English vocabulary, most words are unambiguous (≈85%), but the ambiguous

words make up a large proportion (≈60%) of standard English text (Jurafsky and

Martin, 2008). However, not all ambiguities are created equal, and it transpires that

(for English, and many other languages) simply assuming the most common word

class for a given token is a very effective baseline strategy, producing accuracy

accuracies around 92% – compared with the human performance of around 97%

(Jurafsky and Martin, 2008).

Part-of-Speech tagging can be done via heuristic and hand-coded algorithms,

or by machine learning and trained approaches, to a very high standard. As a prob-

lem it is amenable to standard sequence modelling approaches, as it is a one-to-one

mapping of input to output (i.e. each token is assigned a label) – referred to as a
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sequence labelling task. However, there is another closely-related task: Named En-

tity Recognition. In this task, we do not only wish to label the 3 tokens in “Hubble

Space Telescope” as being proper name tokens, but we wish to determine that they

together represent a single entity (namely, the device known as the Hubble Space

Telescope). This task is a a common first-step in many Natural Language process-

ing tasks: it is often necessary to understand what entities may be present in a text,

in order to further relate those entities to other concepts (either within or outside the

current text).

Named Entity Recognition can be structured as a sequence labelling task, al-

lowing us to preserve the one-to-one mapping of tokens to labels, and utilise the

existing models that have been used for sequence modelling. A common strategy

for this is BIO tagging (Beginning-Inside-Outside), first proposed by Ramshaw and

Marcus (1995). In this formulation, tokens are labelled as being either the begin-

ning of a named entity, inside the entity, or outside any entity. Hence, for “Hubble

Space Telescope”, the “Hubble” token might have a Begin-Name label, followed

by “Space” and “Telescope” having Inside-Name labels. Naturally, in many Named

Entity Recognition tasks, most tokens may be assigned an Outside label, as a large

proportion of language concerns the relations between entities, rather than the stat-

ing of entity names directly.

The exact list of entity labels depends very much on the domain of the prob-

lem. It is also important to note that such labels do not have to relate to tokens

that represent a proper name (let alone a proper noun). Numbers may be assigned

specific labels, for example to distinguish times and prices, as well as concepts, or

other abstract “entities”.

Named Entity Recognition can be done using heuristics and pattern matching,

but more complex domains require more advanced algorithms. Recurrent Neural

Networks, and more recently Transformers, have become a standard approach to

these kinds of problems (see Section 1.6.4 for further details).
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1.5.2 Relation Extraction

In certain situations, detecting entities in free text may be sufficient (for example,

in the case of simple template filling). However, for many problems, it is not only

the presence and location of entities which is important, but the relationships that

exist between those entities. Hence, we have the task of Relation Extraction (further

details on the following may be found in Jurafsky and Martin, 2008).

More generally, a relation is an ordered set of elements. This is often expressed

as a subject-predicate-object tuple, where the subject and object are a pair of enti-

ties, and the predicate is a statement about the relationship that exists between them.

The Relation Description Framework (RDF) is a metalanguage for such relations,

and uses a collection of RDF triples (entity-relation-entity) to express information

about some domain. This formulation of relations is binary (expressing relations

that exist between precisely 2 entities), but this is not a requirement – however,

many frameworks and algorithms consider only such binary cases, as we shall do

from here on. These relations (or predicates) can take many forms, with common

examples being part-of or instance-of for building hierarchical ontologies. How-

ever, the relation classes for a task are generally domain-specific – as are the entity

classes between which these relations exist.

In the case of Relation Extraction, we wish to find expressions of these re-

lations in free text. Here, then, the entities correspond to Named Entities that

we have detected in some fashion, as discussed above. Relation Extraction tasks

can be broadly separated into single-relation and multi-relation tasks. Many Rela-

tion Extraction datasets (including benchmarks) have focused on the single-relation

paradigm, where the goal is to predict whether a single sentence indicates some re-

lation class between two entities in that sentence (the locations of which may either

be specified in the problem, or to be found by the algorithm). Such an example

might be, as above, “Stephen Hawking studied at Oxford”, with “Stephen Hawk-

ing” and “Oxford” being the entities, and studied-at the relation between them. The

TACRED dataset (Zhang et al., 2017) and SemEval 2010 Task 8 (Hendrickx et al.,

2010) are examples of this kind of problem.
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The more general case of multi-relation extraction involved identifying any

relations which exist between any number of entities in free text. For example,

the sentence “Stephen Hawking studied physics at Oxford” may be considered to

contain three entities, each of which may have a relation to the other two. This

concept can be generalised to entire paragraphs (allowing for relations spanning

multiple sentences), or further. Later in this work, we shall be considering this

formulation of the problem.

There are many strategies for solving these kinds of problems. A reasonable

starting point is to examine patterns in the text that suggest relationships between

entities. Using this strategy we consider the textual content between entities, for

example: the pattern “[Entity1], such as [Entity2]” for detecting hyponyms – as in,

“telescopes, such as the Hubble Space Telescope”. These patterns can become in-

creasingly complex, allowing for repeating sub-patterns, optional components, and

so on (rather in the manner of a regular expression). Such patterns are often referred

to as Hearst Patterns, after Hearst (1992). Additionally, entity class constraints may

be placed on the pattern, as certain relations may be constrained to exist only be-

tween certain entity types. Hand-coded patterns such as these often allow for very

high precision, at the expense of low recall – it is hard to enumerate all possible

patterns for a given domain (even for reasonably simple tasks).

Alternatively, we may try a supervised learning approach to solving the prob-

lem of Relation Extraction. In this case, we use a fixed set of relation labels (and,

usually, a corresponding set of entity labels) with a set of example (training) data.

The examples consist of texts containing instances of the relations in question, with

entities identified within the text. It is not uncommon in such cases, especially

for neural algorithms, for entities to be “de-lexified”, meaning their textual content

(remembering that entities may consist of multiple tokens) is replaced in the text

with special “[Entity]” tokens. In the case of multi-relation tasks, predictions are

made on entity pairs – generally all possible pairs in the sentence, ordered or un-

ordered (depending on domain), and potentially filtered depending on whether any

constraints allow for relations to exist between entities of the appropriate types. For
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each pair, we then construct a set of features, and feed this input into our classifi-

cation algorithm to predict the label for the relation. Many entities will, of course,

have no relation between them, and hence having No Relation examples in the train-

ing data is very important – TACRED, for example, has approximately 80% of its

examples annotated as No Relation.

The question then becomes how to construct features for such a classifier. Here

there are many options: header words (the tokens appearing at the beginning of to-

ken sequences), bag-of-words (unordered frequency counts of the tokens in certain

spans), tokens at relative positions (for example, the tokens just preceeding and fol-

lowing each entity), entity labels or other such features, syntactic structure from

sentence parsing (the dependency tree or constituent paths through the sentence

structure), or even word embeddings from neural approaches such as Word2Vec

(Mikolov et al., 2013) or GloVe (Pennington et al., 2014). Some combination of

these can be used, and fed into a classification algorithm of preference, to produce

a relation label classification.

There are two other notable approaches employed for this kind of task: Boot-

strapping and Distant Supervision, both of which make use of unlabelled data, and

are semi-supervised approaches.

Bootstrapping is the process by which a small set of seed patterns or relation

tuples are used to find other instances of the same pattern/relation, and then infer

other patterns. By finding other instances of known patterns (where the same pattern

is used for different entities) or relations (where two entities known to have a rela-

tion are found in other, unlabelled sentences), we can expand our training dataset.

Using these new examples, we can infer new patterns from these new contexts, and

then repeat the process. The risk here is that we will slowly introduce incorrect pat-

terns into our dataset, resulting in semantic drift – where we are no longer capturing

the desired relation. This can be mitigated by estimating confidence in new patterns

(often by balancing their performance on existing tuples and productivity of new

tuples), however.
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Distant Supervision requires a database of relation tuples. From this database,

we can simply find examples of the entities in question in a corpus of unlabelled

data, and use these as positive training samples for a supervised algorithm (as

above). Negative samples can be generated by finding entity pairs not linked by

a relation, in a sentence in the corpus. The resulting database will be relatively

noisy, but potentially very large, and so appropriate training algorithms can still

take advantage of the large amount of data to infer patterns.

However, neither of these semi-supervised approaches is well suited to the

problem we will deal with in later chapters, as generalising existing patterns is com-

plicated by lack of definition in entity labels (as many entities we are interested in

are more complex than simple keyword or pattern matching will allow), and we

have no database of tuples to draw on (as, once again, the entities we are interested

in, such as numbers, are highly variable). Hence, later chapters will focus on Hearst

Patterns, and supervised approaches.

For similar reasons, whilst there do exist unsupervised approaches to this prob-

lem (sometimes referred to as Open Information Extraction), we will not be explor-

ing them in this work. By their nature they do not allow for predefined sets of

relations, and hence are of less use to us in this case.

1.5.3 Numerical Expression Extraction

The extraction of generic numerical data is a challenge for many common language

models. In particular, numbers do not obey the standard assumptions of tokeniz-

ers – notably that tokens with different characters are atomic and distinct, as in

Word2Vec, or that substrings of tokens are significant (which is only true of nu-

meric prefixes). Hence, “1” and “2” are more similar to each other than to “9”,

despite all of these having the same “edit distance” (number of characters which

must be changed to make the strings match). Additionally, numbers exist on a spec-

trum, such that “1.0001” is much closer to “1” than “2”, despite having a much

higher edit distance. The upshot of this is that numerical values often require some

kind of special handling, if they are dealt with at all (this issue is generally not dealt
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with by most language models, more concerned as they are with human language

than mathematics).

There have been attempts to perform Natural Language Processing on nu-

merical values. However, these either require the aforementioned special handling

(sometimes invoking separate models to deal with numeric tokens), or by specialis-

ing in numeric values above others (often through the use of pattern-matching). An

example of the latter approach is Cai et al. (2019). Alternatively, Zubke (2017) uses

context features to produce a contextual embedding for numeric values to interpret

their meaning. These approaches, however, are not interested in a general algorithm

for extracting arbitrary numeric values and their associated contingent information,

as they are both focused on identifying the meaning of numeric values in medical

writings. They make use of pattern-matching and pattern-generation, rather than

a full scale Named Entity Recognition model to support their Relation Extraction

efforts.

1.5.4 Table Mining

Table mining (the process of extracting information from tabular data in documents)

has some advantages over general Natural Language Processing, in that the data is

already semi-structured. However, the variety of table formats, layout choices, and

complex hierarchical data makes this far from trivial. As a task, this challenge lends

itself to pattern-based approaches. There have been attempts to solve this problem

(Milosevic et al., 2019), but the variety of possible formats means that more robust

approaches are still required.

We will not consider table mining in this work, as we are primarily interested

in extracting numerical values presented in free text. The astrophysics community

already has repositories of tabular data that are well maintained, such as Wenger

et al. (2000), but lacks such a repository for more singular measured values.
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1.6 Deep Learning

1.6.1 Fundamentals

The brain – comprised of neurons and the connections between them – is a very

powerful computational and learning engine, and has inspired a great many ideas

in science and technology. One such idea is that of an artificial neural network: a

mathematical model inspired by the network of neurons in the brain (Rosenblatt,

1958).

Specifically, a simplified view of a biological neuron is comprised of a

soma (body), dendrites (input channels), and an axon (an output). Each axon may

be connected to multiple neurons via those neuron’s dendrites, which in turn con-

nect to more neurons through their somata and axons, and so on, forming a network

of connections. Electrical signals flow through these connections, with each neuron

accepting inputs through its dendrites, and releasing an electrical charge through its

axon when it has accumulated enough charge in its soma from these input channels.

Crucially, the axon-dendrite connections may have different levels of “connectiv-

ity”, by which the efficiency of the connection may be controlled, affecting how

much charge is passed to the downstream neuron by that connection. These con-

nections, and the flow of electrical charge between the neurons, is a fundamentally

analogue process, conducted in real-time (Gurney, 1997).

An artificial neural network uses a simplified mathematical model of this pro-

cess, one which is conducted in discrete time-steps, using sequential mathematical

operations (as discussed in Goldberg and Hirst, 2017). An important simplifying

assumption is made regarding the network structure in that the network is com-

prised of “layers” of neurons, where each layer accepts input and generates output

in a single step, before the next layer’s outputs are calculated. A multi-layer percep-

tron model (the quintessential deep learning model) is simply comprised of multiple

such layers, all densely connected together, i.e. each neuron accepts input from each

neuron in the previous layer, and supplies its output to each neuron in the next layer.

This is analogous to the axon-dendrite connections of the biological neuron.
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The operation of the soma – the body of the neuron which accumulates charge

and produces output at the appropriate time – is modelled as a weighted sum over its

inputs, followed by an activation function to represent the accumulation of charge

causing a spike in output. The weights of this sum, w j, are specific to the connec-

tions between the neuron and its predecessors in the previous layer (indexed by j),

and are the crucial parameters of the model. Together these constitute a weight vec-

tor, w⃗, and the weighted sum treated as a dot product with the input vector, x⃗, which

is then passed to the activation function, Φ. A schematic diagram of this setup may

be seen in Figure 1.3. Early experiments with artificial neural networks used step-

functions for the activation function, but later smooth functions were used to enable

differential calculations on the networks. Hence, the output of a given neuron, y, is

given by,

y = Φ(w⃗ · x⃗) = Φ

(
∑

j
w j x j

)
. (1.8)

As each layer is constructed of multiple neurons, we may compute the entire layer

output, y⃗, all at once:

y⃗ = Φ
(
wT x

)
. (1.9)

Where w is a n×m matrix containing the weights of each neuron in the layer, with

n being the number of neurons in the previous layer and m being the number of

neurons in the current layer, and x is the n-vector of inputs to the layer (which may

be the outputs of a previous layer). Note that, in practice, a bias term may also be

applied to each neuron.

We can then stack numerous such layers together to form a network, computing

the output of each layer to be used as input to the next, starting from an “input layer”

where input values are provided to the whole network, and ending at an “output

layer” whose outputs are taken as the model output. Such a network is called a

Multilayer Perceptron, and is referred to as feed-forward, as each layer simply feeds

its output directly to the next, with no loops or other complex structures.

It is important to note that the activation function used for the layers should

have certain properties: it must be non-linear and differentiable, and should ideally
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Figure 1.3: Schematic diagram of an artificial neuron. xi indicates the input values, wi

indicates the weights, y is the output, and Σ and Φ stand for the summation and
activation functions, respectively.

be smooth, monotonic, and bounded (although these three qualities are not required,

and indeed are not satisfied in the case of ReLU, one of the more popular activation

functions currently). Firstly, it should be differentiable such that gradient descent

can be used for training purposes. Secondly, and more importantly, it must be non-

linear. If the function is linear, the repeated matrix multiplications that underlie the

forward-pass of the network (Equation 1.9 above) become degenerate – as they are

now simply multiple linear transformations – and we do not gain increasing model

capacity from an increasing number of layers. With a non-linear activation function,

each layer becomes a separate non-linear transformation, and the network can now

perform increasingly fine-grained manipulations of the feature space.

1.6.2 Training

The question then becomes: How do we determine the values of the weight matrices

such that the computation the network performs is useful to us? There are two

components used to solve this issue: gradient descent, and backpropagation. First

we must note that a neural network is a trained model – it requires examples of the

desired mapping from input to output values. Strictly speaking, a neural network is

a non-linear function approximator, that is trained using examples of the function

mapping it is attempting to approximate. For a given input with a known output, we

define a “loss”, which is some measure of the distance between the network output
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for that input and the desired (or “target”) output. The goal of training, then, is to

reduce that loss across all training examples.

To achieve this, gradient descent is used (Kiefer and Wolfowitz, 1952; Robbins

and Monro, 1951): if we calculate the gradient of each the loss with respect to each

weight in the network, then we may adjust the weight values such that we “descend”

the gradient slope – as the gradient indicates which direction in weight space will

decrease the loss. Strictly speaking, for a loss, L, and a given weight, wi j, we

calculate the weight update using:

∆wi j =−η
∂L

∂wi j
, (1.10)

where η is the learning rate, a parameter to control the weight update step size. The

negative sign provides the “descent”. The method generally used is stochastic gra-

dient descent (SGD), named due to the way the training loop is performed: for each

epoch of training, we shuffle the training dataset, and then perform this update for

all weights, for each example in the training set. This repeated shuffling leads to the

stochastic nature of the training loop. Note that, in practice, training examples are

often batched together, with the gradient being calculated for multiple examples at

one – this stabilises the training somewhat, and improves efficiency. However, SGD

provides very few theoretical guarantees, and a large amount of research has been

conducted into improving the performance of this approach, resulting in variants

such as AdaGrad (Duchi et al., 2011), RMSProp (first usage Graves, 2013), and

Adam (Kingma and Ba, 2014).

Backpropagation is the method by which modern neural network models cal-

culate their gradients for use with SGD and its variants (discovered separately by

multiple researchers, but popularised by Rumelhart et al., 1986). It is based on the

idea of “backward propagation” of errors through the network. First, a forward

pass is calculated, with the outputs of each layer successively calculated as above,

and then a backward pass is calculated, propagating the error (i.e. loss) from the

final layer back through the network. An application of the chain rule is used to

then sequentially determine the gradients of each weight with respect to the loss,
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calculated from the final layer back to the first. In practice, this is done using the

autodiff algorithm. The gradients are then used to update the weight values, and

then another forward pass with a different training sample is calculated, and so on.

1.6.3 Advantages

It has been shown that a sufficiently wide network of finite depth, or a sufficiently

deep network or finite width, can approximate any well-behaved function, with min-

imal constraints on the nature of the activation function (Cybenko, 1989; Schäfer

and Zimmermann, 2006). The power of these networks comes from the capacity

to train them on a given set of data points, in order to approximate the underlying

distributions present in that data. It has been shown that for deep networks – those

with more than one “hidden layer”, i.e. those layers other than the input and output

layer – this approach reduces the need for human-driven feature engineering, as the

network learns increasingly abstract representations of the data for each successive

layer (Collobert et al., 2011). A classic example of this is in the case of image clas-

sification: We want a network to classify images containing either a dog or a cat.

In the early layers of the network, it learns representations of basic patterns (here

is a vertical line, here is a “flat” region), but in later layers it learns more abstract

features (here is an eye, here is fur), and eventually represents the images as areas of

“dog-ness” and “cat-ness”. In other domains, if our training runs are successful, the

network will similar abstractions specific to the domain of our data. Traditional ma-

chine learning approaches relied heavily on hand-crafted features (transformations

of the input data determined manually by human researchers) in order to provide

easier problems to the statistical algorithms that were used. However, this intro-

duces a great deal of potential for subconscious bias, and limits the models to the

scope of human thinking. By allowing the training algorithm to guide feature ex-

traction, we removes the barriers, and the results have proved very effective for

many applications.
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1.6.4 Sequence Modelling

For the work of this thesis, there is a specific class of neural networks that are of

particular note: Recurrent Neural Networks (RNNs). Previously we described feed-

forward networks, which map a single input to a single output. RNNs are intended

for use with sequential data, where we have a sequence of time steps and a dis-

tinct input associated with each step, and either a single output based on the entire

sequence or a corresponding sequence of outputs for each time step.

In the case where the output is also a sequence (and we shall assume it is a

sequence which corresponds one-to-one with the input, so that they are the same

length), we could simply create a feedforward neural network and apply it to each

time step, completely ignoring the sequential nature of the data. In some cases this

might work reasonably well, but consider the case of text (sequences of words): to

understand the meaning of a work, we generally require some knowledge of the

other words in the sentence – for example, to determine if the word “play” is a

noun (theatrical production) or a verb (to play a game) requires some context. So, a

simple feedforward network is insufficient. RNNs solve this issue by allowing the

network to receive some information from previous time steps. At each step, the

network accepts two input vectors: the input values for the current time step (much

like our feedforward network), and a hidden state, which represents the current state

of the sequence. The trick is that the hidden state is another output of the network –

at every time step, it produces both an output value, and the hidden state to be passed

to the network at the next time step. This is represented in Figure 1.4a. We can “un-

roll” this representation, to see that such a sequence of operations can be viewed as

a larger network, as shown in Figure 1.4b. Crucially, there is nothing preventing us

from backpropagating errors through these additional lateral connections, in exactly

the same manner as before. This means that the network truly can be trained on se-

quential data, and we preserve all of the advantages of automatic featurisation and

abstraction, whilst also allowing the network to store a representation of the state of

the sequence at a given time step.
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Figure 1.4: Schematic diagrams of a rolled and unrolled RNN. Here x<i> is the input for
the ith time step, y<i> is the corresponding output, and h<i> is the hidden state
after the ith time step. h<0> is the initial hidden state for the network.

There are, however, some practical issues with this approach as stated. The

largest being that as the length of the sequence increases, the more information

we are expected to store in the hidden state at each time step. This can be alle-

viated somewhat by using more complex recurrent units, which attempt to learn

how to prioritise information. Perhaps the most famous of these is the Long Short-

Term Memory (LSTM) unit, which uses “gates” (small neural networks within the

unit) to learn what information to “remember” and what to “forget” (Hochreiter and

Schmidhuber, 1997). See Section 1.6.5 below for more details.

Another issue is that of directionality: When a human parses a sentence, they

will often refer backwards and forwards as the sequence progresses in order to

contextualise and recontextualise information as the sentence progresses (literally,

reading back over the sentence). Our simple RNN above cannot do this, as it must

“read” the information in order from beginning to end. A common solution to this

is to run the sequence through the model twice, forward and backward. This is

referred to as a bidirectional RNN (Bi-RNN, and even BiLSTM), and significantly

increases model performance. The outputs from this forward and backward pass

are then concatenated, and can be treated as a single output by further layers.

1.6.5 LSTM

The Long Short-Term Memory (LSTM) cell is a well-established component of

modern neural networks, and is a form of Recurrent Neural Network architecture.

It was first proposed by Hochreiter and Schmidhuber (1997), and has been refined
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Figure 1.5: Schematic diagram of an LSTM cell. xt , Ct , and ht indicate the input values,
cell state, and hidden state, respectively. σ , ×, and + represent the sigmoid
function, pointwise multiplication, and pointwise addition, respectively. Boxes
indicate neural layers (with activation function specified), whereas ellipses sim-
ply indicate operations.

and studied by many other researchers since (e.g. Gers et al., 1999). LSTM cells

contain several “gates” which facilitate the learning of longer-term dependencies in

sequential data. Figure 1.5 contains a schematic diagram of an LSTM cell, showing

the internal connections between the inputs and outputs via these gating mecha-

nisms.

A gate, in this context, is a densely-connected single layer with a sigmoid ac-

tivation function – which, crucially, constrains the output of the gate to be between

0 and 1 – followed by a pointwise multiplication operation (notated as “◦” below)

to be used with some other state or intermediate value. This combination allows

the network to, depending on the input data, remove the signal from certain inputs

(with an output of 0 from the dense layer) or allow it to pass through (an output of 1).

Hence, these gates allow the flow of information through the cell to be controlled,

in a way which is fully differentiable and can be used during back-propagation.

Inside the LSTM cell there are three such gates: the forget gate, input gate, and

output gate. The cell takes in an input, xt , at each timestep t, along with a cell state,

Ct−1, and hidden state, ht−1, from the previous timestep (or some initial states at

timestep 0, which can either be learned or predefined). The cell outputs a new cell
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and hidden state for each timestep. For the LSTM cell, the “hidden state” is also

used as the output for each timestep (in a slightly confusing use of existing RNN

terminology).

Each gate within the unit takes as input the concatenation of the current input,

xt , and the hidden state from the previous timestep, ht−1. Each gate has weights for

the input and hidden parts of the input, W and U , respectively, along with a bias

term, b.

The forget gate takes the concatenated input, and outputs a vector to be multi-

plied with the previous cell state,

ft = σ
(
Wf xt +U f ht−1 +b f

)
. (1.11)

This allows the cell to filter out information in the previous cell state that is no

longer relevant, based on new input. For example, if we are dealing with text, the

occurrence of a new subject for the sentence may override previous information

retained about the pronouns to be used.

The input gate consists of two arts: first, the concatenated inputs are fed into a

densely-connected single layer with a tanh activation function (this being the classic

non-linearity required of all neural networks)

C̃t = tanh(Wcxt +Ucht−1 +bc) . (1.12)

This adjusted input is then multiplied with the output of the input gate,

it = σ (Wixt +Uiht−1 +bi) . (1.13)

Finally, the resulting values are pointwise added to the output of the forget gate,

Ct = ft ◦ ct−1 + it ◦C̃t . (1.14)

This apparatus (input gate followed by multiplication and addition) then represents

the addition of new information to the stored “memory” (cell state), dependent on
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the hidden state of the cell, and the newly available input. The gate allows the cell

to be selective about which parts of the input are relevant for the long-term memory

of the cell. The final output is then used at the new cell state, Ct , to be used in the

next timestep.

Finally, the output gate takes the concatenated input, passes it through the gate

layer, giving,

ot = σ (Woxt +Uoht−1 +bo) , (1.15)

and then multiplies it with the new cell state (the output of the input gate), which

has first been passed through a tanh activation function (to constrain the values for

numerical stability and to introduce non-linearity),

ht = ot ◦ tanh(Ct) . (1.16)

The result of this multiplication is then used as the new hidden state, ht , to be passed

to the next timestep, and used as the output for the current timestep. This gate allows

the network to select which parts of the input are most relevant to the current output,

and the multiplication with the cell state allows previous knowledge to be utilised

when determining output values.

This ability of the network to select relevant parts of the input, and its own

memory, when determining future cell states is what allows for the improved learn-

ing of long-term dependencies. The network can prioritise certain information as

having long-term usefulness, and reject other parts of the input as being only locally

relevant, with more finesse than previous RNN architectures.

1.6.6 Performance Metrics

In this work, the following performance metrics are used when evaluating model

performance: precision, recall, and F1 score. Below is a brief description of these

metrics. Here we consider a testing dataset, containing a number of samples. Some

portion of these samples are considered “relevant” – we desire that these samples

be identified as Positive by the model. Relevant samples identified as Positive are

“True-Positive” (t p), and those identified as Negative as “False-Negative” ( f n).
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Conversely, non-relevant samples identified as Positive as “False-Positive” ( f p),

and those identified as Negative “True-Negative” (tn).

Precision is defined as the number of True-Positive results, as a fraction of the

total number of retrieved samples (all samples with a Positive prediction, i.e. the

number of True-Positives and False-Positives) in the tested dataset,

Precision =
t p

t p+ f p
. (1.17)

It is a measure of how relevant the retrieved samples are.

Recall is defined as the number of True-Positive results, as a fraction of the rel-

evant samples (i.e. the total number of True-Positive and False-Negative samples),

Recall =
t p

t p+ f n
. (1.18)

It is a measure of how many of the relevant items were identified.

The F1 score is the harmonic mean of the precision and recall,

F1 =
2

Precision−1 +Recall−1 =
2t p

2t p+ f p+ f n
. (1.19)

The F1 score can have a value between 0 and 1, with 1 representing perfect precision

and recall.

Whilst these metrics are primarily for binary problems, they can be generalised

to the multi-class case by micro-averaging (biased by class frequency) the scores –

this strategy is used in this work.

1.7 Thesis Structure

The final goal of this project is to produce a system which will allow researchers

to quickly and easily search the available corpus of literature for instances of mea-

surements of a particular parameter. In this endeavour we will be utilising advances

in the fields of NLP and deep learning to produce models for solving the sub-tasks
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towards this goal, and use the Hubble constant as a case study, due to its well-

understood history and naming conventions.

In Chapter 2, we present an approach for automatic extraction of measured

values from the astrophysical literature, using the Hubble constant for our pilot

study. Our rules-based model – a classical technique in natural language processing

– successfully extracts 298 measurements of the Hubble constant, with uncertain-

ties, from 208,541 astrophysics papers from the arXiv repository (a complete set up

to September 2017). We also detail an artificial neural network classifier to iden-

tify papers in arXiv which report novel measurements. From the analysis of our

results we find that reporting measurements with uncertainties and the correct units

is critical information when distinguishing novel measurements in free text using

these rules-based techniques. Our results correctly highlight the current tension for

measurements of the Hubble constant and recover the 3.5σ discrepancy – demon-

strating that the tool is useful for meta-studies of astrophysical measurements from

a large number of publications.

In Chapter 3 we develop a new model for automatic extraction of reported

measurement values from the astrophysical literature, utilising modern Natural Lan-

guage Processing techniques. We use this model to extract measurements present in

the abstracts of approximately 248,000 astrophysics articles from the arXiv repos-

itory (a complete set up to September 2020), yielding a database containing over

231,000 astrophysical numerical measurements. Furthermore, we present an on-

line interface (Numerical Atlas) to allow users to query and explore this database,

based on parameter names and symbolic representations, and download the result-

ing datasets for their own research uses. To illustrate potential use cases we then

collect values for eight different cosmological parameters using this tool (includ-

ing the Hubble constant). From these results we can clearly observe the historical

trends in the reported values of these quantities over the past two decades, and see

the impacts of landmark publications on our understanding of cosmology.

In Chapter 4 we provide a summary of this thesis and the possible direction of

future works.
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1.8 Objectives
The objectives of this work are as follows:

• Create a model for automatic extraction of numerical measurements from

astrophysical literature.

• Use this model to create a database of measurements from open-source repos-

itories of astrophysics literature.

• Test this model and database on case studies of well-known astrophysical

quantities, to gauge effectiveness.

• Produce an interface to allow researchers to explore the resulting database,

and use the outputs in their own research.

1.9 Publications
A list of publications resulting from this work is as follows:

• Crossland, T. et al. Towards machine-assisted meta-studies: the Hubble con-

stant. MNRAS, 492(3):3217–3228, March 2020. doi: 10.1093/mnras/stz3400

• Crossland, T. et al. Towards Machine Learning-Based Meta-Studies: Appli-

cations to Cosmological Parameters. arXiv e-prints, art. arXiv:2107.00665,

July 2021 (submitted to The Astrophysical Journal Supplement, currently un-

der review)



Chapter 2

Towards Machine-assisted

Meta-Studies: The Hubble Constant

This chapter is based on Crossland et al. (2020).

2.1 Introduction
The first step in reaching our goal of numerical measurement extraction is an investi-

gation into the available data (textual and catalogue), both in terms of data structure

and format, and some examination of the way in which data is presented in scien-

tific writing. Following on from this, models for data extraction must be created,

which will highlight important obstacles and future avenues of exploration, which

in turn will inform the later implementation of more advanced machine learning

techniques. The models we discuss in this chapter will primarily be rule-based, and

aimed at extracting measurements of named quantities. A “measurement” in this

context specifically refers to a numerical value with associated uncertainties and

units. Concrete examples of measurement reporting from astrophysics publications

are given in Examples 1-4 in Table 2.1.

In this chapter we shall be focusing on finding instances of the Hubble con-

stant in astrophysical texts – the parameter which describes the expansion rate of

the Universe at the current epoch. We have chosen the Hubble constant for two

reasons: Firstly, the uniformity of its naming conventions – both in written English

and mathematical syntax – make it a good test for our explorations into the data.

Secondly, the debate over its value – both historically and in the present (Freed-
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man, 2017; Planck Collaboration et al., 2014; Riess et al., 2018b) – will allow us

to check for the presence of expected trends in our results. In the next chapter we

shall be extending the method to allow for any named parameter – even those with

linguistically complex names.

In this chapter we shall describe our exploration of the astrophysical literature

available from the arXiv repository, rules-based models for measurement extraction,

and artificial neural network models for measurement classification. We shall begin

in Section 2.2 with a brief overview of aspects of the data, and move on to Sec-

tion 2.3 to describe our pipeline for producing a unified, easily manipulable set of

files. In Section 2.4 we shall discuss our model for extraction of values of the Hub-

ble constant from arXiv papers, describing the initial model and the improvements

required to reduce noise in the output. Using our model we are able to find a strong

signal in the data centred around the accepted region for the value of the Hubble

constant. Additionally we find structure expected from the current state of the com-

munity, notably the two concentrations of results at ∼68 and ∼73 km s−1Mpc−1

seen from 2013 to the present (see Figure 2.5). Then in Section 2.5 we discuss the

training of an artificial neural network classifier for determining if a given paper

reports a novel measurement. This is used in conjunction with our extracted values

of the Hubble constant to examine the distributions of quoted and novel values in

both the time and measurement value axes. Little structure is observed in the time

axis, but strong patterns are seen in the value axis (notably a strong peak seen at

∼75 km s−1Mpc−1, the accepted region of the true value). Finally, in Section 2.7,

we summarise the findings of this chapter, and discuss limitations of the rules-based

approach for extracting measured values from free text.

2.2 Data

The arXiv, operated by the Cornell University Library, represents one of the largest

open-source repositories of scientific literature available. It has seen considerable

uptake in the physical sciences, especially astrophysics, and hence it will be used in

this work as a source of text for data extraction and model training purposes.
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.tex .xml 

Value Uncertainty (Upper) Uncertainty (Lower) Units 

72 8 8 km s ^{-1} Mpc ^{-1}  

68 4 4 km s ^{-1} Mpc ^{-1}  

70.8 2.1 2.0 km s ^{-1} Mpc ^{-1}  

Keywords: [“H_0”, “Hubble Constant”] 

Units:    𝑘𝑚𝑠−1𝑀𝑝𝑐−1 

Keyword found 

Keyword found 

Keyword found 

Measurement found Incorrect Units 

Measurement found No Units 

No Units Measurement found 

...   Hubble Constant   is   72 \pm 8 km s ^{-1} Mpc ^{-1}   at d =   60   Mpc   ... 

   

… H_{0}   =   68 \pm 4 km s ^{-1} Mpc ^{-1} from    4    sources … 

 

… Hubble Constant   from a sample of   31   SNIe is   70.8 ^{+2.1}_{-2.0} {km / s / Mpc} … 

 

Figure 2.1: Schematic overview of the chapter. LATEX source files are extracted from the
arXiv repository, converted into a more practical format (XML), and then spans
containing reported measurements of a given entity (in this case the Hubble
constant, H0) are identified and processed. The resulting processed data may
then be tabulated and analyzed.

The arXiv makes available LATEX source files for the vast majority of its arti-

cles, roughly 91%, and we shall be focussing on this subset for our preprocessing

steps. We investigated the distribution of file types (based on file extension) across

all the arXiv source files to determine if there was another prevalent file type which

should be accounted for. The source files include all manner of different file ex-

tensions, from various TEX and LATEX extensions (e.g. .tex, .TEX, .latex,

.ltx, etc.) to unusual compression formats (e.g. ‘.cry’), and many others in-

between. Entries without LATEX source files fall into a number of groupings, such

as entirely different source file types or withdrawn papers, and a summary of these

may be seen in Table 2.2 and Figure 2.2. The largest grouping, aside from TEX

and LATEX source files, is for articles available only in PDF format (7.5%). Due to
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the complexity of extracting well-formatted textual data from PDFs, 1 we shall ex-

clude such files during preprocessing, operating under the assumption that there is

no systematic disparity between the general trend in LATEX-submitted papers versus

PDF-submitted papers. Verifying this claim is beyond the scope of this thesis, and

the following results are based on this working assumption.

Our data in this chapter consists of the source files for all arXiv articles up until

September 2017 (the earliest article being from July 1991), corresponding to a total

of 1,309,498 articles. Our preprocessing pipeline (see Section 2.3), which requires

that the LATEX source files be present for the article, yields 208,541 processed astro-

physics articles. Of these 195,369 articles (94%) have an ‘abstract’ section (i.e. the

article has made use of the LATEX-specific ‘\abstract’ command), which will

be a useful structure in our analysis. The reason for this reduction is that some

of the processed articles have TEX-only source files, and therefore cannot include

the LATEX ‘\abstract’ command (or many other useful LATEX structures). Addi-

tionally we also find 142,179 articles (68%) with both an identifiable abstract and

conclusion. The conclusions are identified using ‘\section’ structures with titles

containing either “conclusion” or “summary” (case insensitive search).

In addition, we have utilised the dataset compiled by Croft and Dailey (2011)

as validation data and a source of example literature in this work. The dataset con-

sists of 638 compiled values of 8 cosmological parameters from 468 papers. Of

these, 214 papers (46%) are successfully processed by the pipeline described in

Section 2.3. More specifically, 124 of the 638 measurements in this dataset (19%)

are Hubble constant measurements, originating from 122 of the 468 papers (26%).

Of these 122, 80 papers (65%) are successfully processed by our pipeline. The low

1The PDF specification is primarily designed for controlling the appearance of digital content,
and hence places very little requirement on the document contents to be in a logical order. Internally,
the content of different pages can be out of order (which is less of an issue for the purposes of data
extraction), and even the contents on an individual page are not necessarily ordered in a manner that
relates to the logical layout of page text (which is much more troublesome). Whilst some layout
engines will ensure internal structure, this cannot be guaranteed in the general case, and hence a
more complex extraction algorithm is required – such algorithms are available. More importantly,
however, PDF has no concept of “equations”, which must then be parsed character by character, and
their relative significance inferred – algorithms for this procedure are not readily available. Creating
such an algorithm is considered unnecessary for this work, given the wide availability and usage of
LATEX documents in the astrophysical domain.
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Figure 2.2: Distribution of arXiv source file groupings (see Table 2.2) with time. Group
occurrences are plotted using a log-scale. TEX/LATEX source files dominate the
distribution, followed by PDF files.

efficiency for the conversion of these papers is due to the dataset being biased to-

wards older publications, which either do not have LATEX source files (e.g. source

is in PostScript format), or otherwise are unusually formatted due to lack of stan-

dardisation. These papers in this dataset are used as a starting point for examining

occurrences of astrophysical measurements in literature, and also as a gold-standard

dataset (albeit single-class) for validation of classifiers in Section 2.5.2.

2.3 Pipeline

LATEX files are not ideal for natural language processing tasks, as they contain a

large amount of information which is of use only in type-setting contexts. However,

information relating to document structure is of great use when manipulating and

analysing the text contained in the article – for instance, the ability to distinguish

sections, easily identify article abstracts, and so on. As such, we require a docu-

ment format into which the LATEX source files can be converted which will retain

the structural information we desire, but will facilitate ease of access in compu-



2.3. Pipeline 63

tational settings. To this end we employ LaTeXML2, a program which converts

LATEX files (including style and class files, thus accounting for custom commands

and macros) into XML format. The hierarchical structure of XML is well suited

to representing the structure of scientific literature, where articles contain sections

which themselves contain subsections and then paragraphs and so on, and the high

availability of XML libraries in all major programming languages make this docu-

ment format a desirable choice for our purposes.

File extensions are used to find the required documents from the arXiv source

directories (discounting figures and other unnecessary files). As mentioned earlier,

this leads to some issues with the large variety of extensions employed by writers,

with Table 2.2 indicating the assumptions that have been made here when identify-

ing LATEX source files by extension. The preprocessing pipeline then processes each

article’s source files in the following steps:

1. Article category tags are found from the arXiv metadata, and articles without

the astrophysics tag (“astro-ph”) are discounted.

2. Article source files which match known TEX/LATEX file extensions (e.g.

.tex, .cls, .sty, .bib) are identified.

3. If more than one TEX file is present, each file is scored to determine

the main source file. This step is more complex than expected, as it

transpires that many source directories contain more than one file with a

“\begin{document}” expression. Presence of the “abstract” keyword

and the article title (taken from the arXiv metadata) are used in this scoring.

Approximate string matching is used to find the article title, due to the dis-

crepancies which may be found between titles stored in the metadata, and

that which appears in the source text, often due to the presence/absence of

mathematical type-setting commands.

4. The highest scoring file is processed using LaTeXML.

2LaTeXML homepage: http://dlmf.nist.gov/LaTeXML/

http://dlmf.nist.gov/LaTeXML/
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5. The text stored in the XML tree is tokenised and sentence split, such that

all words and punctuation tokens are separated with whitespace, and each

line contains a single sentence (and sentences are not split between multiple

lines). This stage facilitates use of the data in a natural language processing

context.

When run on the arXiv source dataset this process yields 208,541 astrophysics

articles in XML format, with a total of 12,868 failures due to decoding or LaTeXML

errors, giving a success rate of 94%. This is considered sufficient coverage for our

purposes.

2.4 Measurement Extraction
We now wish to produce an algorithm for extracting measurements from text. There

exist many machine learning techniques in the natural language processing domain

for this class of problem (e.g. named-entity extraction, question-answering, etc.)

that we may apply in this scenario, however we shall begin by producing a baseline

model: a simpler model which trades effectiveness for legibility, based on tech-

niques which may be easily reasoned about. The output of this model may then

itself be used as a baseline when experimenting with more complex models and

hence will be a good test of these models’ effectiveness.

We shall begin with a method of measurement extraction based on a simple

keyword search. Given our processed arXiv articles it is a simple task to search

for a specified keyword in the document, and instances of numerical values. We

then make our primary assumption: that the closest numerical value to a keyword

instance is a measurement of the entity to which the keyword refers. This is a

strong assumption, but shall be seen to produce useful results. The next assumption

we shall make is that numerical values and the names of the entities to which they

refer are found in the same sentence – i.e. there is no multi-sentence inferencing

required. Examination of real-world scientific literature shows that neither of these

assumptions holds in all cases, but as a general trend they are a good starting point

for our model.
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Here we shall focus on extracting measurements of the Hubble constant from

the arXiv astrophysical literature dataset. The Hubble constant is a good candidate

for this type of keyword search as it has a small number of recognisable identifiers

which differ little between authors. Notably, we have the following:

• Hubble constant

• Hubble parameter

• H0: written ‘H_0’, ‘H_{0}’, ‘H_\circ’, or ‘H_{\circ}’

with optional capitalisation of the second word in the above phrases. These may

easily be encoded by hand if one has some knowledge of the typesetting conventions

for the common mathematical symbol.

We shall also be focusing primarily on measurements extracted from article

abstracts. Our reasoning for this is as follows: at a pragmatic level, experimenta-

tion shows that paper abstracts include far fewer extraneous or arbitrary numbers

than the article bodies. These numbers may include: year dates from citations, sec-

tion/equation reference numbers, secondary calculated values, assumed values, and

so on. Limiting the search to article abstracts greatly reduces noise in the output,

whilst preserving values of interest. This is motivated with the assumption that any

paper whose main subject is the measurement of some physical quantity will give a

summary of said measurement in its abstract. Similar approaches have been taken

in data extraction work in the bio-medical field (Novichkova et al., 2003; Usami

et al., 2011). Based on observation of scientific literature we would expect these

summaries to be of the form “we find name to be value±uncertainty”, or “symbol

= value±uncertainty”, or similar. Note that there are, of course, many variations of

these patterns, and the models discussed below are designed to be as robust to them

as possible.

For clarity, we shall list the above assumptions here:

1. Closest numerical value to a keyword instance is a measurement of the entity

to which the keyword refers.
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2. Numerical values and associated entity names appear in the same sentence.

3. Values of interest appear in the article abstract.

2.4.1 Initial Model

It transpires that the naive application of our assumption of taking the closest num-

ber to a keyword produces a large amount of noise. There are simply too large a

variety of ways a simple series of digits (and possibly a decimal point) can occur

in a sentence – especially in scientific text, which contains many numerical identi-

fiers (e.g. “NGC1277” for a galaxy, or “0703.00001” for an arXiv identifier), and

mathematical expressions. For example, consider the following strings: “H_{0}’,

“H_{z=1.5}”, “a=b-1”, “a=1-b”, and so on. Patterns such as these are common in

scientific writing. We may solve the first two by simply assuming that all numbers

enclosed in braces (“{ }”) are related to LATEX math expressions and not numerical

values in their own right. The latter two present more of an issue, however, as it is

not evident that a simple rule may be constructed to remove them which would not

also interfere with finding actual measurements.

However, there do exist some simple patterns which we may account for. Any

numerical string returned by the initial search for numbers in the text which over-

laps in the sentence with one of the following patterns is rejected as a possible

measurement:

• Year date, expressed as a series of 4 digits in parentheses, where the resulting

value lies in the range 1400-2100, e.g. “(1990)”

• Year date followed by proper noun (capitalised word), e.g. “2013 Planck”

• Identifier (any digits preceded by an uppercase string), e.g. “NGC1277”

• ArXiv identifier, e.g. ‘astro-ph0101001’ or ‘0703.00001’

These filters greatly reduce noise in certain numerical ranges (notably 1980-2020,

the standard range for references in modern scientific literature), and generally re-

duce the number of outliers. A summary of these filters, and the regular expressions

used to identify them in text, can be found in Table 2.3.
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Table 2.3: Summary of the regular expressions used to identify numerical patterns in the
text which should be automatically ignored, as likely dates or some kind of iden-
tifier.

Name Regular Expression
Year \( \s* [0-9]4 \s* \)
Year (Named) [0-9]{4} [A-Z][a-z]+
Identifier [A-Z]+ \s* [0-9]+
arXiv [a-z\-]+ /? [0-9]{7} | [0-9]{4} \. [0-9]{5,}

Using the above written forms of the Hubble constant and the practical addi-

tions to the search method, we shall perform our search on the available astrophys-

ical literature. This returns 1730 values from 1324 paper abstracts. The results are

shown in Figure 2.3a. Note that, for the sake of readability, 5% of the returned data

lies outside the range of the figure (corresponding to 93 values).

The most striking issue with the plot is the large cluster of values around

0. These are mostly caused by the search algorithm being overly-generous when

searching for numerical values, or by a failure of one of our earlier assumptions.

For instance, we may find a keyword in a sentence which does not actually report a

measurement of the keyword, but which does contain other numerical data, such as

Example 19 in Table 2.1. Or where the arrangement of characters in the sentence

causes the wrong number to be interpreted as the “closest” (where grammatically

the reader would understand the relationship, but our simple algorithm cannot),

such as Example 17 in Table 2.1. We may also find a different use of one of our

keywords, such as in a compound quantity involving a mathematical keyword – for

example, “H _ { 0 } t _ { 0 }” in Example 7 in Table 2.1. It should be noted that

these issues also lead to noise in other numerical ranges, but the nature of scien-

tific literature (or, at least, astrophysical literature) seems to lead to values around

∼0 appearing with great frequency in text. Many of these are found to be literary

devices (e.g. section numbers), or digits in equations (e.g. x = 1− y).

We may also note the strong lines present at 50 and 100 km s−1Mpc−1. These

are common assumed values for the Hubble constant. Their presence (and the pres-

ence of other such assumed values) is discussed in Section 2.6.
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Figure 2.3: Outputs of models at different stages of development. Time- and value-domain
histograms are also shown. Plot (a) shows the output of the initial model. This
plot shows all numbers matched to keyword instances in available arXiv astro-
physics papers, using the approach described in Section 2.4.1. The groupings
at 0, 50, and 100 in the measurement axis are particularly notable, with the
grouping at 0 primarily consisting of noise. Plot (b) shows the output of the
improved model. This plot shows all measurements (numerical values reported
with an uncertainty and the correct dimensions) matched to keyword instances
in available arXiv astrophysics papers, using the approach described in Sec-
tion 2.4.2. Here we may note the absence of the assumed values at 50 and 100
km s−1Mpc−1, and the noise around 0 on the measurement axis.

2.4.2 Improved Model

The largest issue with the above form of the search is in the way numerical val-

ues are identified (i.e. the characters in the string which correspond to numerical

values). Simply filtering out numbers which appear inside mathematical symbols

and common non-measurement patterns is insufficient. The next step shall be to

produce a more sophisticated regular expression for identifying numerical values in

text – specifically numerical values which are a part of a measurement. A common

signifier of a scientific measurement is the presence of an uncertainty, and we shall

take advantage of this to filter out non-measurement numerics.

First we must consider the standard patterns used to report such measurements.

Examination of the literature yields the following common patterns:

• Plus-minus symbol: 1.0±0.5
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• Upper and lower bounds: 1.0+0.1
−0.2

• Named uncertainties: 1.0+0.1
−0.2 (random) ±0.3 (statistical)

and combinations and repetitions thereof. There are, of course, other more complex

patterns which occur frequently, but these represent the most common and easily

codifiable, and hence shall be our starting point. These may be encoded into a

regular expression which is used to identify measurement patterns in the text, which

may then be matched to the nearest keyword instance, as before. We may now

specify that a numerical value must be followed by an uncertainty to be considered

a ‘measurement’.

Further to this we may wish to specify the dimensions of the measurement we

are searching for. Once again we may construct a regular expression, now to search

for units following a number (potentially with included uncertainties). This may

be done by simply assuming all LATEX math symbols and tokens consisting of less

than 3 characters following a number are part of its units. A simple context-free

grammar may then be used to parse the string returned by the regular expression –

as our regular expression is becoming rather cumbersome at this point. This final

parsing is also used to remove any extraneous characters from the end of the string,

and convert the measurement into a standardised format which may be more easily

processed. The use of the context-free grammar and this standardisation allows for

a variety of mathematical syntax to be accepted in the units string – for example,

“km s−1 Mpc−1” and “km/s/Mpc” are equivalent in our search, and both would be

equivalent to “s−1” (given appropriate numerical conversions).

We may now specify that for a number to be considered a “measurement” it

must possess both an uncertainty, and a given dimensionality. Running this search

for the Hubble constant, and specifying units of km s−1Mpc−1, we find 295 mea-

surements from 225 paper abstracts. The results are shown in Figure 2.3b. Note,

only 1 value now lies outside the plotted region, which corresponds to Example 6

in Table 2.1, as discussed below.

To summarize, we are now using the following assumptions:
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1. A numerical value cannot be a measurement if it is contained within a pattern

for a date or identifier (see Section 2.4.1 for concrete rules).

2. A numerical value is a potential measurement if it appears with an uncertainty

and the expected dimensions.

3. The closest such numerical value to a keyword instance is a measurement of

the entity to which the keyword refers.

4. Numerical values and associated entity names appear in the same sentence.

5. Values of interest appear in the article abstract.

Our previous issues have now been mostly tackled successfully, but a greater

problem is now presented by author error. For instance in Example 22 the author

has confused their results for H0 and little h (where h = H0/100 [km s−1Mpc−1]),

thus leading to an incorrect statement of their measurement - it should be noted that

the result is correctly reported elsewhere in the paper. Examination of the outliers

present in this plot confirms that each one is either an author syntax error, or a

genuine report of an unusual value. It should be noted that these unusual values are

often reported alongside more expected values in the same section – for example

where different techniques, or inclusion of some additional physics to a model,

produce a significantly different result.

We may also note the absence of the 50 and 100 km s−1Mpc−1 lines. This

is to be expected, as these values are rough estimates, and hence are generally not

reported with any kind of uncertainty. They are, however, usually reported with

the correct units – and these lines would indeed reappear if we required only the

presence of the correct units, but not an uncertainty. An example of this may be

seen in Figure 2.4 later in this chapter.

2.5 Classifying New Measurements
In addition to finding and extracting instances of reported measurements in text we

also wish to differentiate between quoted values (from some previous work) and
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newly reported values (i.e. the results of original work presented in the paper).

Both are of interest for different purposes: we may wish to measure the popularity

of certain values, as well as find and plot the progression of new values. To begin

we shall simply attempt to classify papers by whether or not each paper reports any

new measurements. Papers which do report new measurements shall be considered

positive samples, and papers which do not (but which may still be quoting pre-

existing values) shall be considered negative samples.

For this classification task we shall be utilising machine learning algorithms

(specifically artificial neural networks) as opposed to the rules-based approach we

employed in our measurement extraction above. This is due to two primary reasons:

firstly, producing rules to distinguish positive and negative samples is a very difficult

task, as the linguistic and structural cues are complex and hard to codify (in part

because they often extend over multiple parts of the text). It is, however, possible

to construct rules which may select positive samples with high precision and low

recall (i.e. many false-negatives), which may be used to construct a training dataset,

as discussed below. Using such a training dataset we can attempt to generalise from

our initial assumptions, and uncover patterns we could not easily have codified.

Secondly, many machine learning algorithms (e.g. neural networks) may be used

to produce probabilistic outputs, which is useful in analysis and in prioritising data

samples for investigation.

2.5.1 Silver Data

Before we train any type of classifier we must first produce a training dataset from

our arXiv XML data. Here we shall produce a silver-standard dataset for train-

ing purposes – a "silver" dataset being one where the labels are assigned based on

heuristics, as opposed to a "gold-standard" dataset where the labels are assigned

manually by a human. This distinction is also often referred to as weakly (silver)

and strongly (gold) labelled data in machine learning literature. It should be noted

that the Croft and Dailey (2011) dataset mentioned earlier is available as a small

gold-standard dataset (with some selection bias) for validation purposes. This ap-

proach of using heuristics on a large, unlabelled dataset, coupled with a smaller
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gold dataset, is an effective substitute for large training datasets when training ini-

tial/baseline models in machine learning contexts (Mintz et al., 2009).

For this task we are primarily concerned that our silver dataset have a high

precision, which may be attained at the expense of recall. In practice this means we

require a set of hand-crafted rules which can positively identify articles which report

a new measurement with a high degree of precision (i.e. with the minimal number

of false-positives), but where the number of false-negatives (articles which do report

a new measurement but are reported as negative samples) may be high. Such a set

of rules would provide the positive training samples for our classifier. To find the

negative samples we make the assumption that the large majority of papers are not

reporting a new measurement value (negative samples), and hence a random sample

of the negative articles from the silver data (those deemed by our hand-crafted rules

as being negative) should primarily consist of true-negative articles. In this manner

we may construct a balanced training data set.

The question now is how to construct the rules which will produce our silver-

standard data: As discussed in Section 2.4, it is decided that the classifier shall use

article abstracts as input data. Hence we must look to other sections of the document

to base our rules: after the abstract, the next logical locations would be the title and

conclusion. Experimentation with different setups and rules leads to the conclusion

that the optimal strategy is to use a combination of these two. The procedure for

identifying positive samples is as follows:

1. The presence of recognisable abstract and conclusion passages is verified

(otherwise the document is rejected and shall not be considered for inclusion

in the training data).

2. The article title is checked for the presence of at least one of the following

words:

• measurement

• measuring

• determination
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• determining

• estimation

• value

• parameter

• constraint

3. The measurement pattern described in Section 2.4.1 is used to search the con-

clusion text, and a list of any measurements present is found.

4. Each measurement is checked for the presence of an uncertainty.

If all of the above steps produce a result (i.e. we find one of the listed keywords in

the article title, and a measurement with an uncertainty is present in the conclusion),

then the article is assumed to be reporting a new measurement and is added to the list

of positive samples to be used in training. It should be noted that we are not limiting

ourselves to articles reporting a value of the Hubble constant – any measured value

is considered. This method has the advantage of relative simplicity, as it does not

rely on phrases or more complex linguistic patterns, but only on word inclusion

for the title and pattern matching of LATEX mathematical notation (a much more

formalised and hence codifiable series of tokens) for the conclusion.

However, this simplicity is only advantageous if it works. Manual classifica-

tion of a sample of the resulting silver data is conducted to test the precision of the

model: 200 articles evenly distributed between positive and negative (according to

the silver-algorithm) are classified based on the article abstract (note: without the

article title) by one of the authors. The resulting manual classifications give a total

accuracy of 82% for the silver algorithm over the 200 samples, corresponding to a

precision for the 100 silver-positive samples of 88%. This is considered sufficient

for our purposes, and hence the silver dataset shall be used as training data for our

“new measurement” classifier.

In total, 1612 positive samples are identified using the above rules.
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2.5.2 Classifier

We shall use an artificial neural network (ANN) classifier to classify articles by

whether or not they report a new measurement. We have chosen to use ANNs as

they are a standard algorithm in modern machine learning, and shallow networks of

the type we shall use here are well studied and understood.

For the input to the model we shall use the article abstracts. Paper abstracts are

used for the reasons discussed earlier in Section 2.4.1, as they represent a summary

of the article contents. This is necessary as using the entire paper leads to the

training signal being too weak and the model not learning effectively, based on our

preliminary experiments with this approach.

The abstract texts shall be converted into document matrices using a Word2Vec

model specially trained on the entire arXiv astrophysics corpus. Word2Vec

(Mikolov et al., 2013) is a group of models which allow us to pre-train vector repre-

sentations of words informed by the entire corpus, which leads to greater generalisa-

tion of resulting models trained using these embeddings. This is done by attempting

to assign each word in a vocabulary to a vector such that “similar” words are close

together in the vector space. Words are considered to be “similar” if they are found

in similar contexts – i.e. they are often surrounded in a sentence by the same words.

In practice we may consider that two words are similar if they are interchangeable

in a sentence. For example, we might expect the words “galaxy” and “star” to both

appear in sentences containing the words “telescope” and “observed” – in the sen-

tence, “I observed the the galaxy through the telescope”, we could replace “galaxy”

with “star” and the sentence would still be reasonable (i.e. has a high probabil-

ity of appearing in our corpus). However, if we replace the word “galaxy” with

the word “potato”, the sentence becomes very unlikely. And so our word embed-

dings for “galaxy” and “star” are similar, but both are different to our embedding

for “potato”. Using these embeddings, we may now define distance metrics to com-

pare the similarity between word pairs (cosine distance is commonly used for this

purpose), and other such mathematical operations.
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Hence, using the trained astrophysics Word2Vec model, the document matri-

ces for the article abstracts are created by concatenating the resulting word-vectors

into a single matrix. We used the standard settings on the Word2Vec implementa-

tion used in this training3, employing the skip-gram model, with word-vectors of

dimensionality d = 100, a window size of 5, a minimum word occurence of 5, and

an oversampling threshold of 10−5 (words above this frequency in the corpus being

downsampled).

The structure of the classifier network is as follows:

• For an article with an abstract with word-count n, a document matrix D, of

dimensionality d ×n, is constructed.

• The document matrix is multiplied with a (trainable) projection matrix, P, of

dimensionality d ×d, producing the projected document matrix D̃ = P×D.

• The minimum, maximum, and mean are taken along the rows of D̃ and con-

catenated to produce a single vector, x, of dimensionality 3d.

• The vector x is now fed into single dense layer with a single output, as in:

y = w ·x+b

• The output of the dense layer is passed to a sigmoid function to produce the

final output of the classifier.

Using this setup and the silver dataset described in Section 2.5.1 we may now

train our classifier. The dataset is divided into training and testing datasets, with a

90/10% split, resulting in 1394 each of positive and negative samples for the train-

ing set, and 154 for the testing set (these numbers are determined by the number

of positive samples found by our rules from Section 2.5.1). This does not include

the validation data points from Croft and Dailey (2011). We use the ADAM opti-

mizer, a standard ANN optimizer, along with mini-batching (32 samples per batch),

for 100 epochs of training. For each epoch the negative training data is resampled

3Which may be found at: https://github.com/JuliaText/Word2Vec.jl
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from the available articles (as discussed in Section 2.5.1), maintaining class bal-

ance with the positive training data, resulting in a better coverage of the data over

the course of training and exposing the model to a richer set of negative samples.

The training was conducted with cross-entropy loss with L2 regularisation, another

standard technique in current machine learning. This ANN was implemented using

the Flux machine learning library (Innes, 2018) for the Julia programming language

(Bezanson et al., 2017).

It should be noted that longer training runs have been conducted, but the model

accuracy and loss are roughly stable from 100 epochs out to 500 epochs. From

this we see a final test accuracy of ∼78% (true for both the final model of 100

and 500 epoch training runs). Here we are using a prediction threshold of 0.5 for

the model. This may not be optimal, given the class-balanced training data (albeit

with increased relative coverage of negative samples). However optimisation of

this threshold is beyond the scope of this work, as the implied trade-off of recall

and precision is application-dependent. For our purposes, we achieve reasonable

accuracy with the standard 0.5 cutoff.

To evaluate the performance of our classifier we use the Croft and Dailey

(2011) dataset and the 200 samples manually classified as validation data for the

silver-algorithm (see Section 2.5.1). It should be noted that the Croft and Dailey

(2011) dataset is slightly biased, and single-class, given its focus on a specific do-

main (i.e. cosmology). The manually classified data contains 113 positive and 87

negative ground-truth samples. Both of these datasets were excluded from the train-

ing data provided to the classifier. We find that the model recovers 87% of the Croft

and Dailey (2011) dataset publications, compared to 30% for the silver-algorithm

(adjusted for papers available after preprocessing). The model also achieves an

accuracy of 88% over the 200 manually classified samples – corresponding to a

92% precision and 86% recall (for comparison, the silver-algorithm had an 88%

overall accuracy, with 88% precision and 78% recall). A summary of these results

may be seen in Table 2.4. This indicates that the model may generalise beyond

the silver-standard training data (which is a very limited approach, recovering only
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Table 2.4: Summary of classifier results, compared against silver algorithm. “C+D Recall”
here indicates the percentage of papers recovered (i.e. identified as reporting
novel measurements) from the Croft and Dailey (2011) dataset.

Algorithm C+D Recall Accuracy Precision Recall
Silver 30% 88% 88% 78%
Classifier 87% 88% 92% 86%

1612 samples from the entire arXiv corpus), and may distinguish both positive and

negative samples to a reasonable degree of accuracy.

2.6 Final Results
We may now combine the results of our keyword-based search with the output of

our new-measurement classifier to examine the development of reported values of

the Hubble constant in the arXiv literature. To this end we plot found values of the

Hubble constant with correct dimensions (km s−1Mpc−1), both with and without

reported uncertainties, which appear in article abstracts, for all viable papers (i.e.

the 195,369 papers which have a recognisable abstract section), and the result is

shown in Fig 2.4. The vertical lines in the figure correspond to the dates of three

key publications in the field, to give context to the timeline: the HST key project

(Freedman et al., 2001), the 3-yr Wilkinson Microwave Anisotropy Probe (WMAP)

observations (Spergel et al., 2007a), and the Planck 2013 results (Planck Collab-

oration et al., 2014). It should be noted that there are additional outliers outside

the bounds of this plot, corresponding to 1.6% of the available data (9 samples).

Of these, 2 are author error, 1 is a historical value (“∼250 km s−1Mpc−1”), 1 is a

value of H(z) at a different redshift, 3 are uncertainties reported separately to their

measurement (with units given), and 1 is a reported change in the value of the Hub-

ble Constant were a different assumption made in the model (Mould et al., 2000,

Example 13 in Table 2.1), and 1 is a reported difference between local and global

measurements (Wu and Huterer, 2017). In total we find 573 values from 477 article

abstracts. The same data may be seen in Figure 2.5, divided into the periods before,

after, and between the key publications mentioned above. A few notable features of

these plots are outlined below.
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Figure 2.4: Plot combining output from the improved measurement extraction algorithm
and the “new measurement” classifier, showing all extracted numbers with
the correct dimensionality (km s−1Mpc−1) from arXiv astrophysical paper ab-
stracts. Datapoint symbols are used to indicate presence of an uncertainty in
the reported measurement (circle if present, triangle if not present), with the
available uncertainties displayed using error bars. Symbol colour indicates the
output of the new-measurement classifier, interpreted as a probability of the
measurement originating in a paper reporting a novel value – colourbar to the
right indicates probability value. The stacked histograms indicate distribution
in the time- and value-domains (top- and right-hand panels, respectively), with
the blue histogram corresponding to measurements whose probability of be-
ing a novel measurement is greater than 0.5, and the yellow histogram for the
remainder (likely quoted values). The vertical lines correspond to the year of
the publication of the HST key project (Freedman et al., 2001), 3-yr Wilkinson
Microwave Anisotropy Probe (WMAP) results (Spergel et al., 2007a) and the
2013 Planck results (Planck Collaboration et al., 2014).
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Figure 2.5: Histograms of the values from Figure 2.4 between the publication dates of key
papers (Freedman et al., 2001; Planck Collaboration et al., 2014; Spergel et al.,
2007a, “HST”, “WMAP”, and “Planck” on the plot, respectively). We may
note the decrease in the spread of reported values over time, along with the de-
crease in use of the 50 and 100 km s−1Mpc−1 assumed values, and the eventual
disagreement in the value of the Hubble constant post-Planck, as demonstrated
by the two peaks at ∼68 and ∼73 km s−1Mpc−1 (the peak at 70 is due to the
most common assumed value during this period).
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Figure 2.6: Plots showing the distribution of extracted Hubble constant measurements
around the Planck Collaboration et al. (2018) value (H0 = 67.4 ± 0.5 km
s−1Mpc−1, 1σ C.L.), in units of quoted uncertainty, given by Equation 2.1.
Error asymmetry has been taken into account for these plots. Separate plots are
shown for all extracted datapoints (a), and the distributions of values before (b)
and after (c) the 2013 Planck publication (Planck Collaboration et al., 2014, a
notable point in the recent history of the Hubble constant). A normal (µ = 0,
σ = 1) distribution has been overlayed for readability. The tension in the mea-
sured values of the Hubble constant may be easily discerned in these plots by
the peak at approximately +3.5σ , which corresponds to the measurements at
∼73 km s−1Mpc−1, which is most strongly observed post-2013 Planck.



2.6. Final Results 81

Clusters of values given without uncertainties may be seen at 50, 65, 70, 75,

and 100 km s−1Mpc−1. These correspond to commonly used assumed values of

the Hubble constant in cosmological simulation and approximate calculations. It is

interesting to note that the usage of all but the 70 km s−1Mpc−1 value drops off after

∼2005, whereas the 70 km s−1Mpc−1 value is in use until ∼2009. These decreases

seem to follow the publications of HST and WMAP, respectively, by a year or two,

and it may be that the growth in popularity of the values reported by those groups

may have led to a shift in any presumed value of the Hubble constant.

We may also see the spread of values decreasing with time – both for the novel

reported values, and the presumed values as mentioned above. This decrease in

spread is reflected in the decrease in uncertainty on each individual measurement.

These effects are to be expected, due to improvements in experimental techniques

and equipment over time. However it should be noted that the provided uncertainties

do not show complete agreement between the reported values, and closer examina-

tion shows two distinct groupings of measurements in the post-Planck era (ignoring

a grouping at 75 km s−1Mpc−1, which are without uncertainties and therefore likely

assumed values rather than reported), at ∼68 and ∼73 km s−1Mpc−1. This corre-

sponds to a known debate in the literature, arising from the difference between the

values from local measurements of the Hubble parameter (Riess et al., 2018b), and

measurements inferred from the Cosmic Microwave Background (Planck Collabo-

ration et al., 2014), where the former finds a value of 67.4±0.5 km s−1Mpc−1 and

the latter 73.45± 1.66 km s−1Mpc−1 (both 1σ C.L.) – a 3.5σ discrepancy. This

tension may be due to uncorrected systematic errors in the data, new physics, or

an unknown feature of one or both data sets, and each of these possibilities has

been debated in the literature (Bengaly et al., 2018; Bernal et al., 2016; Chiang and

Slosar, 2018; Colgáin et al., 2018; D’Eramo et al., 2018; Graef et al., 2018; Poulin

et al., 2018; Riess et al., 2018a; Shanks et al., 2018).

To better illustrate this discrepancy, the distribution of extracted values has

been plotted in reference to the Planck Collaboration et al. (2018) value of the Hub-

ble constant (H0 = 67.4± 0.5 km s−1Mpc−1, 1σ C.L.), in units of quoted uncer-
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tainty (see Figure 2.6). Following Croft and Dailey (2011), all extracted measure-

ments which include an uncertainty have been converted into a σ difference from

this reference value, according to,

nσ = (H0,measured −H0,true)/σmeasured, (2.1)

where H0,true is the aforementioned reference value, and H0,measured and σmeasured

are the extracted value and uncertainty. Asymmetric uncertainties have also been

accounted for. We may clearly see in Figure 2.6c (showing measurements published

after Planck Collaboration et al. 2014) a peak at approximately +3.5σ , correspond-

ing to the local measurements of the Hubble constant. This shows that our algorithm

has successfully recovered the current tension in the field, and has the potential to

provide an objective quantification of the consensus of a given measureable prop-

erty, and whether any tension exists within the literature.

In Figure 2.5 we may also see that measurements without uncertainties are

predicted to be less likely to originate in papers which are not reporting a new mea-

surement, using our neural network from Section 2.5.2. This would agree with the

assumption that these assumed values are primarily used in simulations, or theoreti-

cal work. It also agrees with the assumption that astrophysical articles which have a

numerical value with an associated uncertainty in their abstract are likely reporting

said value. It should be noted that the predictions from the “new measurement”

classifier are not on a per-measurement basis, but rather a per-publication basis, and

it is possible that a given publication will refer to both an assumed or historical

value, and a novel value (with uncertainty) in the same abstract. This could ac-

count for the high positive prediction probability of some unlikely values. It should

also be noted that some outlier values (for example the value at 44 km s−1 Mpc−1

in Cackett et al., 2007) are noted as such by the paper authors, who point out the

inconsistency and suggest further study of the discrepancy – nonetheless these are

“valid” measurements from the perspective of our model, and hence their inclusion

is a feature of the unbiased nature of this model.
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Figure 2.7: Time series of the improved model results, showing reported value and pub-
lication date, with each point coloured to indicate estimated experimental
methodology. The methodologies are as follows: Cosmic Microwave Back-
ground (CMB), Large-Scale Structure (LSS), Peculiar velocities, Supernovae
(SN), Lensing, Big Bang Nucleosynthesis (BBN), clusters of galaxies, Bary-
onic Acoustic Oscillation (BAO), the Integrated Sachs Wolfe effect (ISW), and
z distortions. All other publications are classed as Other, with the exception of
malformed samples, which are labelled Unknown.

Additionally, we may see from the histogram of measurement values that there

is a distinct peak in the distribution around ∼70 km s−1Mpc−1, which agrees with

accepted wisdom on the value of the Hubble constant. However, it is noted that little

structure is apparent in the time-domain histogram. There appears to be an increase

in the number of publications reporting a new value of the Hubble constant in the

months preceding the publication of WMAP, but this same trend is not clear for the

other landmark publications – and the dearth of publications following WMAP is,

perhaps, puzzling.

Finally, in Figure 2.7 we show the distribution of experimental methodology

for the identified measurements of H0, overlaid on a time-series of these measure-
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ments. The methodology was determined using a keyword-scoring algorithm ap-

plied to the identified article abstracts, where frequency and specificity of the key-

words was used to determine a score for each methodology category, with the max-

scoring category being selected. The methodology list here is based on that used in

Croft and Dailey (2011).

On this figure we see measurements in the late 1990s and early 2000s are

distributed between supernovae, lensing, and peculiar velocity determinations of

H0. It is interesting to note the apparent prevalence of the use of supernovae for

determining H0 before the landmark Perlmutter and Schmidt (2003) publication

which established Type Ia supernovae as a measure of the Hubble Constant. Into the

2010s, lensing and peculiar velocity determinations become less frequent. Begin-

ning around 2007, we can also observe the start of regular use of Baryon Acoustic

Oscillations (BAO) as an experimental methodology, which follows on from the de-

tection of the BAO signal in the SDSS dataset (Eisenstein et al., 2005). Supernovae

determinations remain prevalent throughout this period.

2.7 Conclusions

We present, to the best of our knowledge, the first attempt to automate the extraction

of measured values from the astrophysical literature, using the Hubble constant for

our pilot study. Our model has successfully extracted measurements of the Hubble

constant from a corpus of 208,541 arXiv astrophysics papers, published between

July 1991 and September 2017, finding 573 measurements from 477 papers. We

demonstrate that the rules-based model, a classical technique in natural language

processing, is a powerful method for extracting measurements of the Hubble con-

stant from a large number of publications. We have also developed an artificial

neural network model to identify papers which report novel measurements. The

model was trained using article abstracts as input data with the training data taken

from our “silver” dataset, which was constructed using information present in ar-

ticle titles and conclusions. We applied the neural network model to the available

arXiv data, and demonstrated that our model works well in identifying papers which
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are reporting new measurements. From the analysis of our results we find that re-

porting measurements with uncertainties and the correct units is critical information

to identify measurements in free text.

Our results correctly highlight the current well-known tension for measure-

ments of the Hubble constant. This demonstrates that the tool presented in this chap-

ter has great promise for meta-studies of astrophysical measurements, and shows the

potential for generalising this technique to other areas.

However, in its current form the algorithms presented in Section 2.4 have some

limitations. We are able to extract measurements of entities with a small set of

simple, atomic names – i.e. where there is a set of known continuous strings, each

with little or no variation (e.g. capitalisation). This is ideal for entities such as the

Hubble constant, which has only a handful of standard linguistic and mathematical

expressions (listed in Section 2.4), and can therefore be easily encoded for searching

free text. However, the use of regular expressions and simple keyword searches

make this system fragile against minor variations in standard syntax and typesetting,

which is hard to account for manually. Additionally, if we consider a more complex

entity (from a linguistic standpoint), such as “the radius of the Milky Way”, we

find many possible constructions in written English (e.g. “Milky Way radius”),

followed by the problem of the lack of a standardised mathematical symbol for

this quantity. The algorithm described in this chapter is unable to deal with such

linguistic complexity without a large amount of effort on the part of the user to list

the many possible variations of an entity’s name – and, indeed, this would also lead

to the problem that the user may be unaware of many common constructions of the

entity they are searching for, which will lead to poor recall.

Further, there are difficulties associated with our algorithm’s assumption that

all measurements appear in the same sentence as the name of the entity to which

they belong. This is problematic as an assumption for two primary reasons: First,

most simply, there are instances where this assumption is broken. This can oc-

cur due to complex or convoluted sentence construction, or the presence of many

caveats and contingent information. A second, more involved problem is the cir-
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cumstance where a measured entity has no agreed upon mathematical symbol, and

one is assigned to it earlier in the text – or where there is an agreed-upon symbol,

but it is commonly used elsewhere (e.g. µ) and hence is defined for the reader. In

such a scenario the user can only reasonably supply a written name for the quantity

they are searching for, but in many cases we may find the final result reported using

its locally-agreed-upon symbol. In its current form the model cannot account for

this kind of relationship.

The next stages for this project shall involve the use of more advanced nat-

ural language processing techniques to solve some these problems. In Chapter 3

we shall explore the use of modern neural techniques to improve the versatility of

the search algorithms with respect to entity names and more complex textual rela-

tionships. Further, we will experiment with named-entity extraction techniques to

automatically detect parameter names, allowing for the creation of a database of

named measurements without the need for human-specified entity names.



Chapter 3

Towards Machine Learning-Based

Meta-Studies: Applications to

Cosmological Parameters

This chapter is based on Crossland et al. (2021).

3.1 Introduction
In Chapter 2 we utilised heuristic strategies, in the form of pattern-matching and

keyword search, to identify numerical measurements in the astrophysical literature.

However, balancing the scope and selectivity of hand-written regular expressions

for the large quantity of writing styles seen in the literature is a difficult process,

and resulted in large amounts of noise in the results. This in turn required addi-

tional hand-tuned filtering steps. These many steps of processing led to gaps in the

patterns we were able to capture, and the rule-based nature of the process meant the

algorithm was brittle in the face of irregular writing styles.

However, with modern statistical language processing techniques we can cre-

ate models which can learn syntactic relationships between words and symbols,

allowing for grammar-aware predictions. This will be particularly useful for this

task, as it will allow us to create models which can capture complex physics-domain

phrases and find semantic relationships between them.

Chapter 2 focused on simple measurement extraction of a single parameter

with a well-defined name and symbol (the Hubble constant, H0). In this chapter
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we extend this using statistical techniques to a general search for any parameters

contained in the text. This means that the “search” aspect of utilising the model

is moved to a pipeline post-processing step, rather than a user query-time step,

which greatly improves efficiency for the user, in addition to providing theoretical

advantages for the model structure.

In the following sections we discuss the steps involved in producing these new

models, beginning with a brief description of the data we are utilising and the pre-

processing pipeline which converts it into an appropriate format (see Section 3.2).

For this project we must also create training and evaluation datasets for our task as,

to the best of our knowledge, none currently exist. This will involve the construc-

tion of a hand-annotated training dataset created from examples of astrophysical

literature, a process which is discussed in Section 3.3.

Using this training data, we train artificial neural network models to perform

the named entity recognition and relation extraction tasks for our problem. This will

involve identifying spans in the text relating to physical parameters, their mathemat-

ical symbols, reported measurements and other numerical data, and so on, and then

linking these together such that numerical measurements can be connected to the

physical parameters they represent. The architectures and training of these models

is discussed in Section 3.4.

These trained models are applied to the entire arXiv dataset and the outputs

used to create a searchable database of numerical measurements which can be easily

queried to extract measurements of a given parameter, and other useful information

regarding the reporting of such measurements (e.g. confidence limits, constraint

values, associated objects). This database will be made available to the community

via an online interface, available at http://numericalatlas.cs.ucl.ac.

uk. A schematic diagram of the project outline is shown in Figure 3.1.

Finally, Section 3.5 focuses on comparing the new statistical approach with

the previous rule-based approach from Chapter 2, showing how it performs equally

well on the simple tasks that the rule-based model excelled at, and how it surpasses

the rule-based approach in more complex situations. We also present a set of exam-

http://numericalatlas.cs.ucl.ac.uk
http://numericalatlas.cs.ucl.ac.uk
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Names:   [“mass density”, “matter density”] 

Symbols: [“\Omega_M”, “\Omega_0”] 

Units:   Dimensionless 

Range:   0 ≤ x ≤ 1 

Hand-Labelled 

Paper Abstracts 

Trained Models 

(Entity, Relation, Attribute) 

Predictions 

Queryable 

Measurement 

Database 

Date Name Symbol Value 

08/96 mass density \Omega_M 0.88−0.60
+0.69 

09/01 mass density ratio \Omega_0 0.2 ± 0.1 

08/06 matter density \Omega_M 0.32 ± 0.01 

06/11 matter density parameter \Omega_m 0.28 ± 0.02 

10/17 matter density \Omega_m 0.347 ± 0.049 

Website for 

Interactive User Queries 

Example user query 

Example result set (truncated) 

Figure 3.1: Schematic overview of the chapter. Using a hand-annotated sample of papers
from the arXiv repository, we train a collection of models for measurement
extraction, and then perform this data extraction on all the astrophysics paper
abstracts in arXiv. These results are then made available via an online interface
for interactive user queries.

ple use-cases of the result set, focusing on extracting values of various cosmological

parameters, demonstrating the various search parameters which may be employed.

Using these results we discuss some of the trends and features which are observed

in the community’s understanding of these quantities over the last few decades, and

how they may relate to particular events and publications during that time. This will

show the utility of the model for scientists wishing to quickly gather numerical in-

formation relating to a measureable physical quantity for various kinds of analyses.

3.2 Data
The dataset for this project is taken from astrophysics publications from the arXiv,

an open-source repository for scientific literature, maintained by Cornell Tech1.

1https://www.tech.cornell.edu/

https://www.tech.cornell.edu/
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Publications on the arXiv may be stored in a variety of formats, with the most

common being LATEX source files (91% of all submitted articles). As such, we have

chosen to utilise the structured nature of the LATEX files to allow us to process the

documents into well-formatted text appropriate for machine learning tasks.

In order to process these source files into a more usable format, we have utilised

the pre-processing pipeline described in Chapter 2. Article source files are pro-

cessed using the LaTeXML program, created by the National Institute of Standards

and Technology2, into a single XML document, which improves the usability of

the data for computational purposes. The text is then tokenised and sentence split

– with a purpose built tokeniser for LATEX math environments. Using this corpus

we can easily create textual data samples to a variety of specifications for our ma-

chine learning models, based on the content of section headings (e.g. “Results” or

“Conclusions”), document components (e.g. abstract), and so on.

The dataset for this chapter consists of all arXiv papers published up until

September 2020, corresponding to 1.6 million articles. Of these, approximately

265,000 have the astrophysics tag (“astro-ph’), and our pipeline can successfully

extract over 248,000 formatted articles from this set (corresponding to a success

rate of 94%). Failure cases are generally found in older articles, often due to the

source files being written in TEX rather than LATEX. This coverage of the available

articles is considered to be sufficient for the purposes of this task, and it shall be

assumed in this work that the 94% of processed articles are statistically similar to

the remaining data, in terms of their content and linguistic style.

We have also utilised the dataset compiled by Croft and Dailey (2011), which

comprises 638 values of 8 cosmological parameters from 468 papers. These papers

are used as a curated set of example literature for our task, both for analysis and as

a component of the annotation effort described in Section 3.3.

We have made one further assumption in the use of this data: that any paper

whose goal is to report some numerical measurement as a finding of the publication

will report said measurement in the paper abstract. This is not always the case,

2https://dlmf.nist.gov/LaTeXML/

https://dlmf.nist.gov/LaTeXML/
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especially for publications concerning the determination of numerical quantities for

a set of objects (stellar parameters for some large sample of stars, for instance).

However, based on our investigations of the Croft and Dailey (2011) dataset, we

find this to be a reasonable working assumption and use it for the majority of this

work. Specifically, this makes the creation of a manually annotated training corpus

a more tractable proposition. It is, however, noted that there are distinct linguistic

differences between article abstracts and main bodies, and generalising the models

trained on this data to entire papers will be the subject of future work.

3.3 Annotation of Astrophysics Abstracts

For our machine learning tasks we require data to train and evaluate our models –

examples which show the mapping between input data and desired output. There-

fore the next step in our data processing is to produce hand-annotated samples which

demonstrate the information we wish our models to extract (annotated article ab-

stracts in our case).

In Natural Language Processing there are many kinds of annotation which may

be produced; here we are interested in Entity, Relation, and Attribute annotations.

An Entity annotation is one where we select a span of text from our document

and assign some label to that span. For example, in the sentence, “. . . for the Hubble

constant at the present epoch. . . ”, we could select the span “Hubble constant” and

assign it the label ParameterName.

A Relation annotation is where we have two Entity annotations and we de-

clare the existence of some semantic relationship between them. For example,

in the sentence, “Using the Hubble constant, H0, under the assumption. . . ”, we

could create a Relation between the Entities “Hubble constant” (ParameterName)

and “H0” (ParameterSymbol), and assign it the label Name (the labels used in this

project are discussed below). Relation annotations may be constrained by the En-

tity types which they may connect. For example, a Name Relation may only exist

between a ParameterName Entity and a ParameterSymbol Entity (generally, these

constraints are not symmetric, meaning that most Relations are directional).
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Finally, an Attribute annotation is one which modifies an Entity, by assign-

ing another label to it. For example, in the sentence, “Using a value of 0.3 from

the literature. . . ”, we could assign a LiteratureValue Attribute to the Entity “0.3”

(MeasuredValue). As for Relations, Attributes may be constrained by the type of

Entity they can be assigned to. For example, a LiteratureValue Attribute can only

be placed on a MeasuredValue or Constraint Entity.

Now that we have our annotation types, we create a schema which describes the

Entity, Relation and Attribute labels we have available for our annotation project,

and the constraints which exist for them. We are interested in measurement extrac-

tion from astrophysical literature, and so require labels which reflect that domain:

Entity labels for measurements, parameters, objects and definitions are all appropri-

ate. Likewise, for Relations, we must be able to define which names and symbols

relate to which measurements, and which parameters are properties of which ob-

jects, and so on. A complete list of the annotations used in this project may be

found in Tables 3.1, 3.2 and 3.3, along with any constraints which exist on them.

Detailed descriptions of each may be found in Appendix A.1. This schema is not

intended to represent an exhaustive list of the various semantic entities which may

be relevant to this problem or domain. A compromise has been struck between com-

pleteness and practicality, as we will be requiring human annotators to implement

this schema when annotating training data (as a very detailed schema is impractical

for annotators, if there are too many annotation types and combinations to remem-

ber). As such, we have chosen to focus on the most important Entities and Relations

for our task, favouring broader definitions over an increased number of labels in cer-

tain cases (e.g. ObjectName labels, where we could easily have multiple labels for

different kinds of physical entities).

3.3.1 Annotation Process

Using this schema and a team of 7 astrophysics PhD student annotators we have

annotated 600 article abstracts, with each abstract being annotated by 3 annotators.

For this process we utilised the brat rapid annotation tool (Stenetorp et al., 2012),

images of which can be seen in Figure 3.2. During this process, an set of annota-
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Table 3.1: Entity annotation types in the annotation schema. Detailed descriptions of these
may be found in Appendix A.1.

Name
MeasuredValue
Constraint
ParameterName
ParameterSymbol
ObjectName
ConfidenceLimit

Table 3.2: Relation annotation types in the annotation schema, showing any constraints
on the start and end Entity types for the listed Relations. Note that [Measure-
ment] refers to either a MeasuredValue or Constraint annotation, and [Param-
eter] refers to either a ParameterName or ParameterSymbol Entity annotation.
See Appendix A.1 for detailed descriptions.

Name Entity 1 Entity 2
Measurement [Parameter] [Measurement]
Name ParameterName ParameterSymbol
Confidence [Measurement] ConfidenceLimit
Property ObjectName [Parameter] | [Measurement]
Equivalence ObjectName ObjectName
Contains ObjectName ObjectName

Table 3.3: Attribute annotation types in the annotation schema, showing any constraints on
the subject Entity type. Note that [Measurement] refers to either a Measured-
Value or Constraint Entity annotation. See Appendix A.1 for detailed descrip-
tions.

Name Entity
Incorrect [Measurement]
AcceptedValue [Measurement]
FromLiterature [Measurement]
UpperBound Constraint
LowerBound Constraint
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tions guidelines was made available to the annotators, in order to have a consistent

definition of the annotation labels used during the project3. The resulting set of an-

notations have then been combined such that each abstract has a single, consensus

annotation set, and it is this consensus data which will be utilised as training data

by our machine learning models. The steps taken in this process are detailed below.

Firstly, we select a set of papers to be annotated from the available corpus. As

a starting point we choose the 305 papers contained in the Croft and Dailey (2011)

dataset (the subset that successfully pass through our preprocessing pipeline, as

discussed in Section 3.2). These serve as examples of the papers reporting mea-

surements of cosmological parameters that we wish to identify in our test cases, as

in Section 3.5. To round out this selection of papers, we score the available papers

from the arXiv dataset according to an estimate of the number of measurements used

in the paper abstracts (for this estimate we use a regular expression to identify candi-

date measurement strings in the text, as described previously in Section 2.4.2). We

then filter these measurements to remove noise, notably by requiring that the mea-

surement patterns contain uncertainties. Due to the prevalence of dimensionless

quantities in cosmology, we also reject papers which only contain measurements

with concrete units, such that the distribution of these papers will be closer to that

of the Croft and Dailey (2011) dataset. We then randomly sample papers with a

non-zero estimated number of measurements in their abstracts to produce a final set

of papers for annotation.

It should be noted, therefore, that this set of papers is heavily biased towards

cosmological measurements, and this will have an impact on the efficacy of the

model in identifying measurements in other areas. However, we should also note

that the randomly sampled papers are not constrained by arXiv subject tag (beyond

simply the astrophysics tag, “astro-ph”), and so are selected from a range of

subject areas within astrophysics. This bias was chosen due to the target test case

for this work being cosmological parameters (see Section 3.5.2).

3These guidelines may be found at: https://gebodal.github.io/annodoc/

https://gebodal.github.io/annodoc/
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Figure 3.2: Images of the brat interface, as used for the annotation project. Example text
from arXiv:0812.2720 (Vikhlinin et al., 2009).
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For the annotation project itself we recruited 7 astrophysics PhD students and

presented them with a set of example annotated documents based on the schema

outlined above. The selected papers were then released in batches of 100, evenly

divided between the Croft and Dailey (2011) and randomly sampled papers, over the

course of several months. The annotators were paid for their time at their standard

rate, allowing for an average of 5 minutes per abstract. The papers were allocated

such that each was annotated by three separate annotators.

Each round of annotations was conducted in two stages: first, the annotators

were asked to work independently on their sample, and secondly, once these initial

annotations were complete, they were made available to all annotators, who were

then asked to compare their annotations with the others and bring the annotations

for each paper into better alignment. However, it should be noted that it was not

a requirement that the annotators ensure their annotations be in perfect agreement,

meaning that the final dataset still contains some discrepancies between individual

annotation attempts. This approach was used to ensure that the final dataset bene-

fited from the different perspectives of the annotators, whilst also ensuring that the

final result represented the considered opinion of multiple domain experts. These

repeated annotations were then consolidated into single annotation sets, represent-

ing the consensus of the annotators.

During this process, “agreement” between annotators was quantified using the

Jaccard similarity coefficient,

J(A,B) =
|A∩B|
|A∪B|

, (3.1)

where the sets A and B correspond to the sets of Entity and Relation annotations pro-

duced by a pair of annotators (note that this coefficient can easily be generalised to

a larger number of input sets). Annotation equality (i.e. set inclusion) is determined

in the same way as described for the consensus algorithm in Appendix A.2, with

sufficiently overlapping Entities being considered equal for the purposes of Entity

equality and Relation equality from start/end Entities. Hence, two sufficiently sim-
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ilar annotations are considered equal if they have the same position, and the same

label.

Our final dataset contains 572 paper abstracts (after accounting for papers

which were unsuitable, contained no useful annotations, or found to be incor-

rectly formatted), with 17,446 annotations (10,352 Entities, 6,447 Relations, 647

Attributes) after post-processing (see Appendix A.2). This is comparable to other

existing datasets, such as the CoNLL-2002 Shared Task (a Named Entity Recog-

nition dataset, with 6,655 and 6,299 Entities for the Spanish and Dutch categories,

repsectively, presented by Tjong Kim Sang, 2002) and SemEval-2010 Task 8 (a

Relation extraction dataset with 10,717 Relations, presented by Hendrickx et al.,

2010). Our annotators had an average per-abstract agreement of 0.71 compared to

the final consensus dataset, calculated as described above.

3.3.2 Annotation: Caveats

There were a few issues encountered during the annotation process which should

be noted: Firstly, the ParameterName annotation causes some issues with agree-

ment between annotators. This is to be expected, as the exact span of a parameter’s

name can be difficult to define exactly. Some examples of this would be, “mean

baryon density of the Universe”, “total mass of three massive neutrinos”, or, “mass-

weighted Galactic disk scale length” (all examples taken from our annotated docu-

ments). In these instances, there is a more compact span which could approximate

the ‘name’ in question (“baryon density”, “total mass”, “scale length”), but does

not accurately capture the full intended context. We can, of course, generally ex-

tend this reasoning in both directions arbitrarily far – right down to single words,

and up to full sentences (or even paragraphs) of explanation – but this is often im-

practical. Deciding on the exact compromise is difficult, and this leads to different

annotators selecting slightly different spans for many instances of ParameterName

annotations. The alignment segment of our annotation strategy alleviates this dis-

agreement somewhat, but it serves to show that this Entity has a lot of linguistic

ambiguity. Indeed, we shall see in Section 3.4 that our models struggle to achieve

higher scores when recognising these labels – a combination of these disagreements
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between annotators carrying over to the dataset, and the inherent linguistic ambigu-

ity in the boundaries of these phrases.

We also see issues with the ObjectName annotations. In some instances this is

closely related to the problems with ParameterName boundaries. For example, the

phrase, “mass-weighted Galactic disk scale length”, could be annotated as a single

ParameterName, or as the ParameterName “scale length” which is in turn a Prop-

erty (Relation) of the ObjectName “Galactic disk”. If the phrase had been written,

“Milky Way disk scale length”, this breakdown into ObjectName and Parameter-

Name would perhaps be more appealing, but the use of an adjective (“Galactic”)

coupled with a self-contained phrase (“disk scale length”) may give the annotator

pause. Context is also important in many of these situations, as reference to a sim-

ulated object rather than an observed one may bias the annotator away from using

an ObjectName label, and so on.

It should be noted, however, that the combination of annotator discussion and

our consensus algorithm (see Appendix A.2) go a long way to alleviating the ob-

served disagreements. They are discussed here to illustrate the problem cases pre-

sented by the data, and the problems we will encounter during model training.

3.4 Models

3.4.1 Tasks

We have chosen to formulate the overall task of finding measurements in free text as

two sub-tasks, which are both well-documented in the Natural Language Processing

domain: Named Entity Recognition (Nadeau and Sekine, 2007) and Relation Ex-

traction (Pawar et al., 2017). In contrast to our approach in Chapter 2 we approach

these tasks using artificial neural network techniques, as has become standard prac-

tice in Natural Language Processing in recent years, rather than the heuristic ap-

proach taken before. This can give the models more flexibility and scope, allowing

for a broader investigation of the data available in the literature (however, as we shall

see, this cannot always overcome the inherent difficulty of the task, as seen with our

neural Relation Extraction models). Additionally, we have a simpler classification
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task for predicting Attributes. Other than the inclusion of a recurrent neural net-

work to deal with the variable length sequences involved, this will be formulated as

a traditional classification problem.

3.4.1.1 Named Entity Recognition

In Named Entity Recognition tasks we consider the text as a series of individual

tokens, which may be words, numbers, punctuation marks, or other self-contained

collections of characters (without whitespace). The task is then to find subsequences

of these tokens which correspond to named entities. In general tasks, this may be

place or person names (often consisting of multiple tokens, for example, “Hubble

Space Telescope”), or any other sequence of tokens which together refer to some

single entity. For example, the Entity “effective temperature” (with label Param-

eterName) is comprised of the tokens “effective” and “temperature”, whereas the

Entity “H _ { 0 }” (ParameterSymbol) consists of the tokens “H”, “_”, “{”, “0”,

and “}”. Named Entity Recognition is distinct from the task of assigning labels to

individual tokens, such as labelling words as “verb”, “noun”, “adjective”, etc. in a

sentence, a task generally referred to as Part-of-Speech tagging. The list of named

entities we are considering in this work are the same as those found in Table 3.1.

A common practice in Named Entity Recognition tasks is to classify tokens

according to the Beginning-Inside-Outside (BIO) format (Ramshaw and Marcus,

1995), where each token is designated as either a “beginning” token (corresponding

to a particular label, for example, “<B-ParameterName>”), an “inside” token (again

corresponding to a particular label, e.g. “<I-ParameterName>”), or an outisde token

(not belonging to any label, “<O>”). An example sentence showing this labelling is

given in Table 3.4.

Hence, for a set of N Entity names, we have a possible 2N+1 BIO labels (“be-

gin” and “inside” for each Entity name, and one “outside” label). This, therefore, is

the number of output classes for our machine learning models.

The BIO format has some drawbacks in the general case, notably that it cannot

express nested or overlapping annotations, but as we have specified that our Entity

annotations will be non-overlapping we will not encounter this problem here.
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Table 3.4: Example BIO-labelled tokenenised sentence.

Token Label
We Outside
find Outside
the Outside
Hubble B-ParameterName
constant I-ParameterName
to Outside
be Outside
70 B-MeasuredValue
km I-MeasuredValue
/ I-MeasuredValue
s I-MeasuredValue
/ I-MeasuredValue
Mpc I-MeasuredValue
. Outside

3.4.1.2 Relation Extraction

Relation Extraction is the subject of much active research in the field of Natural

Language Processing. Many of the recent works in this field have involved datasets

comprised of single-sentence samples, where each sample either contains one of a

set of possible Relations, or no Relation at all (e.g. Hendrickx et al., 2010). How-

ever, we cannot easily break our data down into these atomic relational chunks, as

we have many sentence which contain multiple Relations, and many long-distance

Relations (where the Entities are not contained in the same sentence, and may even

be several sentences apart in the text). Therefore here we are considering the task

of relation extraction between labelled Entities in free text. The exact formulation

of this problem is treated differently for the models described below, and so will be

discussed in following sections.

3.4.2 Featurization

All of the models we use in this project require a mechanism for converting tokens

into a numerical vector representation, often referred to as an embedding. These

embeddings may then be used in mathematical operations, such as the matrix op-

erations which underlie all neural network layers. There are many algorithms and

models currently in use for this purpose, such as Word2Vec (Mikolov et al., 2013),
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GloVe (Pennington et al., 2014), or BERT/RoBERTA (Devlin et al., 2018; Liu et al.,

2019). We have chosen to use Word2Vec, as it is a class of models which are well

documented, and can be retrained locally if a large corpus is available (such as our

arXiv dataset). Word2Vec operates by creating an embedding space (vector space),

where each token in the vocabulary is assigned a separate vector representation. The

Word2Vec model is then trained such that “similar” words have similar embeddings

– i.e. appear close to each other in the embedding space. Word2Vec is a very pow-

erful technique, as the resulting models produce embedding spaces where tokens

are clustered semantically and in a structured manner, such that both direction and

position have semantic meaning (Mikolov et al., 2013).

One downside of Word2Vec is that tokens are defined solely by their character

strings. This means that, for example, the words “play” as in “theatrical production”

and “play” as in “play a sport” only have one embedding, despite having separate

meanings – and the Word2Vec algorithm must encode both possible meanings into a

single representation. More recent approaches in Natural Language Processing have

utilised contextual word embeddings (e.g. BERT), where the surrounding tokens are

taken into account when constructing an individual token’s embedding, but these

come with a significant runtime and memory cost.

For this project we trained a set of Word2Vec embeddings on the entire arXiv

astrophysics corpus (see Section 3.2), and these embeddings will be used for all of

the models discussed below. For efficiency reasons, these embeddings are fixed at

training time. However, this can impose limitations on any model using the embed-

dings (especially shallower networks) and so each model also performs an initial

projection of the vectors. This is done with a simple matrix multiplication with

a square matrix, which is itself a trainable part of the model. This increases the

model capacity with regards to the fixed input embeddings, whilst maintaining the

efficiency of pre-trained embeddings.

Whilst the Word2Vec token embeddings provide an excellent basis, they do

fall short under certain circumstances. A notable instance of this is in the case

of rare tokens – i.e. specific sequences of characters which occur infrequently.
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As the Word2Vec algorithm requires a minimum number of occurrences before a

token is included in the vocabulary, rare tokens are often referred to as “out-of-

vocabulary”, and are replaced with a default embedding. As our Word2Vec model

was trained specifically on astrophysical literature, we are less concerned with out-

of-vocabulary technical language, but instead are concerned with numerical strings.

To a human reader, the difference between the strings “0.70” and “0.71” is

minor, as we interpret the value in its numerical sense. However, the Word2Vec

algorithm is not designed to leverage the numerical nature of the strings, as they are

considered only as a string of characters. Whilst Word2Vec does indeed organise

numerical strings in a structured manner, due to their usages in text, this is only suf-

ficient for common numerical strings (“1”, “15”, ‘100”, and so on). In our scientific

context, important numerical values (especially measurement values) are likely to

be rare character sequences. As such, Word2Vec may encounter issues dealing with

these tokens (Thawani et al., 2021).

In order to alleviate this problem, and generally increase the capacity of our

Entity models, we have also created versions of the above models which utilise

boosted token embeddings. For these models, the embedding for each token is con-

structed by concatenating the Word2Vec embedding with the output of a trainable

character-level neural network encoder (akin to Seo et al., 2018).

This encoder is a simple single-layer bidirectional long short-term memory

(LSTM) network, which is passed over a word matrix, created by concatenating

trainable character embeddings. Hence, for a word W of length w, with character

embeddings of dimensionality c, each word may be represented by a w× c matrix.

The hidden state of the Bi-LSTM at the final timestep is used as a fixed-length

character-based word embedding for W .

Therefore, for these boosted models, each (projected) Word2Vec word embed-

ding is concatenated with the character-based word embedding before being sup-

plied to the model. Training signal is allowed to backpropagate into the character

encoder during training, allowing the model to learn to fill in the information gaps in
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the Word2Vec embeddings, whilst still having the power of the Word2Vec algorithm

to fall back on.

3.4.3 Data Usage

When training the following models we use a holdout dataset comprising of all the

annotations contained in a subset of the article abstracts from our annotated dataset.

This means that the training data for the Entity and Relation models come from

the same set of papers, which are distinct from the set of papers used as a holdout

testing set. This is done to prevent contamination of the validation results.

3.4.4 Entity Models

To begin, we examine the Named Entity Recognition models we have created: a

feed-forward neural network, and a recurrent neural network using LSTM layers.

Here we are experimenting with multiple model architectures to give us insights

into the complexity of the problem, and aid in interpreting model performance (as

the different architectures emphasise different kinds of information from the text).

It should be noted that, due to the relative sparsity of Entities in the texts, for

all the models here we shall be combining MeasuredValue and Constraint Entities

for the purposes of token prediction. This improves the model performance on the

Named Entity Recognition task, and the Constraint annotations can be recovered

by using the Attribute model to predict the presence of constraints (i.e. any Mea-

suredValue Entity for which LowerBound or UpperBound Attribute is predicted can

be assumed to be a Constraint annotation).

3.4.4.1 Feed-Forward Model

Our first model uses a multi-layer perceptron (MLP) neural network to predict BIO

labels for each token in a document. This architecture is a natural baseline for exper-

iments with neural models. We step through the document token by token (starting

from the beginning) considering each token’s word embedding, concatenated with

the embeddings of the tokens in a fixed-width window (forwards and backwards)

around the current token, to predict the label for that token. A fixed-length history
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t	it	i-1 t	i+1 t	i+wt	i-w ... ...

MLP

y	i

y	i-1y	i-w ...

Hence Hubble Constant is .... ...
Figure 3.3: Schematic diagram of the feed-forward Entity model, where tn indicates the nth

token embedding, yn indicates the model output for the nth token, and w is the
window width.

of previous output predictions is maintained (whose length is equal to the window

width) which is also used as input in each prediction step.

A schematic diagram of this model is shown in Figure 3.3. For a model with

a window width, w, we concatenate the token embeddings of the 2w+ 1 tokens in

the current window (w to either side, plus the current token) along with the previous

w outputs (each a 2N +1 vector representing the BIO Entity labels, normalised us-

ing the softmax function) to produce our input. The prediction history is initialised

using a trainable vector parameter, and zero-padding is used to account for the win-

dow width (as we begin at first token, not the wth token). The input is then passed

through a MLP network, using ReLU activations (Nair and Hinton, 2010), to pro-

duce our token label prediction. The exact number of layers and neurons in the

MLP network is determined via grid search, with the results for the best performing

model shown below.

It should be noted that this model is not a recurrent neural network, despite

utilising the outputs from previous tokens, as the training signal is not allowed to

backpropagate between token steps. However, the use of the output label “memory”

was found to greatly improve the model performance.
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3.4.4.2 LSTM Model

Our second model uses an LSTM (Hochreiter and Schmidhuber, 1997) architecture

followed by a dense output layer. A schematic diagram of the architecture is shown

in Figure 3.4. We chose a bidirectional (Schuster and Paliwal, 1997) LSTM model

in this case, as information will need to propagate in both directions through the

text (for example, it is important if a number is followed by a “±” sign, as well as

whether it is preceeded by an equals sign). The exact number of layers and cells in

the LSTM network is determined by grid search, with the best model performance

given below.

For this model, the bidirectional LSTM units are passed along the document,

and the sequential output from the LSTM (corresponding to each token) is then

sent through a dense output layer, giving the desired 2N +1 output nodes for each

timestep.

The LSTM units should allow the model to capture longer distance depen-

dencies between words and phrases, as it is not limited by a fixed-length window,

creating smoother predictions across tokens – as models without any contextual

awareness tend to produce very fractured prediction sequences, where many Enti-

ties are incomplete and split due to individual missing tokens.

3.4.4.3 Entity Model Results

A grid search was performed over the hyper-parameters for both models, with model

performance judged using the F1 score and strict Entity overlap (the proportion of

Entities which are exactly predicted by the model, i.e. with no missing or additional

tokens) on the holdout test dataset. The highest performing models for both pro-

posed architectures were then selected, and their performance statistics are shown

in Tables 3.5 and 3.6.

We see that the two models show comparable performance on this task, with

the LSTM model proving slightly more effective overall. This suggests that the

linguistic markers required to determine the nature of a token are predominantly

local, as the LSTM’s capacity to examine longer distance dependencies does not

have a particularly large impact on model performance. Indeed, the top performing
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Figure 3.4: Schematic diagram of the LSTM Entity model. Here, the Bi-LSTM node is
the same node in both cases, evaluated forwards and backwards across the text
token sequence. Here tn and yn indicate the token embedding and model output
for the nth token, respectively.

feed-forward model uses a window-length of only 3 tokens. However, on balance,

we have chosen the LSTM model to be used for our final processing steps.

We also note that both models struggle particularly with ParameterName and

ObjectName tokens. In the case of ObjectName tokens, this may be explained by

the relative sparsity of these Entities in the training data. The difficulties with Pa-

rameterName labels, however, is suspected to be due to the intrinsic difficulty of

separating these tokens from general physical discussion, as well as the ambiguity

in the start and end points of these Entities, as shown by the disagreements experi-

enced between annotators during the creation of the training data (see Section 3.3.2).

As seen in Table 3.6, the models struggle more with recall for these Parameter-

Name labels (although the precision is also noticeably lower than for other classes),

suggesting that the model predictions represent a more conservative view of what
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Table 3.5: Summary metrics on the test set, for the best performing Entity models from the
grid search.

Model Type Precision Recall F1 Strict Entity Overlap
Feed-forward .933 .933 .933 .546
LSTM .934 .934 .934 .584

Table 3.6: Per-label performance metrics on the test set, for the best performing Entity
models from the grid search.

Model Relation Type Prec. Recall F1 Support

Feed-forward

B-ConfidenceLimit .78 .77 .78 52
I-ConfidenceLimit .81 .76 .79 55
B-MeasuredValue .83 .87 .85 536
I-MeasuredValue .94 .90 .91 3,077
B-ObjectName .74 .61 .67 214
I-ObjectName .80 .62 .70 172
B-ParameterName .62 .43 .51 471
I-ParameterName .64 .44 .53 762
B-ParameterSymbol .87 .85 .86 687
I-ParameterSymbol .84 .94 .89 2,501
Outside .96 .96 .96 29,741

LSTM

B-ConfidenceLimit .79 .88 .84 52
I-ConfidenceLimit .78 .84 .81 55
B-MeasuredValue .82 .86 .84 536
I-MeasuredValue .92 .90 .91 3,077
B-ObjectName .72 .68 .70 214
I-ObjectName .68 .61 .64 172
B-ParameterName .60 .49 .54 471
I-ParameterName .61 .60 .61 762
B-ParameterSymbol .84 .89 .86 687
I-ParameterSymbol .87 .95 .90 2,501
Outside .96 .96 .96 29,741

constitutes a parameter name. As such, usage of the outputs for search purposes

should emphasise parameter symbols to have the best results.

3.4.5 Relation Extraction Models

For our Relation Extraction task we have created two models: a neural network

model which considers the two Entities and the span which exists between them

(along with a windowed region outside) to classify the Relation that may exist

between them; and a rule-based model, which does not use any neural network
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techniques, but relies on hand-coded heuristics. This rule-based approach was not

possible previously, as we did not have access to the token-level predictions from

the Entity model which are the basis for the heuristics. We are experimenting with

both approaches in order to best explore the possible benefits of the neural model

against the interpretability of the rule-based model, to better contextualise model

performance.

3.4.5.1 Neural Relation Extraction Model

For this model we consider each potential pair of Entities separately, also consid-

ering both possible directions of the Relation (as most Relations are directional,

and so A → B ̸= B → A in most cases). For every pairing of Entities, Em and En

(where m < n) we have certain obvious information available: the tokens compris-

ing each Entity span, the labels of these Entities, the tokens of the span between the

two Entities, and the labels of the tokens in that span. Additionally, we will use an

outer window around the two Entities (i.e. a fixed-length span of tokens which lie

outside the Entities and their connecting span) as input into the model, along with

any Entity labels which may apply. With this, we have five spans of tokens (akin to

Hashimoto et al., 2015). To account for possible directionality of the Relation, we

also include a bit indicating whether the Relation runs from the earlier to the later

Entity, or vice versa, and evaluate the available spans twice, with differing values

for this “direction bit”. The output of the model is an N + 1 dimensional vector,

where N is the number of Relation labels we are considering (plus one for a “none”

label).

We now encounter a problem in that there is no predetermined fixed length for

the Entity and connecting spans – they can have any number of tokens (even zero,

in the case of the connecting span). As such, we require a way of converting these

variable length token matrices (produced by concatenating the token embeddings)

into fixed-length representations. We have chosen to use an LSTM for this purpose,

where the fixed-length representation is the hidden state of the LSTM at the final

timestep (token). Other approaches were experimented with, notably the strategy of

taking minimum, maximum, and mean values along the time axis (i.e. the document
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length) to produce fixed length summary vectors. However, this approach suffers

with long distance dependencies, and was out-performed by the LSTM summarisa-

tion.

A schematic diagram of this model is shown in Figure 3.5. The token embed-

dings in each of the five spans are concatenated with their BIO token label, and each

span is passed through the same bidirectional LSTM network. The hidden state of

the LSTM at the final timestep is used as a fixed-length representation of the span,

and these five vectors are concatenated, along with the direction bit and the Entity

labels for the start and end points of the proposed Relation (as one-hot encodings),

and passed through a final dense output layer.

As with our Entity models, we use a trainable projection matrix to increase the

model’s capacity, and zero-pad the document to account for the windowed area.

3.4.5.2 Rules-Based Model

It is also useful to produce a rule-based model as a baseline for this Relation Ex-

traction task, in order to determine if a more complex trained model is justified

– as certain tasks are sufficiently tractable to be solved by much simpler models.

Hence this model is hand-crafted from observations of the available data to pro-

duce a robust set of rules which can predict Relations between labelled Entities in

a document (as opposed to the trained statistical models previously discussed). By

creating a heuristic model such as this, we allow ourselves to determine a baseline

for model performance based on human intuition and knowledge of the domain.

Without such a baseline, we have no way of contextualising model performance

against a more easily interpretable algorithm.

This model uses two primary approaches: searching for patterns in the text

between the two Entities (only practical for very short distance Relations), and using

the patterns of Entities within sentences (ignoring individual tokens) to propose

Relations which may exist between them.

For example, for examining the text between Entities, if we have a Parameter-

Symbol annotation which is followed by a MeasuredValue annotation, and the span

of text between these two Entities is “=” (ignoring any whitespace which may exist
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Figure 3.5: Schematic diagram of the neural Relation Extraction model. The Bi-LSTM
nodes shown here refer to the same LSTM network, which is used for each
of the spans. Here tn and yin indicate the token embedding and Entity label
prediction for the nth token, respectively, D is the direction bit indicating the
direction of the Relation in the text, R is the Relation prediction for this Entity
pair and direction, and w is the window width. The two Entities in question
run from tokens i to j, and tokens k to l. The ht−1 notations indicate that it is
the hidden state from the final time-step which is used as the output from the
LSTM nodes.
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between them), then we can safely assume that the measurement is related to the

symbol by a Measurement Relation. There are other obvious connecting strings,

such as “\sim” or “\approx”, and similar strings for other Entity type pairings (e.g.

“<” and “>” for ParameterSymbol and Constraint Entities).

However, this is insufficient for more complex sentences. For example, if an

author is reporting multiple possible values for a physical parameter (e.g. dependant

on different physical assumptions), then they may write a sentence of the form: “If

we make assumption X, we find a value for A of 1.5, yet including assumption Y

we find a value of 2.0.” We observe that this pattern of ParameterSymbol followed

by multiple MeasuredValue Entities is quite common, and so we can search for sen-

tences which contain this pattern of Entity annotations, without needing to consider

the constituent tokens (i.e. ignoring the textual content, and using only the order

of Entities in the sentence). Similarly, a sentence which contains multiple measure-

ments will often have a single ConfidenceLimit Entity after all the values have been

stated. Hence, we assume that any sequence of MeasuredValue Entities followed

by a single ConfidenceLimit Entity can be linked such that each MeasuredValue is

connected by a Confidence Relation to that ConfidenceLimit.

A full list of the rules and patterns used for this model may be found in Ap-

pendix B.

3.4.5.3 Relation Extraction Model Results

Table 3.7 show the results of the top-performing model from our model search (per-

formed as a grid search over model hyperparameters), along with the corresponding

performance from our rule-based model. Model performance was again judged us-

ing the global F1 score calculated on the holdout test data.

The best performing neural model had an F1 score of 0.976, compared with

0.977 for the rule-based model. However, the similarity of these results is mis-

leading, due to the heavy class imbalance in favour of the “none“ label (due to the

large number of possible Entity pairings). If we examine the per-class performance

metrics for the models, we can see that the neural model suffers significantly in

comparison to the rule-based approach, only achieving superior performance for
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Table 3.7: Per-label performance metrics for the neural and rule-based Relation Extraction
models. The values for the neural model are taken from the top-performing
model from the model search. Here, “Overall F1” refers to the weighted macro
F1 score for the models (support-weighted sum of the per-label F1 scores).

Model Relation Type Precision Recall F1 Support Overall F1

Neural

Confidence .00 .00 .00 75

0.96
Measurement .92 .80 .86 655

Name .89 .42 .57 225
Property .00 .00 .00 159

None .97 1.00 .98 21,807

Rules

Confidence .86 .80 .83 75

0.98
Measurement .93 .75 .83 655

Name .88 .81 .84 225
Property .23 .21 .22 159

None .98 1.00 .99 21,807

the Measurement Relation. From observation we find that the neural model strug-

gles significantly with anything but the shortest Relations, where the Entities are

very close to one another in the text, separated by only a few tokens. However, the

rule-based model shows good performance across the desired Relation labels, and

so we shall be utilising this model for our final processing.

For the rule-based approach, the biggest issue remains the Property Relation.

This Relation is by far the most long-distance, often covering nearly the entire span

of the text. As we are dealing with article abstracts here, it is common to have

an object referenced at the beginning of the text, often in the first sentence (e.g.

“We examine the supernova SN 1998bu...”), followed by a description of the ex-

perimental approach, and then finally a concluding sentence stating the final result

(“We find a peak luminosity of...”). This long-distance nature negates much of the

sentence-level pattern matching we have leveraged for the rule-based approach. Ad-

ditionally, if multiple celestial objects are mentioned in this way, or with some other

oblique reference later in the text, it can be hard to distinguish which measurement

belongs to which object using simple patterns. As such, the required simplifying

assumptions produce a very low quality of predictions for the Property Relation.
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3.4.6 Attribute Models

For predicting Attributes we are considering only one model architecture, due to

the relative simplicity of the problem. For this model we are only predicting At-

tributes relating to Constraint values (LowerBound and UpperBound), due to the

relative sparsity of the other Attribute labels in the training set, and so we only con-

sider MeasuredValue Entities when making predictions (as Constraint values are

not directly predicted, but inferred from the presence of Attributes). For example,

in “...finding x ≤ 0.5 for...”, we would assign a UpperBound Attribute label to “0.5”.

Note that here each MeasuredValue Entity is considered as an individual classifica-

tion task.

A schematic diagram of this model is shown in Figure 3.6. For this model we

examine the tokens of the Entity itself, along with a fixed-width window around

the Entity in question in both directions, and utilise a bidirectional LSTM layer

to process these sequences of tokens. As for our Relation Extraction model, we

use an LSTM to account for the variable length sequences we will encounter. The

LSTM is used despite the fact that only the Entity token sequence is variable length

(both window sequences are fixed length), as training on all sequences increases

the training signal through the LSTM cells. As before, the Word2Vec embeddings

are projected using a trainable projection matrix, and the predicted Entity label for

each token is concatenated onto this projected embedding. The concatenated LSTM

outputs (hidden state at final timestep) are then passed through a densely connected

layer, producing the final output.

Using this model, we achieve the results shown in Table 3.8, using a grid-

search over model hyperparameters. These correspond to an overall F1 score of

0.98. These results are considered to be of a reasonable quality to be used in our

final pipeline.

3.4.7 Post-Processing

With our models trained we combine their outputs and utilise them for prediction.

For a given abstract, we first predict the presence of Entities in the text, by convert-

ing the token-level BIO Entity predictions into full Entity spans. This is done by
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Figure 3.6: Schematic diagram of the Attribute model. The Bi-LSTM nodes here refer to
the same LSTM network, passed over each span of tokens individually. Here tn
and yn indicate the token embedding and model output for the nth token, respec-
tively, i and j refer to index the start and end tokens for the Entity in question,
and A is the Attribute label prediction for that Entity. The ht−1 notations in-
dicate that it is the hidden state from the final time-step which is used as the
output from the LSTM nodes.

Table 3.8: Per-label performance metrics for the top-performing Attribute model from the
model search.

Attribute Type Precision Recall F1 Support
LowerBound .75 .78 .76 27
UpperBound .76 .86 .81 37

None 1.00 .99 1.00 1939

simply identifying contiguous spans of tokens with the same predicted class, using

“begin” tokens to identify the start of such sequences in cases where there are no

separating Outside tokens. If no “begin” token is present, the first “inside” token is

assumed to be the beginning of the Entity. Next, any MeasuredValue Entities are

evaluated using the Attribute model to determine if they should be annotated with

UpperBound or LowerBound Attributes, or simply left as MeasuredValue annota-

tions. If the Attribute model returns an appropriate prediction, the MeasuredValue

label is changed to a Constraint label, with the appropriate bound Attribute. Fi-
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nally, the Relation Extraction model is used to predict the presence of any Relations

between the predicted Entities.

However, as is generally the case when dealing with natural language, the pre-

diction outputs are not always as clean as we would desire – especially in this con-

text, where the textual entities we are searching for may be highly structured and

brittle against minor errors (missing braces, for example). As such, post-processing

steps are applied to the predictions before they are stored in a database, to remove

obvious noise and false positives. Here we are dealing only with simple and glaring

errors, rather than attempting to solve more subtle issues.

Full details of the post-processing steps applied to Entity and Relation annota-

tions may be found in Appendix C. Note that no post-processing steps are applied to

Attribute annotations (other than the Entity label replacement discussed previously).

3.5 Results
In this section we demonstrate a series of search queries on the model predictions

for a variety of cosmological parameters. These will serve as examples of the kind

of datasets which may be produced from these outputs.

3.5.1 Hubble Constant

3.5.1.1 Comparison with Rules-Based Model

To begin our analysis of the processed neural model predictions, we compare the

results to that of our previous approach in Chapter 2, which utilised a rule-based

approach for identifying measurements based on a list of query strings. There we

focused on extracting measurements of the Hubble constant, H0 – chosen for this

parameter’s well-defined name and symbol, and the use of a commonly accepted

standard unit for the quantity (km s−1 Mpc−1). The simplicity of the parameter

identifiers was, essentially, a requirement of the approach, given that exact string

matching was used in the algorithm. The approach detailed in this chapter should

be capable of distinguishing all of the measurement patterns already identified in

the rule-based approach, whilst also extending beyond these rigid (and hand-coded)

patterns to encompass a more diverse range of writing styles.
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For the rule-based model, we use the data from Figure 2.4 in Chapter 2, which

used the following keyword strings for the search:

• Hubble constant

• Hubble parameter

• H0: written ‘H_0’, ‘H_{0}’, ‘H_o’, ‘H_{o}’, ‘H_\circ’, or ‘H_{\circ}’

For the neural model, we use a database of measurements created from the outputs

of the final trained models from Section 3.4, and use the same keyword strings

to extract measurement instances (note that the symbol normalisation discussed in

Section 3.4.7 will make some of the above symbol strings degenerate).

This produces datasets as follows: 2228 data-points for the rule-based model,

and 872 data-points for the neural model.

After this initial search, both datasets have some additional constraints placed

on them:

1. We require that the measurement have units compatible with km s−1 Mpc−1.

This leaves 584 and 578 data-points for the rule-based and neural models,

respectively.

2. We require that the measurement have a stated uncertainty, or (in the case of

the neural model) be a constraint value. This has the effect of reducing noise

in the result set, and removing assumed or literature values, which are often

reported without an accompanying uncertainty.

This leaves us with the following datasets: 299 samples from the rule-based

model, and 314 samples from the neural models, all with the correct units and a

provided uncertainty or bound. The outputs of the models are displayed as time-

series (by publication date) in Figure 3.7.

From the effects of these cuts on the number of returned data-points we observe

the following: The neural model is far more selective when identifying potential

measurements in the text, finding far fewer potential spans initially. However, the

identified spans are shown to be more grammatically relevant to the query phrases
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Figure 3.7: Comparison of search results for the Hubble constant, H0, from the rule-based
(a) and neural models (b). In addition to the measurements provided as central
values with stated uncertainties (i.e. “x± y”, shown as blue circles with error
bars), the neural model figure also shows values given in the source text as
constraints (i.e. H0 < x, or similar, shown as green arrows for lower bounds
and orange arrows for upper bounds.)

(“Hubble constant”, “H0”, etc.), given that a higher proportion survive our selection

cuts using our existing knowledge of the Hubble constant (i.e. unit and required

uncertainty): 13% for the rule-based model versus 36% for the neural model.

With these data collected and cross-referenced, we find an overlap of 261 sam-

ples, with 39 samples identified by the rule-based model that the neural model did

not recover, and likewise 53 samples that only the neural model found. Most in-

teresting out of these samples are the instances where only one model identifies a

measurement, as they highlight gaps in the models’ comprehension. To investigate

this further the textual spans for both datasets were manually examined, and the

following recurring failure states are noted (the examples reference those found in

Table 3.9):

1. As seen in Chapter 2, the rule-based model fails on a number of trivial cases,

such as the presence of additional, unrelated numbers in the text, such as

Example 1, or more verbose language causing separation of keyword and

measurement (as the model selects the closest measurement in the same sen-
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tence by character-distance). Many of these cases can be caught by the neural

model – however, long distance and multi-sentence Relations continue to pose

a problem for both models.

2. The rule-based model cannot distinguish standalone symbols from symbols

as part of a larger span (indeed, no distinction is made in the keyword list

between names and symbols at all). As such, it may misidentify instances of

symbol search strings inside compound symbols, such as in Example 2. The

neural model, however, looks at all tokens in context, and is not limited to

a fixed set of symbols, and so will (ideally) identify the whole symbol span,

as in Example 2 where it correctly identifies the full symbol (therefore not

returning the MeasuredValue for our Hubble constant search, which specifies

“H _ { 0 }” rather than “H _ { 0 } ^ { -1 }”).

3. Stray LATEX macros or other typographical anomalies can cause the regular

expression patterns used by the rule-based model to miss potential measure-

ments in the text, as for the failure in Example 3 for the rule-based model,

where the unit string has been missed (and so the measurement is incomplete).

The neural model, however, is more robust to these LATEX irregularities, and

successfully annotated Example 3.

4. However, the neural model does stumble on certain styles of measurement

reporting, most notably on brackets (“( )”) present in the middle of both mea-

surements and symbols, as in Example 4. This confusion is understandable,

given that brackets often denote the beginning or end of an Entity annotation,

and hence we can expect the model to be biased toward classifying bracket

tokens as None tokens (i.e. not belonging to any class), or transition from

a run of tokens of one Entity type to another. This can either cause an En-

tity annotation to be incomplete, missing important tokens at the beginning

and/or end, or split into multiple such incomplete annotations. For instance,

in Examples 4 (Neural Model) & 5 the MeasuredValue Entity spans should

be single MeasuredValue annotations, but have been incorrectly identified as
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two separate spans due to the “( or” and “( random” tokens being labelled

None by the model. This means that, whilst having the correct token labels,

the two Entity spans cannot represent the actual value of the measurement.

5. A notable point of failure for the neural results is the manner in which sym-

bols are currently matched in the database: namely by using an exact match

against the normalised symbol string (see Section 3.4.7). This leads to accu-

rate annotations being ignored in our query in cases where a slight variation

on the standard symbol has been used. An example of this can be seen in

Example 6, where the symbol “H _ { 0 } { ( EPM ) }” has been correctly

classified (as the bracketed portion was, presumably, intended as part of the

symbol by the author – here describing a methodology for the measurement),

but does not exactly match the query string “H _ { 0 }“.

6. Finally, the neural model suffers more broadly from uncertain classification

of tokens at the beginning and end of Entities, commonly resulting in one

or two missing or added tokens. Especially in the case of braces, where in-

complete braces present a non-trivial post-processing issue, this can have a

serious impact on parsing of symbols and measurements. This is especially

true for symbols, where braces can imply sophisticated mathematical rela-

tions in composed symbols. This can be seen in Example 1, where the Pa-

rameterSymbol text contains unbalanced braces (as the numerical value has

been incorrectly labelled as a MeasuredValue).

From these observations, and the results of our comparison of the model out-

puts, we conclude that the neural model is capable of catching the large majority of

cases covered by the rule-based model, and has the capacity to distinguish far more

complex linguistic and typographical patterns than the rigid rule-based approach

by considering token context. However, manual examination of the model outputs

shows that the neural model also suffers from incorrect classification of Entities,

resulting in similar problems to those seen in Chapter 2. As such, we have not yet



3.5. Results 120

Ta
bl

e
3.

9:
E

xa
m

pl
e

an
no

ta
tio

ns
fr

om
th

e
ru

le
-b

as
ed

m
od

el
(“

ke
yw

or
d”

)
an

d
ne

ur
al

m
od

el
.

T
he

ru
le

-b
as

ed
m

od
el

do
es

no
tu

se
an

an
no

ta
tio

n
sc

he
m

a,
an

d
so

th
e

id
en

tifi
ed

sp
an

s
ha

ve
be

en
si

m
pl

y
la

be
lle

d
“K

ey
w

or
d”

or
“M

ea
su

re
m

en
t”

,w
he

re
as

th
e

ex
am

pl
es

fr
om

th
e

ne
ur

al
m

od
el

us
e

th
e

an
no

ta
tio

n
la

be
ls

fr
om

Se
ct

io
n

3.
3.

N
um

be
r

ar
X

iv
Id

en
tifi

er
To

ke
ni

ze
d

an
d

A
nn

ot
at

ed
T E

X
So

ur
ce

1
13

11
.1

76
7

K
ey

w
or

d
M

od
el

:

M
e
a
s
u
r
e
m
e
n
t

M
e
a
s
u
r
e
m
e
n
t

K
e
y
w
o
r
d

H
u

b
b

le
 p

ar
am

et
er

o
f

H
 (

 z
=

2
.3

6
)

=
2

2
6

 \
p

m
 8

 {
 k

m
 s

 }
 ^

 {
 -

1
 }

 {
 M

p
c

} 
^ 

{ 
-1

 }

N
eu

ra
lM

od
el

:

N
a
m
e

M
e
a
s
u
r
e
d
V
a
l
u
e

M
e
a
s
u
r
e
m
e
n
t

P
a
r
a
m
e
t
e
r
N
a
m
e

P
.
S
y
m
b
o
l

M
.
V
a
l
u
e

H
u

b
b

le
 p

ar
am

et
er

o
f

H
 (

 z
=

2
.3

6
)

=
2

2
6

 \
p

m
 8

 {
 k

m
 s

 }
 ^

 {
 -

1
 }

 {
 M

p
c

} 
^ 

{ 
-1

}

2
07

04
.3

26
7

K
ey

w
or

d
M

od
el

:

M
e
a
s
u
r
e
m
e
n
t

K
e
y
w
o
r
d

M
e
a
s
u
r
e
m
e
n
t

H
 _

 {
 0

 }
 ^

 {
 -

1 
} 

=
 1

5.
2 

_ 
{ 

-1
.7

 }
 ^

 {
 +

2.
5 

} 
{ 

G
yr

 }

N
eu

ra
lM

od
el

:

M
e
a
s
u
r
e
m
e
n
t

P
a
r
a
m
e
t
e
r
S
y
m
b
o
l

M
e
a
s
u
r
e
d
V
a
l
u
e

H
 _

 {
 0

 }
 ^

 {
 -

1 
} 

=
 1

5.
2 

_ 
{ 

-1
.7

 }
 ^

 {
 +

2.
5 

} 
{ 

G
yr

 }

3
10

05
.0

26
3

K
ey

w
or

d
M

od
el

:

M
e
a
s
u
r
e
m
e
n
t

K
e
y
w
o
r
d

M
e
a
s
u
r
e
m
e
n
t

a
H

u
b

b
le

 c
o

n
st

an
t

o
f

(
6

5
.2

6
 \

p
m

 8
.2

2
 )

 \
m

at
h

rm
{ 

km
 s

 }
 ^

 {
 -

1
 }

 \
m

at
h

rm
{ 

M
p

c
} 

^ 
{ 

-1
 }

N
eu

ra
lM

od
el

:

M
e
a
s
u
r
e
m
e
n
t

M
e
a
s
u
r
e
d
V
a
l
u
e

P
a
r
a
m
e
t
e
r
N
a
m
e

a
H

u
b

b
le

 c
o

n
st

an
t

o
f

(
6

5
.2

6
 \

p
m

 8
.2

2
 )

 \
m

at
h

rm
{ 

km
 s

 }
 ^

 {
 -

1
 }

 \
m

at
h

rm
{ 

M
p

c
} 

^ 
{ 

-1
 }

4
11

05
.5

20
6

K
ey

w
or

d
M

od
el

:

M
e
a
s
u
r
e
m
e
n
t

M
e
a
s
u
r
e
m
e
n
t

K
e
y
w
o
r
d

H
 _

 {
 0

 }
=

6
8

 \
p

m
 5

.5
 (

 o
r 

\p
m

 1
 )

 {
 k

m
 s

 }
 ^

 {
 -

1
 }

 {
 M

p
c

} 
^ 

{ 
-1

 }

N
eu

ra
lM

od
el

:

M
e
a
s
u
r
e
m
e
n
t

M
e
a
s
u
r
e
d
V
a
l
u
e

P
a
r
a
m
e
t
e
r
S
y
m
b
o
l

M
e
a
s
u
r
e
d
V
a
l
u
e

M
e
a
s
u
r
e
m
e
n
t

H
 _

 {
 0

 }
=

6
8

 \
p

m
 5

.5
 (

 o
r 

\p
m

 1
) 

{ 
km

 s
 }

 ^
 {

 -
1

 }
 {

 M
p

c
} 

^ 
{ 

-1
 }

5
14

03
.1

69
3

N
eu

ra
lM

od
el

:

M
e
a
s
u
r
e
m
e
n
t

M
e
a
s
u
r
e
d
V
a
l
u
e

P
a
r
a
m
e
t
e
r
S
y
m
b
o
l

M
e
a
s
u
r
e
d
V
a
l
u
e

M
e
a
s
u
r
e
m
e
n
t

H
 _

 {
 0

 }
=

7
3

 \
p

m
 3

 (
 r

an
d

o
m

 )
 k

m
 s

 ^
 {

 -
1

 }
 M

p
c

^ 
{ 

-1
 }

6
as

tr
o-

ph
/0

30
52

59
K

ey
w

or
d

M
od

el
:

M
e
a
s
u
r
e
m
e
n
t

M
e
a
s
u
r
e
m
e
n
t

K
e
y
w
o
r
d

H
 _

 {
 0

 }
 {

 (
 E

P
M

 )
 }

=
5

7
 \

p
m

 1
5

 {
 k

m
 s

 }
 ^

 {
 -

1
 }

 {
 M

p
c

} 
^ 

{ 
-1

 }

N
eu

ra
lM

od
el

:

M
e
a
s
u
r
e
m
e
n
t

P
a
r
a
m
e
t
e
r
S
y
m
b
o
l

M
e
a
s
u
r
e
d
V
a
l
u
e

H
 _

 {
 0

 }
 {

 (
 E

P
M

 )
 }

=
5

7
 \

p
m

 1
5

 {
 k

m
 s

 }
 ^

 {
 -

1
 }

 {
 M

p
c

} 
^ 

{ 
-1

 }



3.5. Results 121

moved beyond the requirement for some prior knowledge from the user to filter and

refine the search results.

3.5.1.2 Discussion

From the collected data shown in Figure 3.7, we may also note the presence of

certain trends in the measurement values of the Hubble constant. Of particular in-

terest is the spike in reported measurements over the last few years, which could

not be seen in the dataset used for Chapter 2. This is thought to be due to the high

profile tension which has arisen in recent years between the early and late universe

determinations of the Hubble constant. Measurements based on the early universe,

notably measurements from the CMB by the Planck Mission (Planck Collabora-

tion et al., 2018), give a consistently lower value for H0, approximately 67 km

s−1 Mpc−1. Whereas late universe measurements, generally using standard candles

such as Cepheids and Type Ia supernovae (and other, more novel objects, such as

miras, masers, lensing objects), lead to values slightly above 70 km s−1 Mpc−1 -

these measurements also having become more prevalent lately, with the release of

data from projects such as the Gaia Mission (Gaia Collaboration et al., 2016).

Over the last decade the measurement uncertainties on values for the Hubble

constant have been decreasing (as can be seen in Figure 3.7), and with the publi-

cation of the results from the Planck Collaboration et al. (2018) the > 3σ tension

between these two epochs has become the topic of much debate (Riess, 2020). In

our results here we may see this narrative unfold, from the decreasing uncertainties

through to the explosion in the number of reported measurements after 2018 (see the

time-axis histograms in Figure 3.7). This tension may be clearly seen in our model

outputs4 from the two distinct peaks in the distribution of H0 values in Figure 3.7

(see vertical axis histograms).

In order to better visualise the changing understanding of H0 we have used the

Extreme-Deconvolution (XD) algorithm (Bovy et al., 2011) to fit Gaussian mixture

models on overlapping 5-year bins of the search results, as shown in Figure 3.8.

4The query to reproduce the data from Figure 3.7 may be found at: http://
numericalatlas.cs.ucl.ac.uk/constant/hubbleconstant

http://numericalatlas.cs.ucl.ac.uk/constant/hubbleconstant
http://numericalatlas.cs.ucl.ac.uk/constant/hubbleconstant
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Figure 3.8: Time series of the search results for H0, showing reported value against publi-
cation date (blue), along with the mean (red points) and dispersion (error bars)
of the fitted Gaussian distributions for overlapping 5-year periods.

This algorithm uses the stated uncertainties of the measurements in the fit, giving a

better representation of the consensus value in the considered period. The Akaike

information criterion (Akaike, 1974) is used to determine the optimal number of

components for the mixture models. From these fits we clearly observe the decreas-

ing measurement uncertainty in H0 over time, followed by the bifurcation in the

distributions after the Planck results.

We also see additional interesting features, such as the sudden increase in high-

uncertainty values reported during this recent spike in popularity. Examination of

these papers shows that this is due to various novel experimental techniques be-

ing explored in order to resolve the tension, such as: gamma-ray burst supernovae

(Cano, 2018), AGNs (Turner and Shabala, 2019; Wang et al., 2020), Luminous Red
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Galaxies (Sridhar et al., 2020), and lensing objects (Birrer et al., 2020; Denzel et al.,

2021). There is also a notable number of uses of gravitational wave signals (Fish-

bach et al., 2019; Hotokezaka et al., 2019; Howlett and Davis, 2020; Nicolaou et al.,

2020; Palmese et al., 2020; Soares-Santos et al., 2019; Vasylyev and Filippenko,

2020) to determine values for the Hubble constant. We can see that, in addition to

the raw numerical values returned by our search, there are rich possibilities with

these data for analysis of uptake of ideas and techniques within the astrophysics

community.

3.5.2 Application to Other Cosmological Parameters

Having shown that our new model can perform well compared to our baseline on a

well-structured case, we move on to more challenging examples. We note from our

examination of the Hubble constant that filtering our result set by a known unit is a

very effective way of identifying incorrect samples (especially for the Hubble con-

stant, with a rather specific common expression for its dimensionality – as opposed

to something more generic, e.g. K or kpc). However, there are many interesting

quantities with more common units – or, indeed, dimensionless quantities.

However, the dimensionality filtering for the Hubble constant had far less im-

pact on the result set from the neural model, with a drop off in samples of only

33% for this step, in comparison to 74% for the rule-based model. This suggests

then, as noted previously, that the neural model is already far more selective when

identifying measurement spans in the text, and hence relies less on post-processing

to identify candidate measurements.

Furthermore, the availability of both a common, well-defined name and symbol

for the Hubble constant is a special case in the scientific literature, and we must

extend beyond this if we hope to produce a useful tool for the community.

We shall now present some test cases which emphasise this more challenging

regime. For this, we have chosen a set of the cosmological parameters, as they

are quantities of interest in the scientific community with uncertain values and a

relatively large catalogue of reported measurements, which exhibit the challenging

features mentioned above. We use the following list of parameters as case studies:
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Table 3.10: Fiducial values of the cosmological constants taken from Planck Collaboration
et al. (2018) for comparison with model results.

Parameter Value 1σ Error Bar
ΩM 0.315 0.007
ΩΛ 0.6889 0.0056
σ8 0.811 0.006

Ωbh2 0.02242 0.00014
n 0.965 0.004

∑mν < 0.12 eV –
w0 -1.03 0.03

1. ΩM, the ratio of the present matter density to the critical density,

2. ΩΛ, the cosmological constant as a fraction of the critical density,

3. σ8, the amplitude of mass fluctuations,

4. Ωbh2, the baryon density parameter,

5. ns, the primordial spectral index,

6. ∑mν , the sum of neutrino masses,

7. w0, the equation of state parameter for dark energy.

Fiducial values for each of these parameters may be found in Table 3.10, which

correspond to those reported by Planck Collaboration et al. (2018). A discussion of

the relevant cosmology underlying these values may be found in Section 1.2.

These parameters present a variety of interesting challenges to our models:

Many of the parameters in question lack a well defined name – which is not to

say that they do not have established naming conventions, but that these conven-

tions present greater challenges than a moniker such as “the Hubble constant”. This

means we require our model to be able to identify grammatically significant se-

quences of tokens in the text, rather than simple name-phrases like “Hubble con-

stant”.

Additionally, many of the symbols for these parameters are commonly found

in compound expressions, which proved a major stumbling block for our initial
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keyword search. For example, we wish to be able to distinguish between the Hubble

age expressed as “H−1
0 ”, and the Hubble constant expressed as “H0”, or between

expressions such as “ΩM” and “Ωmh2”. For this, once again, we require not just to

find the tokens of interest, but to take account of their context in the sentence.

Finally, the majority of these parameters are dimensionless. This presented a

major hurdle to our previous approaches for identifying measurements, as filtering

candidate spans by stated units was an important step in reducing noise in the result

set.

With these parameters we will show both the power of our model, but also the

utility of our framework and how it may be used to intelligently search through the

collected data to find sets of measurements relating to a certain physical quantity.

3.5.2.1 Matter Density Parameter, ΩM

To begin, let us consider the matter density parameter, ΩM. Our search parameters

are as follows5:

• Name: “mass density”, “matter density”

• Symbol: “\Omega _ { M }”, “\Omega _ { m }”, “\Omega _ { 0 }”

• Unit: Dimensionless

• Value range: 0 ≤ x ≤ 1

From this query we find 1408 candidate measurements. Examination of the mea-

surements and their associated names and symbols shows some false positives, for

example “baryonic mass density parameter” and “amplitude parameter of the mat-

ter density fluctuations” being incorrectly identified using our inclusion-based string

matching (for ParameterNames). However, the large majority of cases display sen-

sible name/symbol combinations. The mean value of parsed measurements is 0.385,

with a median value of 0.3. If we now add the stipulation that measurements must

provide an uncertainty to be included in the result set, we find 449 values with a

5The query to reproduce the data in this plot may be found at: http://numericalatlas.
cs.ucl.ac.uk/constant/omegam

http://numericalatlas.cs.ucl.ac.uk/constant/omegam
http://numericalatlas.cs.ucl.ac.uk/constant/omegam
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mean value of 0.297 and a median of 0.28. A plot of these identified measure-

ments (uncertainty required), by publication date, is shown in Figure 3.9a, along

with Gaussian mixture models fitted using the XD algorithm (in the same manner

as the H0 plots). The figure shows a clear peak in the measurement distribution at a

value of approximately 0.3, as expected from the known history of ΩM, and shows

the varying trend in the community’s measurements of the parameter over the last

two decades. It should be noted that there is no distinction made in the search query

or the plot between measurements which assume a spatially flat universe and those

which do not.

For comparison we have also plotted the results of this same query using the

rule-based model in Figure 3.9b. Whilst the same general trends are observed in

both plots, there is a broader distribution of outliers visible in the rule-based results.

This is clearly visible in the fitted distributions, which are much more confined for

the neural results. We also note that the neural model produces a smaller number of

results overall (449 for the neural model versus 645 for the rule-based model), along

with a mean value closer to the expected result (0.297 for the neural model versus

0.357 for the rule-based model). This further shows that the neural model has better

intrinsic selectivity than the rule-based model, without the need for filtering based

on dimensionality.

Figure 3.9 demonstrates the community’s understanding of ΩM over the last

two decades. The most decisive event appears to be the WMAP results from the

First (Spergel et al., 2003) and Three-Year (Spergel et al., 2007b) data releases. The

years following these landmark papers see a much more confined region for the

proposed values of ΩM than the preceding years. This is especially true throughout

the majority of 2004, where the publications present values with tighter constraints

than in the surrounding years. Considering that these publications utilise differ-

ent data sources and techniques – including combinations of supernova and X-ray

observations (Zhu and Alcaniz, 2005; Zhu et al., 2004), large scale structure with

supernovae data (Odman et al., 2004), Chandra observations of clusters (Allen et al.,

2004), combining the integrated Sachs Wolfe effect and supernovae data (Gaztañaga



3.5. Results 127

1997 2002 2008 2013 2019
Date of Publication / Year

0.0

0.2

0.4

0.6

0.8

1.0

Ex
tra

ct
ed

 
M
 / 

Di
m

en
sio

nl
es

s

0

50

0 50

(a) Neural

1997 2002 2008 2013 2019
Date of Publication / Year

0.0

0.2

0.4

0.6

0.8

1.0

Ex
tra

ct
ed

 
M
 / 

Di
m

en
sio

nl
es

s

0

50

0 100

(b) Rules-Based

Figure 3.9: Comparison of search results for the rule-based and neural models for the cos-
mological matter density, ΩM. Both plots show only measurements which re-
port a central value and an uncertainty (the neural model also contains con-
straint measurements, but these have been omitted for clarity), shown in blue.
The mean (red points) and dispersion (error bars) of the Gaussian mixture mod-
els fitted on overlapping 5-year bins are also shown.
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et al., 2006), SDSS data (Abazajian et al., 2005) – yet still find observations in such

tight agreement, it is possible we are seeing a period of confirmation bias here. Af-

ter the WMAP Three-Year data release however, we see a period of relatively stable

values and constraints on the value of ΩM, which exhibits a slight trend towards

increasing values over time. An exception to this is the 2014-16 period, where a

number of observations with much larger uncertainties may be seen. The use of

lensing data appears to be a contributing factor to these measurements (Caminha

et al., 2016; Collett and Auger, 2014; Jiménez-Vicente et al., 2015; Liu et al., 2015)

in addition to the innovative use of SDSS results, including the Alcock-Pacynski

Test with Cosmic voids (Mao et al., 2017), and utilising HII regions as standard

candles (Wei et al., 2016). Following this period, we once more see a return to

a relatively stable understanding of the quantity, yet with more variation between

reported measurement values (as shown by the fitted distributions), with a trend to-

wards a slightly higher value over time – following the trajectory from the ∼0.281

WMAP value (Hinshaw et al., 2013) to the ∼0.315 value reported by Planck Col-

laboration et al. (2018).

It should be noted that the cluster of values at 0.7− 0.8 after 2010 are erro-

neous, and are almost all due to a misidentified ParameterSymbol annotation in-

volving the quantity S8 = σ8(ΩM/0.3)0.5.

3.5.2.2 Cosmological Constant Parameter, ΩΛ

As a complement to our previous example, we examine the Cosmological Constant

as fraction of critical density, ΩΛ. Here we use the following search parameters6:

• Symbol: “\Omega _ { \Lambda }”

• Unit: Dimensionless

• Value range: 0 ≤ x ≤ 1

We find 421 results, with a mean value of 0.592, and a median of 0.7. Without re-

quiring uncertainties, we find that more than half of the returned values are assumed

6The results of this query may be found at: http://numericalatlas.cs.ucl.ac.uk/
constant/omegalambda

http://numericalatlas.cs.ucl.ac.uk/constant/omegalambda
http://numericalatlas.cs.ucl.ac.uk/constant/omegalambda
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Figure 3.10: Time series of the search results for ΩΛ, showing reported value and publica-
tion date.

values for the parameter (generally without provided uncertainties) clustered at the

values 0.0 and 0.7. The usage of these assumed values appears to drop off after

2004 for 0.0, and 2007 for 0.7. Requiring uncertainties, we find 88 values with a

mean of 0.713 and a median of 0.712. A time-series plot of these measurements

is shown in Figure 3.10 (again, no distinction is made in the search query between

measurements reported assuming a spatially flat Universe and otherwise).

Here also we see trends in the community’s understanding of this value: a par-

ticularly striking change is the drop off in values reported as upper or lower limits

(i.e constraints) on ΩΛ (e.g. “ΩΛ > 0.5”), in favour of central values with uncer-

tainties (e.g. “0.7± 0.1”), coinciding with the WMAP Three-Year Data Release

(Spergel et al., 2007b). It would appear that the influence of the WMAP data led to

an acceptance of better constraints among the community, and hence a shift away

from reporting ΩΛ as a constraint. Additionally, we once again see an increase in
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measurement uncertainties during the 2014-16 period. The publications in question

make use of galaxy cluster and quasar observations (Bonvin et al., 2017; Caminha

et al., 2016; Mantz et al., 2014; Risaliti and Lusso, 2015), galaxy halo models (Con-

selice et al., 2014), and gamma-ray bursts (Wang et al., 2016). Given the timing of

these publications, it is quite possible that this additional debate around the value

may be related to the release of the Planck 2015 results (Ade et al., 2016) – possibly

both in preparation (or anticipation) as well as in response.

There is also an interesting value reported by Ostriker and Steinhardt (1995), an

early exploration of dark energy cosmology models using observational constraints.

This publication appears to be several years ahead of the Nobel prize measurement

of ΩΛ (Perlmutter et al., 1998; Schmidt et al., 1998), and has perhaps not received

a proportional amount of attention.

3.5.2.3 Amplitude of Mass Fluctuations, σ8

Next we consider the amplitude of mass fluctuations, σ8, with the following search

parameters:

• Symbol: “\sigma _ { 8 }”

• Unit: Dimensionless

• Value range: 0.4 ≤ x ≤ 1.5

For this query we find 410 samples, with a mean of 0.828 and median of 0.803.

Requiring uncertainties, we have 235 samples, with a mean of 0.808 and median

0.802. There is little consensus amongst the result set on a ParameterName string

for this quantity, which is unsurprising, given the high linguistic variability seen for

this parameter’s name. A plot of the collected measurements is seen in Figure 3.117.

Here we see a clear convergence over time to a value of ∼ 0.8, as expected from

the current understanding on the value of σ8, with seemingly minimal tension across

the years. A slight downward trend in the value of σ8 is observed since around 2005.

Additionally, there is a clear drop-off in the number of reported measurements over

7The results of this query may be found at: http://numericalatlas.cs.ucl.ac.uk/
constant/sigma8

http://numericalatlas.cs.ucl.ac.uk/constant/sigma8
http://numericalatlas.cs.ucl.ac.uk/constant/sigma8
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Figure 3.11: Time series of the search results for σ8, showing reported value and publica-
tion date.

the years since 2010. This is possibly due to an uptake in the use of S8 (given by

σ8(ΩM/0.3)0.5) over σ8 in the literature.

3.5.2.4 Baryon Density Parameter, Ωbh2

In order to demonstrate the capacity of the model to recognising parameter symbols

composed of multiple terms, we show the results for the baryon density parameter,

Ωbh2. The final search parameters are as follows8:

• Name: “baryon density”

• Symbol: “\Omega _ { B } h ^ { 2 }”, “\Omega _ { b } h ^ { 2 }”

• Unit: Dimensionless

• Value range: 0.00 ≤ x ≤ 0.04

8The results of this query may be found at: http://numericalatlas.cs.ucl.ac.uk/
constant/omegab

http://numericalatlas.cs.ucl.ac.uk/constant/omegab
http://numericalatlas.cs.ucl.ac.uk/constant/omegab
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Figure 3.12: Time series of the search results for Ωbh2, showing reported value and publi-
cation date.

Resulting in 86 measurements with provided uncertainties, with a mean of 0.0215

and a median of 0.022, as shown in Figure 3.12. There is a clear consensus reached

around 2003, possibly due to the WMAP publication in that year. This result

demonstrates that the model can identify compound symbols in the text (i.e. pa-

rameter symbols comprised of more than one syntactic component).

3.5.2.5 Primordial Spectral Index, ns

For the primordial spectral index, n, the final search parameters are as follows9:

• Name: “spectral index”

• Symbol: “n _ { s }”

• Unit: Dimensionless

9The results of this query may be found at: http://numericalatlas.cs.ucl.ac.uk/
constant/spectralindex

http://numericalatlas.cs.ucl.ac.uk/constant/spectralindex
http://numericalatlas.cs.ucl.ac.uk/constant/spectralindex
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Figure 3.13: Time series of the search results for ns, showing reported value and publication
date.

• Value range: 0.9 ≤ x ≤ 1.05

Here experimentation was required to find a clean result set, as the symbol “n” (as

is sometimes used for primordial spectral index) is far too common to be of use in

discriminating the desired measurements from other parameters. Using a simpler

name for the parameter also lead to a more productive search (as many instances

in cosmology papers only state “spectral index”, rather than “primordial spectral

index”). This search resulted in 100 measurements with provided uncertainties,

with a mean of 0.972 and a median of 0.967. The plot for this result set is shown in

Figure 3.13.

A notable feature of this plot is the large number of constraint values at 1.0.

Many of these are erroneous, or misleading – for example, many are simply express-

ing very general statements about assumed cosmologies. However, if we examine

the trend of central value measurements, we may note some interesting features:
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Firstly, we note that values with ns > 1 are not seen after the start of 2003 (except

a trio of values around 2015, which are incorrectly identified, and are in fact mea-

surements of other physical quantities), coinciding with the WMAP 1 Year Data Re-

lease (Spergel et al., 2003). By the publication of the WMAP 3 Year Data Release

(Spergel et al., 2007b) we see a much more cohesive set of results being reported

(both in terms of value range and reported uncertainties), and the spread of values

continues to narrow through to the present. Whilst there appears to be a shift in

uncertainty range during the 2013-16 period, many of these results are erroneous

(“spectral index” measurements relating to other physical quantities, generally),

with the few correctly identified measurements either being discussions of different

inflation models (Meerburg, 2014; Takahashi, 2013) or using some new technique

for probing the cosmology (e.g. Chantavat et al., 2016, using cosmic voids).

3.5.2.6 Sum of Neutrino Masses, ∑mν

For the sum of neutrino masses, ∑mν , the final search parameters are as follows10:

• Name: “sum of neutrino masses”, “total neutrino mass”

• Symbol: “\sum m _ { \nu }”, “\sum M _ { \nu }”, “\Sigma m _ { \nu }”,

“\Sigma M _ { \nu }”

• Unit: eV

• Value range: 0 ≤ x ≤ 1.5

These results are seen in Figure 3.14. Here we see the utility of distinguishing

MeasuredValue and Constraint annotations, as this is a quantity which is generally

expressed as a constraint rather than a central value. However, it also presents

another interesting challenge with regards to inferencing: there is an implied lower

bound (i.e. zero) on the measurements which is not explicity stated. This is a natural

assumption for a physicist reading the document, but one that relies on additional

knowledge. As our future goals include automating aspects of the analysis phase as

10The results of this query may be found at: http://numericalatlas.cs.ucl.ac.uk/
constant/mnu

http://numericalatlas.cs.ucl.ac.uk/constant/mnu
http://numericalatlas.cs.ucl.ac.uk/constant/mnu
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Figure 3.14: Time series of the search results for ∑mν , showing reported value and publi-
cation date.

well as data collection, it is worth noting that these unspoken bounds must be taken

into consideration.

We may also note from the plot the decided shift in the upper bound on ∑mν

occuring at the start of 2015. This is, presumably, the influence of the publication

of the Planck 2015 results (Ade et al., 2016), which reported a lower value than had

been previously accepted. However, we may also see that a trend towards lower

values had been in progress since approximately 2010.

3.5.2.7 Dark Energy Equation of State Parameter, w0

For the dark energy equation of state parameter, w0, the final search parameters are

as follows11:

• Symbol: “w _ { 0 }”

11The results of this query may be found at: http://numericalatlas.cs.ucl.ac.uk/
constant/darkenergyequationofstate

http://numericalatlas.cs.ucl.ac.uk/constant/darkenergyequationofstate
http://numericalatlas.cs.ucl.ac.uk/constant/darkenergyequationofstate
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• Unit: Dimensionless

• Value range: −2 ≤ x ≤−0.5

Resulting in 40 measurements with provided uncertainties, with a mean of -1.05

and a median of -1.05. Here we struggle with ParameterName annotations, most

likely due to a combination of the linguistic variability of this quantity’s name, and

the manner in which it is often reported (either simply as w0, or cryptically as “the

equation of state parameter” or similar). This makes it difficult to be certain that we

have identified the correct values, beyond utilising some prior knowledge for the

value range, considering the probability that the symbol “w _ { 0 }” may well be

used in other contexts for different physical quantities. However, this being the case,

the values collected by our search show a reasonable grouping, and the specialised

nature of this parameter leads to a result set small enough to be easily examined

manually. Plots of these results are shown in Figure 3.15.

There is a clear discontinuity in the plot after 2015, and examination of the

papers following this shift suggest that this is due to new data from the Planck 2015

results (Ade et al., 2016) and the SDSS Data Release 12 (Alam et al., 2015) – as can

be seen in Chuang et al. (2017); Morandi and Sun (2016); Moresco et al. (2016);

Trashorras et al. (2016). Additionally, there are several values reported over the

years at approximately −1.4, which are found to be the result of investigations into

different Dark Energy models (Ebrahimi et al., 2018; Movahed and Rahvar, 2006)

and cosmological measurements from GRBs (Izzo et al., 2015).

3.6 Conclusion
We have presented our investigations into utilising artificial neural network models

for extracting numerical astrophysics measurements from astrophysical literature.

We have successfully trained neural models for Named Entity Recognition and En-

tity Attribute labelling tasks in this domain, and designed a rule-based approach for

Relation extraction based on the outputs of these neural models. The predictions

from these models have been processed and structured to allow for searching based

on a variety of criteria, such as parameter name or symbol, dimensionality, value
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Figure 3.15: Time series of the search results for w0, showing reported value and publica-
tion date.

range, and so on. During this process, we have created a hand-annotated training

dataset for these tasks, based on paper abstracts from the arXiv repository.

We have compared the results from these new models to those of the model

from Chapter 2, and determined that there is significant overlap between the two

result sets for our simple case study (the Hubble constant, H0), showing that the

new models have maintained the capabilities of the previous rule-based approach

for simple cases. We then went on to show that the new models can be applied to

a much broader range of scenarios, with a variety of different complexities, such

as: dimensionless quantities, symbols which commonly occur in compound expres-

sions (such as Ωm occurring in Ωmh2), or quantities with complex linguistic names

(c.f. σ8). We have shown that in these cases, with only a small amount of prior

knowledge being leveraged in the search, a useful result set can be obtained, pro-

viding an excellent basis for further manual investigation or statistical analysis. The
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database framework ensures very fast access to the model outputs, with each of

the example queries requiring only seconds of compute time, allowing for quick

iterations of search parameters in order to arrive at the desired result set.

Currently, the most common failure states for our model involve misleading

local structure, such as identifying “z = 2.36” as a measurement in the span “H ( z =

2.36 )”, or missing tokens at presumed boundaries, such as Example 3 in Table 3.9.

We also see failures for entity types which are not well supported by our training

set, notably in the case of object names. Additional training data and refined model

architectures are proposed for mitigating these kinds of errors.

Our results have been made available via an online interface, allowing users

to search for parameters of interest with a variety of search criteria. Users will be

able to engage with search results in an interactive manner, and download full result

sets for their own experimentation and analysis. This interface, Numerical Atlas,

can be found at http://numericalatlas.cs.ucl.ac.uk. However, the

numerical data are only one aspect of the model results. With the possibility of

combining additional data from paper citations and references (e.g. from arXiv or

NASA ADS), examining common naming conventions for symbols for use in other

search environments, or finding common dimensions for a given parameter, there

are many possibilities for examining the sociology and practices of the astrophysics

community with this data.

http://numericalatlas.cs.ucl.ac.uk


Chapter 4

Conclusions and Future Work

The increase in publication output of the scientific community has, in recent years,

surpassed the level at which most academics can stay up to date. Even if one chooses

a narrow focus, more papers are published each month than can be practically read

by any one individual in the given time. Further, if one wishes to make a formal

study of the value of a given parameter, across the multiple publications in which

such measurements are reported, this problem is compounded by the need to find

the various publications in the first place. Automating the process of gathering and

analysing these measurements will make many avenues of research faster and easier,

and open up new possibilities for examining the dissemination of information in the

astrophysics community.

In this thesis we have presented the development of a novel tool for this task

of automated measurement extraction from astrophysical literature, resulting in the

Numerical Atlas tool. We have discussed the data preparation and normalisation

necessary for this task, and the choices we have made in constructing our data pre-

processing pipelines. We have outlined the development of algorithms for the vari-

ous tasks involved in this process, and discussed the engineering required to make

the outputs of these processes useful to the user. We have also detailed the process

of creating a hand-annotated dataset for training and validation purposes, which has

been used in the creation of the final pipeline.

Chapter 2 focused on our initial experiments with a rules-based model for mea-

surement extraction, based on pattern-matching and keyword search. As a test case

for this approach, we used a very common measurement in astrophysics, the Hubble
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Constant, which describes the speed of the expansion of the Universe. Our initial

model successfully extracted 298 measurements of the Hubble constant from the

208,541 astrophysics papers submitted to the arXiv repository by September 2017.

Using these results we could recover the known trends in the community’s under-

standing of the Hubble Constant over the last two decades – such as the effects of the

Planck Collaboration publications (Planck Collaboration et al., 2018) and the Gaia

Mission (Gaia Collaboration et al., 2016) – as well as the recent tension between

results from different experimental approaches (Riess, 2020). This demonstrated

that the tool had excellent potential for meta-studies of astrophysical measurements

from a very large number of publications.

However, these algorithms proved brittle to minor variations in measurement

reporting, and required detailed queries by the user in order to account for variations

in parameter naming conventions (both textual and symbolic). This led to limited

usability for the model for more complex parameters, and suspected incomplete

search queries.

To account for these issues, in Chapter 3 we discussed the follow-up to our

initial approach with experiments for neural models for text parsing, which provide

much more flexibility than the rules-based approach we began with. The trade-

off with this approach is interpretability of the model outputs, as neural networks

are practically black-boxes once trained. This approach allowed for the extraction

of a larger variety of astrophysical measurements at pre-search time, without the

need for any user-provided search terms, by identifying textual entities (such as

parameter names or symbols, and measurement statements) and determining the

relationships between them.

However, this neural approach required a training data set, consisting of exam-

ples of inputs and the corresponding desired outputs – in our case, annotated text

from astrophysics papers. With no such dataset in existence, we organised the cre-

ation of one with a group of 7 astrophysics PhD students. For this the brat rapid

annotation tool (Stenetorp et al., 2012) was configured to allow the annotators to

work remotely on the tasks, with careful preparation of data batches to ensure good
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coverage and agreement over the data. Finally the results were aggregated into a

single, consistent dataset using an automated pipeline to remove discrepancies and

resolve annotator disagreements (see Appendix A.2).

This shift in paradigm from rules-based to statistical techniques enabled the

model to process all the available literature and populate a database of measure-

ments as a pre-processing step – vastly improving the efficiency search-time oper-

ations, along with the depth of information available to the user. This database has

been made accessible via an online interface, Numerical Atlas1, where users can

make queries and explore or download result sets for use in their own research. An

example of such a result set for the Hubble constant2 can be seen in Figure 3.8,

clearly showing expected trends in the value over time, such as the increasing ac-

curacy of measurements through time with experimental advances, and the even-

tual tension in recent years between early- and late-Universe determinations of the

parameter Riess (2020). We further presented similar result sets for 7 other cos-

mological parameters using the Numerical Atlas tool, demonstrating that our model

can successfully extract measurements for parameters without well-defined naming

conventions (e.g. σ8), along with dimensionless quantities (e.g. ΩM) and parame-

ters generally expressed as constraints (e.g. ∑mν ). This shows the capabilities of

the tool to be used for a wide array of astrophysical and cosmological parameters.

4.1 Future Work
Over the course of this project we have made great improvements to our measure-

ment extraction pipeline, from the initial heuristic-driven model to the final statis-

tical one. However, with the extension of the capabilities of our model come some

additional complexities. Firstly, there is still a large amount of noise present in the

results from Chapter 3, due to the intrinsic complexities of dealing with text. As we

are now using neural models, these failure states appear less predictable to a human

observer, in comparison to the output of rule-based models. Refining these models,

1Available at: http://numericalatlas.cs.ucl.ac.uk
2A query to reproduce this data may be found at: http://numericalatlas.cs.ucl.

ac.uk/constant/hubbleconstant

http://numericalatlas.cs.ucl.ac.uk
http://numericalatlas.cs.ucl.ac.uk/constant/hubbleconstant
http://numericalatlas.cs.ucl.ac.uk/constant/hubbleconstant
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and the pre- and post-processing steps used in our pipeline, is an on-going task, in-

volving the collection of additional training data and exploration of other potential

model architectures and pipelines.

We can continue developing the tool by improving the baseline prediction per-

formance using more advanced modelling techniques and by extending the models

to predict and extract additional information. A next step in using more advanced

modelling would be the utilisation of pretrained language models such as BERT

(Devlin et al., 2018), or the astroBERT language model, specifically trained for as-

tronomical texts, from Grezes et al. (2021). An important goal is to improve upon

the Object-Parameter relation predictions to a point where they are usable in the

system – which would allow for measurements to be linked to specific objects, such

as an “effective temperature” measurement being linked to the name of a specific

star. The biggest issue faced by the model from a low-level prediction perspective

is dealing with missing tokens within otherwise well-predicted entities. A combi-

nation of improved modelling, and more sophisticated post-processing steps, would

help alleviate these issues, which would in turn improve the performance of many

downstream tasks. Simple ensembling strategies may “smooth out” some of these

issues, or more elaborate modelling improvements may be required, and this cer-

tainly merits further investigation.

However, perhaps a bigger challenge than these low-level failure cases is deal-

ing with the large variation already seen in successfully extracted text spans – espe-

cially where parameter names and symbols are concerned. Our current strategy has

involved extracting parameter names as single atomic entities. However, this is not

a complete representation of the “name” of the parameter. For example, “Galactic

radius” and “radius of the Galaxy” are, to an astronomer, clearly referencing the

same physical quantity. However, this kind of entity normalization is a non-trivial

task for machines. Currently we are relying on simple inclusion-based string match-

ing, but this has many drawbacks – in the above case, the only word shared between

both forms (“radius”) is far too common to be sufficiently discriminative for a large

scale search. The ability to automatically determine if two written names reference
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the same physical quantity (referred to as Entity Linking in the field of Natural Lan-

guage Processing) would be a great boost to the practical utility of our search tool.

More than this, such an analysis of the textual names would lead to more refined

information on the nature of the parameters, as many names in scientific literature

are grammatically descriptive (not all, of course – there are plenty of “Proper Noun

constants” to be found). For example, a grammatical breakdown of a name such as

“star-formation rate” provides additional insight into the nature of the quantity: it is

a rate of some kind, relating to stars and their formation. With this breakdown, we

could now search for parameters relating to stellar phenomena, and “star-formation

rate” would be included in our listing. Naturally, this is a simplistic case, but the

ability to search for parameters at a more abstract level would have many benefits.

Beyond additional processing of information we are currently collecting, there

is also still much scope for collecting additional contingent information. The most

important, perhaps, is the collection of experimental methodology. This task is

complicated by the fact that it is generally a summarisation task – where a “Method-

ology” section must be read and condensed down into a more compact description

(ideally comprehensible to a human as well as the machine). In many cases there is

no discrete method name provided at all (by the text itself, or indeed the commu-

nity), and it is also possible that a paper is reporting a unique or ground-breaking

experimental technique for which no term has yet been coined. There are certain

sub-domains where a finite set of experimental techniques is available and well doc-

umented, but this is not the general case, and hence a more general approach must

be found.

4.2 Contributions and Objectives

In this work we present, to our knowledge, the first tool for the extraction of nu-

merical measurements from astrophysical literature, and provide an interface for

researchers to explore and utilise our collected data. Our model extracts contingent

information, such as error bars, confidence limits, parameter names and symbols

(and the relationships between them), and upper and lower bounds on quantities,
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allowing for a detailed look at the reporting of scientific measurements in astro-

physics, and for detailed and specific information to be extracted for use in statisti-

cal analysis or further study.

We have successfully met the objectives for this work (given in Section 1.8) as

follows:

• We have successfully created a machine learning model for the extraction of

numerical measurements from astrophysical literature, combining neural and

hand-crafted approaches.

• We have used this model to create a database of measurements, including

available contingent data and relationships extracted by our pipeline.

• We have tested our model and database on a case study of the Hubble Con-

stant, and successfully identified the well-established trends in our under-

standing of this quantity, including the 3.5σ discrepancy between near and far

determinations. We have shown the utility of this model in the case of a num-

ber of cosmological parameters, including several more challenging regimes

(common symbol, complex symbol, common/no units, etc.), and shown how

this can be used to show trends in our understand of these values through

time.

• We have created and published an interface to allow researchers to explore

our model results, Numerical Atlas, enabling others to use our contributions

in their own research.



Appendix A

Annotation Project Details

A.1 Detailed Annotation Schema Description
Here we present an exhaustive list of descriptions of the annotation types used for

the annotation effort described in Section 3.3.

For the Entity annotations, we have the following (as summarised in Table 3.1):

• MeasuredValue: This Entity is used for the value, uncertainty, and units of

numerical measurements reported as a central value with or without an ac-

companying uncertainty, when they appear together as a contiguous span in

the text (e.g. “5” or “5 \pm 2”). This includes any textual notes which may

appear inside the measurement, (e.g. “5 \pm 2 ( random ) km”), but does not

include confidence limits – unless they are stated within the bounds of the

measurement (e.g. “5 \pm 2 ( 68 % C.L. ) km”).

• Constraint: This Entity is used for the value and units (and occasionally un-

certainty) of constraints (such as the span “0.42” in “\alpha < 0.42”), where

they appear as a contiguous span, not including any equality signs which may

be present – the nature of the constraint is provided by the UpperBound and

LowerBound Attributes (discussed below). Note: without the accompanying

context, these often resemble instances of MeasuredValue.

• ParameterName: This Entity is for the linguistic name (i.e. a name com-

prised primarily of words, rather than symbols) of a measureable quantity. A

measurement of the quantity does not have to be provided in the text for this
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annotation to be present. The exact span for such an Entity can be ambiguous,

and can overlap with ObjectName (see below). Parameter names can also be

phrases, rather than simple nouns (or collections of nouns), and discussion

between annotators is sometimes required to determine the exact start and

end points of these Entities.

• ParameterSymbol: This Entity is for the mathematical symbol for a physical

quantity. These symbols can sometimes include abbreviations or short text

strings (e.g. “M _ { vir }”), but should not include complete words or phrases.

They may also include associated brackets and their contents (e.g. “H ( z =

0.36 )”), or less strictly mathematical syntax which is nonetheless a symbolic

form (e.g. “[Fe/H]”). Compound symbols (e.g. “\Omega_m h^2”) are ac-

cepted in cases where they are used as the primary identifier for a quantity,

but compound mathematical expressions (or equations) which do not directly

refer to a measured value should be annotated as Definition (see below).

• ObjectName: This Entity is used for the names (e.g. “Milky Way”) or identi-

fiers (e.g. “M31”) of physical objects – usually stars, galaxies, planets, etc. In

some cases, if a sentence is structured such that a less concrete single object is

discussed as one (for example, measurements of neutrino masses), then these

physical entities may also be annotated as ObjectName.

• ConfidenceLimit: This Entity is for the numerical value and quantifier (usu-

ally “\sigma” or “%”) of confidence limits (excluding any accompanying

phrase, such as “C.L.”). This Entity is required due to the fact that many

reports of confidence limits are separated by some span from the measure-

ment they refer to - and often a single instance of a confidence limit is used

for multiple measurements.

• SeparatedUncertainty: This Entity is used for an uncertainty provided sep-

arately from its central value. This annotation is required as we discovered

several instances in which a value and its corresponding uncertainty occur
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at different points in the text – this is usually where the calculation of the

measurement uncertainty was non-trivial in and of itself.

• Definition: This Entity is for mathematical expressions or equations which

are comprised of more than one symbol, and which are stated in the text as

formulae, rather than contained mathematical statements.

For the Relation annotations (as summarised in Table 3.2):

• Measurement: This Relation indicates that a MeasuredValue or Constraint is

a direct numerical measurement of some stated parameter (ParameterName

or ParameterSymbol). This Relation should only be used for direct instances

of the value of the parameter in question, not derived quantities or contingent

values.

• Name: This Relation is used to indicate that a ParameterSymbol is a mathe-

matical expression for a linguistic name (ParameterName) found in the text.

• Confidence: This Relation indicates that a ConfidenceLimit annotation is re-

lated to a measurement annotation – i.e. that the stated confidence limit relates

to the uncertainties provided in the measurement. This Relation should only

be used for MeasuredValue annotations which provide an uncertainty, but can

be used for any Constraint annotation.

• Property: This Relation indicates that a measurement (MeasuredValue or

Constraint) or parameter (ParameterName or ParameterSymbol) is a direct

property of an object specified by an ObjectName annotation. This generally

means that the parameter is a physical characteristic of the object (“mass”,

“radius”, etc), or that it represents some important property associated with

the object (e.g. “star-formation rate” of a galaxy).

• Equivalence: This Relation indicates that two ObjectName annotations (with

different textual contents) relate to the same physical object.
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• Contains: This Relation indicates that one object contains another object.

This could be used for sub-components of a system (e.g. members of a binary

star system), or objects which reside within a larger object (e.g. stars within

a galaxy).

• Uncertainty: This Relation exists to connect MeasuredValue or Constraint

annotations to a SeparatedUncertainty annotation, indicating that the uncer-

tainty is directly related to the measurement. This should only be used where

the value and uncertainty share the same dimensions, and require no addi-

tional manipulation to be used together.

• Defined: This Relation indicates that a Definition annotation contains a math-

ematical definition for another Entity. This is often of the form “y = mx + c”,

but could be more verbose (e.g. “\alpha, which is defined to be ...”).

And finally for the Attribute annotations (as summarised in Table 3.3):

• Incorrect: This Attribute is applied to measurement annotations which are

stated to be incorrect by the author (regardless of whether the author’s deter-

mination is true).

• AcceptedValue: This Attribute indicates that a given measurement annotation

is stated as final, or ultimately accepted, by the author – as may occur in

cases where several possible numerical values are provided based on different

assumptions.

• FromLiterature: This Attribute indicates that a measurement is not the work

of the author, but instead quoted from some literature source.

• UpperBound: This Attribute indicates that a Constraint annotation represents

an upper bound on a quantity.

• LowerBound: This Attribute indicates that a Constraint annotation represents

a lower bound on a quantity.
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A.2 Consensus Annotation Algorithm

For the collection of annotated paper abstracts to be used as training data for ma-

chine learning purposes, we must consolidate the repeated sets of annotations for

each abstract (see Section 3.3) into a single annotation set for that particular piece

of text. This should be done in such a way that we preserve the largest amount of

information from the annotators, while also taking account of ambiguity and guard-

ing against human error. There is not necessarily a canonical approach to take for

this problem, and so we have chosen the following method:

For each abstract, D, with a set of annotations, S, consisting of Entities, E, Re-

lations, R, and Attributes, A, we group the Entities into overlapping groups. Each

of these groups can be in one of several states: full agreement, partial agreement,

or disagreement. In the case of full agreement, all annotators have exactly the same

Entity annotations (both the span of the annotation and it’s label), and this anno-

tation is accepted into the consensus annotation set. For partial agreement, more

than half the annotators (2 in our case) must have the same annotation, and this is

also considered a consensus annotation. For the disagreement case there are many

possible situations: the annotators may all have different overlapping spans with

the same label, selected different labels for the same span, multiple sets of partially

overlapping spans, or some combination thereof. It is also possible that a single an-

notation span for one annotator may be multiple spans for another, or that only one

annotator identified a certain span as containing an Entity, and other such combina-

tions of labelling. One of these cases is resolved by the consensus algorithm in the

following way: If more than half the annotators have overlapping annotation spans

with the same label, which do not intersect with any other spans (i.e. we are not in a

case where one annotator has a single span and another multiple spans in the same

region), then a consensus Entity is created from the overlap of the annotated spans,

and assigned the appropriate label (these substitutions are tracked for the purposes

of consensus Relations – see below). For all other cases, the annotation is simply

rejected from the consensus.



A.2. Consensus Annotation Algorithm 150

Next we consider Relations: first we filter the candidate Relations by whether

their start and end Entities are in the consensus set – if not, the Relation is re-

jected. The remaining Relations are then grouped together by their start and end

Entities, and the same process of identification as full agreement, partial agreement,

or disagreement is performed. However, for Relations, the possible combinations

of agreement and disagreement are less complex. A simple majority (2, in this case)

voting system is sufficient to determine inclusion in the consensus set.

Finally, Attribute annotations are also filtered by subject Entity inclusion in the

consensus set, and agreement is determined by voting, as for Relations.



Appendix B

Rule-based Relation Extraction

Model Details

For the direct text evaluation, we have the following rules:

• Any ParameterSymbol and MeasuredValue separated exactly (ignoring

whitespace) by one of: “=”, “>”, “<”, “\sim”, “\simeq”, “\approx”, “\leq”,

“\geq”, “of”, or an empty string (i.e. whitespace) are considered to be linked

by a Measurement Relation.

• Any ParameterName and MeasuredValue separated exactly by one of: “is”,

“of”, “(”, or an empty string are considered to be linked by a Measurement

Relation.

• Any MeasuredValue and ConfidenceLimit separated exactly by one of: “at”,

“at the”, or “(” are considered to be linked by a Confidence Relation.

• Any ParameterName and ParameterSymbol separated exactly by: “is”, “is

the”, “of”, “(”, a comma, or an empty string are considered to be linked by a

Name Relation.

• Any ParameterName and ObjectName separated exactly by: “of”, “of the”,

or an empty string are considered to be linked by a Property Relation.

• Any ParameterSymbol (or ParameterName) and Definition separated exactly

by: “is”, “=”, or “\equiv” are considered to be linked by a Defined Relation.
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Next, for the Entity patterns, we use the following rules (these patterns only

consider the sequences of Entities in a sentence, and ignore all other tokens labelled

as None):

• Simple Name pattern: A ParameterName followed by a ParameterSymbol

(but not preceeded by one) is considered to be linked to it by a Name Relation.

• Multiple Measurements pattern: A ParameterName or ParameterSymbol an-

notation followed by a series of MeasuredValue or Constraint annotations is

considered to be linked to each by a Measurement Relation.

• Standard Measurement pattern: A ParameterName followed by a Parameter-

Symbol followed by a MeasuredValue or Constraint annotation are assumed

to be linked by Name and Measurement Relations.

• Definition Measurement pattern: A ParameterSymbol followed by a Defini-

tion followed by a MeasuredValue is considered to have the ParameterSymbol

linked to the other two by a Defined and a Measurement Relation, respec-

tively.

• Simple Confidence Limit pattern: Any series of MeasuredValue or Constraint

annotations followed by a single ConfidenceLimit are each considered to be

linked to it by a Confidence Relation.

• Named Object Property pattern: A ParameterName followed by an Object-

Name followed by a ParameterSymbol followed by a MeasuredValue or Con-

straint annotation are considered to be linked by a Property Relation between

the ObjectName and ParameterName, and by a Name Relation between the

ParameterName and ParameterSymbol (the Measurement Relation is already

covered by above rules).

• Simple Property pattern: An ObjectName followed by a ParameterName

and/or ParameterSymbol annotation, followed by a MeasuredValue or Con-

straint annotation, are considered to be linked by a Property Relation, option-
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ally a Name Relation (if both name and symbol are present), and finally by a

Measurement Relation.

• Tuple Measurements pattern: An uninterrupted sequence of ParameterName

and ParameterSymbol annotations, followed by another uninterrupted se-

quence of MeasuredValue and Constraint annotations, of equal length, are

considered to be pairwise linked by Measurement Relations. This pattern is

commonly seen when reporting multiple values from cosmological simula-

tions (often collections of cosmological parameters).

Using the above rules, a reasonable degree of accuracy can be achieved on the

annotated data available, as may be seen in Section 3.4.5.3.
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Annotation Post-Processing Steps

The following steps are carried out for the Entity annotations in the prediction doc-

uments (note that, in practice, these post-processing steps are performed before

Attribute or Relation predictions are performed):

1. As for the consensus algorithm (see Appendix A.2), stopwords are removed

from the beginning and end of all Entities. Unlike the consensus dataset, here

we may run into cases where this removes the entire Entity string (as false

positives containing only stopwords – e.g. “of”, or ‘’of the” – are a standard

error encountered in the predictions), and in these cases the Entity annotation

is completely discarded.

2. Any ParameterSymbol, ParameterName, or ObjectName annotations which

do not include at least one alphabetical character are discarded.

3. Any MeasuredValue or Constraint annotations which do not include at least

one numerical character are discarded.

4. Again, as for the consensus algorithm, any repetitions of the textual content

of any ParameterSymbol, ParameterName, or ObjectName annotations are

identified in the document and annotated with the corresponding Entity label.

We also use parsing algorithms to normalise certain Entities – notably Con-

fidenceLimit and ParameterSymbol Entities. For ConfidenceLimit annotations we

perform a simple pattern match with a regular expression, requiring the text to fol-
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low one of the following patterns (with allowances for some minor variations of

whitespace, etc.):

• 1σ

• 1-σ

• one sigma

• one-sigma

• 68%

• 68 percent

Percentage expressions of the confidence are converted into standard deviations us-

ing the inverse error function. This information will allow for measurement errors

to be converted into a standard format by the user if desired.

The normalisation process for ParameterSymbol annotations is a little more

complex, due to the repeating and recursive nature of LATEX symbols and mathe-

matical expressions in general. The goal is to normalise the string representation

of the symbol such that different typographical forms of the same mathematical

symbol can be better compared using standard string comparison. For example, we

desire that the following strings be considered equal for our search:

• “H _ 0” and “H _ { 0 }” (as LATEX does not require braces for single character

sub- and super-scripts)

• “Fe/H” and “Fe / H” (whitespace differences like this can occur when symbols

can be written in math or text environments, causing the symbol to be

parsed into a different number of tokens)

• “T _ { \mathrm { eff } }” and “T _ { eff }” (the LATEX command here is

aesthetic, and does not indicate a different semantic meaning)

• “a / b” and “\frac { a } { b }”
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• “f ( x )” and “f \left( x \right)”

Note that the increased quantity of whitespace characters in these examples simply

reflects the tokenizing of the source LATEX by our pre-processing pipeline.

In order to normalize these highly variable strings we have created a context

free grammar with which to parse the raw LATEX strings into a recursive tree struc-

ture representing the components of the symbol – for example, individual charac-

ters, sub- and superscript symbols, functions (i.e. “ f (x)”), bracketed expressions

(respecting bracket type), binary operator expressions (e.g. “a + b”), and so on.

These data structures may then be serialized into a standard string format, obeying

LATEX style conventions. There are many cases where this parsing fails, either be-

cause the symbol represents some typographic edge case, or because the span iden-

tified by the model is incomplete. Currently no attempt is made to alter the span of

the Entity in question, and failed parsing attempts result in the original string also

being used to represent the normalised case for search purposes. This normalised

string may then be used for queries based on mathematical symbols, with the query

symbol string also being passed through this parsing algorithm to ensure that it is

inline with the expected style conventions – for example, braces (“{}”) are included

in all cases of ambiguity (i.e. “H _ 0” becomes “H _ { 0 }”), and mathematical (as

opposed to LATEX type-setting) braces use their simplest form (i.e. “\right(” becomes

“(”) to improve readability for the user.

For the Relation annotations, as with the consensus dataset (see Appendix A.2),

we add any transitive or implied Relations into the annotation set for the document.

This is especially crucial at this stage, as having all implied Relations be present in

the annotations makes search-time operations more efficient, by removing the need

for further inferencing at a later stage.
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Database Implementation

Now that we have chosen our model architectures and produced trained instances

for the various tasks involved in our problem, we require a structured format in

which to store the resulting predictions. We have chosen to use a relational database

for this purpose, as it will allow for straightforward integration with web-based

frameworks, and most programming languages have libraries for interacting with

such databases. This database can then be made available to the community through

a web interface which will be designed to facilitate access to the available data

without requiring the user to be intimately familiar with the database structure.

We shall store all information required to reconstruct the annotated documents

produced by the models (as opposed to merely storing summary information) to al-

low for thorough analysis of any query results by referring back to the text-level pre-

dictions. This means that our database must contain the abstract text, the positions

and labels of the various entities, and the relations between those entities. As such,

we shall have separate tables for each Entity and Relation (note that for Relations

we require separate tables for each possible start-end Entity class combination). As

we are only consider UpperBound and LowerBound Attributes, these are simply

folded into the MeasuredValue/Constraint table (which are given in one table for

simplicity, mirroring their combined prediction). These constitute the primary data

tables for this database, and will be used when writing queries for collections of

measurements. Note that we do not maintain tables for all the annotation labels

listed in Tables 3.1, 3.2, and 3.3, as the final training dataset contained insufficient

numbers of samples for certain classes to train predictive models. In addition to this
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information, required to reconstruct the annotated documents, we also store some

metadata about the article, such as its arXiv identifier and date of publication.

However, it is important to realise that there is additional implicit information

contained in these annotation predictions, beyond the specific instances of Entities

or Relations in the text. For example, the occurrence rates of Name Relations end-

ing in ParameterSymbol Entities with the same string can provide information about

naming conventions of particular symbols, or vice versa for symbolic representa-

tions of textual names. We can perform similar queries for ObjectName Entities and

their Property Relations, ParameterSymbols and their Definitions, and so on. To fa-

cilitate access to this information, we have chosen to maintain tables of recurring

Entities and Relations, in addition to the instance-level tables (which store specific

annotations and their spans or subjects). For example, a table of the unique strings

designated as ParameterNames, or a table of the unique Relations existing between

unique ParameterName and ParameterSymbol strings. The use of this information

in performing searches with the database can be seen in Section 3.5.2.

With this database in place, we may perform table joins and row selection op-

erations to select combinations of data given provided criteria. The most common

combination of joins we may expect is the association of rows in our Measured-

Value (and Constraint) table to rows in the ParameterName and ParameterSymbol

tables, via the Name and Measurement Relation tables, resulting in a collection of

measurements with any associated name or symbol – we will most likely wish to

drop rows with neither a name or symbol present, as we have no way of identifying

the parameter to which the measurement belongs. This procedure may, of course,

be extended to ObjectName and ConfidenceLimit annotations, allowing for rows

containing rich information regarding the measurement. These table views may

then be sliced based on the content of any given column: pattern-matching based

on normalised symbol string (see Appendix C), parameter name, object name, or

some combination of these. Once the measurement string itself (the text contained

in the MeasuredValue or Constraint Entity) has been processed we may also begin
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to make cuts based on value range, units, the presence of uncertainties, and other

factors based on content of the measurement.



Appendix E

Colophon

This document was set in the Times Roman typeface using LATEX, and was com-

posed and edited using the Overleaf1 editor environment.

The BibTEX and natbib packages were used for the production of this docu-

ment, along with graphicx, subfig, float, multirow, and many others.

1https://www.overleaf.com

https://www.overleaf.com
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